1 /*******************************************************************************
3 Intel PRO/100 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * e100.c: Intel(R) PRO/100 ethernet driver
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
55 * II. Driver Operation
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
109 * Under typical operation, the receive unit (RU) is start once,
110 * and the controller happily fills RFDs as frames arrive. If
111 * replacement RFDs cannot be allocated, or the RU goes non-active,
112 * the RU must be restarted. Frame arrival generates an interrupt,
113 * and Rx indication and re-allocation happen in the same context,
114 * therefore no locking is required. A software-generated interrupt
115 * is generated from the watchdog to recover from a failed allocation
116 * senario where all Rx resources have been indicated and none re-
121 * VLAN offloading of tagging, stripping and filtering is not
122 * supported, but driver will accommodate the extra 4-byte VLAN tag
123 * for processing by upper layers. Tx/Rx Checksum offloading is not
124 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
125 * not supported (hardware limitation).
127 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
129 * Thanks to JC (jchapman@katalix.com) for helping with
130 * testing/troubleshooting the development driver.
133 * o several entry points race with dev->close
134 * o check for tx-no-resources/stop Q races with tx clean/wake Q
137 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
138 * - Stratus87247: protect MDI control register manipulations
141 #include <linux/module.h>
142 #include <linux/moduleparam.h>
143 #include <linux/kernel.h>
144 #include <linux/types.h>
145 #include <linux/slab.h>
146 #include <linux/delay.h>
147 #include <linux/init.h>
148 #include <linux/pci.h>
149 #include <linux/dma-mapping.h>
150 #include <linux/netdevice.h>
151 #include <linux/etherdevice.h>
152 #include <linux/mii.h>
153 #include <linux/if_vlan.h>
154 #include <linux/skbuff.h>
155 #include <linux/ethtool.h>
156 #include <linux/string.h>
157 #include <asm/unaligned.h>
160 #define DRV_NAME "e100"
161 #define DRV_EXT "-NAPI"
162 #define DRV_VERSION "3.5.17-k4"DRV_EXT
163 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
164 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
165 #define PFX DRV_NAME ": "
167 #define E100_WATCHDOG_PERIOD (2 * HZ)
168 #define E100_NAPI_WEIGHT 16
170 MODULE_DESCRIPTION(DRV_DESCRIPTION
);
171 MODULE_AUTHOR(DRV_COPYRIGHT
);
172 MODULE_LICENSE("GPL");
173 MODULE_VERSION(DRV_VERSION
);
175 static int debug
= 3;
176 static int eeprom_bad_csum_allow
= 0;
177 static int use_io
= 0;
178 module_param(debug
, int, 0);
179 module_param(eeprom_bad_csum_allow
, int, 0);
180 module_param(use_io
, int, 0);
181 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
182 MODULE_PARM_DESC(eeprom_bad_csum_allow
, "Allow bad eeprom checksums");
183 MODULE_PARM_DESC(use_io
, "Force use of i/o access mode");
184 #define DPRINTK(nlevel, klevel, fmt, args...) \
185 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
186 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
187 __FUNCTION__ , ## args))
189 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
190 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
191 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
192 static struct pci_device_id e100_id_table
[] = {
193 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
194 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
195 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
196 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
197 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
198 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
199 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
200 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
201 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
202 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
203 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
204 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
205 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
206 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
207 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
208 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
209 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
210 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
211 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
212 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
213 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
214 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
215 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
216 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
217 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
218 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
219 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
220 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
221 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
222 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
223 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
224 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
225 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
226 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
227 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
228 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
229 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
230 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
231 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
232 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
233 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
236 MODULE_DEVICE_TABLE(pci
, e100_id_table
);
239 mac_82557_D100_A
= 0,
240 mac_82557_D100_B
= 1,
241 mac_82557_D100_C
= 2,
242 mac_82558_D101_A4
= 4,
243 mac_82558_D101_B0
= 5,
247 mac_82550_D102_C
= 13,
255 phy_100a
= 0x000003E0,
256 phy_100c
= 0x035002A8,
257 phy_82555_tx
= 0x015002A8,
258 phy_nsc_tx
= 0x5C002000,
259 phy_82562_et
= 0x033002A8,
260 phy_82562_em
= 0x032002A8,
261 phy_82562_ek
= 0x031002A8,
262 phy_82562_eh
= 0x017002A8,
263 phy_unknown
= 0xFFFFFFFF,
266 /* CSR (Control/Status Registers) */
291 RU_UNINITIALIZED
= -1,
295 stat_ack_not_ours
= 0x00,
296 stat_ack_sw_gen
= 0x04,
298 stat_ack_cu_idle
= 0x20,
299 stat_ack_frame_rx
= 0x40,
300 stat_ack_cu_cmd_done
= 0x80,
301 stat_ack_not_present
= 0xFF,
302 stat_ack_rx
= (stat_ack_sw_gen
| stat_ack_rnr
| stat_ack_frame_rx
),
303 stat_ack_tx
= (stat_ack_cu_idle
| stat_ack_cu_cmd_done
),
307 irq_mask_none
= 0x00,
315 ruc_load_base
= 0x06,
318 cuc_dump_addr
= 0x40,
319 cuc_dump_stats
= 0x50,
320 cuc_load_base
= 0x60,
321 cuc_dump_reset
= 0x70,
325 cuc_dump_complete
= 0x0000A005,
326 cuc_dump_reset_complete
= 0x0000A007,
330 software_reset
= 0x0000,
332 selective_reset
= 0x0002,
335 enum eeprom_ctrl_lo
{
343 mdi_write
= 0x04000000,
344 mdi_read
= 0x08000000,
345 mdi_ready
= 0x10000000,
355 enum eeprom_offsets
{
356 eeprom_cnfg_mdix
= 0x03,
358 eeprom_config_asf
= 0x0D,
359 eeprom_smbus_addr
= 0x90,
362 enum eeprom_cnfg_mdix
{
363 eeprom_mdix_enabled
= 0x0080,
367 eeprom_id_wol
= 0x0020,
370 enum eeprom_config_asf
{
376 cb_complete
= 0x8000,
405 struct rx
*next
, *prev
;
410 #if defined(__BIG_ENDIAN_BITFIELD)
416 /*0*/ u8
X(byte_count
:6, pad0
:2);
417 /*1*/ u8
X(X(rx_fifo_limit
:4, tx_fifo_limit
:3), pad1
:1);
418 /*2*/ u8 adaptive_ifs
;
419 /*3*/ u8
X(X(X(X(mwi_enable
:1, type_enable
:1), read_align_enable
:1),
420 term_write_cache_line
:1), pad3
:4);
421 /*4*/ u8
X(rx_dma_max_count
:7, pad4
:1);
422 /*5*/ u8
X(tx_dma_max_count
:7, dma_max_count_enable
:1);
423 /*6*/ u8
X(X(X(X(X(X(X(late_scb_update
:1, direct_rx_dma
:1),
424 tno_intr
:1), cna_intr
:1), standard_tcb
:1), standard_stat_counter
:1),
425 rx_discard_overruns
:1), rx_save_bad_frames
:1);
426 /*7*/ u8
X(X(X(X(X(rx_discard_short_frames
:1, tx_underrun_retry
:2),
427 pad7
:2), rx_extended_rfd
:1), tx_two_frames_in_fifo
:1),
429 /*8*/ u8
X(X(mii_mode
:1, pad8
:6), csma_disabled
:1);
430 /*9*/ u8
X(X(X(X(X(rx_tcpudp_checksum
:1, pad9
:3), vlan_arp_tco
:1),
431 link_status_wake
:1), arp_wake
:1), mcmatch_wake
:1);
432 /*10*/ u8
X(X(X(pad10
:3, no_source_addr_insertion
:1), preamble_length
:2),
434 /*11*/ u8
X(linear_priority
:3, pad11
:5);
435 /*12*/ u8
X(X(linear_priority_mode
:1, pad12
:3), ifs
:4);
436 /*13*/ u8 ip_addr_lo
;
437 /*14*/ u8 ip_addr_hi
;
438 /*15*/ u8
X(X(X(X(X(X(X(promiscuous_mode
:1, broadcast_disabled
:1),
439 wait_after_win
:1), pad15_1
:1), ignore_ul_bit
:1), crc_16_bit
:1),
440 pad15_2
:1), crs_or_cdt
:1);
441 /*16*/ u8 fc_delay_lo
;
442 /*17*/ u8 fc_delay_hi
;
443 /*18*/ u8
X(X(X(X(X(rx_stripping
:1, tx_padding
:1), rx_crc_transfer
:1),
444 rx_long_ok
:1), fc_priority_threshold
:3), pad18
:1);
445 /*19*/ u8
X(X(X(X(X(X(X(addr_wake
:1, magic_packet_disable
:1),
446 fc_disable
:1), fc_restop
:1), fc_restart
:1), fc_reject
:1),
447 full_duplex_force
:1), full_duplex_pin
:1);
448 /*20*/ u8
X(X(X(pad20_1
:5, fc_priority_location
:1), multi_ia
:1), pad20_2
:1);
449 /*21*/ u8
X(X(pad21_1
:3, multicast_all
:1), pad21_2
:4);
450 /*22*/ u8
X(X(rx_d102_mode
:1, rx_vlan_drop
:1), pad22
:6);
454 #define E100_MAX_MULTICAST_ADDRS 64
457 u8 addr
[E100_MAX_MULTICAST_ADDRS
* ETH_ALEN
+ 2/*pad*/];
460 /* Important: keep total struct u32-aligned */
461 #define UCODE_SIZE 134
468 u32 ucode
[UCODE_SIZE
];
469 struct config config
;
482 u32 dump_buffer_addr
;
484 struct cb
*next
, *prev
;
490 lb_none
= 0, lb_mac
= 1, lb_phy
= 3,
494 u32 tx_good_frames
, tx_max_collisions
, tx_late_collisions
,
495 tx_underruns
, tx_lost_crs
, tx_deferred
, tx_single_collisions
,
496 tx_multiple_collisions
, tx_total_collisions
;
497 u32 rx_good_frames
, rx_crc_errors
, rx_alignment_errors
,
498 rx_resource_errors
, rx_overrun_errors
, rx_cdt_errors
,
499 rx_short_frame_errors
;
500 u32 fc_xmt_pause
, fc_rcv_pause
, fc_rcv_unsupported
;
501 u16 xmt_tco_frames
, rcv_tco_frames
;
521 struct param_range rfds
;
522 struct param_range cbs
;
526 /* Begin: frequently used values: keep adjacent for cache effect */
527 u32 msg_enable ____cacheline_aligned
;
528 struct net_device
*netdev
;
529 struct pci_dev
*pdev
;
531 struct rx
*rxs ____cacheline_aligned
;
532 struct rx
*rx_to_use
;
533 struct rx
*rx_to_clean
;
534 struct rfd blank_rfd
;
535 enum ru_state ru_running
;
537 spinlock_t cb_lock ____cacheline_aligned
;
539 struct csr __iomem
*csr
;
540 enum scb_cmd_lo cuc_cmd
;
541 unsigned int cbs_avail
;
543 struct cb
*cb_to_use
;
544 struct cb
*cb_to_send
;
545 struct cb
*cb_to_clean
;
547 /* End: frequently used values: keep adjacent for cache effect */
551 promiscuous
= (1 << 1),
552 multicast_all
= (1 << 2),
553 wol_magic
= (1 << 3),
554 ich_10h_workaround
= (1 << 4),
555 } flags ____cacheline_aligned
;
559 struct params params
;
560 struct net_device_stats net_stats
;
561 struct timer_list watchdog
;
562 struct timer_list blink_timer
;
563 struct mii_if_info mii
;
564 struct work_struct tx_timeout_task
;
565 enum loopback loopback
;
570 dma_addr_t cbs_dma_addr
;
576 u32 tx_single_collisions
;
577 u32 tx_multiple_collisions
;
582 u32 rx_fc_unsupported
;
584 u32 rx_over_length_errors
;
590 spinlock_t mdio_lock
;
593 static inline void e100_write_flush(struct nic
*nic
)
595 /* Flush previous PCI writes through intermediate bridges
596 * by doing a benign read */
597 (void)ioread8(&nic
->csr
->scb
.status
);
600 static void e100_enable_irq(struct nic
*nic
)
604 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
605 iowrite8(irq_mask_none
, &nic
->csr
->scb
.cmd_hi
);
606 e100_write_flush(nic
);
607 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
610 static void e100_disable_irq(struct nic
*nic
)
614 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
615 iowrite8(irq_mask_all
, &nic
->csr
->scb
.cmd_hi
);
616 e100_write_flush(nic
);
617 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
620 static void e100_hw_reset(struct nic
*nic
)
622 /* Put CU and RU into idle with a selective reset to get
623 * device off of PCI bus */
624 iowrite32(selective_reset
, &nic
->csr
->port
);
625 e100_write_flush(nic
); udelay(20);
627 /* Now fully reset device */
628 iowrite32(software_reset
, &nic
->csr
->port
);
629 e100_write_flush(nic
); udelay(20);
631 /* Mask off our interrupt line - it's unmasked after reset */
632 e100_disable_irq(nic
);
635 static int e100_self_test(struct nic
*nic
)
637 u32 dma_addr
= nic
->dma_addr
+ offsetof(struct mem
, selftest
);
639 /* Passing the self-test is a pretty good indication
640 * that the device can DMA to/from host memory */
642 nic
->mem
->selftest
.signature
= 0;
643 nic
->mem
->selftest
.result
= 0xFFFFFFFF;
645 iowrite32(selftest
| dma_addr
, &nic
->csr
->port
);
646 e100_write_flush(nic
);
647 /* Wait 10 msec for self-test to complete */
650 /* Interrupts are enabled after self-test */
651 e100_disable_irq(nic
);
653 /* Check results of self-test */
654 if(nic
->mem
->selftest
.result
!= 0) {
655 DPRINTK(HW
, ERR
, "Self-test failed: result=0x%08X\n",
656 nic
->mem
->selftest
.result
);
659 if(nic
->mem
->selftest
.signature
== 0) {
660 DPRINTK(HW
, ERR
, "Self-test failed: timed out\n");
667 static void e100_eeprom_write(struct nic
*nic
, u16 addr_len
, u16 addr
, u16 data
)
669 u32 cmd_addr_data
[3];
673 /* Three cmds: write/erase enable, write data, write/erase disable */
674 cmd_addr_data
[0] = op_ewen
<< (addr_len
- 2);
675 cmd_addr_data
[1] = (((op_write
<< addr_len
) | addr
) << 16) |
677 cmd_addr_data
[2] = op_ewds
<< (addr_len
- 2);
679 /* Bit-bang cmds to write word to eeprom */
680 for(j
= 0; j
< 3; j
++) {
683 iowrite8(eecs
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
684 e100_write_flush(nic
); udelay(4);
686 for(i
= 31; i
>= 0; i
--) {
687 ctrl
= (cmd_addr_data
[j
] & (1 << i
)) ?
689 iowrite8(ctrl
, &nic
->csr
->eeprom_ctrl_lo
);
690 e100_write_flush(nic
); udelay(4);
692 iowrite8(ctrl
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
693 e100_write_flush(nic
); udelay(4);
695 /* Wait 10 msec for cmd to complete */
699 iowrite8(0, &nic
->csr
->eeprom_ctrl_lo
);
700 e100_write_flush(nic
); udelay(4);
704 /* General technique stolen from the eepro100 driver - very clever */
705 static u16
e100_eeprom_read(struct nic
*nic
, u16
*addr_len
, u16 addr
)
712 cmd_addr_data
= ((op_read
<< *addr_len
) | addr
) << 16;
715 iowrite8(eecs
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
716 e100_write_flush(nic
); udelay(4);
718 /* Bit-bang to read word from eeprom */
719 for(i
= 31; i
>= 0; i
--) {
720 ctrl
= (cmd_addr_data
& (1 << i
)) ? eecs
| eedi
: eecs
;
721 iowrite8(ctrl
, &nic
->csr
->eeprom_ctrl_lo
);
722 e100_write_flush(nic
); udelay(4);
724 iowrite8(ctrl
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
725 e100_write_flush(nic
); udelay(4);
727 /* Eeprom drives a dummy zero to EEDO after receiving
728 * complete address. Use this to adjust addr_len. */
729 ctrl
= ioread8(&nic
->csr
->eeprom_ctrl_lo
);
730 if(!(ctrl
& eedo
) && i
> 16) {
731 *addr_len
-= (i
- 16);
735 data
= (data
<< 1) | (ctrl
& eedo
? 1 : 0);
739 iowrite8(0, &nic
->csr
->eeprom_ctrl_lo
);
740 e100_write_flush(nic
); udelay(4);
742 return le16_to_cpu(data
);
745 /* Load entire EEPROM image into driver cache and validate checksum */
746 static int e100_eeprom_load(struct nic
*nic
)
748 u16 addr
, addr_len
= 8, checksum
= 0;
750 /* Try reading with an 8-bit addr len to discover actual addr len */
751 e100_eeprom_read(nic
, &addr_len
, 0);
752 nic
->eeprom_wc
= 1 << addr_len
;
754 for(addr
= 0; addr
< nic
->eeprom_wc
; addr
++) {
755 nic
->eeprom
[addr
] = e100_eeprom_read(nic
, &addr_len
, addr
);
756 if(addr
< nic
->eeprom_wc
- 1)
757 checksum
+= cpu_to_le16(nic
->eeprom
[addr
]);
760 /* The checksum, stored in the last word, is calculated such that
761 * the sum of words should be 0xBABA */
762 checksum
= le16_to_cpu(0xBABA - checksum
);
763 if(checksum
!= nic
->eeprom
[nic
->eeprom_wc
- 1]) {
764 DPRINTK(PROBE
, ERR
, "EEPROM corrupted\n");
765 if (!eeprom_bad_csum_allow
)
772 /* Save (portion of) driver EEPROM cache to device and update checksum */
773 static int e100_eeprom_save(struct nic
*nic
, u16 start
, u16 count
)
775 u16 addr
, addr_len
= 8, checksum
= 0;
777 /* Try reading with an 8-bit addr len to discover actual addr len */
778 e100_eeprom_read(nic
, &addr_len
, 0);
779 nic
->eeprom_wc
= 1 << addr_len
;
781 if(start
+ count
>= nic
->eeprom_wc
)
784 for(addr
= start
; addr
< start
+ count
; addr
++)
785 e100_eeprom_write(nic
, addr_len
, addr
, nic
->eeprom
[addr
]);
787 /* The checksum, stored in the last word, is calculated such that
788 * the sum of words should be 0xBABA */
789 for(addr
= 0; addr
< nic
->eeprom_wc
- 1; addr
++)
790 checksum
+= cpu_to_le16(nic
->eeprom
[addr
]);
791 nic
->eeprom
[nic
->eeprom_wc
- 1] = le16_to_cpu(0xBABA - checksum
);
792 e100_eeprom_write(nic
, addr_len
, nic
->eeprom_wc
- 1,
793 nic
->eeprom
[nic
->eeprom_wc
- 1]);
798 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
799 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
800 static int e100_exec_cmd(struct nic
*nic
, u8 cmd
, dma_addr_t dma_addr
)
806 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
808 /* Previous command is accepted when SCB clears */
809 for(i
= 0; i
< E100_WAIT_SCB_TIMEOUT
; i
++) {
810 if(likely(!ioread8(&nic
->csr
->scb
.cmd_lo
)))
813 if(unlikely(i
> E100_WAIT_SCB_FAST
))
816 if(unlikely(i
== E100_WAIT_SCB_TIMEOUT
)) {
821 if(unlikely(cmd
!= cuc_resume
))
822 iowrite32(dma_addr
, &nic
->csr
->scb
.gen_ptr
);
823 iowrite8(cmd
, &nic
->csr
->scb
.cmd_lo
);
826 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
831 static int e100_exec_cb(struct nic
*nic
, struct sk_buff
*skb
,
832 void (*cb_prepare
)(struct nic
*, struct cb
*, struct sk_buff
*))
838 spin_lock_irqsave(&nic
->cb_lock
, flags
);
840 if(unlikely(!nic
->cbs_avail
)) {
846 nic
->cb_to_use
= cb
->next
;
850 if(unlikely(!nic
->cbs_avail
))
853 cb_prepare(nic
, cb
, skb
);
855 /* Order is important otherwise we'll be in a race with h/w:
856 * set S-bit in current first, then clear S-bit in previous. */
857 cb
->command
|= cpu_to_le16(cb_s
);
859 cb
->prev
->command
&= cpu_to_le16(~cb_s
);
861 while(nic
->cb_to_send
!= nic
->cb_to_use
) {
862 if(unlikely(e100_exec_cmd(nic
, nic
->cuc_cmd
,
863 nic
->cb_to_send
->dma_addr
))) {
864 /* Ok, here's where things get sticky. It's
865 * possible that we can't schedule the command
866 * because the controller is too busy, so
867 * let's just queue the command and try again
868 * when another command is scheduled. */
871 schedule_work(&nic
->tx_timeout_task
);
875 nic
->cuc_cmd
= cuc_resume
;
876 nic
->cb_to_send
= nic
->cb_to_send
->next
;
881 spin_unlock_irqrestore(&nic
->cb_lock
, flags
);
886 static u16
mdio_ctrl(struct nic
*nic
, u32 addr
, u32 dir
, u32 reg
, u16 data
)
894 * Stratus87247: we shouldn't be writing the MDI control
895 * register until the Ready bit shows True. Also, since
896 * manipulation of the MDI control registers is a multi-step
897 * procedure it should be done under lock.
899 spin_lock_irqsave(&nic
->mdio_lock
, flags
);
900 for (i
= 100; i
; --i
) {
901 if (ioread32(&nic
->csr
->mdi_ctrl
) & mdi_ready
)
906 printk("e100.mdio_ctrl(%s) won't go Ready\n",
908 spin_unlock_irqrestore(&nic
->mdio_lock
, flags
);
909 return 0; /* No way to indicate timeout error */
911 iowrite32((reg
<< 16) | (addr
<< 21) | dir
| data
, &nic
->csr
->mdi_ctrl
);
913 for (i
= 0; i
< 100; i
++) {
915 if ((data_out
= ioread32(&nic
->csr
->mdi_ctrl
)) & mdi_ready
)
918 spin_unlock_irqrestore(&nic
->mdio_lock
, flags
);
920 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
921 dir
== mdi_read
? "READ" : "WRITE", addr
, reg
, data
, data_out
);
922 return (u16
)data_out
;
925 static int mdio_read(struct net_device
*netdev
, int addr
, int reg
)
927 return mdio_ctrl(netdev_priv(netdev
), addr
, mdi_read
, reg
, 0);
930 static void mdio_write(struct net_device
*netdev
, int addr
, int reg
, int data
)
932 mdio_ctrl(netdev_priv(netdev
), addr
, mdi_write
, reg
, data
);
935 static void e100_get_defaults(struct nic
*nic
)
937 struct param_range rfds
= { .min
= 16, .max
= 256, .count
= 256 };
938 struct param_range cbs
= { .min
= 64, .max
= 256, .count
= 128 };
940 pci_read_config_byte(nic
->pdev
, PCI_REVISION_ID
, &nic
->rev_id
);
941 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
942 nic
->mac
= (nic
->flags
& ich
) ? mac_82559_D101M
: nic
->rev_id
;
943 if(nic
->mac
== mac_unknown
)
944 nic
->mac
= mac_82557_D100_A
;
946 nic
->params
.rfds
= rfds
;
947 nic
->params
.cbs
= cbs
;
949 /* Quadwords to DMA into FIFO before starting frame transmit */
950 nic
->tx_threshold
= 0xE0;
952 /* no interrupt for every tx completion, delay = 256us if not 557*/
953 nic
->tx_command
= cpu_to_le16(cb_tx
| cb_tx_sf
|
954 ((nic
->mac
>= mac_82558_D101_A4
) ? cb_cid
: cb_i
));
956 /* Template for a freshly allocated RFD */
957 nic
->blank_rfd
.command
= cpu_to_le16(cb_el
);
958 nic
->blank_rfd
.rbd
= 0xFFFFFFFF;
959 nic
->blank_rfd
.size
= cpu_to_le16(VLAN_ETH_FRAME_LEN
);
962 nic
->mii
.phy_id_mask
= 0x1F;
963 nic
->mii
.reg_num_mask
= 0x1F;
964 nic
->mii
.dev
= nic
->netdev
;
965 nic
->mii
.mdio_read
= mdio_read
;
966 nic
->mii
.mdio_write
= mdio_write
;
969 static void e100_configure(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
971 struct config
*config
= &cb
->u
.config
;
972 u8
*c
= (u8
*)config
;
974 cb
->command
= cpu_to_le16(cb_config
);
976 memset(config
, 0, sizeof(struct config
));
978 config
->byte_count
= 0x16; /* bytes in this struct */
979 config
->rx_fifo_limit
= 0x8; /* bytes in FIFO before DMA */
980 config
->direct_rx_dma
= 0x1; /* reserved */
981 config
->standard_tcb
= 0x1; /* 1=standard, 0=extended */
982 config
->standard_stat_counter
= 0x1; /* 1=standard, 0=extended */
983 config
->rx_discard_short_frames
= 0x1; /* 1=discard, 0=pass */
984 config
->tx_underrun_retry
= 0x3; /* # of underrun retries */
985 config
->mii_mode
= 0x1; /* 1=MII mode, 0=503 mode */
987 config
->no_source_addr_insertion
= 0x1; /* 1=no, 0=yes */
988 config
->preamble_length
= 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
989 config
->ifs
= 0x6; /* x16 = inter frame spacing */
990 config
->ip_addr_hi
= 0xF2; /* ARP IP filter - not used */
991 config
->pad15_1
= 0x1;
992 config
->pad15_2
= 0x1;
993 config
->crs_or_cdt
= 0x0; /* 0=CRS only, 1=CRS or CDT */
994 config
->fc_delay_hi
= 0x40; /* time delay for fc frame */
995 config
->tx_padding
= 0x1; /* 1=pad short frames */
996 config
->fc_priority_threshold
= 0x7; /* 7=priority fc disabled */
998 config
->full_duplex_pin
= 0x1; /* 1=examine FDX# pin */
999 config
->pad20_1
= 0x1F;
1000 config
->fc_priority_location
= 0x1; /* 1=byte#31, 0=byte#19 */
1001 config
->pad21_1
= 0x5;
1003 config
->adaptive_ifs
= nic
->adaptive_ifs
;
1004 config
->loopback
= nic
->loopback
;
1006 if(nic
->mii
.force_media
&& nic
->mii
.full_duplex
)
1007 config
->full_duplex_force
= 0x1; /* 1=force, 0=auto */
1009 if(nic
->flags
& promiscuous
|| nic
->loopback
) {
1010 config
->rx_save_bad_frames
= 0x1; /* 1=save, 0=discard */
1011 config
->rx_discard_short_frames
= 0x0; /* 1=discard, 0=save */
1012 config
->promiscuous_mode
= 0x1; /* 1=on, 0=off */
1015 if(nic
->flags
& multicast_all
)
1016 config
->multicast_all
= 0x1; /* 1=accept, 0=no */
1018 /* disable WoL when up */
1019 if(netif_running(nic
->netdev
) || !(nic
->flags
& wol_magic
))
1020 config
->magic_packet_disable
= 0x1; /* 1=off, 0=on */
1022 if(nic
->mac
>= mac_82558_D101_A4
) {
1023 config
->fc_disable
= 0x1; /* 1=Tx fc off, 0=Tx fc on */
1024 config
->mwi_enable
= 0x1; /* 1=enable, 0=disable */
1025 config
->standard_tcb
= 0x0; /* 1=standard, 0=extended */
1026 config
->rx_long_ok
= 0x1; /* 1=VLANs ok, 0=standard */
1027 if(nic
->mac
>= mac_82559_D101M
)
1028 config
->tno_intr
= 0x1; /* TCO stats enable */
1030 config
->standard_stat_counter
= 0x0;
1033 DPRINTK(HW
, DEBUG
, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1034 c
[0], c
[1], c
[2], c
[3], c
[4], c
[5], c
[6], c
[7]);
1035 DPRINTK(HW
, DEBUG
, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1036 c
[8], c
[9], c
[10], c
[11], c
[12], c
[13], c
[14], c
[15]);
1037 DPRINTK(HW
, DEBUG
, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1038 c
[16], c
[17], c
[18], c
[19], c
[20], c
[21], c
[22], c
[23]);
1041 /********************************************************/
1042 /* Micro code for 8086:1229 Rev 8 */
1043 /********************************************************/
1045 /* Parameter values for the D101M B-step */
1046 #define D101M_CPUSAVER_TIMER_DWORD 78
1047 #define D101M_CPUSAVER_BUNDLE_DWORD 65
1048 #define D101M_CPUSAVER_MIN_SIZE_DWORD 126
1050 #define D101M_B_RCVBUNDLE_UCODE \
1052 0x00550215, 0xFFFF0437, 0xFFFFFFFF, 0x06A70789, 0xFFFFFFFF, 0x0558FFFF, \
1053 0x000C0001, 0x00101312, 0x000C0008, 0x00380216, \
1054 0x0010009C, 0x00204056, 0x002380CC, 0x00380056, \
1055 0x0010009C, 0x00244C0B, 0x00000800, 0x00124818, \
1056 0x00380438, 0x00000000, 0x00140000, 0x00380555, \
1057 0x00308000, 0x00100662, 0x00100561, 0x000E0408, \
1058 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \
1059 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \
1060 0x000C007E, 0x00222C21, 0x000C0002, 0x00103093, \
1061 0x00380C7A, 0x00080000, 0x00103090, 0x00380C7A, \
1062 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1063 0x0010009C, 0x00244C2D, 0x00010004, 0x00041000, \
1064 0x003A0437, 0x00044010, 0x0038078A, 0x00000000, \
1065 0x00100099, 0x00206C7A, 0x0010009C, 0x00244C48, \
1066 0x00130824, 0x000C0001, 0x00101213, 0x00260C75, \
1067 0x00041000, 0x00010004, 0x00130826, 0x000C0006, \
1068 0x002206A8, 0x0013C926, 0x00101313, 0x003806A8, \
1069 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1070 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1071 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \
1072 0x00101210, 0x00380C34, 0x00000000, 0x00000000, \
1073 0x0021155B, 0x00100099, 0x00206559, 0x0010009C, \
1074 0x00244559, 0x00130836, 0x000C0000, 0x00220C62, \
1075 0x000C0001, 0x00101B13, 0x00229C0E, 0x00210C0E, \
1076 0x00226C0E, 0x00216C0E, 0x0022FC0E, 0x00215C0E, \
1077 0x00214C0E, 0x00380555, 0x00010004, 0x00041000, \
1078 0x00278C67, 0x00040800, 0x00018100, 0x003A0437, \
1079 0x00130826, 0x000C0001, 0x00220559, 0x00101313, \
1080 0x00380559, 0x00000000, 0x00000000, 0x00000000, \
1081 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1082 0x00000000, 0x00130831, 0x0010090B, 0x00124813, \
1083 0x000CFF80, 0x002606AB, 0x00041000, 0x00010004, \
1084 0x003806A8, 0x00000000, 0x00000000, 0x00000000, \
1087 /********************************************************/
1088 /* Micro code for 8086:1229 Rev 9 */
1089 /********************************************************/
1091 /* Parameter values for the D101S */
1092 #define D101S_CPUSAVER_TIMER_DWORD 78
1093 #define D101S_CPUSAVER_BUNDLE_DWORD 67
1094 #define D101S_CPUSAVER_MIN_SIZE_DWORD 128
1096 #define D101S_RCVBUNDLE_UCODE \
1098 0x00550242, 0xFFFF047E, 0xFFFFFFFF, 0x06FF0818, 0xFFFFFFFF, 0x05A6FFFF, \
1099 0x000C0001, 0x00101312, 0x000C0008, 0x00380243, \
1100 0x0010009C, 0x00204056, 0x002380D0, 0x00380056, \
1101 0x0010009C, 0x00244F8B, 0x00000800, 0x00124818, \
1102 0x0038047F, 0x00000000, 0x00140000, 0x003805A3, \
1103 0x00308000, 0x00100610, 0x00100561, 0x000E0408, \
1104 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \
1105 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \
1106 0x000C007E, 0x00222FA1, 0x000C0002, 0x00103093, \
1107 0x00380F90, 0x00080000, 0x00103090, 0x00380F90, \
1108 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1109 0x0010009C, 0x00244FAD, 0x00010004, 0x00041000, \
1110 0x003A047E, 0x00044010, 0x00380819, 0x00000000, \
1111 0x00100099, 0x00206FFD, 0x0010009A, 0x0020AFFD, \
1112 0x0010009C, 0x00244FC8, 0x00130824, 0x000C0001, \
1113 0x00101213, 0x00260FF7, 0x00041000, 0x00010004, \
1114 0x00130826, 0x000C0006, 0x00220700, 0x0013C926, \
1115 0x00101313, 0x00380700, 0x00000000, 0x00000000, \
1116 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1117 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \
1118 0x00101210, 0x00380FB6, 0x00000000, 0x00000000, \
1119 0x002115A9, 0x00100099, 0x002065A7, 0x0010009A, \
1120 0x0020A5A7, 0x0010009C, 0x002445A7, 0x00130836, \
1121 0x000C0000, 0x00220FE4, 0x000C0001, 0x00101B13, \
1122 0x00229F8E, 0x00210F8E, 0x00226F8E, 0x00216F8E, \
1123 0x0022FF8E, 0x00215F8E, 0x00214F8E, 0x003805A3, \
1124 0x00010004, 0x00041000, 0x00278FE9, 0x00040800, \
1125 0x00018100, 0x003A047E, 0x00130826, 0x000C0001, \
1126 0x002205A7, 0x00101313, 0x003805A7, 0x00000000, \
1127 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1128 0x00000000, 0x00000000, 0x00000000, 0x00130831, \
1129 0x0010090B, 0x00124813, 0x000CFF80, 0x00260703, \
1130 0x00041000, 0x00010004, 0x00380700 \
1133 /********************************************************/
1134 /* Micro code for the 8086:1229 Rev F/10 */
1135 /********************************************************/
1137 /* Parameter values for the D102 E-step */
1138 #define D102_E_CPUSAVER_TIMER_DWORD 42
1139 #define D102_E_CPUSAVER_BUNDLE_DWORD 54
1140 #define D102_E_CPUSAVER_MIN_SIZE_DWORD 46
1142 #define D102_E_RCVBUNDLE_UCODE \
1144 0x007D028F, 0x0E4204F9, 0x14ED0C85, 0x14FA14E9, 0x0EF70E36, 0x1FFF1FFF, \
1145 0x00E014B9, 0x00000000, 0x00000000, 0x00000000, \
1146 0x00E014BD, 0x00000000, 0x00000000, 0x00000000, \
1147 0x00E014D5, 0x00000000, 0x00000000, 0x00000000, \
1148 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1149 0x00E014C1, 0x00000000, 0x00000000, 0x00000000, \
1150 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1151 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1152 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1153 0x00E014C8, 0x00000000, 0x00000000, 0x00000000, \
1154 0x00200600, 0x00E014EE, 0x00000000, 0x00000000, \
1155 0x0030FF80, 0x00940E46, 0x00038200, 0x00102000, \
1156 0x00E00E43, 0x00000000, 0x00000000, 0x00000000, \
1157 0x00300006, 0x00E014FB, 0x00000000, 0x00000000, \
1158 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1159 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1160 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1161 0x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, \
1162 0x00906EFD, 0x00900EFD, 0x00E00EF8, 0x00000000, \
1163 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1164 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1165 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1166 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1167 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1168 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1169 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1170 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1171 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1172 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1173 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1174 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1175 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1176 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1179 static void e100_setup_ucode(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1183 u32 ucode
[UCODE_SIZE
+ 1];
1189 { D101M_B_RCVBUNDLE_UCODE
,
1191 D101M_CPUSAVER_TIMER_DWORD
,
1192 D101M_CPUSAVER_BUNDLE_DWORD
,
1193 D101M_CPUSAVER_MIN_SIZE_DWORD
},
1194 { D101S_RCVBUNDLE_UCODE
,
1196 D101S_CPUSAVER_TIMER_DWORD
,
1197 D101S_CPUSAVER_BUNDLE_DWORD
,
1198 D101S_CPUSAVER_MIN_SIZE_DWORD
},
1199 { D102_E_RCVBUNDLE_UCODE
,
1201 D102_E_CPUSAVER_TIMER_DWORD
,
1202 D102_E_CPUSAVER_BUNDLE_DWORD
,
1203 D102_E_CPUSAVER_MIN_SIZE_DWORD
},
1204 { D102_E_RCVBUNDLE_UCODE
,
1206 D102_E_CPUSAVER_TIMER_DWORD
,
1207 D102_E_CPUSAVER_BUNDLE_DWORD
,
1208 D102_E_CPUSAVER_MIN_SIZE_DWORD
},
1213 /*************************************************************************
1214 * CPUSaver parameters
1216 * All CPUSaver parameters are 16-bit literals that are part of a
1217 * "move immediate value" instruction. By changing the value of
1218 * the literal in the instruction before the code is loaded, the
1219 * driver can change the algorithm.
1221 * INTDELAY - This loads the dead-man timer with its initial value.
1222 * When this timer expires the interrupt is asserted, and the
1223 * timer is reset each time a new packet is received. (see
1224 * BUNDLEMAX below to set the limit on number of chained packets)
1225 * The current default is 0x600 or 1536. Experiments show that
1226 * the value should probably stay within the 0x200 - 0x1000.
1229 * This sets the maximum number of frames that will be bundled. In
1230 * some situations, such as the TCP windowing algorithm, it may be
1231 * better to limit the growth of the bundle size than let it go as
1232 * high as it can, because that could cause too much added latency.
1233 * The default is six, because this is the number of packets in the
1234 * default TCP window size. A value of 1 would make CPUSaver indicate
1235 * an interrupt for every frame received. If you do not want to put
1236 * a limit on the bundle size, set this value to xFFFF.
1239 * This contains a bit-mask describing the minimum size frame that
1240 * will be bundled. The default masks the lower 7 bits, which means
1241 * that any frame less than 128 bytes in length will not be bundled,
1242 * but will instead immediately generate an interrupt. This does
1243 * not affect the current bundle in any way. Any frame that is 128
1244 * bytes or large will be bundled normally. This feature is meant
1245 * to provide immediate indication of ACK frames in a TCP environment.
1246 * Customers were seeing poor performance when a machine with CPUSaver
1247 * enabled was sending but not receiving. The delay introduced when
1248 * the ACKs were received was enough to reduce total throughput, because
1249 * the sender would sit idle until the ACK was finally seen.
1251 * The current default is 0xFF80, which masks out the lower 7 bits.
1252 * This means that any frame which is x7F (127) bytes or smaller
1253 * will cause an immediate interrupt. Because this value must be a
1254 * bit mask, there are only a few valid values that can be used. To
1255 * turn this feature off, the driver can write the value xFFFF to the
1256 * lower word of this instruction (in the same way that the other
1257 * parameters are used). Likewise, a value of 0xF800 (2047) would
1258 * cause an interrupt to be generated for every frame, because all
1259 * standard Ethernet frames are <= 2047 bytes in length.
1260 *************************************************************************/
1262 /* if you wish to disable the ucode functionality, while maintaining the
1263 * workarounds it provides, set the following defines to:
1268 #define BUNDLESMALL 1
1269 #define BUNDLEMAX (u16)6
1270 #define INTDELAY (u16)1536 /* 0x600 */
1272 /* do not load u-code for ICH devices */
1273 if (nic
->flags
& ich
)
1276 /* Search for ucode match against h/w rev_id */
1277 for (opts
= ucode_opts
; opts
->mac
; opts
++) {
1279 u32
*ucode
= opts
->ucode
;
1280 if (nic
->mac
!= opts
->mac
)
1283 /* Insert user-tunable settings */
1284 ucode
[opts
->timer_dword
] &= 0xFFFF0000;
1285 ucode
[opts
->timer_dword
] |= INTDELAY
;
1286 ucode
[opts
->bundle_dword
] &= 0xFFFF0000;
1287 ucode
[opts
->bundle_dword
] |= BUNDLEMAX
;
1288 ucode
[opts
->min_size_dword
] &= 0xFFFF0000;
1289 ucode
[opts
->min_size_dword
] |= (BUNDLESMALL
) ? 0xFFFF : 0xFF80;
1291 for (i
= 0; i
< UCODE_SIZE
; i
++)
1292 cb
->u
.ucode
[i
] = cpu_to_le32(ucode
[i
]);
1293 cb
->command
= cpu_to_le16(cb_ucode
| cb_el
);
1298 cb
->command
= cpu_to_le16(cb_nop
| cb_el
);
1301 static inline int e100_exec_cb_wait(struct nic
*nic
, struct sk_buff
*skb
,
1302 void (*cb_prepare
)(struct nic
*, struct cb
*, struct sk_buff
*))
1304 int err
= 0, counter
= 50;
1305 struct cb
*cb
= nic
->cb_to_clean
;
1307 if ((err
= e100_exec_cb(nic
, NULL
, e100_setup_ucode
)))
1308 DPRINTK(PROBE
,ERR
, "ucode cmd failed with error %d\n", err
);
1310 /* must restart cuc */
1311 nic
->cuc_cmd
= cuc_start
;
1313 /* wait for completion */
1314 e100_write_flush(nic
);
1317 /* wait for possibly (ouch) 500ms */
1318 while (!(cb
->status
& cpu_to_le16(cb_complete
))) {
1320 if (!--counter
) break;
1323 /* ack any interupts, something could have been set */
1324 iowrite8(~0, &nic
->csr
->scb
.stat_ack
);
1326 /* if the command failed, or is not OK, notify and return */
1327 if (!counter
|| !(cb
->status
& cpu_to_le16(cb_ok
))) {
1328 DPRINTK(PROBE
,ERR
, "ucode load failed\n");
1335 static void e100_setup_iaaddr(struct nic
*nic
, struct cb
*cb
,
1336 struct sk_buff
*skb
)
1338 cb
->command
= cpu_to_le16(cb_iaaddr
);
1339 memcpy(cb
->u
.iaaddr
, nic
->netdev
->dev_addr
, ETH_ALEN
);
1342 static void e100_dump(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1344 cb
->command
= cpu_to_le16(cb_dump
);
1345 cb
->u
.dump_buffer_addr
= cpu_to_le32(nic
->dma_addr
+
1346 offsetof(struct mem
, dump_buf
));
1349 #define NCONFIG_AUTO_SWITCH 0x0080
1350 #define MII_NSC_CONG MII_RESV1
1351 #define NSC_CONG_ENABLE 0x0100
1352 #define NSC_CONG_TXREADY 0x0400
1353 #define ADVERTISE_FC_SUPPORTED 0x0400
1354 static int e100_phy_init(struct nic
*nic
)
1356 struct net_device
*netdev
= nic
->netdev
;
1358 u16 bmcr
, stat
, id_lo
, id_hi
, cong
;
1360 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1361 for(addr
= 0; addr
< 32; addr
++) {
1362 nic
->mii
.phy_id
= (addr
== 0) ? 1 : (addr
== 1) ? 0 : addr
;
1363 bmcr
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMCR
);
1364 stat
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMSR
);
1365 stat
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMSR
);
1366 if(!((bmcr
== 0xFFFF) || ((stat
== 0) && (bmcr
== 0))))
1369 DPRINTK(HW
, DEBUG
, "phy_addr = %d\n", nic
->mii
.phy_id
);
1373 /* Selected the phy and isolate the rest */
1374 for(addr
= 0; addr
< 32; addr
++) {
1375 if(addr
!= nic
->mii
.phy_id
) {
1376 mdio_write(netdev
, addr
, MII_BMCR
, BMCR_ISOLATE
);
1378 bmcr
= mdio_read(netdev
, addr
, MII_BMCR
);
1379 mdio_write(netdev
, addr
, MII_BMCR
,
1380 bmcr
& ~BMCR_ISOLATE
);
1385 id_lo
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_PHYSID1
);
1386 id_hi
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_PHYSID2
);
1387 nic
->phy
= (u32
)id_hi
<< 16 | (u32
)id_lo
;
1388 DPRINTK(HW
, DEBUG
, "phy ID = 0x%08X\n", nic
->phy
);
1390 /* Handle National tx phys */
1391 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1392 if((nic
->phy
& NCS_PHY_MODEL_MASK
) == phy_nsc_tx
) {
1393 /* Disable congestion control */
1394 cong
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_NSC_CONG
);
1395 cong
|= NSC_CONG_TXREADY
;
1396 cong
&= ~NSC_CONG_ENABLE
;
1397 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NSC_CONG
, cong
);
1400 if((nic
->mac
>= mac_82550_D102
) || ((nic
->flags
& ich
) &&
1401 (mdio_read(netdev
, nic
->mii
.phy_id
, MII_TPISTATUS
) & 0x8000) &&
1402 !(nic
->eeprom
[eeprom_cnfg_mdix
] & eeprom_mdix_enabled
))) {
1403 /* enable/disable MDI/MDI-X auto-switching. */
1404 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NCONFIG
,
1405 nic
->mii
.force_media
? 0 : NCONFIG_AUTO_SWITCH
);
1411 static int e100_hw_init(struct nic
*nic
)
1417 DPRINTK(HW
, ERR
, "e100_hw_init\n");
1418 if(!in_interrupt() && (err
= e100_self_test(nic
)))
1421 if((err
= e100_phy_init(nic
)))
1423 if((err
= e100_exec_cmd(nic
, cuc_load_base
, 0)))
1425 if((err
= e100_exec_cmd(nic
, ruc_load_base
, 0)))
1427 if ((err
= e100_exec_cb_wait(nic
, NULL
, e100_setup_ucode
)))
1429 if((err
= e100_exec_cb(nic
, NULL
, e100_configure
)))
1431 if((err
= e100_exec_cb(nic
, NULL
, e100_setup_iaaddr
)))
1433 if((err
= e100_exec_cmd(nic
, cuc_dump_addr
,
1434 nic
->dma_addr
+ offsetof(struct mem
, stats
))))
1436 if((err
= e100_exec_cmd(nic
, cuc_dump_reset
, 0)))
1439 e100_disable_irq(nic
);
1444 static void e100_multi(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1446 struct net_device
*netdev
= nic
->netdev
;
1447 struct dev_mc_list
*list
= netdev
->mc_list
;
1448 u16 i
, count
= min(netdev
->mc_count
, E100_MAX_MULTICAST_ADDRS
);
1450 cb
->command
= cpu_to_le16(cb_multi
);
1451 cb
->u
.multi
.count
= cpu_to_le16(count
* ETH_ALEN
);
1452 for(i
= 0; list
&& i
< count
; i
++, list
= list
->next
)
1453 memcpy(&cb
->u
.multi
.addr
[i
*ETH_ALEN
], &list
->dmi_addr
,
1457 static void e100_set_multicast_list(struct net_device
*netdev
)
1459 struct nic
*nic
= netdev_priv(netdev
);
1461 DPRINTK(HW
, DEBUG
, "mc_count=%d, flags=0x%04X\n",
1462 netdev
->mc_count
, netdev
->flags
);
1464 if(netdev
->flags
& IFF_PROMISC
)
1465 nic
->flags
|= promiscuous
;
1467 nic
->flags
&= ~promiscuous
;
1469 if(netdev
->flags
& IFF_ALLMULTI
||
1470 netdev
->mc_count
> E100_MAX_MULTICAST_ADDRS
)
1471 nic
->flags
|= multicast_all
;
1473 nic
->flags
&= ~multicast_all
;
1475 e100_exec_cb(nic
, NULL
, e100_configure
);
1476 e100_exec_cb(nic
, NULL
, e100_multi
);
1479 static void e100_update_stats(struct nic
*nic
)
1481 struct net_device_stats
*ns
= &nic
->net_stats
;
1482 struct stats
*s
= &nic
->mem
->stats
;
1483 u32
*complete
= (nic
->mac
< mac_82558_D101_A4
) ? &s
->fc_xmt_pause
:
1484 (nic
->mac
< mac_82559_D101M
) ? (u32
*)&s
->xmt_tco_frames
:
1487 /* Device's stats reporting may take several microseconds to
1488 * complete, so where always waiting for results of the
1489 * previous command. */
1491 if(*complete
== le32_to_cpu(cuc_dump_reset_complete
)) {
1493 nic
->tx_frames
= le32_to_cpu(s
->tx_good_frames
);
1494 nic
->tx_collisions
= le32_to_cpu(s
->tx_total_collisions
);
1495 ns
->tx_aborted_errors
+= le32_to_cpu(s
->tx_max_collisions
);
1496 ns
->tx_window_errors
+= le32_to_cpu(s
->tx_late_collisions
);
1497 ns
->tx_carrier_errors
+= le32_to_cpu(s
->tx_lost_crs
);
1498 ns
->tx_fifo_errors
+= le32_to_cpu(s
->tx_underruns
);
1499 ns
->collisions
+= nic
->tx_collisions
;
1500 ns
->tx_errors
+= le32_to_cpu(s
->tx_max_collisions
) +
1501 le32_to_cpu(s
->tx_lost_crs
);
1502 ns
->rx_length_errors
+= le32_to_cpu(s
->rx_short_frame_errors
) +
1503 nic
->rx_over_length_errors
;
1504 ns
->rx_crc_errors
+= le32_to_cpu(s
->rx_crc_errors
);
1505 ns
->rx_frame_errors
+= le32_to_cpu(s
->rx_alignment_errors
);
1506 ns
->rx_over_errors
+= le32_to_cpu(s
->rx_overrun_errors
);
1507 ns
->rx_fifo_errors
+= le32_to_cpu(s
->rx_overrun_errors
);
1508 ns
->rx_missed_errors
+= le32_to_cpu(s
->rx_resource_errors
);
1509 ns
->rx_errors
+= le32_to_cpu(s
->rx_crc_errors
) +
1510 le32_to_cpu(s
->rx_alignment_errors
) +
1511 le32_to_cpu(s
->rx_short_frame_errors
) +
1512 le32_to_cpu(s
->rx_cdt_errors
);
1513 nic
->tx_deferred
+= le32_to_cpu(s
->tx_deferred
);
1514 nic
->tx_single_collisions
+=
1515 le32_to_cpu(s
->tx_single_collisions
);
1516 nic
->tx_multiple_collisions
+=
1517 le32_to_cpu(s
->tx_multiple_collisions
);
1518 if(nic
->mac
>= mac_82558_D101_A4
) {
1519 nic
->tx_fc_pause
+= le32_to_cpu(s
->fc_xmt_pause
);
1520 nic
->rx_fc_pause
+= le32_to_cpu(s
->fc_rcv_pause
);
1521 nic
->rx_fc_unsupported
+=
1522 le32_to_cpu(s
->fc_rcv_unsupported
);
1523 if(nic
->mac
>= mac_82559_D101M
) {
1524 nic
->tx_tco_frames
+=
1525 le16_to_cpu(s
->xmt_tco_frames
);
1526 nic
->rx_tco_frames
+=
1527 le16_to_cpu(s
->rcv_tco_frames
);
1533 if(e100_exec_cmd(nic
, cuc_dump_reset
, 0))
1534 DPRINTK(TX_ERR
, DEBUG
, "exec cuc_dump_reset failed\n");
1537 static void e100_adjust_adaptive_ifs(struct nic
*nic
, int speed
, int duplex
)
1539 /* Adjust inter-frame-spacing (IFS) between two transmits if
1540 * we're getting collisions on a half-duplex connection. */
1542 if(duplex
== DUPLEX_HALF
) {
1543 u32 prev
= nic
->adaptive_ifs
;
1544 u32 min_frames
= (speed
== SPEED_100
) ? 1000 : 100;
1546 if((nic
->tx_frames
/ 32 < nic
->tx_collisions
) &&
1547 (nic
->tx_frames
> min_frames
)) {
1548 if(nic
->adaptive_ifs
< 60)
1549 nic
->adaptive_ifs
+= 5;
1550 } else if (nic
->tx_frames
< min_frames
) {
1551 if(nic
->adaptive_ifs
>= 5)
1552 nic
->adaptive_ifs
-= 5;
1554 if(nic
->adaptive_ifs
!= prev
)
1555 e100_exec_cb(nic
, NULL
, e100_configure
);
1559 static void e100_watchdog(unsigned long data
)
1561 struct nic
*nic
= (struct nic
*)data
;
1562 struct ethtool_cmd cmd
;
1564 DPRINTK(TIMER
, DEBUG
, "right now = %ld\n", jiffies
);
1566 /* mii library handles link maintenance tasks */
1568 mii_ethtool_gset(&nic
->mii
, &cmd
);
1570 if(mii_link_ok(&nic
->mii
) && !netif_carrier_ok(nic
->netdev
)) {
1571 DPRINTK(LINK
, INFO
, "link up, %sMbps, %s-duplex\n",
1572 cmd
.speed
== SPEED_100
? "100" : "10",
1573 cmd
.duplex
== DUPLEX_FULL
? "full" : "half");
1574 } else if(!mii_link_ok(&nic
->mii
) && netif_carrier_ok(nic
->netdev
)) {
1575 DPRINTK(LINK
, INFO
, "link down\n");
1578 mii_check_link(&nic
->mii
);
1580 /* Software generated interrupt to recover from (rare) Rx
1581 * allocation failure.
1582 * Unfortunately have to use a spinlock to not re-enable interrupts
1583 * accidentally, due to hardware that shares a register between the
1584 * interrupt mask bit and the SW Interrupt generation bit */
1585 spin_lock_irq(&nic
->cmd_lock
);
1586 iowrite8(ioread8(&nic
->csr
->scb
.cmd_hi
) | irq_sw_gen
,&nic
->csr
->scb
.cmd_hi
);
1587 e100_write_flush(nic
);
1588 spin_unlock_irq(&nic
->cmd_lock
);
1590 e100_update_stats(nic
);
1591 e100_adjust_adaptive_ifs(nic
, cmd
.speed
, cmd
.duplex
);
1593 if(nic
->mac
<= mac_82557_D100_C
)
1594 /* Issue a multicast command to workaround a 557 lock up */
1595 e100_set_multicast_list(nic
->netdev
);
1597 if(nic
->flags
& ich
&& cmd
.speed
==SPEED_10
&& cmd
.duplex
==DUPLEX_HALF
)
1598 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1599 nic
->flags
|= ich_10h_workaround
;
1601 nic
->flags
&= ~ich_10h_workaround
;
1603 mod_timer(&nic
->watchdog
, jiffies
+ E100_WATCHDOG_PERIOD
);
1606 static void e100_xmit_prepare(struct nic
*nic
, struct cb
*cb
,
1607 struct sk_buff
*skb
)
1609 cb
->command
= nic
->tx_command
;
1610 /* interrupt every 16 packets regardless of delay */
1611 if((nic
->cbs_avail
& ~15) == nic
->cbs_avail
)
1612 cb
->command
|= cpu_to_le16(cb_i
);
1613 cb
->u
.tcb
.tbd_array
= cb
->dma_addr
+ offsetof(struct cb
, u
.tcb
.tbd
);
1614 cb
->u
.tcb
.tcb_byte_count
= 0;
1615 cb
->u
.tcb
.threshold
= nic
->tx_threshold
;
1616 cb
->u
.tcb
.tbd_count
= 1;
1617 cb
->u
.tcb
.tbd
.buf_addr
= cpu_to_le32(pci_map_single(nic
->pdev
,
1618 skb
->data
, skb
->len
, PCI_DMA_TODEVICE
));
1619 /* check for mapping failure? */
1620 cb
->u
.tcb
.tbd
.size
= cpu_to_le16(skb
->len
);
1623 static int e100_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
1625 struct nic
*nic
= netdev_priv(netdev
);
1628 if(nic
->flags
& ich_10h_workaround
) {
1629 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1630 Issue a NOP command followed by a 1us delay before
1631 issuing the Tx command. */
1632 if(e100_exec_cmd(nic
, cuc_nop
, 0))
1633 DPRINTK(TX_ERR
, DEBUG
, "exec cuc_nop failed\n");
1637 err
= e100_exec_cb(nic
, skb
, e100_xmit_prepare
);
1641 /* We queued the skb, but now we're out of space. */
1642 DPRINTK(TX_ERR
, DEBUG
, "No space for CB\n");
1643 netif_stop_queue(netdev
);
1646 /* This is a hard error - log it. */
1647 DPRINTK(TX_ERR
, DEBUG
, "Out of Tx resources, returning skb\n");
1648 netif_stop_queue(netdev
);
1652 netdev
->trans_start
= jiffies
;
1656 static int e100_tx_clean(struct nic
*nic
)
1661 spin_lock(&nic
->cb_lock
);
1663 /* Clean CBs marked complete */
1664 for(cb
= nic
->cb_to_clean
;
1665 cb
->status
& cpu_to_le16(cb_complete
);
1666 cb
= nic
->cb_to_clean
= cb
->next
) {
1667 DPRINTK(TX_DONE
, DEBUG
, "cb[%d]->status = 0x%04X\n",
1668 (int)(((void*)cb
- (void*)nic
->cbs
)/sizeof(struct cb
)),
1671 if(likely(cb
->skb
!= NULL
)) {
1672 nic
->net_stats
.tx_packets
++;
1673 nic
->net_stats
.tx_bytes
+= cb
->skb
->len
;
1675 pci_unmap_single(nic
->pdev
,
1676 le32_to_cpu(cb
->u
.tcb
.tbd
.buf_addr
),
1677 le16_to_cpu(cb
->u
.tcb
.tbd
.size
),
1679 dev_kfree_skb_any(cb
->skb
);
1687 spin_unlock(&nic
->cb_lock
);
1689 /* Recover from running out of Tx resources in xmit_frame */
1690 if(unlikely(tx_cleaned
&& netif_queue_stopped(nic
->netdev
)))
1691 netif_wake_queue(nic
->netdev
);
1696 static void e100_clean_cbs(struct nic
*nic
)
1699 while(nic
->cbs_avail
!= nic
->params
.cbs
.count
) {
1700 struct cb
*cb
= nic
->cb_to_clean
;
1702 pci_unmap_single(nic
->pdev
,
1703 le32_to_cpu(cb
->u
.tcb
.tbd
.buf_addr
),
1704 le16_to_cpu(cb
->u
.tcb
.tbd
.size
),
1706 dev_kfree_skb(cb
->skb
);
1708 nic
->cb_to_clean
= nic
->cb_to_clean
->next
;
1711 pci_free_consistent(nic
->pdev
,
1712 sizeof(struct cb
) * nic
->params
.cbs
.count
,
1713 nic
->cbs
, nic
->cbs_dma_addr
);
1717 nic
->cuc_cmd
= cuc_start
;
1718 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
=
1722 static int e100_alloc_cbs(struct nic
*nic
)
1725 unsigned int i
, count
= nic
->params
.cbs
.count
;
1727 nic
->cuc_cmd
= cuc_start
;
1728 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
= NULL
;
1731 nic
->cbs
= pci_alloc_consistent(nic
->pdev
,
1732 sizeof(struct cb
) * count
, &nic
->cbs_dma_addr
);
1736 for(cb
= nic
->cbs
, i
= 0; i
< count
; cb
++, i
++) {
1737 cb
->next
= (i
+ 1 < count
) ? cb
+ 1 : nic
->cbs
;
1738 cb
->prev
= (i
== 0) ? nic
->cbs
+ count
- 1 : cb
- 1;
1740 cb
->dma_addr
= nic
->cbs_dma_addr
+ i
* sizeof(struct cb
);
1741 cb
->link
= cpu_to_le32(nic
->cbs_dma_addr
+
1742 ((i
+1) % count
) * sizeof(struct cb
));
1746 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
= nic
->cbs
;
1747 nic
->cbs_avail
= count
;
1752 static inline void e100_start_receiver(struct nic
*nic
, struct rx
*rx
)
1754 if(!nic
->rxs
) return;
1755 if(RU_SUSPENDED
!= nic
->ru_running
) return;
1757 /* handle init time starts */
1758 if(!rx
) rx
= nic
->rxs
;
1760 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1762 e100_exec_cmd(nic
, ruc_start
, rx
->dma_addr
);
1763 nic
->ru_running
= RU_RUNNING
;
1767 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1768 static int e100_rx_alloc_skb(struct nic
*nic
, struct rx
*rx
)
1770 if(!(rx
->skb
= netdev_alloc_skb(nic
->netdev
, RFD_BUF_LEN
+ NET_IP_ALIGN
)))
1773 /* Align, init, and map the RFD. */
1774 skb_reserve(rx
->skb
, NET_IP_ALIGN
);
1775 skb_copy_to_linear_data(rx
->skb
, &nic
->blank_rfd
, sizeof(struct rfd
));
1776 rx
->dma_addr
= pci_map_single(nic
->pdev
, rx
->skb
->data
,
1777 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
1779 if(pci_dma_mapping_error(rx
->dma_addr
)) {
1780 dev_kfree_skb_any(rx
->skb
);
1786 /* Link the RFD to end of RFA by linking previous RFD to
1787 * this one, and clearing EL bit of previous. */
1789 struct rfd
*prev_rfd
= (struct rfd
*)rx
->prev
->skb
->data
;
1790 put_unaligned(cpu_to_le32(rx
->dma_addr
),
1791 (u32
*)&prev_rfd
->link
);
1793 prev_rfd
->command
&= ~cpu_to_le16(cb_el
);
1794 pci_dma_sync_single_for_device(nic
->pdev
, rx
->prev
->dma_addr
,
1795 sizeof(struct rfd
), PCI_DMA_TODEVICE
);
1801 static int e100_rx_indicate(struct nic
*nic
, struct rx
*rx
,
1802 unsigned int *work_done
, unsigned int work_to_do
)
1804 struct sk_buff
*skb
= rx
->skb
;
1805 struct rfd
*rfd
= (struct rfd
*)skb
->data
;
1806 u16 rfd_status
, actual_size
;
1808 if(unlikely(work_done
&& *work_done
>= work_to_do
))
1811 /* Need to sync before taking a peek at cb_complete bit */
1812 pci_dma_sync_single_for_cpu(nic
->pdev
, rx
->dma_addr
,
1813 sizeof(struct rfd
), PCI_DMA_FROMDEVICE
);
1814 rfd_status
= le16_to_cpu(rfd
->status
);
1816 DPRINTK(RX_STATUS
, DEBUG
, "status=0x%04X\n", rfd_status
);
1818 /* If data isn't ready, nothing to indicate */
1819 if(unlikely(!(rfd_status
& cb_complete
)))
1822 /* Get actual data size */
1823 actual_size
= le16_to_cpu(rfd
->actual_size
) & 0x3FFF;
1824 if(unlikely(actual_size
> RFD_BUF_LEN
- sizeof(struct rfd
)))
1825 actual_size
= RFD_BUF_LEN
- sizeof(struct rfd
);
1828 pci_unmap_single(nic
->pdev
, rx
->dma_addr
,
1829 RFD_BUF_LEN
, PCI_DMA_FROMDEVICE
);
1831 /* this allows for a fast restart without re-enabling interrupts */
1832 if(le16_to_cpu(rfd
->command
) & cb_el
)
1833 nic
->ru_running
= RU_SUSPENDED
;
1835 /* Pull off the RFD and put the actual data (minus eth hdr) */
1836 skb_reserve(skb
, sizeof(struct rfd
));
1837 skb_put(skb
, actual_size
);
1838 skb
->protocol
= eth_type_trans(skb
, nic
->netdev
);
1840 if(unlikely(!(rfd_status
& cb_ok
))) {
1841 /* Don't indicate if hardware indicates errors */
1842 dev_kfree_skb_any(skb
);
1843 } else if(actual_size
> ETH_DATA_LEN
+ VLAN_ETH_HLEN
) {
1844 /* Don't indicate oversized frames */
1845 nic
->rx_over_length_errors
++;
1846 dev_kfree_skb_any(skb
);
1848 nic
->net_stats
.rx_packets
++;
1849 nic
->net_stats
.rx_bytes
+= actual_size
;
1850 nic
->netdev
->last_rx
= jiffies
;
1851 netif_receive_skb(skb
);
1861 static void e100_rx_clean(struct nic
*nic
, unsigned int *work_done
,
1862 unsigned int work_to_do
)
1865 int restart_required
= 0;
1866 struct rx
*rx_to_start
= NULL
;
1868 /* are we already rnr? then pay attention!!! this ensures that
1869 * the state machine progression never allows a start with a
1870 * partially cleaned list, avoiding a race between hardware
1871 * and rx_to_clean when in NAPI mode */
1872 if(RU_SUSPENDED
== nic
->ru_running
)
1873 restart_required
= 1;
1875 /* Indicate newly arrived packets */
1876 for(rx
= nic
->rx_to_clean
; rx
->skb
; rx
= nic
->rx_to_clean
= rx
->next
) {
1877 int err
= e100_rx_indicate(nic
, rx
, work_done
, work_to_do
);
1878 if(-EAGAIN
== err
) {
1879 /* hit quota so have more work to do, restart once
1880 * cleanup is complete */
1881 restart_required
= 0;
1883 } else if(-ENODATA
== err
)
1884 break; /* No more to clean */
1887 /* save our starting point as the place we'll restart the receiver */
1888 if(restart_required
)
1889 rx_to_start
= nic
->rx_to_clean
;
1891 /* Alloc new skbs to refill list */
1892 for(rx
= nic
->rx_to_use
; !rx
->skb
; rx
= nic
->rx_to_use
= rx
->next
) {
1893 if(unlikely(e100_rx_alloc_skb(nic
, rx
)))
1894 break; /* Better luck next time (see watchdog) */
1897 if(restart_required
) {
1899 writeb(stat_ack_rnr
, &nic
->csr
->scb
.stat_ack
);
1900 e100_start_receiver(nic
, rx_to_start
);
1906 static void e100_rx_clean_list(struct nic
*nic
)
1909 unsigned int i
, count
= nic
->params
.rfds
.count
;
1911 nic
->ru_running
= RU_UNINITIALIZED
;
1914 for(rx
= nic
->rxs
, i
= 0; i
< count
; rx
++, i
++) {
1916 pci_unmap_single(nic
->pdev
, rx
->dma_addr
,
1917 RFD_BUF_LEN
, PCI_DMA_FROMDEVICE
);
1918 dev_kfree_skb(rx
->skb
);
1925 nic
->rx_to_use
= nic
->rx_to_clean
= NULL
;
1928 static int e100_rx_alloc_list(struct nic
*nic
)
1931 unsigned int i
, count
= nic
->params
.rfds
.count
;
1933 nic
->rx_to_use
= nic
->rx_to_clean
= NULL
;
1934 nic
->ru_running
= RU_UNINITIALIZED
;
1936 if(!(nic
->rxs
= kcalloc(count
, sizeof(struct rx
), GFP_ATOMIC
)))
1939 for(rx
= nic
->rxs
, i
= 0; i
< count
; rx
++, i
++) {
1940 rx
->next
= (i
+ 1 < count
) ? rx
+ 1 : nic
->rxs
;
1941 rx
->prev
= (i
== 0) ? nic
->rxs
+ count
- 1 : rx
- 1;
1942 if(e100_rx_alloc_skb(nic
, rx
)) {
1943 e100_rx_clean_list(nic
);
1948 nic
->rx_to_use
= nic
->rx_to_clean
= nic
->rxs
;
1949 nic
->ru_running
= RU_SUSPENDED
;
1954 static irqreturn_t
e100_intr(int irq
, void *dev_id
)
1956 struct net_device
*netdev
= dev_id
;
1957 struct nic
*nic
= netdev_priv(netdev
);
1958 u8 stat_ack
= ioread8(&nic
->csr
->scb
.stat_ack
);
1960 DPRINTK(INTR
, DEBUG
, "stat_ack = 0x%02X\n", stat_ack
);
1962 if(stat_ack
== stat_ack_not_ours
|| /* Not our interrupt */
1963 stat_ack
== stat_ack_not_present
) /* Hardware is ejected */
1966 /* Ack interrupt(s) */
1967 iowrite8(stat_ack
, &nic
->csr
->scb
.stat_ack
);
1969 /* We hit Receive No Resource (RNR); restart RU after cleaning */
1970 if(stat_ack
& stat_ack_rnr
)
1971 nic
->ru_running
= RU_SUSPENDED
;
1973 if(likely(netif_rx_schedule_prep(netdev
))) {
1974 e100_disable_irq(nic
);
1975 __netif_rx_schedule(netdev
);
1981 static int e100_poll(struct net_device
*netdev
, int *budget
)
1983 struct nic
*nic
= netdev_priv(netdev
);
1984 unsigned int work_to_do
= min(netdev
->quota
, *budget
);
1985 unsigned int work_done
= 0;
1988 e100_rx_clean(nic
, &work_done
, work_to_do
);
1989 tx_cleaned
= e100_tx_clean(nic
);
1991 /* If no Rx and Tx cleanup work was done, exit polling mode. */
1992 if((!tx_cleaned
&& (work_done
== 0)) || !netif_running(netdev
)) {
1993 netif_rx_complete(netdev
);
1994 e100_enable_irq(nic
);
1998 *budget
-= work_done
;
1999 netdev
->quota
-= work_done
;
2004 #ifdef CONFIG_NET_POLL_CONTROLLER
2005 static void e100_netpoll(struct net_device
*netdev
)
2007 struct nic
*nic
= netdev_priv(netdev
);
2009 e100_disable_irq(nic
);
2010 e100_intr(nic
->pdev
->irq
, netdev
);
2012 e100_enable_irq(nic
);
2016 static struct net_device_stats
*e100_get_stats(struct net_device
*netdev
)
2018 struct nic
*nic
= netdev_priv(netdev
);
2019 return &nic
->net_stats
;
2022 static int e100_set_mac_address(struct net_device
*netdev
, void *p
)
2024 struct nic
*nic
= netdev_priv(netdev
);
2025 struct sockaddr
*addr
= p
;
2027 if (!is_valid_ether_addr(addr
->sa_data
))
2028 return -EADDRNOTAVAIL
;
2030 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2031 e100_exec_cb(nic
, NULL
, e100_setup_iaaddr
);
2036 static int e100_change_mtu(struct net_device
*netdev
, int new_mtu
)
2038 if(new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_DATA_LEN
)
2040 netdev
->mtu
= new_mtu
;
2044 static int e100_asf(struct nic
*nic
)
2046 /* ASF can be enabled from eeprom */
2047 return((nic
->pdev
->device
>= 0x1050) && (nic
->pdev
->device
<= 0x1057) &&
2048 (nic
->eeprom
[eeprom_config_asf
] & eeprom_asf
) &&
2049 !(nic
->eeprom
[eeprom_config_asf
] & eeprom_gcl
) &&
2050 ((nic
->eeprom
[eeprom_smbus_addr
] & 0xFF) != 0xFE));
2053 static int e100_up(struct nic
*nic
)
2057 if((err
= e100_rx_alloc_list(nic
)))
2059 if((err
= e100_alloc_cbs(nic
)))
2060 goto err_rx_clean_list
;
2061 if((err
= e100_hw_init(nic
)))
2063 e100_set_multicast_list(nic
->netdev
);
2064 e100_start_receiver(nic
, NULL
);
2065 mod_timer(&nic
->watchdog
, jiffies
);
2066 if((err
= request_irq(nic
->pdev
->irq
, e100_intr
, IRQF_SHARED
,
2067 nic
->netdev
->name
, nic
->netdev
)))
2069 netif_wake_queue(nic
->netdev
);
2070 netif_poll_enable(nic
->netdev
);
2071 /* enable ints _after_ enabling poll, preventing a race between
2072 * disable ints+schedule */
2073 e100_enable_irq(nic
);
2077 del_timer_sync(&nic
->watchdog
);
2079 e100_clean_cbs(nic
);
2081 e100_rx_clean_list(nic
);
2085 static void e100_down(struct nic
*nic
)
2087 /* wait here for poll to complete */
2088 netif_poll_disable(nic
->netdev
);
2089 netif_stop_queue(nic
->netdev
);
2091 free_irq(nic
->pdev
->irq
, nic
->netdev
);
2092 del_timer_sync(&nic
->watchdog
);
2093 netif_carrier_off(nic
->netdev
);
2094 e100_clean_cbs(nic
);
2095 e100_rx_clean_list(nic
);
2098 static void e100_tx_timeout(struct net_device
*netdev
)
2100 struct nic
*nic
= netdev_priv(netdev
);
2102 /* Reset outside of interrupt context, to avoid request_irq
2103 * in interrupt context */
2104 schedule_work(&nic
->tx_timeout_task
);
2107 static void e100_tx_timeout_task(struct work_struct
*work
)
2109 struct nic
*nic
= container_of(work
, struct nic
, tx_timeout_task
);
2110 struct net_device
*netdev
= nic
->netdev
;
2112 DPRINTK(TX_ERR
, DEBUG
, "scb.status=0x%02X\n",
2113 ioread8(&nic
->csr
->scb
.status
));
2114 e100_down(netdev_priv(netdev
));
2115 e100_up(netdev_priv(netdev
));
2118 static int e100_loopback_test(struct nic
*nic
, enum loopback loopback_mode
)
2121 struct sk_buff
*skb
;
2123 /* Use driver resources to perform internal MAC or PHY
2124 * loopback test. A single packet is prepared and transmitted
2125 * in loopback mode, and the test passes if the received
2126 * packet compares byte-for-byte to the transmitted packet. */
2128 if((err
= e100_rx_alloc_list(nic
)))
2130 if((err
= e100_alloc_cbs(nic
)))
2133 /* ICH PHY loopback is broken so do MAC loopback instead */
2134 if(nic
->flags
& ich
&& loopback_mode
== lb_phy
)
2135 loopback_mode
= lb_mac
;
2137 nic
->loopback
= loopback_mode
;
2138 if((err
= e100_hw_init(nic
)))
2139 goto err_loopback_none
;
2141 if(loopback_mode
== lb_phy
)
2142 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_BMCR
,
2145 e100_start_receiver(nic
, NULL
);
2147 if(!(skb
= netdev_alloc_skb(nic
->netdev
, ETH_DATA_LEN
))) {
2149 goto err_loopback_none
;
2151 skb_put(skb
, ETH_DATA_LEN
);
2152 memset(skb
->data
, 0xFF, ETH_DATA_LEN
);
2153 e100_xmit_frame(skb
, nic
->netdev
);
2157 pci_dma_sync_single_for_cpu(nic
->pdev
, nic
->rx_to_clean
->dma_addr
,
2158 RFD_BUF_LEN
, PCI_DMA_FROMDEVICE
);
2160 if(memcmp(nic
->rx_to_clean
->skb
->data
+ sizeof(struct rfd
),
2161 skb
->data
, ETH_DATA_LEN
))
2165 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_BMCR
, 0);
2166 nic
->loopback
= lb_none
;
2167 e100_clean_cbs(nic
);
2170 e100_rx_clean_list(nic
);
2174 #define MII_LED_CONTROL 0x1B
2175 static void e100_blink_led(unsigned long data
)
2177 struct nic
*nic
= (struct nic
*)data
;
2185 nic
->leds
= (nic
->leds
& led_on
) ? led_off
:
2186 (nic
->mac
< mac_82559_D101M
) ? led_on_557
: led_on_559
;
2187 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_LED_CONTROL
, nic
->leds
);
2188 mod_timer(&nic
->blink_timer
, jiffies
+ HZ
/ 4);
2191 static int e100_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*cmd
)
2193 struct nic
*nic
= netdev_priv(netdev
);
2194 return mii_ethtool_gset(&nic
->mii
, cmd
);
2197 static int e100_set_settings(struct net_device
*netdev
, struct ethtool_cmd
*cmd
)
2199 struct nic
*nic
= netdev_priv(netdev
);
2202 mdio_write(netdev
, nic
->mii
.phy_id
, MII_BMCR
, BMCR_RESET
);
2203 err
= mii_ethtool_sset(&nic
->mii
, cmd
);
2204 e100_exec_cb(nic
, NULL
, e100_configure
);
2209 static void e100_get_drvinfo(struct net_device
*netdev
,
2210 struct ethtool_drvinfo
*info
)
2212 struct nic
*nic
= netdev_priv(netdev
);
2213 strcpy(info
->driver
, DRV_NAME
);
2214 strcpy(info
->version
, DRV_VERSION
);
2215 strcpy(info
->fw_version
, "N/A");
2216 strcpy(info
->bus_info
, pci_name(nic
->pdev
));
2219 static int e100_get_regs_len(struct net_device
*netdev
)
2221 struct nic
*nic
= netdev_priv(netdev
);
2222 #define E100_PHY_REGS 0x1C
2223 #define E100_REGS_LEN 1 + E100_PHY_REGS + \
2224 sizeof(nic->mem->dump_buf) / sizeof(u32)
2225 return E100_REGS_LEN
* sizeof(u32
);
2228 static void e100_get_regs(struct net_device
*netdev
,
2229 struct ethtool_regs
*regs
, void *p
)
2231 struct nic
*nic
= netdev_priv(netdev
);
2235 regs
->version
= (1 << 24) | nic
->rev_id
;
2236 buff
[0] = ioread8(&nic
->csr
->scb
.cmd_hi
) << 24 |
2237 ioread8(&nic
->csr
->scb
.cmd_lo
) << 16 |
2238 ioread16(&nic
->csr
->scb
.status
);
2239 for(i
= E100_PHY_REGS
; i
>= 0; i
--)
2240 buff
[1 + E100_PHY_REGS
- i
] =
2241 mdio_read(netdev
, nic
->mii
.phy_id
, i
);
2242 memset(nic
->mem
->dump_buf
, 0, sizeof(nic
->mem
->dump_buf
));
2243 e100_exec_cb(nic
, NULL
, e100_dump
);
2245 memcpy(&buff
[2 + E100_PHY_REGS
], nic
->mem
->dump_buf
,
2246 sizeof(nic
->mem
->dump_buf
));
2249 static void e100_get_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2251 struct nic
*nic
= netdev_priv(netdev
);
2252 wol
->supported
= (nic
->mac
>= mac_82558_D101_A4
) ? WAKE_MAGIC
: 0;
2253 wol
->wolopts
= (nic
->flags
& wol_magic
) ? WAKE_MAGIC
: 0;
2256 static int e100_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2258 struct nic
*nic
= netdev_priv(netdev
);
2260 if(wol
->wolopts
!= WAKE_MAGIC
&& wol
->wolopts
!= 0)
2264 nic
->flags
|= wol_magic
;
2266 nic
->flags
&= ~wol_magic
;
2268 e100_exec_cb(nic
, NULL
, e100_configure
);
2273 static u32
e100_get_msglevel(struct net_device
*netdev
)
2275 struct nic
*nic
= netdev_priv(netdev
);
2276 return nic
->msg_enable
;
2279 static void e100_set_msglevel(struct net_device
*netdev
, u32 value
)
2281 struct nic
*nic
= netdev_priv(netdev
);
2282 nic
->msg_enable
= value
;
2285 static int e100_nway_reset(struct net_device
*netdev
)
2287 struct nic
*nic
= netdev_priv(netdev
);
2288 return mii_nway_restart(&nic
->mii
);
2291 static u32
e100_get_link(struct net_device
*netdev
)
2293 struct nic
*nic
= netdev_priv(netdev
);
2294 return mii_link_ok(&nic
->mii
);
2297 static int e100_get_eeprom_len(struct net_device
*netdev
)
2299 struct nic
*nic
= netdev_priv(netdev
);
2300 return nic
->eeprom_wc
<< 1;
2303 #define E100_EEPROM_MAGIC 0x1234
2304 static int e100_get_eeprom(struct net_device
*netdev
,
2305 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
2307 struct nic
*nic
= netdev_priv(netdev
);
2309 eeprom
->magic
= E100_EEPROM_MAGIC
;
2310 memcpy(bytes
, &((u8
*)nic
->eeprom
)[eeprom
->offset
], eeprom
->len
);
2315 static int e100_set_eeprom(struct net_device
*netdev
,
2316 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
2318 struct nic
*nic
= netdev_priv(netdev
);
2320 if(eeprom
->magic
!= E100_EEPROM_MAGIC
)
2323 memcpy(&((u8
*)nic
->eeprom
)[eeprom
->offset
], bytes
, eeprom
->len
);
2325 return e100_eeprom_save(nic
, eeprom
->offset
>> 1,
2326 (eeprom
->len
>> 1) + 1);
2329 static void e100_get_ringparam(struct net_device
*netdev
,
2330 struct ethtool_ringparam
*ring
)
2332 struct nic
*nic
= netdev_priv(netdev
);
2333 struct param_range
*rfds
= &nic
->params
.rfds
;
2334 struct param_range
*cbs
= &nic
->params
.cbs
;
2336 ring
->rx_max_pending
= rfds
->max
;
2337 ring
->tx_max_pending
= cbs
->max
;
2338 ring
->rx_mini_max_pending
= 0;
2339 ring
->rx_jumbo_max_pending
= 0;
2340 ring
->rx_pending
= rfds
->count
;
2341 ring
->tx_pending
= cbs
->count
;
2342 ring
->rx_mini_pending
= 0;
2343 ring
->rx_jumbo_pending
= 0;
2346 static int e100_set_ringparam(struct net_device
*netdev
,
2347 struct ethtool_ringparam
*ring
)
2349 struct nic
*nic
= netdev_priv(netdev
);
2350 struct param_range
*rfds
= &nic
->params
.rfds
;
2351 struct param_range
*cbs
= &nic
->params
.cbs
;
2353 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
2356 if(netif_running(netdev
))
2358 rfds
->count
= max(ring
->rx_pending
, rfds
->min
);
2359 rfds
->count
= min(rfds
->count
, rfds
->max
);
2360 cbs
->count
= max(ring
->tx_pending
, cbs
->min
);
2361 cbs
->count
= min(cbs
->count
, cbs
->max
);
2362 DPRINTK(DRV
, INFO
, "Ring Param settings: rx: %d, tx %d\n",
2363 rfds
->count
, cbs
->count
);
2364 if(netif_running(netdev
))
2370 static const char e100_gstrings_test
[][ETH_GSTRING_LEN
] = {
2371 "Link test (on/offline)",
2372 "Eeprom test (on/offline)",
2373 "Self test (offline)",
2374 "Mac loopback (offline)",
2375 "Phy loopback (offline)",
2377 #define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN
2379 static int e100_diag_test_count(struct net_device
*netdev
)
2381 return E100_TEST_LEN
;
2384 static void e100_diag_test(struct net_device
*netdev
,
2385 struct ethtool_test
*test
, u64
*data
)
2387 struct ethtool_cmd cmd
;
2388 struct nic
*nic
= netdev_priv(netdev
);
2391 memset(data
, 0, E100_TEST_LEN
* sizeof(u64
));
2392 data
[0] = !mii_link_ok(&nic
->mii
);
2393 data
[1] = e100_eeprom_load(nic
);
2394 if(test
->flags
& ETH_TEST_FL_OFFLINE
) {
2396 /* save speed, duplex & autoneg settings */
2397 err
= mii_ethtool_gset(&nic
->mii
, &cmd
);
2399 if(netif_running(netdev
))
2401 data
[2] = e100_self_test(nic
);
2402 data
[3] = e100_loopback_test(nic
, lb_mac
);
2403 data
[4] = e100_loopback_test(nic
, lb_phy
);
2405 /* restore speed, duplex & autoneg settings */
2406 err
= mii_ethtool_sset(&nic
->mii
, &cmd
);
2408 if(netif_running(netdev
))
2411 for(i
= 0; i
< E100_TEST_LEN
; i
++)
2412 test
->flags
|= data
[i
] ? ETH_TEST_FL_FAILED
: 0;
2414 msleep_interruptible(4 * 1000);
2417 static int e100_phys_id(struct net_device
*netdev
, u32 data
)
2419 struct nic
*nic
= netdev_priv(netdev
);
2421 if(!data
|| data
> (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
2422 data
= (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
);
2423 mod_timer(&nic
->blink_timer
, jiffies
);
2424 msleep_interruptible(data
* 1000);
2425 del_timer_sync(&nic
->blink_timer
);
2426 mdio_write(netdev
, nic
->mii
.phy_id
, MII_LED_CONTROL
, 0);
2431 static const char e100_gstrings_stats
[][ETH_GSTRING_LEN
] = {
2432 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2433 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2434 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2435 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2436 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2437 "tx_heartbeat_errors", "tx_window_errors",
2438 /* device-specific stats */
2439 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2440 "tx_flow_control_pause", "rx_flow_control_pause",
2441 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2443 #define E100_NET_STATS_LEN 21
2444 #define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN
2446 static int e100_get_stats_count(struct net_device
*netdev
)
2448 return E100_STATS_LEN
;
2451 static void e100_get_ethtool_stats(struct net_device
*netdev
,
2452 struct ethtool_stats
*stats
, u64
*data
)
2454 struct nic
*nic
= netdev_priv(netdev
);
2457 for(i
= 0; i
< E100_NET_STATS_LEN
; i
++)
2458 data
[i
] = ((unsigned long *)&nic
->net_stats
)[i
];
2460 data
[i
++] = nic
->tx_deferred
;
2461 data
[i
++] = nic
->tx_single_collisions
;
2462 data
[i
++] = nic
->tx_multiple_collisions
;
2463 data
[i
++] = nic
->tx_fc_pause
;
2464 data
[i
++] = nic
->rx_fc_pause
;
2465 data
[i
++] = nic
->rx_fc_unsupported
;
2466 data
[i
++] = nic
->tx_tco_frames
;
2467 data
[i
++] = nic
->rx_tco_frames
;
2470 static void e100_get_strings(struct net_device
*netdev
, u32 stringset
, u8
*data
)
2474 memcpy(data
, *e100_gstrings_test
, sizeof(e100_gstrings_test
));
2477 memcpy(data
, *e100_gstrings_stats
, sizeof(e100_gstrings_stats
));
2482 static const struct ethtool_ops e100_ethtool_ops
= {
2483 .get_settings
= e100_get_settings
,
2484 .set_settings
= e100_set_settings
,
2485 .get_drvinfo
= e100_get_drvinfo
,
2486 .get_regs_len
= e100_get_regs_len
,
2487 .get_regs
= e100_get_regs
,
2488 .get_wol
= e100_get_wol
,
2489 .set_wol
= e100_set_wol
,
2490 .get_msglevel
= e100_get_msglevel
,
2491 .set_msglevel
= e100_set_msglevel
,
2492 .nway_reset
= e100_nway_reset
,
2493 .get_link
= e100_get_link
,
2494 .get_eeprom_len
= e100_get_eeprom_len
,
2495 .get_eeprom
= e100_get_eeprom
,
2496 .set_eeprom
= e100_set_eeprom
,
2497 .get_ringparam
= e100_get_ringparam
,
2498 .set_ringparam
= e100_set_ringparam
,
2499 .self_test_count
= e100_diag_test_count
,
2500 .self_test
= e100_diag_test
,
2501 .get_strings
= e100_get_strings
,
2502 .phys_id
= e100_phys_id
,
2503 .get_stats_count
= e100_get_stats_count
,
2504 .get_ethtool_stats
= e100_get_ethtool_stats
,
2505 .get_perm_addr
= ethtool_op_get_perm_addr
,
2508 static int e100_do_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
2510 struct nic
*nic
= netdev_priv(netdev
);
2512 return generic_mii_ioctl(&nic
->mii
, if_mii(ifr
), cmd
, NULL
);
2515 static int e100_alloc(struct nic
*nic
)
2517 nic
->mem
= pci_alloc_consistent(nic
->pdev
, sizeof(struct mem
),
2519 return nic
->mem
? 0 : -ENOMEM
;
2522 static void e100_free(struct nic
*nic
)
2525 pci_free_consistent(nic
->pdev
, sizeof(struct mem
),
2526 nic
->mem
, nic
->dma_addr
);
2531 static int e100_open(struct net_device
*netdev
)
2533 struct nic
*nic
= netdev_priv(netdev
);
2536 netif_carrier_off(netdev
);
2537 if((err
= e100_up(nic
)))
2538 DPRINTK(IFUP
, ERR
, "Cannot open interface, aborting.\n");
2542 static int e100_close(struct net_device
*netdev
)
2544 e100_down(netdev_priv(netdev
));
2548 static int __devinit
e100_probe(struct pci_dev
*pdev
,
2549 const struct pci_device_id
*ent
)
2551 struct net_device
*netdev
;
2555 if(!(netdev
= alloc_etherdev(sizeof(struct nic
)))) {
2556 if(((1 << debug
) - 1) & NETIF_MSG_PROBE
)
2557 printk(KERN_ERR PFX
"Etherdev alloc failed, abort.\n");
2561 netdev
->open
= e100_open
;
2562 netdev
->stop
= e100_close
;
2563 netdev
->hard_start_xmit
= e100_xmit_frame
;
2564 netdev
->get_stats
= e100_get_stats
;
2565 netdev
->set_multicast_list
= e100_set_multicast_list
;
2566 netdev
->set_mac_address
= e100_set_mac_address
;
2567 netdev
->change_mtu
= e100_change_mtu
;
2568 netdev
->do_ioctl
= e100_do_ioctl
;
2569 SET_ETHTOOL_OPS(netdev
, &e100_ethtool_ops
);
2570 netdev
->tx_timeout
= e100_tx_timeout
;
2571 netdev
->watchdog_timeo
= E100_WATCHDOG_PERIOD
;
2572 netdev
->poll
= e100_poll
;
2573 netdev
->weight
= E100_NAPI_WEIGHT
;
2574 #ifdef CONFIG_NET_POLL_CONTROLLER
2575 netdev
->poll_controller
= e100_netpoll
;
2577 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
2579 nic
= netdev_priv(netdev
);
2580 nic
->netdev
= netdev
;
2582 nic
->msg_enable
= (1 << debug
) - 1;
2583 pci_set_drvdata(pdev
, netdev
);
2585 if((err
= pci_enable_device(pdev
))) {
2586 DPRINTK(PROBE
, ERR
, "Cannot enable PCI device, aborting.\n");
2587 goto err_out_free_dev
;
2590 if(!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
2591 DPRINTK(PROBE
, ERR
, "Cannot find proper PCI device "
2592 "base address, aborting.\n");
2594 goto err_out_disable_pdev
;
2597 if((err
= pci_request_regions(pdev
, DRV_NAME
))) {
2598 DPRINTK(PROBE
, ERR
, "Cannot obtain PCI resources, aborting.\n");
2599 goto err_out_disable_pdev
;
2602 if((err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
))) {
2603 DPRINTK(PROBE
, ERR
, "No usable DMA configuration, aborting.\n");
2604 goto err_out_free_res
;
2607 SET_MODULE_OWNER(netdev
);
2608 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
2611 DPRINTK(PROBE
, INFO
, "using i/o access mode\n");
2613 nic
->csr
= pci_iomap(pdev
, (use_io
? 1 : 0), sizeof(struct csr
));
2615 DPRINTK(PROBE
, ERR
, "Cannot map device registers, aborting.\n");
2617 goto err_out_free_res
;
2620 if(ent
->driver_data
)
2625 e100_get_defaults(nic
);
2627 /* locks must be initialized before calling hw_reset */
2628 spin_lock_init(&nic
->cb_lock
);
2629 spin_lock_init(&nic
->cmd_lock
);
2630 spin_lock_init(&nic
->mdio_lock
);
2632 /* Reset the device before pci_set_master() in case device is in some
2633 * funky state and has an interrupt pending - hint: we don't have the
2634 * interrupt handler registered yet. */
2637 pci_set_master(pdev
);
2639 init_timer(&nic
->watchdog
);
2640 nic
->watchdog
.function
= e100_watchdog
;
2641 nic
->watchdog
.data
= (unsigned long)nic
;
2642 init_timer(&nic
->blink_timer
);
2643 nic
->blink_timer
.function
= e100_blink_led
;
2644 nic
->blink_timer
.data
= (unsigned long)nic
;
2646 INIT_WORK(&nic
->tx_timeout_task
, e100_tx_timeout_task
);
2648 if((err
= e100_alloc(nic
))) {
2649 DPRINTK(PROBE
, ERR
, "Cannot alloc driver memory, aborting.\n");
2650 goto err_out_iounmap
;
2653 if((err
= e100_eeprom_load(nic
)))
2658 memcpy(netdev
->dev_addr
, nic
->eeprom
, ETH_ALEN
);
2659 memcpy(netdev
->perm_addr
, nic
->eeprom
, ETH_ALEN
);
2660 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
2661 if (!eeprom_bad_csum_allow
) {
2662 DPRINTK(PROBE
, ERR
, "Invalid MAC address from "
2663 "EEPROM, aborting.\n");
2667 DPRINTK(PROBE
, ERR
, "Invalid MAC address from EEPROM, "
2668 "you MUST configure one.\n");
2672 /* Wol magic packet can be enabled from eeprom */
2673 if((nic
->mac
>= mac_82558_D101_A4
) &&
2674 (nic
->eeprom
[eeprom_id
] & eeprom_id_wol
))
2675 nic
->flags
|= wol_magic
;
2677 /* ack any pending wake events, disable PME */
2678 err
= pci_enable_wake(pdev
, 0, 0);
2680 DPRINTK(PROBE
, ERR
, "Error clearing wake event\n");
2682 strcpy(netdev
->name
, "eth%d");
2683 if((err
= register_netdev(netdev
))) {
2684 DPRINTK(PROBE
, ERR
, "Cannot register net device, aborting.\n");
2688 DPRINTK(PROBE
, INFO
, "addr 0x%llx, irq %d, "
2689 "MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n",
2690 (unsigned long long)pci_resource_start(pdev
, use_io
? 1 : 0), pdev
->irq
,
2691 netdev
->dev_addr
[0], netdev
->dev_addr
[1], netdev
->dev_addr
[2],
2692 netdev
->dev_addr
[3], netdev
->dev_addr
[4], netdev
->dev_addr
[5]);
2699 pci_iounmap(pdev
, nic
->csr
);
2701 pci_release_regions(pdev
);
2702 err_out_disable_pdev
:
2703 pci_disable_device(pdev
);
2705 pci_set_drvdata(pdev
, NULL
);
2706 free_netdev(netdev
);
2710 static void __devexit
e100_remove(struct pci_dev
*pdev
)
2712 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2715 struct nic
*nic
= netdev_priv(netdev
);
2716 unregister_netdev(netdev
);
2719 free_netdev(netdev
);
2720 pci_release_regions(pdev
);
2721 pci_disable_device(pdev
);
2722 pci_set_drvdata(pdev
, NULL
);
2727 static int e100_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2729 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2730 struct nic
*nic
= netdev_priv(netdev
);
2732 if (netif_running(netdev
))
2733 netif_poll_disable(nic
->netdev
);
2734 del_timer_sync(&nic
->watchdog
);
2735 netif_carrier_off(nic
->netdev
);
2736 netif_device_detach(netdev
);
2738 pci_save_state(pdev
);
2740 if ((nic
->flags
& wol_magic
) | e100_asf(nic
)) {
2741 pci_enable_wake(pdev
, PCI_D3hot
, 1);
2742 pci_enable_wake(pdev
, PCI_D3cold
, 1);
2744 pci_enable_wake(pdev
, PCI_D3hot
, 0);
2745 pci_enable_wake(pdev
, PCI_D3cold
, 0);
2748 pci_disable_device(pdev
);
2749 free_irq(pdev
->irq
, netdev
);
2750 pci_set_power_state(pdev
, PCI_D3hot
);
2755 static int e100_resume(struct pci_dev
*pdev
)
2757 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2758 struct nic
*nic
= netdev_priv(netdev
);
2760 pci_set_power_state(pdev
, PCI_D0
);
2761 pci_restore_state(pdev
);
2762 /* ack any pending wake events, disable PME */
2763 pci_enable_wake(pdev
, 0, 0);
2765 netif_device_attach(netdev
);
2766 if (netif_running(netdev
))
2771 #endif /* CONFIG_PM */
2773 static void e100_shutdown(struct pci_dev
*pdev
)
2775 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2776 struct nic
*nic
= netdev_priv(netdev
);
2778 if (netif_running(netdev
))
2779 netif_poll_disable(nic
->netdev
);
2780 del_timer_sync(&nic
->watchdog
);
2781 netif_carrier_off(nic
->netdev
);
2783 if ((nic
->flags
& wol_magic
) | e100_asf(nic
)) {
2784 pci_enable_wake(pdev
, PCI_D3hot
, 1);
2785 pci_enable_wake(pdev
, PCI_D3cold
, 1);
2787 pci_enable_wake(pdev
, PCI_D3hot
, 0);
2788 pci_enable_wake(pdev
, PCI_D3cold
, 0);
2791 pci_disable_device(pdev
);
2792 pci_set_power_state(pdev
, PCI_D3hot
);
2795 /* ------------------ PCI Error Recovery infrastructure -------------- */
2797 * e100_io_error_detected - called when PCI error is detected.
2798 * @pdev: Pointer to PCI device
2799 * @state: The current pci conneection state
2801 static pci_ers_result_t
e100_io_error_detected(struct pci_dev
*pdev
, pci_channel_state_t state
)
2803 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2805 /* Similar to calling e100_down(), but avoids adpater I/O. */
2806 netdev
->stop(netdev
);
2808 /* Detach; put netif into state similar to hotplug unplug. */
2809 netif_poll_enable(netdev
);
2810 netif_device_detach(netdev
);
2811 pci_disable_device(pdev
);
2813 /* Request a slot reset. */
2814 return PCI_ERS_RESULT_NEED_RESET
;
2818 * e100_io_slot_reset - called after the pci bus has been reset.
2819 * @pdev: Pointer to PCI device
2821 * Restart the card from scratch.
2823 static pci_ers_result_t
e100_io_slot_reset(struct pci_dev
*pdev
)
2825 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2826 struct nic
*nic
= netdev_priv(netdev
);
2828 if (pci_enable_device(pdev
)) {
2829 printk(KERN_ERR
"e100: Cannot re-enable PCI device after reset.\n");
2830 return PCI_ERS_RESULT_DISCONNECT
;
2832 pci_set_master(pdev
);
2834 /* Only one device per card can do a reset */
2835 if (0 != PCI_FUNC(pdev
->devfn
))
2836 return PCI_ERS_RESULT_RECOVERED
;
2840 return PCI_ERS_RESULT_RECOVERED
;
2844 * e100_io_resume - resume normal operations
2845 * @pdev: Pointer to PCI device
2847 * Resume normal operations after an error recovery
2848 * sequence has been completed.
2850 static void e100_io_resume(struct pci_dev
*pdev
)
2852 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2853 struct nic
*nic
= netdev_priv(netdev
);
2855 /* ack any pending wake events, disable PME */
2856 pci_enable_wake(pdev
, 0, 0);
2858 netif_device_attach(netdev
);
2859 if (netif_running(netdev
)) {
2861 mod_timer(&nic
->watchdog
, jiffies
);
2865 static struct pci_error_handlers e100_err_handler
= {
2866 .error_detected
= e100_io_error_detected
,
2867 .slot_reset
= e100_io_slot_reset
,
2868 .resume
= e100_io_resume
,
2871 static struct pci_driver e100_driver
= {
2873 .id_table
= e100_id_table
,
2874 .probe
= e100_probe
,
2875 .remove
= __devexit_p(e100_remove
),
2877 /* Power Management hooks */
2878 .suspend
= e100_suspend
,
2879 .resume
= e100_resume
,
2881 .shutdown
= e100_shutdown
,
2882 .err_handler
= &e100_err_handler
,
2885 static int __init
e100_init_module(void)
2887 if(((1 << debug
) - 1) & NETIF_MSG_DRV
) {
2888 printk(KERN_INFO PFX
"%s, %s\n", DRV_DESCRIPTION
, DRV_VERSION
);
2889 printk(KERN_INFO PFX
"%s\n", DRV_COPYRIGHT
);
2891 return pci_register_driver(&e100_driver
);
2894 static void __exit
e100_cleanup_module(void)
2896 pci_unregister_driver(&e100_driver
);
2899 module_init(e100_init_module
);
2900 module_exit(e100_cleanup_module
);