sched: move the __update_rq_clock() call to scheduler_tick()
[usb.git] / kernel / sched.c
blob3f5d52949990cb7e7a0f21659096591f1fa3df0c
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
65 #include <asm/tlb.h>
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
72 unsigned long long __attribute__((weak)) sched_clock(void)
74 return (unsigned long long)jiffies * (1000000000 / HZ);
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
82 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
91 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96 * Some helpers for converting nanosecond timing to jiffy resolution
98 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101 #define NICE_0_LOAD SCHED_LOAD_SCALE
102 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
105 * These are the 'tuning knobs' of the scheduler:
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
111 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112 #define DEF_TIMESLICE (100 * HZ / 1000)
114 #ifdef CONFIG_SMP
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
128 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 #endif
135 #define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 * to time slice values: [800ms ... 100ms ... 5ms]
142 static unsigned int static_prio_timeslice(int static_prio)
144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
153 static inline int rt_policy(int policy)
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
160 static inline int task_has_rt_policy(struct task_struct *p)
162 return rt_policy(p->policy);
166 * This is the priority-queue data structure of the RT scheduling class:
168 struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
173 struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
179 /* CFS-related fields in a runqueue */
180 struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193 #ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208 #endif
211 /* Real-Time classes' related field in a runqueue: */
212 struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
219 * This is the main, per-CPU runqueue data structure.
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
225 struct rq {
226 spinlock_t lock; /* runqueue lock */
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
232 unsigned long nr_running;
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
235 unsigned char idle_at_tick;
236 #ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238 #endif
239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
243 struct cfs_rq cfs;
244 #ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
246 #endif
247 struct rt_rq rt;
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
255 unsigned long nr_uninterruptible;
257 struct task_struct *curr, *idle;
258 unsigned long next_balance;
259 struct mm_struct *prev_mm;
261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
264 unsigned int clock_warps, clock_overflows;
265 unsigned int clock_unstable_events;
267 atomic_t nr_iowait;
269 #ifdef CONFIG_SMP
270 struct sched_domain *sd;
272 /* For active balancing */
273 int active_balance;
274 int push_cpu;
275 int cpu; /* cpu of this runqueue */
277 struct task_struct *migration_thread;
278 struct list_head migration_queue;
279 #endif
281 #ifdef CONFIG_SCHEDSTATS
282 /* latency stats */
283 struct sched_info rq_sched_info;
285 /* sys_sched_yield() stats */
286 unsigned long yld_exp_empty;
287 unsigned long yld_act_empty;
288 unsigned long yld_both_empty;
289 unsigned long yld_cnt;
291 /* schedule() stats */
292 unsigned long sched_switch;
293 unsigned long sched_cnt;
294 unsigned long sched_goidle;
296 /* try_to_wake_up() stats */
297 unsigned long ttwu_cnt;
298 unsigned long ttwu_local;
299 #endif
300 struct lock_class_key rq_lock_key;
303 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
304 static DEFINE_MUTEX(sched_hotcpu_mutex);
306 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
308 rq->curr->sched_class->check_preempt_curr(rq, p);
311 static inline int cpu_of(struct rq *rq)
313 #ifdef CONFIG_SMP
314 return rq->cpu;
315 #else
316 return 0;
317 #endif
321 * Update the per-runqueue clock, as finegrained as the platform can give
322 * us, but without assuming monotonicity, etc.:
324 static void __update_rq_clock(struct rq *rq)
326 u64 prev_raw = rq->prev_clock_raw;
327 u64 now = sched_clock();
328 s64 delta = now - prev_raw;
329 u64 clock = rq->clock;
331 #ifdef CONFIG_SCHED_DEBUG
332 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
333 #endif
335 * Protect against sched_clock() occasionally going backwards:
337 if (unlikely(delta < 0)) {
338 clock++;
339 rq->clock_warps++;
340 } else {
342 * Catch too large forward jumps too:
344 if (unlikely(delta > 2*TICK_NSEC)) {
345 clock++;
346 rq->clock_overflows++;
347 } else {
348 if (unlikely(delta > rq->clock_max_delta))
349 rq->clock_max_delta = delta;
350 clock += delta;
354 rq->prev_clock_raw = now;
355 rq->clock = clock;
358 static void update_rq_clock(struct rq *rq)
360 if (likely(smp_processor_id() == cpu_of(rq)))
361 __update_rq_clock(rq);
365 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
366 * See detach_destroy_domains: synchronize_sched for details.
368 * The domain tree of any CPU may only be accessed from within
369 * preempt-disabled sections.
371 #define for_each_domain(cpu, __sd) \
372 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
374 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
375 #define this_rq() (&__get_cpu_var(runqueues))
376 #define task_rq(p) cpu_rq(task_cpu(p))
377 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
380 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
381 * clock constructed from sched_clock():
383 unsigned long long cpu_clock(int cpu)
385 unsigned long long now;
386 unsigned long flags;
387 struct rq *rq;
389 local_irq_save(flags);
390 rq = cpu_rq(cpu);
391 update_rq_clock(rq);
392 now = rq->clock;
393 local_irq_restore(flags);
395 return now;
398 #ifdef CONFIG_FAIR_GROUP_SCHED
399 /* Change a task's ->cfs_rq if it moves across CPUs */
400 static inline void set_task_cfs_rq(struct task_struct *p)
402 p->se.cfs_rq = &task_rq(p)->cfs;
404 #else
405 static inline void set_task_cfs_rq(struct task_struct *p)
408 #endif
410 #ifndef prepare_arch_switch
411 # define prepare_arch_switch(next) do { } while (0)
412 #endif
413 #ifndef finish_arch_switch
414 # define finish_arch_switch(prev) do { } while (0)
415 #endif
417 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
418 static inline int task_running(struct rq *rq, struct task_struct *p)
420 return rq->curr == p;
423 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
427 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
429 #ifdef CONFIG_DEBUG_SPINLOCK
430 /* this is a valid case when another task releases the spinlock */
431 rq->lock.owner = current;
432 #endif
434 * If we are tracking spinlock dependencies then we have to
435 * fix up the runqueue lock - which gets 'carried over' from
436 * prev into current:
438 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
440 spin_unlock_irq(&rq->lock);
443 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
444 static inline int task_running(struct rq *rq, struct task_struct *p)
446 #ifdef CONFIG_SMP
447 return p->oncpu;
448 #else
449 return rq->curr == p;
450 #endif
453 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
455 #ifdef CONFIG_SMP
457 * We can optimise this out completely for !SMP, because the
458 * SMP rebalancing from interrupt is the only thing that cares
459 * here.
461 next->oncpu = 1;
462 #endif
463 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
464 spin_unlock_irq(&rq->lock);
465 #else
466 spin_unlock(&rq->lock);
467 #endif
470 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
472 #ifdef CONFIG_SMP
474 * After ->oncpu is cleared, the task can be moved to a different CPU.
475 * We must ensure this doesn't happen until the switch is completely
476 * finished.
478 smp_wmb();
479 prev->oncpu = 0;
480 #endif
481 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
482 local_irq_enable();
483 #endif
485 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
488 * __task_rq_lock - lock the runqueue a given task resides on.
489 * Must be called interrupts disabled.
491 static inline struct rq *__task_rq_lock(struct task_struct *p)
492 __acquires(rq->lock)
494 struct rq *rq;
496 repeat_lock_task:
497 rq = task_rq(p);
498 spin_lock(&rq->lock);
499 if (unlikely(rq != task_rq(p))) {
500 spin_unlock(&rq->lock);
501 goto repeat_lock_task;
503 return rq;
507 * task_rq_lock - lock the runqueue a given task resides on and disable
508 * interrupts. Note the ordering: we can safely lookup the task_rq without
509 * explicitly disabling preemption.
511 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
512 __acquires(rq->lock)
514 struct rq *rq;
516 repeat_lock_task:
517 local_irq_save(*flags);
518 rq = task_rq(p);
519 spin_lock(&rq->lock);
520 if (unlikely(rq != task_rq(p))) {
521 spin_unlock_irqrestore(&rq->lock, *flags);
522 goto repeat_lock_task;
524 return rq;
527 static inline void __task_rq_unlock(struct rq *rq)
528 __releases(rq->lock)
530 spin_unlock(&rq->lock);
533 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
534 __releases(rq->lock)
536 spin_unlock_irqrestore(&rq->lock, *flags);
540 * this_rq_lock - lock this runqueue and disable interrupts.
542 static inline struct rq *this_rq_lock(void)
543 __acquires(rq->lock)
545 struct rq *rq;
547 local_irq_disable();
548 rq = this_rq();
549 spin_lock(&rq->lock);
551 return rq;
555 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
557 void sched_clock_unstable_event(void)
559 unsigned long flags;
560 struct rq *rq;
562 rq = task_rq_lock(current, &flags);
563 rq->prev_clock_raw = sched_clock();
564 rq->clock_unstable_events++;
565 task_rq_unlock(rq, &flags);
569 * resched_task - mark a task 'to be rescheduled now'.
571 * On UP this means the setting of the need_resched flag, on SMP it
572 * might also involve a cross-CPU call to trigger the scheduler on
573 * the target CPU.
575 #ifdef CONFIG_SMP
577 #ifndef tsk_is_polling
578 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
579 #endif
581 static void resched_task(struct task_struct *p)
583 int cpu;
585 assert_spin_locked(&task_rq(p)->lock);
587 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
588 return;
590 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
592 cpu = task_cpu(p);
593 if (cpu == smp_processor_id())
594 return;
596 /* NEED_RESCHED must be visible before we test polling */
597 smp_mb();
598 if (!tsk_is_polling(p))
599 smp_send_reschedule(cpu);
602 static void resched_cpu(int cpu)
604 struct rq *rq = cpu_rq(cpu);
605 unsigned long flags;
607 if (!spin_trylock_irqsave(&rq->lock, flags))
608 return;
609 resched_task(cpu_curr(cpu));
610 spin_unlock_irqrestore(&rq->lock, flags);
612 #else
613 static inline void resched_task(struct task_struct *p)
615 assert_spin_locked(&task_rq(p)->lock);
616 set_tsk_need_resched(p);
618 #endif
620 static u64 div64_likely32(u64 divident, unsigned long divisor)
622 #if BITS_PER_LONG == 32
623 if (likely(divident <= 0xffffffffULL))
624 return (u32)divident / divisor;
625 do_div(divident, divisor);
627 return divident;
628 #else
629 return divident / divisor;
630 #endif
633 #if BITS_PER_LONG == 32
634 # define WMULT_CONST (~0UL)
635 #else
636 # define WMULT_CONST (1UL << 32)
637 #endif
639 #define WMULT_SHIFT 32
641 static unsigned long
642 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
643 struct load_weight *lw)
645 u64 tmp;
647 if (unlikely(!lw->inv_weight))
648 lw->inv_weight = WMULT_CONST / lw->weight;
650 tmp = (u64)delta_exec * weight;
652 * Check whether we'd overflow the 64-bit multiplication:
654 if (unlikely(tmp > WMULT_CONST)) {
655 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
656 >> (WMULT_SHIFT/2);
657 } else {
658 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
661 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
664 static inline unsigned long
665 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
667 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
670 static void update_load_add(struct load_weight *lw, unsigned long inc)
672 lw->weight += inc;
673 lw->inv_weight = 0;
676 static void update_load_sub(struct load_weight *lw, unsigned long dec)
678 lw->weight -= dec;
679 lw->inv_weight = 0;
683 * To aid in avoiding the subversion of "niceness" due to uneven distribution
684 * of tasks with abnormal "nice" values across CPUs the contribution that
685 * each task makes to its run queue's load is weighted according to its
686 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
687 * scaled version of the new time slice allocation that they receive on time
688 * slice expiry etc.
691 #define WEIGHT_IDLEPRIO 2
692 #define WMULT_IDLEPRIO (1 << 31)
695 * Nice levels are multiplicative, with a gentle 10% change for every
696 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
697 * nice 1, it will get ~10% less CPU time than another CPU-bound task
698 * that remained on nice 0.
700 * The "10% effect" is relative and cumulative: from _any_ nice level,
701 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
702 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
703 * If a task goes up by ~10% and another task goes down by ~10% then
704 * the relative distance between them is ~25%.)
706 static const int prio_to_weight[40] = {
707 /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
708 /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
709 /* 0 */ NICE_0_LOAD /* 1024 */,
710 /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
711 /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
715 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
717 * In cases where the weight does not change often, we can use the
718 * precalculated inverse to speed up arithmetics by turning divisions
719 * into multiplications:
721 static const u32 prio_to_wmult[40] = {
722 /* -20 */ 48356, 60446, 75558, 94446, 118058,
723 /* -15 */ 147573, 184467, 230589, 288233, 360285,
724 /* -10 */ 450347, 562979, 703746, 879575, 1099582,
725 /* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
726 /* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
727 /* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
728 /* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
729 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
732 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
735 * runqueue iterator, to support SMP load-balancing between different
736 * scheduling classes, without having to expose their internal data
737 * structures to the load-balancing proper:
739 struct rq_iterator {
740 void *arg;
741 struct task_struct *(*start)(void *);
742 struct task_struct *(*next)(void *);
745 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
746 unsigned long max_nr_move, unsigned long max_load_move,
747 struct sched_domain *sd, enum cpu_idle_type idle,
748 int *all_pinned, unsigned long *load_moved,
749 int *this_best_prio, struct rq_iterator *iterator);
751 #include "sched_stats.h"
752 #include "sched_rt.c"
753 #include "sched_fair.c"
754 #include "sched_idletask.c"
755 #ifdef CONFIG_SCHED_DEBUG
756 # include "sched_debug.c"
757 #endif
759 #define sched_class_highest (&rt_sched_class)
761 static void __update_curr_load(struct rq *rq, struct load_stat *ls)
763 if (rq->curr != rq->idle && ls->load.weight) {
764 ls->delta_exec += ls->delta_stat;
765 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
766 ls->delta_stat = 0;
771 * Update delta_exec, delta_fair fields for rq.
773 * delta_fair clock advances at a rate inversely proportional to
774 * total load (rq->ls.load.weight) on the runqueue, while
775 * delta_exec advances at the same rate as wall-clock (provided
776 * cpu is not idle).
778 * delta_exec / delta_fair is a measure of the (smoothened) load on this
779 * runqueue over any given interval. This (smoothened) load is used
780 * during load balance.
782 * This function is called /before/ updating rq->ls.load
783 * and when switching tasks.
785 static void update_curr_load(struct rq *rq)
787 struct load_stat *ls = &rq->ls;
788 u64 start;
790 start = ls->load_update_start;
791 ls->load_update_start = rq->clock;
792 ls->delta_stat += rq->clock - start;
794 * Stagger updates to ls->delta_fair. Very frequent updates
795 * can be expensive.
797 if (ls->delta_stat >= sysctl_sched_stat_granularity)
798 __update_curr_load(rq, ls);
801 static inline void inc_load(struct rq *rq, const struct task_struct *p)
803 update_curr_load(rq);
804 update_load_add(&rq->ls.load, p->se.load.weight);
807 static inline void dec_load(struct rq *rq, const struct task_struct *p)
809 update_curr_load(rq);
810 update_load_sub(&rq->ls.load, p->se.load.weight);
813 static void inc_nr_running(struct task_struct *p, struct rq *rq)
815 rq->nr_running++;
816 inc_load(rq, p);
819 static void dec_nr_running(struct task_struct *p, struct rq *rq)
821 rq->nr_running--;
822 dec_load(rq, p);
825 static void set_load_weight(struct task_struct *p)
827 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
828 p->se.wait_runtime = 0;
830 if (task_has_rt_policy(p)) {
831 p->se.load.weight = prio_to_weight[0] * 2;
832 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
833 return;
837 * SCHED_IDLE tasks get minimal weight:
839 if (p->policy == SCHED_IDLE) {
840 p->se.load.weight = WEIGHT_IDLEPRIO;
841 p->se.load.inv_weight = WMULT_IDLEPRIO;
842 return;
845 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
846 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
849 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
851 sched_info_queued(p);
852 p->sched_class->enqueue_task(rq, p, wakeup);
853 p->se.on_rq = 1;
856 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
858 p->sched_class->dequeue_task(rq, p, sleep);
859 p->se.on_rq = 0;
863 * __normal_prio - return the priority that is based on the static prio
865 static inline int __normal_prio(struct task_struct *p)
867 return p->static_prio;
871 * Calculate the expected normal priority: i.e. priority
872 * without taking RT-inheritance into account. Might be
873 * boosted by interactivity modifiers. Changes upon fork,
874 * setprio syscalls, and whenever the interactivity
875 * estimator recalculates.
877 static inline int normal_prio(struct task_struct *p)
879 int prio;
881 if (task_has_rt_policy(p))
882 prio = MAX_RT_PRIO-1 - p->rt_priority;
883 else
884 prio = __normal_prio(p);
885 return prio;
889 * Calculate the current priority, i.e. the priority
890 * taken into account by the scheduler. This value might
891 * be boosted by RT tasks, or might be boosted by
892 * interactivity modifiers. Will be RT if the task got
893 * RT-boosted. If not then it returns p->normal_prio.
895 static int effective_prio(struct task_struct *p)
897 p->normal_prio = normal_prio(p);
899 * If we are RT tasks or we were boosted to RT priority,
900 * keep the priority unchanged. Otherwise, update priority
901 * to the normal priority:
903 if (!rt_prio(p->prio))
904 return p->normal_prio;
905 return p->prio;
909 * activate_task - move a task to the runqueue.
911 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
913 update_rq_clock(rq);
915 if (p->state == TASK_UNINTERRUPTIBLE)
916 rq->nr_uninterruptible--;
918 enqueue_task(rq, p, wakeup);
919 inc_nr_running(p, rq);
923 * activate_idle_task - move idle task to the _front_ of runqueue.
925 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
927 update_rq_clock(rq);
929 if (p->state == TASK_UNINTERRUPTIBLE)
930 rq->nr_uninterruptible--;
932 enqueue_task(rq, p, 0);
933 inc_nr_running(p, rq);
937 * deactivate_task - remove a task from the runqueue.
939 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
941 if (p->state == TASK_UNINTERRUPTIBLE)
942 rq->nr_uninterruptible++;
944 dequeue_task(rq, p, sleep);
945 dec_nr_running(p, rq);
949 * task_curr - is this task currently executing on a CPU?
950 * @p: the task in question.
952 inline int task_curr(const struct task_struct *p)
954 return cpu_curr(task_cpu(p)) == p;
957 /* Used instead of source_load when we know the type == 0 */
958 unsigned long weighted_cpuload(const int cpu)
960 return cpu_rq(cpu)->ls.load.weight;
963 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
965 #ifdef CONFIG_SMP
966 task_thread_info(p)->cpu = cpu;
967 set_task_cfs_rq(p);
968 #endif
971 #ifdef CONFIG_SMP
973 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
975 int old_cpu = task_cpu(p);
976 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
977 u64 clock_offset, fair_clock_offset;
979 clock_offset = old_rq->clock - new_rq->clock;
980 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
982 if (p->se.wait_start_fair)
983 p->se.wait_start_fair -= fair_clock_offset;
984 if (p->se.sleep_start_fair)
985 p->se.sleep_start_fair -= fair_clock_offset;
987 #ifdef CONFIG_SCHEDSTATS
988 if (p->se.wait_start)
989 p->se.wait_start -= clock_offset;
990 if (p->se.sleep_start)
991 p->se.sleep_start -= clock_offset;
992 if (p->se.block_start)
993 p->se.block_start -= clock_offset;
994 #endif
996 __set_task_cpu(p, new_cpu);
999 struct migration_req {
1000 struct list_head list;
1002 struct task_struct *task;
1003 int dest_cpu;
1005 struct completion done;
1009 * The task's runqueue lock must be held.
1010 * Returns true if you have to wait for migration thread.
1012 static int
1013 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1015 struct rq *rq = task_rq(p);
1018 * If the task is not on a runqueue (and not running), then
1019 * it is sufficient to simply update the task's cpu field.
1021 if (!p->se.on_rq && !task_running(rq, p)) {
1022 set_task_cpu(p, dest_cpu);
1023 return 0;
1026 init_completion(&req->done);
1027 req->task = p;
1028 req->dest_cpu = dest_cpu;
1029 list_add(&req->list, &rq->migration_queue);
1031 return 1;
1035 * wait_task_inactive - wait for a thread to unschedule.
1037 * The caller must ensure that the task *will* unschedule sometime soon,
1038 * else this function might spin for a *long* time. This function can't
1039 * be called with interrupts off, or it may introduce deadlock with
1040 * smp_call_function() if an IPI is sent by the same process we are
1041 * waiting to become inactive.
1043 void wait_task_inactive(struct task_struct *p)
1045 unsigned long flags;
1046 int running, on_rq;
1047 struct rq *rq;
1049 repeat:
1051 * We do the initial early heuristics without holding
1052 * any task-queue locks at all. We'll only try to get
1053 * the runqueue lock when things look like they will
1054 * work out!
1056 rq = task_rq(p);
1059 * If the task is actively running on another CPU
1060 * still, just relax and busy-wait without holding
1061 * any locks.
1063 * NOTE! Since we don't hold any locks, it's not
1064 * even sure that "rq" stays as the right runqueue!
1065 * But we don't care, since "task_running()" will
1066 * return false if the runqueue has changed and p
1067 * is actually now running somewhere else!
1069 while (task_running(rq, p))
1070 cpu_relax();
1073 * Ok, time to look more closely! We need the rq
1074 * lock now, to be *sure*. If we're wrong, we'll
1075 * just go back and repeat.
1077 rq = task_rq_lock(p, &flags);
1078 running = task_running(rq, p);
1079 on_rq = p->se.on_rq;
1080 task_rq_unlock(rq, &flags);
1083 * Was it really running after all now that we
1084 * checked with the proper locks actually held?
1086 * Oops. Go back and try again..
1088 if (unlikely(running)) {
1089 cpu_relax();
1090 goto repeat;
1094 * It's not enough that it's not actively running,
1095 * it must be off the runqueue _entirely_, and not
1096 * preempted!
1098 * So if it wa still runnable (but just not actively
1099 * running right now), it's preempted, and we should
1100 * yield - it could be a while.
1102 if (unlikely(on_rq)) {
1103 yield();
1104 goto repeat;
1108 * Ahh, all good. It wasn't running, and it wasn't
1109 * runnable, which means that it will never become
1110 * running in the future either. We're all done!
1114 /***
1115 * kick_process - kick a running thread to enter/exit the kernel
1116 * @p: the to-be-kicked thread
1118 * Cause a process which is running on another CPU to enter
1119 * kernel-mode, without any delay. (to get signals handled.)
1121 * NOTE: this function doesnt have to take the runqueue lock,
1122 * because all it wants to ensure is that the remote task enters
1123 * the kernel. If the IPI races and the task has been migrated
1124 * to another CPU then no harm is done and the purpose has been
1125 * achieved as well.
1127 void kick_process(struct task_struct *p)
1129 int cpu;
1131 preempt_disable();
1132 cpu = task_cpu(p);
1133 if ((cpu != smp_processor_id()) && task_curr(p))
1134 smp_send_reschedule(cpu);
1135 preempt_enable();
1139 * Return a low guess at the load of a migration-source cpu weighted
1140 * according to the scheduling class and "nice" value.
1142 * We want to under-estimate the load of migration sources, to
1143 * balance conservatively.
1145 static inline unsigned long source_load(int cpu, int type)
1147 struct rq *rq = cpu_rq(cpu);
1148 unsigned long total = weighted_cpuload(cpu);
1150 if (type == 0)
1151 return total;
1153 return min(rq->cpu_load[type-1], total);
1157 * Return a high guess at the load of a migration-target cpu weighted
1158 * according to the scheduling class and "nice" value.
1160 static inline unsigned long target_load(int cpu, int type)
1162 struct rq *rq = cpu_rq(cpu);
1163 unsigned long total = weighted_cpuload(cpu);
1165 if (type == 0)
1166 return total;
1168 return max(rq->cpu_load[type-1], total);
1172 * Return the average load per task on the cpu's run queue
1174 static inline unsigned long cpu_avg_load_per_task(int cpu)
1176 struct rq *rq = cpu_rq(cpu);
1177 unsigned long total = weighted_cpuload(cpu);
1178 unsigned long n = rq->nr_running;
1180 return n ? total / n : SCHED_LOAD_SCALE;
1184 * find_idlest_group finds and returns the least busy CPU group within the
1185 * domain.
1187 static struct sched_group *
1188 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1190 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1191 unsigned long min_load = ULONG_MAX, this_load = 0;
1192 int load_idx = sd->forkexec_idx;
1193 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1195 do {
1196 unsigned long load, avg_load;
1197 int local_group;
1198 int i;
1200 /* Skip over this group if it has no CPUs allowed */
1201 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1202 goto nextgroup;
1204 local_group = cpu_isset(this_cpu, group->cpumask);
1206 /* Tally up the load of all CPUs in the group */
1207 avg_load = 0;
1209 for_each_cpu_mask(i, group->cpumask) {
1210 /* Bias balancing toward cpus of our domain */
1211 if (local_group)
1212 load = source_load(i, load_idx);
1213 else
1214 load = target_load(i, load_idx);
1216 avg_load += load;
1219 /* Adjust by relative CPU power of the group */
1220 avg_load = sg_div_cpu_power(group,
1221 avg_load * SCHED_LOAD_SCALE);
1223 if (local_group) {
1224 this_load = avg_load;
1225 this = group;
1226 } else if (avg_load < min_load) {
1227 min_load = avg_load;
1228 idlest = group;
1230 nextgroup:
1231 group = group->next;
1232 } while (group != sd->groups);
1234 if (!idlest || 100*this_load < imbalance*min_load)
1235 return NULL;
1236 return idlest;
1240 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1242 static int
1243 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1245 cpumask_t tmp;
1246 unsigned long load, min_load = ULONG_MAX;
1247 int idlest = -1;
1248 int i;
1250 /* Traverse only the allowed CPUs */
1251 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1253 for_each_cpu_mask(i, tmp) {
1254 load = weighted_cpuload(i);
1256 if (load < min_load || (load == min_load && i == this_cpu)) {
1257 min_load = load;
1258 idlest = i;
1262 return idlest;
1266 * sched_balance_self: balance the current task (running on cpu) in domains
1267 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1268 * SD_BALANCE_EXEC.
1270 * Balance, ie. select the least loaded group.
1272 * Returns the target CPU number, or the same CPU if no balancing is needed.
1274 * preempt must be disabled.
1276 static int sched_balance_self(int cpu, int flag)
1278 struct task_struct *t = current;
1279 struct sched_domain *tmp, *sd = NULL;
1281 for_each_domain(cpu, tmp) {
1283 * If power savings logic is enabled for a domain, stop there.
1285 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1286 break;
1287 if (tmp->flags & flag)
1288 sd = tmp;
1291 while (sd) {
1292 cpumask_t span;
1293 struct sched_group *group;
1294 int new_cpu, weight;
1296 if (!(sd->flags & flag)) {
1297 sd = sd->child;
1298 continue;
1301 span = sd->span;
1302 group = find_idlest_group(sd, t, cpu);
1303 if (!group) {
1304 sd = sd->child;
1305 continue;
1308 new_cpu = find_idlest_cpu(group, t, cpu);
1309 if (new_cpu == -1 || new_cpu == cpu) {
1310 /* Now try balancing at a lower domain level of cpu */
1311 sd = sd->child;
1312 continue;
1315 /* Now try balancing at a lower domain level of new_cpu */
1316 cpu = new_cpu;
1317 sd = NULL;
1318 weight = cpus_weight(span);
1319 for_each_domain(cpu, tmp) {
1320 if (weight <= cpus_weight(tmp->span))
1321 break;
1322 if (tmp->flags & flag)
1323 sd = tmp;
1325 /* while loop will break here if sd == NULL */
1328 return cpu;
1331 #endif /* CONFIG_SMP */
1334 * wake_idle() will wake a task on an idle cpu if task->cpu is
1335 * not idle and an idle cpu is available. The span of cpus to
1336 * search starts with cpus closest then further out as needed,
1337 * so we always favor a closer, idle cpu.
1339 * Returns the CPU we should wake onto.
1341 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1342 static int wake_idle(int cpu, struct task_struct *p)
1344 cpumask_t tmp;
1345 struct sched_domain *sd;
1346 int i;
1349 * If it is idle, then it is the best cpu to run this task.
1351 * This cpu is also the best, if it has more than one task already.
1352 * Siblings must be also busy(in most cases) as they didn't already
1353 * pickup the extra load from this cpu and hence we need not check
1354 * sibling runqueue info. This will avoid the checks and cache miss
1355 * penalities associated with that.
1357 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1358 return cpu;
1360 for_each_domain(cpu, sd) {
1361 if (sd->flags & SD_WAKE_IDLE) {
1362 cpus_and(tmp, sd->span, p->cpus_allowed);
1363 for_each_cpu_mask(i, tmp) {
1364 if (idle_cpu(i))
1365 return i;
1367 } else {
1368 break;
1371 return cpu;
1373 #else
1374 static inline int wake_idle(int cpu, struct task_struct *p)
1376 return cpu;
1378 #endif
1380 /***
1381 * try_to_wake_up - wake up a thread
1382 * @p: the to-be-woken-up thread
1383 * @state: the mask of task states that can be woken
1384 * @sync: do a synchronous wakeup?
1386 * Put it on the run-queue if it's not already there. The "current"
1387 * thread is always on the run-queue (except when the actual
1388 * re-schedule is in progress), and as such you're allowed to do
1389 * the simpler "current->state = TASK_RUNNING" to mark yourself
1390 * runnable without the overhead of this.
1392 * returns failure only if the task is already active.
1394 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1396 int cpu, this_cpu, success = 0;
1397 unsigned long flags;
1398 long old_state;
1399 struct rq *rq;
1400 #ifdef CONFIG_SMP
1401 struct sched_domain *sd, *this_sd = NULL;
1402 unsigned long load, this_load;
1403 int new_cpu;
1404 #endif
1406 rq = task_rq_lock(p, &flags);
1407 old_state = p->state;
1408 if (!(old_state & state))
1409 goto out;
1411 if (p->se.on_rq)
1412 goto out_running;
1414 cpu = task_cpu(p);
1415 this_cpu = smp_processor_id();
1417 #ifdef CONFIG_SMP
1418 if (unlikely(task_running(rq, p)))
1419 goto out_activate;
1421 new_cpu = cpu;
1423 schedstat_inc(rq, ttwu_cnt);
1424 if (cpu == this_cpu) {
1425 schedstat_inc(rq, ttwu_local);
1426 goto out_set_cpu;
1429 for_each_domain(this_cpu, sd) {
1430 if (cpu_isset(cpu, sd->span)) {
1431 schedstat_inc(sd, ttwu_wake_remote);
1432 this_sd = sd;
1433 break;
1437 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1438 goto out_set_cpu;
1441 * Check for affine wakeup and passive balancing possibilities.
1443 if (this_sd) {
1444 int idx = this_sd->wake_idx;
1445 unsigned int imbalance;
1447 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1449 load = source_load(cpu, idx);
1450 this_load = target_load(this_cpu, idx);
1452 new_cpu = this_cpu; /* Wake to this CPU if we can */
1454 if (this_sd->flags & SD_WAKE_AFFINE) {
1455 unsigned long tl = this_load;
1456 unsigned long tl_per_task;
1458 tl_per_task = cpu_avg_load_per_task(this_cpu);
1461 * If sync wakeup then subtract the (maximum possible)
1462 * effect of the currently running task from the load
1463 * of the current CPU:
1465 if (sync)
1466 tl -= current->se.load.weight;
1468 if ((tl <= load &&
1469 tl + target_load(cpu, idx) <= tl_per_task) ||
1470 100*(tl + p->se.load.weight) <= imbalance*load) {
1472 * This domain has SD_WAKE_AFFINE and
1473 * p is cache cold in this domain, and
1474 * there is no bad imbalance.
1476 schedstat_inc(this_sd, ttwu_move_affine);
1477 goto out_set_cpu;
1482 * Start passive balancing when half the imbalance_pct
1483 * limit is reached.
1485 if (this_sd->flags & SD_WAKE_BALANCE) {
1486 if (imbalance*this_load <= 100*load) {
1487 schedstat_inc(this_sd, ttwu_move_balance);
1488 goto out_set_cpu;
1493 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1494 out_set_cpu:
1495 new_cpu = wake_idle(new_cpu, p);
1496 if (new_cpu != cpu) {
1497 set_task_cpu(p, new_cpu);
1498 task_rq_unlock(rq, &flags);
1499 /* might preempt at this point */
1500 rq = task_rq_lock(p, &flags);
1501 old_state = p->state;
1502 if (!(old_state & state))
1503 goto out;
1504 if (p->se.on_rq)
1505 goto out_running;
1507 this_cpu = smp_processor_id();
1508 cpu = task_cpu(p);
1511 out_activate:
1512 #endif /* CONFIG_SMP */
1513 activate_task(rq, p, 1);
1515 * Sync wakeups (i.e. those types of wakeups where the waker
1516 * has indicated that it will leave the CPU in short order)
1517 * don't trigger a preemption, if the woken up task will run on
1518 * this cpu. (in this case the 'I will reschedule' promise of
1519 * the waker guarantees that the freshly woken up task is going
1520 * to be considered on this CPU.)
1522 if (!sync || cpu != this_cpu)
1523 check_preempt_curr(rq, p);
1524 success = 1;
1526 out_running:
1527 p->state = TASK_RUNNING;
1528 out:
1529 task_rq_unlock(rq, &flags);
1531 return success;
1534 int fastcall wake_up_process(struct task_struct *p)
1536 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1537 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1539 EXPORT_SYMBOL(wake_up_process);
1541 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1543 return try_to_wake_up(p, state, 0);
1547 * Perform scheduler related setup for a newly forked process p.
1548 * p is forked by current.
1550 * __sched_fork() is basic setup used by init_idle() too:
1552 static void __sched_fork(struct task_struct *p)
1554 p->se.wait_start_fair = 0;
1555 p->se.exec_start = 0;
1556 p->se.sum_exec_runtime = 0;
1557 p->se.delta_exec = 0;
1558 p->se.delta_fair_run = 0;
1559 p->se.delta_fair_sleep = 0;
1560 p->se.wait_runtime = 0;
1561 p->se.sleep_start_fair = 0;
1563 #ifdef CONFIG_SCHEDSTATS
1564 p->se.wait_start = 0;
1565 p->se.sum_wait_runtime = 0;
1566 p->se.sum_sleep_runtime = 0;
1567 p->se.sleep_start = 0;
1568 p->se.block_start = 0;
1569 p->se.sleep_max = 0;
1570 p->se.block_max = 0;
1571 p->se.exec_max = 0;
1572 p->se.wait_max = 0;
1573 p->se.wait_runtime_overruns = 0;
1574 p->se.wait_runtime_underruns = 0;
1575 #endif
1577 INIT_LIST_HEAD(&p->run_list);
1578 p->se.on_rq = 0;
1580 #ifdef CONFIG_PREEMPT_NOTIFIERS
1581 INIT_HLIST_HEAD(&p->preempt_notifiers);
1582 #endif
1585 * We mark the process as running here, but have not actually
1586 * inserted it onto the runqueue yet. This guarantees that
1587 * nobody will actually run it, and a signal or other external
1588 * event cannot wake it up and insert it on the runqueue either.
1590 p->state = TASK_RUNNING;
1594 * fork()/clone()-time setup:
1596 void sched_fork(struct task_struct *p, int clone_flags)
1598 int cpu = get_cpu();
1600 __sched_fork(p);
1602 #ifdef CONFIG_SMP
1603 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1604 #endif
1605 __set_task_cpu(p, cpu);
1608 * Make sure we do not leak PI boosting priority to the child:
1610 p->prio = current->normal_prio;
1612 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1613 if (likely(sched_info_on()))
1614 memset(&p->sched_info, 0, sizeof(p->sched_info));
1615 #endif
1616 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1617 p->oncpu = 0;
1618 #endif
1619 #ifdef CONFIG_PREEMPT
1620 /* Want to start with kernel preemption disabled. */
1621 task_thread_info(p)->preempt_count = 1;
1622 #endif
1623 put_cpu();
1627 * After fork, child runs first. (default) If set to 0 then
1628 * parent will (try to) run first.
1630 unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1633 * wake_up_new_task - wake up a newly created task for the first time.
1635 * This function will do some initial scheduler statistics housekeeping
1636 * that must be done for every newly created context, then puts the task
1637 * on the runqueue and wakes it.
1639 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1641 unsigned long flags;
1642 struct rq *rq;
1643 int this_cpu;
1645 rq = task_rq_lock(p, &flags);
1646 BUG_ON(p->state != TASK_RUNNING);
1647 this_cpu = smp_processor_id(); /* parent's CPU */
1648 update_rq_clock(rq);
1650 p->prio = effective_prio(p);
1652 if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
1653 (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
1654 !current->se.on_rq) {
1656 activate_task(rq, p, 0);
1657 } else {
1659 * Let the scheduling class do new task startup
1660 * management (if any):
1662 p->sched_class->task_new(rq, p);
1663 inc_nr_running(p, rq);
1665 check_preempt_curr(rq, p);
1666 task_rq_unlock(rq, &flags);
1669 #ifdef CONFIG_PREEMPT_NOTIFIERS
1672 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1673 * @notifier: notifier struct to register
1675 void preempt_notifier_register(struct preempt_notifier *notifier)
1677 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1679 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1682 * preempt_notifier_unregister - no longer interested in preemption notifications
1683 * @notifier: notifier struct to unregister
1685 * This is safe to call from within a preemption notifier.
1687 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1689 hlist_del(&notifier->link);
1691 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1693 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1695 struct preempt_notifier *notifier;
1696 struct hlist_node *node;
1698 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1699 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1702 static void
1703 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1704 struct task_struct *next)
1706 struct preempt_notifier *notifier;
1707 struct hlist_node *node;
1709 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1710 notifier->ops->sched_out(notifier, next);
1713 #else
1715 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1719 static void
1720 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1721 struct task_struct *next)
1725 #endif
1728 * prepare_task_switch - prepare to switch tasks
1729 * @rq: the runqueue preparing to switch
1730 * @prev: the current task that is being switched out
1731 * @next: the task we are going to switch to.
1733 * This is called with the rq lock held and interrupts off. It must
1734 * be paired with a subsequent finish_task_switch after the context
1735 * switch.
1737 * prepare_task_switch sets up locking and calls architecture specific
1738 * hooks.
1740 static inline void
1741 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1742 struct task_struct *next)
1744 fire_sched_out_preempt_notifiers(prev, next);
1745 prepare_lock_switch(rq, next);
1746 prepare_arch_switch(next);
1750 * finish_task_switch - clean up after a task-switch
1751 * @rq: runqueue associated with task-switch
1752 * @prev: the thread we just switched away from.
1754 * finish_task_switch must be called after the context switch, paired
1755 * with a prepare_task_switch call before the context switch.
1756 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1757 * and do any other architecture-specific cleanup actions.
1759 * Note that we may have delayed dropping an mm in context_switch(). If
1760 * so, we finish that here outside of the runqueue lock. (Doing it
1761 * with the lock held can cause deadlocks; see schedule() for
1762 * details.)
1764 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1765 __releases(rq->lock)
1767 struct mm_struct *mm = rq->prev_mm;
1768 long prev_state;
1770 rq->prev_mm = NULL;
1773 * A task struct has one reference for the use as "current".
1774 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1775 * schedule one last time. The schedule call will never return, and
1776 * the scheduled task must drop that reference.
1777 * The test for TASK_DEAD must occur while the runqueue locks are
1778 * still held, otherwise prev could be scheduled on another cpu, die
1779 * there before we look at prev->state, and then the reference would
1780 * be dropped twice.
1781 * Manfred Spraul <manfred@colorfullife.com>
1783 prev_state = prev->state;
1784 finish_arch_switch(prev);
1785 finish_lock_switch(rq, prev);
1786 fire_sched_in_preempt_notifiers(current);
1787 if (mm)
1788 mmdrop(mm);
1789 if (unlikely(prev_state == TASK_DEAD)) {
1791 * Remove function-return probe instances associated with this
1792 * task and put them back on the free list.
1794 kprobe_flush_task(prev);
1795 put_task_struct(prev);
1800 * schedule_tail - first thing a freshly forked thread must call.
1801 * @prev: the thread we just switched away from.
1803 asmlinkage void schedule_tail(struct task_struct *prev)
1804 __releases(rq->lock)
1806 struct rq *rq = this_rq();
1808 finish_task_switch(rq, prev);
1809 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1810 /* In this case, finish_task_switch does not reenable preemption */
1811 preempt_enable();
1812 #endif
1813 if (current->set_child_tid)
1814 put_user(current->pid, current->set_child_tid);
1818 * context_switch - switch to the new MM and the new
1819 * thread's register state.
1821 static inline void
1822 context_switch(struct rq *rq, struct task_struct *prev,
1823 struct task_struct *next)
1825 struct mm_struct *mm, *oldmm;
1827 prepare_task_switch(rq, prev, next);
1828 mm = next->mm;
1829 oldmm = prev->active_mm;
1831 * For paravirt, this is coupled with an exit in switch_to to
1832 * combine the page table reload and the switch backend into
1833 * one hypercall.
1835 arch_enter_lazy_cpu_mode();
1837 if (unlikely(!mm)) {
1838 next->active_mm = oldmm;
1839 atomic_inc(&oldmm->mm_count);
1840 enter_lazy_tlb(oldmm, next);
1841 } else
1842 switch_mm(oldmm, mm, next);
1844 if (unlikely(!prev->mm)) {
1845 prev->active_mm = NULL;
1846 rq->prev_mm = oldmm;
1849 * Since the runqueue lock will be released by the next
1850 * task (which is an invalid locking op but in the case
1851 * of the scheduler it's an obvious special-case), so we
1852 * do an early lockdep release here:
1854 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1855 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1856 #endif
1858 /* Here we just switch the register state and the stack. */
1859 switch_to(prev, next, prev);
1861 barrier();
1863 * this_rq must be evaluated again because prev may have moved
1864 * CPUs since it called schedule(), thus the 'rq' on its stack
1865 * frame will be invalid.
1867 finish_task_switch(this_rq(), prev);
1871 * nr_running, nr_uninterruptible and nr_context_switches:
1873 * externally visible scheduler statistics: current number of runnable
1874 * threads, current number of uninterruptible-sleeping threads, total
1875 * number of context switches performed since bootup.
1877 unsigned long nr_running(void)
1879 unsigned long i, sum = 0;
1881 for_each_online_cpu(i)
1882 sum += cpu_rq(i)->nr_running;
1884 return sum;
1887 unsigned long nr_uninterruptible(void)
1889 unsigned long i, sum = 0;
1891 for_each_possible_cpu(i)
1892 sum += cpu_rq(i)->nr_uninterruptible;
1895 * Since we read the counters lockless, it might be slightly
1896 * inaccurate. Do not allow it to go below zero though:
1898 if (unlikely((long)sum < 0))
1899 sum = 0;
1901 return sum;
1904 unsigned long long nr_context_switches(void)
1906 int i;
1907 unsigned long long sum = 0;
1909 for_each_possible_cpu(i)
1910 sum += cpu_rq(i)->nr_switches;
1912 return sum;
1915 unsigned long nr_iowait(void)
1917 unsigned long i, sum = 0;
1919 for_each_possible_cpu(i)
1920 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1922 return sum;
1925 unsigned long nr_active(void)
1927 unsigned long i, running = 0, uninterruptible = 0;
1929 for_each_online_cpu(i) {
1930 running += cpu_rq(i)->nr_running;
1931 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1934 if (unlikely((long)uninterruptible < 0))
1935 uninterruptible = 0;
1937 return running + uninterruptible;
1941 * Update rq->cpu_load[] statistics. This function is usually called every
1942 * scheduler tick (TICK_NSEC).
1944 static void update_cpu_load(struct rq *this_rq)
1946 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1947 unsigned long total_load = this_rq->ls.load.weight;
1948 unsigned long this_load = total_load;
1949 struct load_stat *ls = &this_rq->ls;
1950 int i, scale;
1952 this_rq->nr_load_updates++;
1953 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1954 goto do_avg;
1956 /* Update delta_fair/delta_exec fields first */
1957 update_curr_load(this_rq);
1959 fair_delta64 = ls->delta_fair + 1;
1960 ls->delta_fair = 0;
1962 exec_delta64 = ls->delta_exec + 1;
1963 ls->delta_exec = 0;
1965 sample_interval64 = this_rq->clock - ls->load_update_last;
1966 ls->load_update_last = this_rq->clock;
1968 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1969 sample_interval64 = TICK_NSEC;
1971 if (exec_delta64 > sample_interval64)
1972 exec_delta64 = sample_interval64;
1974 idle_delta64 = sample_interval64 - exec_delta64;
1976 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1977 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1979 this_load = (unsigned long)tmp64;
1981 do_avg:
1983 /* Update our load: */
1984 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1985 unsigned long old_load, new_load;
1987 /* scale is effectively 1 << i now, and >> i divides by scale */
1989 old_load = this_rq->cpu_load[i];
1990 new_load = this_load;
1992 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1996 #ifdef CONFIG_SMP
1999 * double_rq_lock - safely lock two runqueues
2001 * Note this does not disable interrupts like task_rq_lock,
2002 * you need to do so manually before calling.
2004 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2005 __acquires(rq1->lock)
2006 __acquires(rq2->lock)
2008 BUG_ON(!irqs_disabled());
2009 if (rq1 == rq2) {
2010 spin_lock(&rq1->lock);
2011 __acquire(rq2->lock); /* Fake it out ;) */
2012 } else {
2013 if (rq1 < rq2) {
2014 spin_lock(&rq1->lock);
2015 spin_lock(&rq2->lock);
2016 } else {
2017 spin_lock(&rq2->lock);
2018 spin_lock(&rq1->lock);
2024 * double_rq_unlock - safely unlock two runqueues
2026 * Note this does not restore interrupts like task_rq_unlock,
2027 * you need to do so manually after calling.
2029 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2030 __releases(rq1->lock)
2031 __releases(rq2->lock)
2033 spin_unlock(&rq1->lock);
2034 if (rq1 != rq2)
2035 spin_unlock(&rq2->lock);
2036 else
2037 __release(rq2->lock);
2041 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2043 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2044 __releases(this_rq->lock)
2045 __acquires(busiest->lock)
2046 __acquires(this_rq->lock)
2048 if (unlikely(!irqs_disabled())) {
2049 /* printk() doesn't work good under rq->lock */
2050 spin_unlock(&this_rq->lock);
2051 BUG_ON(1);
2053 if (unlikely(!spin_trylock(&busiest->lock))) {
2054 if (busiest < this_rq) {
2055 spin_unlock(&this_rq->lock);
2056 spin_lock(&busiest->lock);
2057 spin_lock(&this_rq->lock);
2058 } else
2059 spin_lock(&busiest->lock);
2064 * If dest_cpu is allowed for this process, migrate the task to it.
2065 * This is accomplished by forcing the cpu_allowed mask to only
2066 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2067 * the cpu_allowed mask is restored.
2069 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2071 struct migration_req req;
2072 unsigned long flags;
2073 struct rq *rq;
2075 rq = task_rq_lock(p, &flags);
2076 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2077 || unlikely(cpu_is_offline(dest_cpu)))
2078 goto out;
2080 /* force the process onto the specified CPU */
2081 if (migrate_task(p, dest_cpu, &req)) {
2082 /* Need to wait for migration thread (might exit: take ref). */
2083 struct task_struct *mt = rq->migration_thread;
2085 get_task_struct(mt);
2086 task_rq_unlock(rq, &flags);
2087 wake_up_process(mt);
2088 put_task_struct(mt);
2089 wait_for_completion(&req.done);
2091 return;
2093 out:
2094 task_rq_unlock(rq, &flags);
2098 * sched_exec - execve() is a valuable balancing opportunity, because at
2099 * this point the task has the smallest effective memory and cache footprint.
2101 void sched_exec(void)
2103 int new_cpu, this_cpu = get_cpu();
2104 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2105 put_cpu();
2106 if (new_cpu != this_cpu)
2107 sched_migrate_task(current, new_cpu);
2111 * pull_task - move a task from a remote runqueue to the local runqueue.
2112 * Both runqueues must be locked.
2114 static void pull_task(struct rq *src_rq, struct task_struct *p,
2115 struct rq *this_rq, int this_cpu)
2117 update_rq_clock(src_rq);
2118 deactivate_task(src_rq, p, 0);
2119 set_task_cpu(p, this_cpu);
2120 activate_task(this_rq, p, 0);
2122 * Note that idle threads have a prio of MAX_PRIO, for this test
2123 * to be always true for them.
2125 check_preempt_curr(this_rq, p);
2129 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2131 static
2132 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2133 struct sched_domain *sd, enum cpu_idle_type idle,
2134 int *all_pinned)
2137 * We do not migrate tasks that are:
2138 * 1) running (obviously), or
2139 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2140 * 3) are cache-hot on their current CPU.
2142 if (!cpu_isset(this_cpu, p->cpus_allowed))
2143 return 0;
2144 *all_pinned = 0;
2146 if (task_running(rq, p))
2147 return 0;
2150 * Aggressive migration if too many balance attempts have failed:
2152 if (sd->nr_balance_failed > sd->cache_nice_tries)
2153 return 1;
2155 return 1;
2158 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2159 unsigned long max_nr_move, unsigned long max_load_move,
2160 struct sched_domain *sd, enum cpu_idle_type idle,
2161 int *all_pinned, unsigned long *load_moved,
2162 int *this_best_prio, struct rq_iterator *iterator)
2164 int pulled = 0, pinned = 0, skip_for_load;
2165 struct task_struct *p;
2166 long rem_load_move = max_load_move;
2168 if (max_nr_move == 0 || max_load_move == 0)
2169 goto out;
2171 pinned = 1;
2174 * Start the load-balancing iterator:
2176 p = iterator->start(iterator->arg);
2177 next:
2178 if (!p)
2179 goto out;
2181 * To help distribute high priority tasks accross CPUs we don't
2182 * skip a task if it will be the highest priority task (i.e. smallest
2183 * prio value) on its new queue regardless of its load weight
2185 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2186 SCHED_LOAD_SCALE_FUZZ;
2187 if ((skip_for_load && p->prio >= *this_best_prio) ||
2188 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2189 p = iterator->next(iterator->arg);
2190 goto next;
2193 pull_task(busiest, p, this_rq, this_cpu);
2194 pulled++;
2195 rem_load_move -= p->se.load.weight;
2198 * We only want to steal up to the prescribed number of tasks
2199 * and the prescribed amount of weighted load.
2201 if (pulled < max_nr_move && rem_load_move > 0) {
2202 if (p->prio < *this_best_prio)
2203 *this_best_prio = p->prio;
2204 p = iterator->next(iterator->arg);
2205 goto next;
2207 out:
2209 * Right now, this is the only place pull_task() is called,
2210 * so we can safely collect pull_task() stats here rather than
2211 * inside pull_task().
2213 schedstat_add(sd, lb_gained[idle], pulled);
2215 if (all_pinned)
2216 *all_pinned = pinned;
2217 *load_moved = max_load_move - rem_load_move;
2218 return pulled;
2222 * move_tasks tries to move up to max_load_move weighted load from busiest to
2223 * this_rq, as part of a balancing operation within domain "sd".
2224 * Returns 1 if successful and 0 otherwise.
2226 * Called with both runqueues locked.
2228 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2229 unsigned long max_load_move,
2230 struct sched_domain *sd, enum cpu_idle_type idle,
2231 int *all_pinned)
2233 struct sched_class *class = sched_class_highest;
2234 unsigned long total_load_moved = 0;
2235 int this_best_prio = this_rq->curr->prio;
2237 do {
2238 total_load_moved +=
2239 class->load_balance(this_rq, this_cpu, busiest,
2240 ULONG_MAX, max_load_move - total_load_moved,
2241 sd, idle, all_pinned, &this_best_prio);
2242 class = class->next;
2243 } while (class && max_load_move > total_load_moved);
2245 return total_load_moved > 0;
2249 * move_one_task tries to move exactly one task from busiest to this_rq, as
2250 * part of active balancing operations within "domain".
2251 * Returns 1 if successful and 0 otherwise.
2253 * Called with both runqueues locked.
2255 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2256 struct sched_domain *sd, enum cpu_idle_type idle)
2258 struct sched_class *class;
2259 int this_best_prio = MAX_PRIO;
2261 for (class = sched_class_highest; class; class = class->next)
2262 if (class->load_balance(this_rq, this_cpu, busiest,
2263 1, ULONG_MAX, sd, idle, NULL,
2264 &this_best_prio))
2265 return 1;
2267 return 0;
2271 * find_busiest_group finds and returns the busiest CPU group within the
2272 * domain. It calculates and returns the amount of weighted load which
2273 * should be moved to restore balance via the imbalance parameter.
2275 static struct sched_group *
2276 find_busiest_group(struct sched_domain *sd, int this_cpu,
2277 unsigned long *imbalance, enum cpu_idle_type idle,
2278 int *sd_idle, cpumask_t *cpus, int *balance)
2280 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2281 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2282 unsigned long max_pull;
2283 unsigned long busiest_load_per_task, busiest_nr_running;
2284 unsigned long this_load_per_task, this_nr_running;
2285 int load_idx;
2286 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2287 int power_savings_balance = 1;
2288 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2289 unsigned long min_nr_running = ULONG_MAX;
2290 struct sched_group *group_min = NULL, *group_leader = NULL;
2291 #endif
2293 max_load = this_load = total_load = total_pwr = 0;
2294 busiest_load_per_task = busiest_nr_running = 0;
2295 this_load_per_task = this_nr_running = 0;
2296 if (idle == CPU_NOT_IDLE)
2297 load_idx = sd->busy_idx;
2298 else if (idle == CPU_NEWLY_IDLE)
2299 load_idx = sd->newidle_idx;
2300 else
2301 load_idx = sd->idle_idx;
2303 do {
2304 unsigned long load, group_capacity;
2305 int local_group;
2306 int i;
2307 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2308 unsigned long sum_nr_running, sum_weighted_load;
2310 local_group = cpu_isset(this_cpu, group->cpumask);
2312 if (local_group)
2313 balance_cpu = first_cpu(group->cpumask);
2315 /* Tally up the load of all CPUs in the group */
2316 sum_weighted_load = sum_nr_running = avg_load = 0;
2318 for_each_cpu_mask(i, group->cpumask) {
2319 struct rq *rq;
2321 if (!cpu_isset(i, *cpus))
2322 continue;
2324 rq = cpu_rq(i);
2326 if (*sd_idle && rq->nr_running)
2327 *sd_idle = 0;
2329 /* Bias balancing toward cpus of our domain */
2330 if (local_group) {
2331 if (idle_cpu(i) && !first_idle_cpu) {
2332 first_idle_cpu = 1;
2333 balance_cpu = i;
2336 load = target_load(i, load_idx);
2337 } else
2338 load = source_load(i, load_idx);
2340 avg_load += load;
2341 sum_nr_running += rq->nr_running;
2342 sum_weighted_load += weighted_cpuload(i);
2346 * First idle cpu or the first cpu(busiest) in this sched group
2347 * is eligible for doing load balancing at this and above
2348 * domains. In the newly idle case, we will allow all the cpu's
2349 * to do the newly idle load balance.
2351 if (idle != CPU_NEWLY_IDLE && local_group &&
2352 balance_cpu != this_cpu && balance) {
2353 *balance = 0;
2354 goto ret;
2357 total_load += avg_load;
2358 total_pwr += group->__cpu_power;
2360 /* Adjust by relative CPU power of the group */
2361 avg_load = sg_div_cpu_power(group,
2362 avg_load * SCHED_LOAD_SCALE);
2364 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2366 if (local_group) {
2367 this_load = avg_load;
2368 this = group;
2369 this_nr_running = sum_nr_running;
2370 this_load_per_task = sum_weighted_load;
2371 } else if (avg_load > max_load &&
2372 sum_nr_running > group_capacity) {
2373 max_load = avg_load;
2374 busiest = group;
2375 busiest_nr_running = sum_nr_running;
2376 busiest_load_per_task = sum_weighted_load;
2379 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2381 * Busy processors will not participate in power savings
2382 * balance.
2384 if (idle == CPU_NOT_IDLE ||
2385 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2386 goto group_next;
2389 * If the local group is idle or completely loaded
2390 * no need to do power savings balance at this domain
2392 if (local_group && (this_nr_running >= group_capacity ||
2393 !this_nr_running))
2394 power_savings_balance = 0;
2397 * If a group is already running at full capacity or idle,
2398 * don't include that group in power savings calculations
2400 if (!power_savings_balance || sum_nr_running >= group_capacity
2401 || !sum_nr_running)
2402 goto group_next;
2405 * Calculate the group which has the least non-idle load.
2406 * This is the group from where we need to pick up the load
2407 * for saving power
2409 if ((sum_nr_running < min_nr_running) ||
2410 (sum_nr_running == min_nr_running &&
2411 first_cpu(group->cpumask) <
2412 first_cpu(group_min->cpumask))) {
2413 group_min = group;
2414 min_nr_running = sum_nr_running;
2415 min_load_per_task = sum_weighted_load /
2416 sum_nr_running;
2420 * Calculate the group which is almost near its
2421 * capacity but still has some space to pick up some load
2422 * from other group and save more power
2424 if (sum_nr_running <= group_capacity - 1) {
2425 if (sum_nr_running > leader_nr_running ||
2426 (sum_nr_running == leader_nr_running &&
2427 first_cpu(group->cpumask) >
2428 first_cpu(group_leader->cpumask))) {
2429 group_leader = group;
2430 leader_nr_running = sum_nr_running;
2433 group_next:
2434 #endif
2435 group = group->next;
2436 } while (group != sd->groups);
2438 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2439 goto out_balanced;
2441 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2443 if (this_load >= avg_load ||
2444 100*max_load <= sd->imbalance_pct*this_load)
2445 goto out_balanced;
2447 busiest_load_per_task /= busiest_nr_running;
2449 * We're trying to get all the cpus to the average_load, so we don't
2450 * want to push ourselves above the average load, nor do we wish to
2451 * reduce the max loaded cpu below the average load, as either of these
2452 * actions would just result in more rebalancing later, and ping-pong
2453 * tasks around. Thus we look for the minimum possible imbalance.
2454 * Negative imbalances (*we* are more loaded than anyone else) will
2455 * be counted as no imbalance for these purposes -- we can't fix that
2456 * by pulling tasks to us. Be careful of negative numbers as they'll
2457 * appear as very large values with unsigned longs.
2459 if (max_load <= busiest_load_per_task)
2460 goto out_balanced;
2463 * In the presence of smp nice balancing, certain scenarios can have
2464 * max load less than avg load(as we skip the groups at or below
2465 * its cpu_power, while calculating max_load..)
2467 if (max_load < avg_load) {
2468 *imbalance = 0;
2469 goto small_imbalance;
2472 /* Don't want to pull so many tasks that a group would go idle */
2473 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2475 /* How much load to actually move to equalise the imbalance */
2476 *imbalance = min(max_pull * busiest->__cpu_power,
2477 (avg_load - this_load) * this->__cpu_power)
2478 / SCHED_LOAD_SCALE;
2481 * if *imbalance is less than the average load per runnable task
2482 * there is no gaurantee that any tasks will be moved so we'll have
2483 * a think about bumping its value to force at least one task to be
2484 * moved
2486 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2487 unsigned long tmp, pwr_now, pwr_move;
2488 unsigned int imbn;
2490 small_imbalance:
2491 pwr_move = pwr_now = 0;
2492 imbn = 2;
2493 if (this_nr_running) {
2494 this_load_per_task /= this_nr_running;
2495 if (busiest_load_per_task > this_load_per_task)
2496 imbn = 1;
2497 } else
2498 this_load_per_task = SCHED_LOAD_SCALE;
2500 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2501 busiest_load_per_task * imbn) {
2502 *imbalance = busiest_load_per_task;
2503 return busiest;
2507 * OK, we don't have enough imbalance to justify moving tasks,
2508 * however we may be able to increase total CPU power used by
2509 * moving them.
2512 pwr_now += busiest->__cpu_power *
2513 min(busiest_load_per_task, max_load);
2514 pwr_now += this->__cpu_power *
2515 min(this_load_per_task, this_load);
2516 pwr_now /= SCHED_LOAD_SCALE;
2518 /* Amount of load we'd subtract */
2519 tmp = sg_div_cpu_power(busiest,
2520 busiest_load_per_task * SCHED_LOAD_SCALE);
2521 if (max_load > tmp)
2522 pwr_move += busiest->__cpu_power *
2523 min(busiest_load_per_task, max_load - tmp);
2525 /* Amount of load we'd add */
2526 if (max_load * busiest->__cpu_power <
2527 busiest_load_per_task * SCHED_LOAD_SCALE)
2528 tmp = sg_div_cpu_power(this,
2529 max_load * busiest->__cpu_power);
2530 else
2531 tmp = sg_div_cpu_power(this,
2532 busiest_load_per_task * SCHED_LOAD_SCALE);
2533 pwr_move += this->__cpu_power *
2534 min(this_load_per_task, this_load + tmp);
2535 pwr_move /= SCHED_LOAD_SCALE;
2537 /* Move if we gain throughput */
2538 if (pwr_move <= pwr_now)
2539 goto out_balanced;
2541 *imbalance = busiest_load_per_task;
2544 return busiest;
2546 out_balanced:
2547 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2548 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2549 goto ret;
2551 if (this == group_leader && group_leader != group_min) {
2552 *imbalance = min_load_per_task;
2553 return group_min;
2555 #endif
2556 ret:
2557 *imbalance = 0;
2558 return NULL;
2562 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2564 static struct rq *
2565 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2566 unsigned long imbalance, cpumask_t *cpus)
2568 struct rq *busiest = NULL, *rq;
2569 unsigned long max_load = 0;
2570 int i;
2572 for_each_cpu_mask(i, group->cpumask) {
2573 unsigned long wl;
2575 if (!cpu_isset(i, *cpus))
2576 continue;
2578 rq = cpu_rq(i);
2579 wl = weighted_cpuload(i);
2581 if (rq->nr_running == 1 && wl > imbalance)
2582 continue;
2584 if (wl > max_load) {
2585 max_load = wl;
2586 busiest = rq;
2590 return busiest;
2594 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2595 * so long as it is large enough.
2597 #define MAX_PINNED_INTERVAL 512
2600 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2601 * tasks if there is an imbalance.
2603 static int load_balance(int this_cpu, struct rq *this_rq,
2604 struct sched_domain *sd, enum cpu_idle_type idle,
2605 int *balance)
2607 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2608 struct sched_group *group;
2609 unsigned long imbalance;
2610 struct rq *busiest;
2611 cpumask_t cpus = CPU_MASK_ALL;
2612 unsigned long flags;
2615 * When power savings policy is enabled for the parent domain, idle
2616 * sibling can pick up load irrespective of busy siblings. In this case,
2617 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2618 * portraying it as CPU_NOT_IDLE.
2620 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2621 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2622 sd_idle = 1;
2624 schedstat_inc(sd, lb_cnt[idle]);
2626 redo:
2627 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2628 &cpus, balance);
2630 if (*balance == 0)
2631 goto out_balanced;
2633 if (!group) {
2634 schedstat_inc(sd, lb_nobusyg[idle]);
2635 goto out_balanced;
2638 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2639 if (!busiest) {
2640 schedstat_inc(sd, lb_nobusyq[idle]);
2641 goto out_balanced;
2644 BUG_ON(busiest == this_rq);
2646 schedstat_add(sd, lb_imbalance[idle], imbalance);
2648 ld_moved = 0;
2649 if (busiest->nr_running > 1) {
2651 * Attempt to move tasks. If find_busiest_group has found
2652 * an imbalance but busiest->nr_running <= 1, the group is
2653 * still unbalanced. ld_moved simply stays zero, so it is
2654 * correctly treated as an imbalance.
2656 local_irq_save(flags);
2657 double_rq_lock(this_rq, busiest);
2658 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2659 imbalance, sd, idle, &all_pinned);
2660 double_rq_unlock(this_rq, busiest);
2661 local_irq_restore(flags);
2664 * some other cpu did the load balance for us.
2666 if (ld_moved && this_cpu != smp_processor_id())
2667 resched_cpu(this_cpu);
2669 /* All tasks on this runqueue were pinned by CPU affinity */
2670 if (unlikely(all_pinned)) {
2671 cpu_clear(cpu_of(busiest), cpus);
2672 if (!cpus_empty(cpus))
2673 goto redo;
2674 goto out_balanced;
2678 if (!ld_moved) {
2679 schedstat_inc(sd, lb_failed[idle]);
2680 sd->nr_balance_failed++;
2682 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2684 spin_lock_irqsave(&busiest->lock, flags);
2686 /* don't kick the migration_thread, if the curr
2687 * task on busiest cpu can't be moved to this_cpu
2689 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2690 spin_unlock_irqrestore(&busiest->lock, flags);
2691 all_pinned = 1;
2692 goto out_one_pinned;
2695 if (!busiest->active_balance) {
2696 busiest->active_balance = 1;
2697 busiest->push_cpu = this_cpu;
2698 active_balance = 1;
2700 spin_unlock_irqrestore(&busiest->lock, flags);
2701 if (active_balance)
2702 wake_up_process(busiest->migration_thread);
2705 * We've kicked active balancing, reset the failure
2706 * counter.
2708 sd->nr_balance_failed = sd->cache_nice_tries+1;
2710 } else
2711 sd->nr_balance_failed = 0;
2713 if (likely(!active_balance)) {
2714 /* We were unbalanced, so reset the balancing interval */
2715 sd->balance_interval = sd->min_interval;
2716 } else {
2718 * If we've begun active balancing, start to back off. This
2719 * case may not be covered by the all_pinned logic if there
2720 * is only 1 task on the busy runqueue (because we don't call
2721 * move_tasks).
2723 if (sd->balance_interval < sd->max_interval)
2724 sd->balance_interval *= 2;
2727 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2728 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2729 return -1;
2730 return ld_moved;
2732 out_balanced:
2733 schedstat_inc(sd, lb_balanced[idle]);
2735 sd->nr_balance_failed = 0;
2737 out_one_pinned:
2738 /* tune up the balancing interval */
2739 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2740 (sd->balance_interval < sd->max_interval))
2741 sd->balance_interval *= 2;
2743 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2744 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2745 return -1;
2746 return 0;
2750 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2751 * tasks if there is an imbalance.
2753 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2754 * this_rq is locked.
2756 static int
2757 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2759 struct sched_group *group;
2760 struct rq *busiest = NULL;
2761 unsigned long imbalance;
2762 int ld_moved = 0;
2763 int sd_idle = 0;
2764 int all_pinned = 0;
2765 cpumask_t cpus = CPU_MASK_ALL;
2768 * When power savings policy is enabled for the parent domain, idle
2769 * sibling can pick up load irrespective of busy siblings. In this case,
2770 * let the state of idle sibling percolate up as IDLE, instead of
2771 * portraying it as CPU_NOT_IDLE.
2773 if (sd->flags & SD_SHARE_CPUPOWER &&
2774 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2775 sd_idle = 1;
2777 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2778 redo:
2779 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2780 &sd_idle, &cpus, NULL);
2781 if (!group) {
2782 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2783 goto out_balanced;
2786 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2787 &cpus);
2788 if (!busiest) {
2789 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2790 goto out_balanced;
2793 BUG_ON(busiest == this_rq);
2795 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2797 ld_moved = 0;
2798 if (busiest->nr_running > 1) {
2799 /* Attempt to move tasks */
2800 double_lock_balance(this_rq, busiest);
2801 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2802 imbalance, sd, CPU_NEWLY_IDLE,
2803 &all_pinned);
2804 spin_unlock(&busiest->lock);
2806 if (unlikely(all_pinned)) {
2807 cpu_clear(cpu_of(busiest), cpus);
2808 if (!cpus_empty(cpus))
2809 goto redo;
2813 if (!ld_moved) {
2814 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2815 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2816 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2817 return -1;
2818 } else
2819 sd->nr_balance_failed = 0;
2821 return ld_moved;
2823 out_balanced:
2824 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2825 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2826 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2827 return -1;
2828 sd->nr_balance_failed = 0;
2830 return 0;
2834 * idle_balance is called by schedule() if this_cpu is about to become
2835 * idle. Attempts to pull tasks from other CPUs.
2837 static void idle_balance(int this_cpu, struct rq *this_rq)
2839 struct sched_domain *sd;
2840 int pulled_task = -1;
2841 unsigned long next_balance = jiffies + HZ;
2843 for_each_domain(this_cpu, sd) {
2844 unsigned long interval;
2846 if (!(sd->flags & SD_LOAD_BALANCE))
2847 continue;
2849 if (sd->flags & SD_BALANCE_NEWIDLE)
2850 /* If we've pulled tasks over stop searching: */
2851 pulled_task = load_balance_newidle(this_cpu,
2852 this_rq, sd);
2854 interval = msecs_to_jiffies(sd->balance_interval);
2855 if (time_after(next_balance, sd->last_balance + interval))
2856 next_balance = sd->last_balance + interval;
2857 if (pulled_task)
2858 break;
2860 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2862 * We are going idle. next_balance may be set based on
2863 * a busy processor. So reset next_balance.
2865 this_rq->next_balance = next_balance;
2870 * active_load_balance is run by migration threads. It pushes running tasks
2871 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2872 * running on each physical CPU where possible, and avoids physical /
2873 * logical imbalances.
2875 * Called with busiest_rq locked.
2877 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2879 int target_cpu = busiest_rq->push_cpu;
2880 struct sched_domain *sd;
2881 struct rq *target_rq;
2883 /* Is there any task to move? */
2884 if (busiest_rq->nr_running <= 1)
2885 return;
2887 target_rq = cpu_rq(target_cpu);
2890 * This condition is "impossible", if it occurs
2891 * we need to fix it. Originally reported by
2892 * Bjorn Helgaas on a 128-cpu setup.
2894 BUG_ON(busiest_rq == target_rq);
2896 /* move a task from busiest_rq to target_rq */
2897 double_lock_balance(busiest_rq, target_rq);
2899 /* Search for an sd spanning us and the target CPU. */
2900 for_each_domain(target_cpu, sd) {
2901 if ((sd->flags & SD_LOAD_BALANCE) &&
2902 cpu_isset(busiest_cpu, sd->span))
2903 break;
2906 if (likely(sd)) {
2907 schedstat_inc(sd, alb_cnt);
2909 if (move_one_task(target_rq, target_cpu, busiest_rq,
2910 sd, CPU_IDLE))
2911 schedstat_inc(sd, alb_pushed);
2912 else
2913 schedstat_inc(sd, alb_failed);
2915 spin_unlock(&target_rq->lock);
2918 #ifdef CONFIG_NO_HZ
2919 static struct {
2920 atomic_t load_balancer;
2921 cpumask_t cpu_mask;
2922 } nohz ____cacheline_aligned = {
2923 .load_balancer = ATOMIC_INIT(-1),
2924 .cpu_mask = CPU_MASK_NONE,
2928 * This routine will try to nominate the ilb (idle load balancing)
2929 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2930 * load balancing on behalf of all those cpus. If all the cpus in the system
2931 * go into this tickless mode, then there will be no ilb owner (as there is
2932 * no need for one) and all the cpus will sleep till the next wakeup event
2933 * arrives...
2935 * For the ilb owner, tick is not stopped. And this tick will be used
2936 * for idle load balancing. ilb owner will still be part of
2937 * nohz.cpu_mask..
2939 * While stopping the tick, this cpu will become the ilb owner if there
2940 * is no other owner. And will be the owner till that cpu becomes busy
2941 * or if all cpus in the system stop their ticks at which point
2942 * there is no need for ilb owner.
2944 * When the ilb owner becomes busy, it nominates another owner, during the
2945 * next busy scheduler_tick()
2947 int select_nohz_load_balancer(int stop_tick)
2949 int cpu = smp_processor_id();
2951 if (stop_tick) {
2952 cpu_set(cpu, nohz.cpu_mask);
2953 cpu_rq(cpu)->in_nohz_recently = 1;
2956 * If we are going offline and still the leader, give up!
2958 if (cpu_is_offline(cpu) &&
2959 atomic_read(&nohz.load_balancer) == cpu) {
2960 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2961 BUG();
2962 return 0;
2965 /* time for ilb owner also to sleep */
2966 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2967 if (atomic_read(&nohz.load_balancer) == cpu)
2968 atomic_set(&nohz.load_balancer, -1);
2969 return 0;
2972 if (atomic_read(&nohz.load_balancer) == -1) {
2973 /* make me the ilb owner */
2974 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2975 return 1;
2976 } else if (atomic_read(&nohz.load_balancer) == cpu)
2977 return 1;
2978 } else {
2979 if (!cpu_isset(cpu, nohz.cpu_mask))
2980 return 0;
2982 cpu_clear(cpu, nohz.cpu_mask);
2984 if (atomic_read(&nohz.load_balancer) == cpu)
2985 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2986 BUG();
2988 return 0;
2990 #endif
2992 static DEFINE_SPINLOCK(balancing);
2995 * It checks each scheduling domain to see if it is due to be balanced,
2996 * and initiates a balancing operation if so.
2998 * Balancing parameters are set up in arch_init_sched_domains.
3000 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3002 int balance = 1;
3003 struct rq *rq = cpu_rq(cpu);
3004 unsigned long interval;
3005 struct sched_domain *sd;
3006 /* Earliest time when we have to do rebalance again */
3007 unsigned long next_balance = jiffies + 60*HZ;
3009 for_each_domain(cpu, sd) {
3010 if (!(sd->flags & SD_LOAD_BALANCE))
3011 continue;
3013 interval = sd->balance_interval;
3014 if (idle != CPU_IDLE)
3015 interval *= sd->busy_factor;
3017 /* scale ms to jiffies */
3018 interval = msecs_to_jiffies(interval);
3019 if (unlikely(!interval))
3020 interval = 1;
3021 if (interval > HZ*NR_CPUS/10)
3022 interval = HZ*NR_CPUS/10;
3025 if (sd->flags & SD_SERIALIZE) {
3026 if (!spin_trylock(&balancing))
3027 goto out;
3030 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3031 if (load_balance(cpu, rq, sd, idle, &balance)) {
3033 * We've pulled tasks over so either we're no
3034 * longer idle, or one of our SMT siblings is
3035 * not idle.
3037 idle = CPU_NOT_IDLE;
3039 sd->last_balance = jiffies;
3041 if (sd->flags & SD_SERIALIZE)
3042 spin_unlock(&balancing);
3043 out:
3044 if (time_after(next_balance, sd->last_balance + interval))
3045 next_balance = sd->last_balance + interval;
3048 * Stop the load balance at this level. There is another
3049 * CPU in our sched group which is doing load balancing more
3050 * actively.
3052 if (!balance)
3053 break;
3055 rq->next_balance = next_balance;
3059 * run_rebalance_domains is triggered when needed from the scheduler tick.
3060 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3061 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3063 static void run_rebalance_domains(struct softirq_action *h)
3065 int this_cpu = smp_processor_id();
3066 struct rq *this_rq = cpu_rq(this_cpu);
3067 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3068 CPU_IDLE : CPU_NOT_IDLE;
3070 rebalance_domains(this_cpu, idle);
3072 #ifdef CONFIG_NO_HZ
3074 * If this cpu is the owner for idle load balancing, then do the
3075 * balancing on behalf of the other idle cpus whose ticks are
3076 * stopped.
3078 if (this_rq->idle_at_tick &&
3079 atomic_read(&nohz.load_balancer) == this_cpu) {
3080 cpumask_t cpus = nohz.cpu_mask;
3081 struct rq *rq;
3082 int balance_cpu;
3084 cpu_clear(this_cpu, cpus);
3085 for_each_cpu_mask(balance_cpu, cpus) {
3087 * If this cpu gets work to do, stop the load balancing
3088 * work being done for other cpus. Next load
3089 * balancing owner will pick it up.
3091 if (need_resched())
3092 break;
3094 rebalance_domains(balance_cpu, SCHED_IDLE);
3096 rq = cpu_rq(balance_cpu);
3097 if (time_after(this_rq->next_balance, rq->next_balance))
3098 this_rq->next_balance = rq->next_balance;
3101 #endif
3105 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3107 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3108 * idle load balancing owner or decide to stop the periodic load balancing,
3109 * if the whole system is idle.
3111 static inline void trigger_load_balance(struct rq *rq, int cpu)
3113 #ifdef CONFIG_NO_HZ
3115 * If we were in the nohz mode recently and busy at the current
3116 * scheduler tick, then check if we need to nominate new idle
3117 * load balancer.
3119 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3120 rq->in_nohz_recently = 0;
3122 if (atomic_read(&nohz.load_balancer) == cpu) {
3123 cpu_clear(cpu, nohz.cpu_mask);
3124 atomic_set(&nohz.load_balancer, -1);
3127 if (atomic_read(&nohz.load_balancer) == -1) {
3129 * simple selection for now: Nominate the
3130 * first cpu in the nohz list to be the next
3131 * ilb owner.
3133 * TBD: Traverse the sched domains and nominate
3134 * the nearest cpu in the nohz.cpu_mask.
3136 int ilb = first_cpu(nohz.cpu_mask);
3138 if (ilb != NR_CPUS)
3139 resched_cpu(ilb);
3144 * If this cpu is idle and doing idle load balancing for all the
3145 * cpus with ticks stopped, is it time for that to stop?
3147 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3148 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3149 resched_cpu(cpu);
3150 return;
3154 * If this cpu is idle and the idle load balancing is done by
3155 * someone else, then no need raise the SCHED_SOFTIRQ
3157 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3158 cpu_isset(cpu, nohz.cpu_mask))
3159 return;
3160 #endif
3161 if (time_after_eq(jiffies, rq->next_balance))
3162 raise_softirq(SCHED_SOFTIRQ);
3165 #else /* CONFIG_SMP */
3168 * on UP we do not need to balance between CPUs:
3170 static inline void idle_balance(int cpu, struct rq *rq)
3174 /* Avoid "used but not defined" warning on UP */
3175 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3176 unsigned long max_nr_move, unsigned long max_load_move,
3177 struct sched_domain *sd, enum cpu_idle_type idle,
3178 int *all_pinned, unsigned long *load_moved,
3179 int *this_best_prio, struct rq_iterator *iterator)
3181 *load_moved = 0;
3183 return 0;
3186 #endif
3188 DEFINE_PER_CPU(struct kernel_stat, kstat);
3190 EXPORT_PER_CPU_SYMBOL(kstat);
3193 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3194 * that have not yet been banked in case the task is currently running.
3196 unsigned long long task_sched_runtime(struct task_struct *p)
3198 unsigned long flags;
3199 u64 ns, delta_exec;
3200 struct rq *rq;
3202 rq = task_rq_lock(p, &flags);
3203 ns = p->se.sum_exec_runtime;
3204 if (rq->curr == p) {
3205 update_rq_clock(rq);
3206 delta_exec = rq->clock - p->se.exec_start;
3207 if ((s64)delta_exec > 0)
3208 ns += delta_exec;
3210 task_rq_unlock(rq, &flags);
3212 return ns;
3216 * Account user cpu time to a process.
3217 * @p: the process that the cpu time gets accounted to
3218 * @hardirq_offset: the offset to subtract from hardirq_count()
3219 * @cputime: the cpu time spent in user space since the last update
3221 void account_user_time(struct task_struct *p, cputime_t cputime)
3223 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3224 cputime64_t tmp;
3226 p->utime = cputime_add(p->utime, cputime);
3228 /* Add user time to cpustat. */
3229 tmp = cputime_to_cputime64(cputime);
3230 if (TASK_NICE(p) > 0)
3231 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3232 else
3233 cpustat->user = cputime64_add(cpustat->user, tmp);
3237 * Account system cpu time to a process.
3238 * @p: the process that the cpu time gets accounted to
3239 * @hardirq_offset: the offset to subtract from hardirq_count()
3240 * @cputime: the cpu time spent in kernel space since the last update
3242 void account_system_time(struct task_struct *p, int hardirq_offset,
3243 cputime_t cputime)
3245 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3246 struct rq *rq = this_rq();
3247 cputime64_t tmp;
3249 p->stime = cputime_add(p->stime, cputime);
3251 /* Add system time to cpustat. */
3252 tmp = cputime_to_cputime64(cputime);
3253 if (hardirq_count() - hardirq_offset)
3254 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3255 else if (softirq_count())
3256 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3257 else if (p != rq->idle)
3258 cpustat->system = cputime64_add(cpustat->system, tmp);
3259 else if (atomic_read(&rq->nr_iowait) > 0)
3260 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3261 else
3262 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3263 /* Account for system time used */
3264 acct_update_integrals(p);
3268 * Account for involuntary wait time.
3269 * @p: the process from which the cpu time has been stolen
3270 * @steal: the cpu time spent in involuntary wait
3272 void account_steal_time(struct task_struct *p, cputime_t steal)
3274 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3275 cputime64_t tmp = cputime_to_cputime64(steal);
3276 struct rq *rq = this_rq();
3278 if (p == rq->idle) {
3279 p->stime = cputime_add(p->stime, steal);
3280 if (atomic_read(&rq->nr_iowait) > 0)
3281 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3282 else
3283 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3284 } else
3285 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3289 * This function gets called by the timer code, with HZ frequency.
3290 * We call it with interrupts disabled.
3292 * It also gets called by the fork code, when changing the parent's
3293 * timeslices.
3295 void scheduler_tick(void)
3297 int cpu = smp_processor_id();
3298 struct rq *rq = cpu_rq(cpu);
3299 struct task_struct *curr = rq->curr;
3301 spin_lock(&rq->lock);
3302 __update_rq_clock(rq);
3303 update_cpu_load(rq);
3304 if (curr != rq->idle) /* FIXME: needed? */
3305 curr->sched_class->task_tick(rq, curr);
3306 spin_unlock(&rq->lock);
3308 #ifdef CONFIG_SMP
3309 rq->idle_at_tick = idle_cpu(cpu);
3310 trigger_load_balance(rq, cpu);
3311 #endif
3314 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3316 void fastcall add_preempt_count(int val)
3319 * Underflow?
3321 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3322 return;
3323 preempt_count() += val;
3325 * Spinlock count overflowing soon?
3327 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3328 PREEMPT_MASK - 10);
3330 EXPORT_SYMBOL(add_preempt_count);
3332 void fastcall sub_preempt_count(int val)
3335 * Underflow?
3337 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3338 return;
3340 * Is the spinlock portion underflowing?
3342 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3343 !(preempt_count() & PREEMPT_MASK)))
3344 return;
3346 preempt_count() -= val;
3348 EXPORT_SYMBOL(sub_preempt_count);
3350 #endif
3353 * Print scheduling while atomic bug:
3355 static noinline void __schedule_bug(struct task_struct *prev)
3357 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3358 prev->comm, preempt_count(), prev->pid);
3359 debug_show_held_locks(prev);
3360 if (irqs_disabled())
3361 print_irqtrace_events(prev);
3362 dump_stack();
3366 * Various schedule()-time debugging checks and statistics:
3368 static inline void schedule_debug(struct task_struct *prev)
3371 * Test if we are atomic. Since do_exit() needs to call into
3372 * schedule() atomically, we ignore that path for now.
3373 * Otherwise, whine if we are scheduling when we should not be.
3375 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3376 __schedule_bug(prev);
3378 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3380 schedstat_inc(this_rq(), sched_cnt);
3384 * Pick up the highest-prio task:
3386 static inline struct task_struct *
3387 pick_next_task(struct rq *rq, struct task_struct *prev)
3389 struct sched_class *class;
3390 struct task_struct *p;
3393 * Optimization: we know that if all tasks are in
3394 * the fair class we can call that function directly:
3396 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3397 p = fair_sched_class.pick_next_task(rq);
3398 if (likely(p))
3399 return p;
3402 class = sched_class_highest;
3403 for ( ; ; ) {
3404 p = class->pick_next_task(rq);
3405 if (p)
3406 return p;
3408 * Will never be NULL as the idle class always
3409 * returns a non-NULL p:
3411 class = class->next;
3416 * schedule() is the main scheduler function.
3418 asmlinkage void __sched schedule(void)
3420 struct task_struct *prev, *next;
3421 long *switch_count;
3422 struct rq *rq;
3423 int cpu;
3425 need_resched:
3426 preempt_disable();
3427 cpu = smp_processor_id();
3428 rq = cpu_rq(cpu);
3429 rcu_qsctr_inc(cpu);
3430 prev = rq->curr;
3431 switch_count = &prev->nivcsw;
3433 release_kernel_lock(prev);
3434 need_resched_nonpreemptible:
3436 schedule_debug(prev);
3438 spin_lock_irq(&rq->lock);
3439 clear_tsk_need_resched(prev);
3440 __update_rq_clock(rq);
3442 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3443 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3444 unlikely(signal_pending(prev)))) {
3445 prev->state = TASK_RUNNING;
3446 } else {
3447 deactivate_task(rq, prev, 1);
3449 switch_count = &prev->nvcsw;
3452 if (unlikely(!rq->nr_running))
3453 idle_balance(cpu, rq);
3455 prev->sched_class->put_prev_task(rq, prev);
3456 next = pick_next_task(rq, prev);
3458 sched_info_switch(prev, next);
3460 if (likely(prev != next)) {
3461 rq->nr_switches++;
3462 rq->curr = next;
3463 ++*switch_count;
3465 context_switch(rq, prev, next); /* unlocks the rq */
3466 } else
3467 spin_unlock_irq(&rq->lock);
3469 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3470 cpu = smp_processor_id();
3471 rq = cpu_rq(cpu);
3472 goto need_resched_nonpreemptible;
3474 preempt_enable_no_resched();
3475 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3476 goto need_resched;
3478 EXPORT_SYMBOL(schedule);
3480 #ifdef CONFIG_PREEMPT
3482 * this is the entry point to schedule() from in-kernel preemption
3483 * off of preempt_enable. Kernel preemptions off return from interrupt
3484 * occur there and call schedule directly.
3486 asmlinkage void __sched preempt_schedule(void)
3488 struct thread_info *ti = current_thread_info();
3489 #ifdef CONFIG_PREEMPT_BKL
3490 struct task_struct *task = current;
3491 int saved_lock_depth;
3492 #endif
3494 * If there is a non-zero preempt_count or interrupts are disabled,
3495 * we do not want to preempt the current task. Just return..
3497 if (likely(ti->preempt_count || irqs_disabled()))
3498 return;
3500 need_resched:
3501 add_preempt_count(PREEMPT_ACTIVE);
3503 * We keep the big kernel semaphore locked, but we
3504 * clear ->lock_depth so that schedule() doesnt
3505 * auto-release the semaphore:
3507 #ifdef CONFIG_PREEMPT_BKL
3508 saved_lock_depth = task->lock_depth;
3509 task->lock_depth = -1;
3510 #endif
3511 schedule();
3512 #ifdef CONFIG_PREEMPT_BKL
3513 task->lock_depth = saved_lock_depth;
3514 #endif
3515 sub_preempt_count(PREEMPT_ACTIVE);
3517 /* we could miss a preemption opportunity between schedule and now */
3518 barrier();
3519 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3520 goto need_resched;
3522 EXPORT_SYMBOL(preempt_schedule);
3525 * this is the entry point to schedule() from kernel preemption
3526 * off of irq context.
3527 * Note, that this is called and return with irqs disabled. This will
3528 * protect us against recursive calling from irq.
3530 asmlinkage void __sched preempt_schedule_irq(void)
3532 struct thread_info *ti = current_thread_info();
3533 #ifdef CONFIG_PREEMPT_BKL
3534 struct task_struct *task = current;
3535 int saved_lock_depth;
3536 #endif
3537 /* Catch callers which need to be fixed */
3538 BUG_ON(ti->preempt_count || !irqs_disabled());
3540 need_resched:
3541 add_preempt_count(PREEMPT_ACTIVE);
3543 * We keep the big kernel semaphore locked, but we
3544 * clear ->lock_depth so that schedule() doesnt
3545 * auto-release the semaphore:
3547 #ifdef CONFIG_PREEMPT_BKL
3548 saved_lock_depth = task->lock_depth;
3549 task->lock_depth = -1;
3550 #endif
3551 local_irq_enable();
3552 schedule();
3553 local_irq_disable();
3554 #ifdef CONFIG_PREEMPT_BKL
3555 task->lock_depth = saved_lock_depth;
3556 #endif
3557 sub_preempt_count(PREEMPT_ACTIVE);
3559 /* we could miss a preemption opportunity between schedule and now */
3560 barrier();
3561 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3562 goto need_resched;
3565 #endif /* CONFIG_PREEMPT */
3567 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3568 void *key)
3570 return try_to_wake_up(curr->private, mode, sync);
3572 EXPORT_SYMBOL(default_wake_function);
3575 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3576 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3577 * number) then we wake all the non-exclusive tasks and one exclusive task.
3579 * There are circumstances in which we can try to wake a task which has already
3580 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3581 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3583 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3584 int nr_exclusive, int sync, void *key)
3586 struct list_head *tmp, *next;
3588 list_for_each_safe(tmp, next, &q->task_list) {
3589 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3590 unsigned flags = curr->flags;
3592 if (curr->func(curr, mode, sync, key) &&
3593 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3594 break;
3599 * __wake_up - wake up threads blocked on a waitqueue.
3600 * @q: the waitqueue
3601 * @mode: which threads
3602 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3603 * @key: is directly passed to the wakeup function
3605 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3606 int nr_exclusive, void *key)
3608 unsigned long flags;
3610 spin_lock_irqsave(&q->lock, flags);
3611 __wake_up_common(q, mode, nr_exclusive, 0, key);
3612 spin_unlock_irqrestore(&q->lock, flags);
3614 EXPORT_SYMBOL(__wake_up);
3617 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3619 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3621 __wake_up_common(q, mode, 1, 0, NULL);
3625 * __wake_up_sync - wake up threads blocked on a waitqueue.
3626 * @q: the waitqueue
3627 * @mode: which threads
3628 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3630 * The sync wakeup differs that the waker knows that it will schedule
3631 * away soon, so while the target thread will be woken up, it will not
3632 * be migrated to another CPU - ie. the two threads are 'synchronized'
3633 * with each other. This can prevent needless bouncing between CPUs.
3635 * On UP it can prevent extra preemption.
3637 void fastcall
3638 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3640 unsigned long flags;
3641 int sync = 1;
3643 if (unlikely(!q))
3644 return;
3646 if (unlikely(!nr_exclusive))
3647 sync = 0;
3649 spin_lock_irqsave(&q->lock, flags);
3650 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3651 spin_unlock_irqrestore(&q->lock, flags);
3653 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3655 void fastcall complete(struct completion *x)
3657 unsigned long flags;
3659 spin_lock_irqsave(&x->wait.lock, flags);
3660 x->done++;
3661 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3662 1, 0, NULL);
3663 spin_unlock_irqrestore(&x->wait.lock, flags);
3665 EXPORT_SYMBOL(complete);
3667 void fastcall complete_all(struct completion *x)
3669 unsigned long flags;
3671 spin_lock_irqsave(&x->wait.lock, flags);
3672 x->done += UINT_MAX/2;
3673 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3674 0, 0, NULL);
3675 spin_unlock_irqrestore(&x->wait.lock, flags);
3677 EXPORT_SYMBOL(complete_all);
3679 void fastcall __sched wait_for_completion(struct completion *x)
3681 might_sleep();
3683 spin_lock_irq(&x->wait.lock);
3684 if (!x->done) {
3685 DECLARE_WAITQUEUE(wait, current);
3687 wait.flags |= WQ_FLAG_EXCLUSIVE;
3688 __add_wait_queue_tail(&x->wait, &wait);
3689 do {
3690 __set_current_state(TASK_UNINTERRUPTIBLE);
3691 spin_unlock_irq(&x->wait.lock);
3692 schedule();
3693 spin_lock_irq(&x->wait.lock);
3694 } while (!x->done);
3695 __remove_wait_queue(&x->wait, &wait);
3697 x->done--;
3698 spin_unlock_irq(&x->wait.lock);
3700 EXPORT_SYMBOL(wait_for_completion);
3702 unsigned long fastcall __sched
3703 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3705 might_sleep();
3707 spin_lock_irq(&x->wait.lock);
3708 if (!x->done) {
3709 DECLARE_WAITQUEUE(wait, current);
3711 wait.flags |= WQ_FLAG_EXCLUSIVE;
3712 __add_wait_queue_tail(&x->wait, &wait);
3713 do {
3714 __set_current_state(TASK_UNINTERRUPTIBLE);
3715 spin_unlock_irq(&x->wait.lock);
3716 timeout = schedule_timeout(timeout);
3717 spin_lock_irq(&x->wait.lock);
3718 if (!timeout) {
3719 __remove_wait_queue(&x->wait, &wait);
3720 goto out;
3722 } while (!x->done);
3723 __remove_wait_queue(&x->wait, &wait);
3725 x->done--;
3726 out:
3727 spin_unlock_irq(&x->wait.lock);
3728 return timeout;
3730 EXPORT_SYMBOL(wait_for_completion_timeout);
3732 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3734 int ret = 0;
3736 might_sleep();
3738 spin_lock_irq(&x->wait.lock);
3739 if (!x->done) {
3740 DECLARE_WAITQUEUE(wait, current);
3742 wait.flags |= WQ_FLAG_EXCLUSIVE;
3743 __add_wait_queue_tail(&x->wait, &wait);
3744 do {
3745 if (signal_pending(current)) {
3746 ret = -ERESTARTSYS;
3747 __remove_wait_queue(&x->wait, &wait);
3748 goto out;
3750 __set_current_state(TASK_INTERRUPTIBLE);
3751 spin_unlock_irq(&x->wait.lock);
3752 schedule();
3753 spin_lock_irq(&x->wait.lock);
3754 } while (!x->done);
3755 __remove_wait_queue(&x->wait, &wait);
3757 x->done--;
3758 out:
3759 spin_unlock_irq(&x->wait.lock);
3761 return ret;
3763 EXPORT_SYMBOL(wait_for_completion_interruptible);
3765 unsigned long fastcall __sched
3766 wait_for_completion_interruptible_timeout(struct completion *x,
3767 unsigned long timeout)
3769 might_sleep();
3771 spin_lock_irq(&x->wait.lock);
3772 if (!x->done) {
3773 DECLARE_WAITQUEUE(wait, current);
3775 wait.flags |= WQ_FLAG_EXCLUSIVE;
3776 __add_wait_queue_tail(&x->wait, &wait);
3777 do {
3778 if (signal_pending(current)) {
3779 timeout = -ERESTARTSYS;
3780 __remove_wait_queue(&x->wait, &wait);
3781 goto out;
3783 __set_current_state(TASK_INTERRUPTIBLE);
3784 spin_unlock_irq(&x->wait.lock);
3785 timeout = schedule_timeout(timeout);
3786 spin_lock_irq(&x->wait.lock);
3787 if (!timeout) {
3788 __remove_wait_queue(&x->wait, &wait);
3789 goto out;
3791 } while (!x->done);
3792 __remove_wait_queue(&x->wait, &wait);
3794 x->done--;
3795 out:
3796 spin_unlock_irq(&x->wait.lock);
3797 return timeout;
3799 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3801 static inline void
3802 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3804 spin_lock_irqsave(&q->lock, *flags);
3805 __add_wait_queue(q, wait);
3806 spin_unlock(&q->lock);
3809 static inline void
3810 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3812 spin_lock_irq(&q->lock);
3813 __remove_wait_queue(q, wait);
3814 spin_unlock_irqrestore(&q->lock, *flags);
3817 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3819 unsigned long flags;
3820 wait_queue_t wait;
3822 init_waitqueue_entry(&wait, current);
3824 current->state = TASK_INTERRUPTIBLE;
3826 sleep_on_head(q, &wait, &flags);
3827 schedule();
3828 sleep_on_tail(q, &wait, &flags);
3830 EXPORT_SYMBOL(interruptible_sleep_on);
3832 long __sched
3833 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3835 unsigned long flags;
3836 wait_queue_t wait;
3838 init_waitqueue_entry(&wait, current);
3840 current->state = TASK_INTERRUPTIBLE;
3842 sleep_on_head(q, &wait, &flags);
3843 timeout = schedule_timeout(timeout);
3844 sleep_on_tail(q, &wait, &flags);
3846 return timeout;
3848 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3850 void __sched sleep_on(wait_queue_head_t *q)
3852 unsigned long flags;
3853 wait_queue_t wait;
3855 init_waitqueue_entry(&wait, current);
3857 current->state = TASK_UNINTERRUPTIBLE;
3859 sleep_on_head(q, &wait, &flags);
3860 schedule();
3861 sleep_on_tail(q, &wait, &flags);
3863 EXPORT_SYMBOL(sleep_on);
3865 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3867 unsigned long flags;
3868 wait_queue_t wait;
3870 init_waitqueue_entry(&wait, current);
3872 current->state = TASK_UNINTERRUPTIBLE;
3874 sleep_on_head(q, &wait, &flags);
3875 timeout = schedule_timeout(timeout);
3876 sleep_on_tail(q, &wait, &flags);
3878 return timeout;
3880 EXPORT_SYMBOL(sleep_on_timeout);
3882 #ifdef CONFIG_RT_MUTEXES
3885 * rt_mutex_setprio - set the current priority of a task
3886 * @p: task
3887 * @prio: prio value (kernel-internal form)
3889 * This function changes the 'effective' priority of a task. It does
3890 * not touch ->normal_prio like __setscheduler().
3892 * Used by the rt_mutex code to implement priority inheritance logic.
3894 void rt_mutex_setprio(struct task_struct *p, int prio)
3896 unsigned long flags;
3897 int oldprio, on_rq;
3898 struct rq *rq;
3900 BUG_ON(prio < 0 || prio > MAX_PRIO);
3902 rq = task_rq_lock(p, &flags);
3903 update_rq_clock(rq);
3905 oldprio = p->prio;
3906 on_rq = p->se.on_rq;
3907 if (on_rq)
3908 dequeue_task(rq, p, 0);
3910 if (rt_prio(prio))
3911 p->sched_class = &rt_sched_class;
3912 else
3913 p->sched_class = &fair_sched_class;
3915 p->prio = prio;
3917 if (on_rq) {
3918 enqueue_task(rq, p, 0);
3920 * Reschedule if we are currently running on this runqueue and
3921 * our priority decreased, or if we are not currently running on
3922 * this runqueue and our priority is higher than the current's
3924 if (task_running(rq, p)) {
3925 if (p->prio > oldprio)
3926 resched_task(rq->curr);
3927 } else {
3928 check_preempt_curr(rq, p);
3931 task_rq_unlock(rq, &flags);
3934 #endif
3936 void set_user_nice(struct task_struct *p, long nice)
3938 int old_prio, delta, on_rq;
3939 unsigned long flags;
3940 struct rq *rq;
3942 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3943 return;
3945 * We have to be careful, if called from sys_setpriority(),
3946 * the task might be in the middle of scheduling on another CPU.
3948 rq = task_rq_lock(p, &flags);
3949 update_rq_clock(rq);
3951 * The RT priorities are set via sched_setscheduler(), but we still
3952 * allow the 'normal' nice value to be set - but as expected
3953 * it wont have any effect on scheduling until the task is
3954 * SCHED_FIFO/SCHED_RR:
3956 if (task_has_rt_policy(p)) {
3957 p->static_prio = NICE_TO_PRIO(nice);
3958 goto out_unlock;
3960 on_rq = p->se.on_rq;
3961 if (on_rq) {
3962 dequeue_task(rq, p, 0);
3963 dec_load(rq, p);
3966 p->static_prio = NICE_TO_PRIO(nice);
3967 set_load_weight(p);
3968 old_prio = p->prio;
3969 p->prio = effective_prio(p);
3970 delta = p->prio - old_prio;
3972 if (on_rq) {
3973 enqueue_task(rq, p, 0);
3974 inc_load(rq, p);
3976 * If the task increased its priority or is running and
3977 * lowered its priority, then reschedule its CPU:
3979 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3980 resched_task(rq->curr);
3982 out_unlock:
3983 task_rq_unlock(rq, &flags);
3985 EXPORT_SYMBOL(set_user_nice);
3988 * can_nice - check if a task can reduce its nice value
3989 * @p: task
3990 * @nice: nice value
3992 int can_nice(const struct task_struct *p, const int nice)
3994 /* convert nice value [19,-20] to rlimit style value [1,40] */
3995 int nice_rlim = 20 - nice;
3997 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3998 capable(CAP_SYS_NICE));
4001 #ifdef __ARCH_WANT_SYS_NICE
4004 * sys_nice - change the priority of the current process.
4005 * @increment: priority increment
4007 * sys_setpriority is a more generic, but much slower function that
4008 * does similar things.
4010 asmlinkage long sys_nice(int increment)
4012 long nice, retval;
4015 * Setpriority might change our priority at the same moment.
4016 * We don't have to worry. Conceptually one call occurs first
4017 * and we have a single winner.
4019 if (increment < -40)
4020 increment = -40;
4021 if (increment > 40)
4022 increment = 40;
4024 nice = PRIO_TO_NICE(current->static_prio) + increment;
4025 if (nice < -20)
4026 nice = -20;
4027 if (nice > 19)
4028 nice = 19;
4030 if (increment < 0 && !can_nice(current, nice))
4031 return -EPERM;
4033 retval = security_task_setnice(current, nice);
4034 if (retval)
4035 return retval;
4037 set_user_nice(current, nice);
4038 return 0;
4041 #endif
4044 * task_prio - return the priority value of a given task.
4045 * @p: the task in question.
4047 * This is the priority value as seen by users in /proc.
4048 * RT tasks are offset by -200. Normal tasks are centered
4049 * around 0, value goes from -16 to +15.
4051 int task_prio(const struct task_struct *p)
4053 return p->prio - MAX_RT_PRIO;
4057 * task_nice - return the nice value of a given task.
4058 * @p: the task in question.
4060 int task_nice(const struct task_struct *p)
4062 return TASK_NICE(p);
4064 EXPORT_SYMBOL_GPL(task_nice);
4067 * idle_cpu - is a given cpu idle currently?
4068 * @cpu: the processor in question.
4070 int idle_cpu(int cpu)
4072 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4076 * idle_task - return the idle task for a given cpu.
4077 * @cpu: the processor in question.
4079 struct task_struct *idle_task(int cpu)
4081 return cpu_rq(cpu)->idle;
4085 * find_process_by_pid - find a process with a matching PID value.
4086 * @pid: the pid in question.
4088 static inline struct task_struct *find_process_by_pid(pid_t pid)
4090 return pid ? find_task_by_pid(pid) : current;
4093 /* Actually do priority change: must hold rq lock. */
4094 static void
4095 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4097 BUG_ON(p->se.on_rq);
4099 p->policy = policy;
4100 switch (p->policy) {
4101 case SCHED_NORMAL:
4102 case SCHED_BATCH:
4103 case SCHED_IDLE:
4104 p->sched_class = &fair_sched_class;
4105 break;
4106 case SCHED_FIFO:
4107 case SCHED_RR:
4108 p->sched_class = &rt_sched_class;
4109 break;
4112 p->rt_priority = prio;
4113 p->normal_prio = normal_prio(p);
4114 /* we are holding p->pi_lock already */
4115 p->prio = rt_mutex_getprio(p);
4116 set_load_weight(p);
4120 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4121 * @p: the task in question.
4122 * @policy: new policy.
4123 * @param: structure containing the new RT priority.
4125 * NOTE that the task may be already dead.
4127 int sched_setscheduler(struct task_struct *p, int policy,
4128 struct sched_param *param)
4130 int retval, oldprio, oldpolicy = -1, on_rq;
4131 unsigned long flags;
4132 struct rq *rq;
4134 /* may grab non-irq protected spin_locks */
4135 BUG_ON(in_interrupt());
4136 recheck:
4137 /* double check policy once rq lock held */
4138 if (policy < 0)
4139 policy = oldpolicy = p->policy;
4140 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4141 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4142 policy != SCHED_IDLE)
4143 return -EINVAL;
4145 * Valid priorities for SCHED_FIFO and SCHED_RR are
4146 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4147 * SCHED_BATCH and SCHED_IDLE is 0.
4149 if (param->sched_priority < 0 ||
4150 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4151 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4152 return -EINVAL;
4153 if (rt_policy(policy) != (param->sched_priority != 0))
4154 return -EINVAL;
4157 * Allow unprivileged RT tasks to decrease priority:
4159 if (!capable(CAP_SYS_NICE)) {
4160 if (rt_policy(policy)) {
4161 unsigned long rlim_rtprio;
4163 if (!lock_task_sighand(p, &flags))
4164 return -ESRCH;
4165 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4166 unlock_task_sighand(p, &flags);
4168 /* can't set/change the rt policy */
4169 if (policy != p->policy && !rlim_rtprio)
4170 return -EPERM;
4172 /* can't increase priority */
4173 if (param->sched_priority > p->rt_priority &&
4174 param->sched_priority > rlim_rtprio)
4175 return -EPERM;
4178 * Like positive nice levels, dont allow tasks to
4179 * move out of SCHED_IDLE either:
4181 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4182 return -EPERM;
4184 /* can't change other user's priorities */
4185 if ((current->euid != p->euid) &&
4186 (current->euid != p->uid))
4187 return -EPERM;
4190 retval = security_task_setscheduler(p, policy, param);
4191 if (retval)
4192 return retval;
4194 * make sure no PI-waiters arrive (or leave) while we are
4195 * changing the priority of the task:
4197 spin_lock_irqsave(&p->pi_lock, flags);
4199 * To be able to change p->policy safely, the apropriate
4200 * runqueue lock must be held.
4202 rq = __task_rq_lock(p);
4203 /* recheck policy now with rq lock held */
4204 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4205 policy = oldpolicy = -1;
4206 __task_rq_unlock(rq);
4207 spin_unlock_irqrestore(&p->pi_lock, flags);
4208 goto recheck;
4210 on_rq = p->se.on_rq;
4211 if (on_rq) {
4212 update_rq_clock(rq);
4213 deactivate_task(rq, p, 0);
4215 oldprio = p->prio;
4216 __setscheduler(rq, p, policy, param->sched_priority);
4217 if (on_rq) {
4218 activate_task(rq, p, 0);
4220 * Reschedule if we are currently running on this runqueue and
4221 * our priority decreased, or if we are not currently running on
4222 * this runqueue and our priority is higher than the current's
4224 if (task_running(rq, p)) {
4225 if (p->prio > oldprio)
4226 resched_task(rq->curr);
4227 } else {
4228 check_preempt_curr(rq, p);
4231 __task_rq_unlock(rq);
4232 spin_unlock_irqrestore(&p->pi_lock, flags);
4234 rt_mutex_adjust_pi(p);
4236 return 0;
4238 EXPORT_SYMBOL_GPL(sched_setscheduler);
4240 static int
4241 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4243 struct sched_param lparam;
4244 struct task_struct *p;
4245 int retval;
4247 if (!param || pid < 0)
4248 return -EINVAL;
4249 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4250 return -EFAULT;
4252 rcu_read_lock();
4253 retval = -ESRCH;
4254 p = find_process_by_pid(pid);
4255 if (p != NULL)
4256 retval = sched_setscheduler(p, policy, &lparam);
4257 rcu_read_unlock();
4259 return retval;
4263 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4264 * @pid: the pid in question.
4265 * @policy: new policy.
4266 * @param: structure containing the new RT priority.
4268 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4269 struct sched_param __user *param)
4271 /* negative values for policy are not valid */
4272 if (policy < 0)
4273 return -EINVAL;
4275 return do_sched_setscheduler(pid, policy, param);
4279 * sys_sched_setparam - set/change the RT priority of a thread
4280 * @pid: the pid in question.
4281 * @param: structure containing the new RT priority.
4283 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4285 return do_sched_setscheduler(pid, -1, param);
4289 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4290 * @pid: the pid in question.
4292 asmlinkage long sys_sched_getscheduler(pid_t pid)
4294 struct task_struct *p;
4295 int retval = -EINVAL;
4297 if (pid < 0)
4298 goto out_nounlock;
4300 retval = -ESRCH;
4301 read_lock(&tasklist_lock);
4302 p = find_process_by_pid(pid);
4303 if (p) {
4304 retval = security_task_getscheduler(p);
4305 if (!retval)
4306 retval = p->policy;
4308 read_unlock(&tasklist_lock);
4310 out_nounlock:
4311 return retval;
4315 * sys_sched_getscheduler - get the RT priority of a thread
4316 * @pid: the pid in question.
4317 * @param: structure containing the RT priority.
4319 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4321 struct sched_param lp;
4322 struct task_struct *p;
4323 int retval = -EINVAL;
4325 if (!param || pid < 0)
4326 goto out_nounlock;
4328 read_lock(&tasklist_lock);
4329 p = find_process_by_pid(pid);
4330 retval = -ESRCH;
4331 if (!p)
4332 goto out_unlock;
4334 retval = security_task_getscheduler(p);
4335 if (retval)
4336 goto out_unlock;
4338 lp.sched_priority = p->rt_priority;
4339 read_unlock(&tasklist_lock);
4342 * This one might sleep, we cannot do it with a spinlock held ...
4344 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4346 out_nounlock:
4347 return retval;
4349 out_unlock:
4350 read_unlock(&tasklist_lock);
4351 return retval;
4354 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4356 cpumask_t cpus_allowed;
4357 struct task_struct *p;
4358 int retval;
4360 mutex_lock(&sched_hotcpu_mutex);
4361 read_lock(&tasklist_lock);
4363 p = find_process_by_pid(pid);
4364 if (!p) {
4365 read_unlock(&tasklist_lock);
4366 mutex_unlock(&sched_hotcpu_mutex);
4367 return -ESRCH;
4371 * It is not safe to call set_cpus_allowed with the
4372 * tasklist_lock held. We will bump the task_struct's
4373 * usage count and then drop tasklist_lock.
4375 get_task_struct(p);
4376 read_unlock(&tasklist_lock);
4378 retval = -EPERM;
4379 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4380 !capable(CAP_SYS_NICE))
4381 goto out_unlock;
4383 retval = security_task_setscheduler(p, 0, NULL);
4384 if (retval)
4385 goto out_unlock;
4387 cpus_allowed = cpuset_cpus_allowed(p);
4388 cpus_and(new_mask, new_mask, cpus_allowed);
4389 retval = set_cpus_allowed(p, new_mask);
4391 out_unlock:
4392 put_task_struct(p);
4393 mutex_unlock(&sched_hotcpu_mutex);
4394 return retval;
4397 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4398 cpumask_t *new_mask)
4400 if (len < sizeof(cpumask_t)) {
4401 memset(new_mask, 0, sizeof(cpumask_t));
4402 } else if (len > sizeof(cpumask_t)) {
4403 len = sizeof(cpumask_t);
4405 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4409 * sys_sched_setaffinity - set the cpu affinity of a process
4410 * @pid: pid of the process
4411 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4412 * @user_mask_ptr: user-space pointer to the new cpu mask
4414 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4415 unsigned long __user *user_mask_ptr)
4417 cpumask_t new_mask;
4418 int retval;
4420 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4421 if (retval)
4422 return retval;
4424 return sched_setaffinity(pid, new_mask);
4428 * Represents all cpu's present in the system
4429 * In systems capable of hotplug, this map could dynamically grow
4430 * as new cpu's are detected in the system via any platform specific
4431 * method, such as ACPI for e.g.
4434 cpumask_t cpu_present_map __read_mostly;
4435 EXPORT_SYMBOL(cpu_present_map);
4437 #ifndef CONFIG_SMP
4438 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4439 EXPORT_SYMBOL(cpu_online_map);
4441 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4442 EXPORT_SYMBOL(cpu_possible_map);
4443 #endif
4445 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4447 struct task_struct *p;
4448 int retval;
4450 mutex_lock(&sched_hotcpu_mutex);
4451 read_lock(&tasklist_lock);
4453 retval = -ESRCH;
4454 p = find_process_by_pid(pid);
4455 if (!p)
4456 goto out_unlock;
4458 retval = security_task_getscheduler(p);
4459 if (retval)
4460 goto out_unlock;
4462 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4464 out_unlock:
4465 read_unlock(&tasklist_lock);
4466 mutex_unlock(&sched_hotcpu_mutex);
4468 return retval;
4472 * sys_sched_getaffinity - get the cpu affinity of a process
4473 * @pid: pid of the process
4474 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4475 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4477 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4478 unsigned long __user *user_mask_ptr)
4480 int ret;
4481 cpumask_t mask;
4483 if (len < sizeof(cpumask_t))
4484 return -EINVAL;
4486 ret = sched_getaffinity(pid, &mask);
4487 if (ret < 0)
4488 return ret;
4490 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4491 return -EFAULT;
4493 return sizeof(cpumask_t);
4497 * sys_sched_yield - yield the current processor to other threads.
4499 * This function yields the current CPU to other tasks. If there are no
4500 * other threads running on this CPU then this function will return.
4502 asmlinkage long sys_sched_yield(void)
4504 struct rq *rq = this_rq_lock();
4506 schedstat_inc(rq, yld_cnt);
4507 if (unlikely(rq->nr_running == 1))
4508 schedstat_inc(rq, yld_act_empty);
4509 else
4510 current->sched_class->yield_task(rq, current);
4513 * Since we are going to call schedule() anyway, there's
4514 * no need to preempt or enable interrupts:
4516 __release(rq->lock);
4517 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4518 _raw_spin_unlock(&rq->lock);
4519 preempt_enable_no_resched();
4521 schedule();
4523 return 0;
4526 static void __cond_resched(void)
4528 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4529 __might_sleep(__FILE__, __LINE__);
4530 #endif
4532 * The BKS might be reacquired before we have dropped
4533 * PREEMPT_ACTIVE, which could trigger a second
4534 * cond_resched() call.
4536 do {
4537 add_preempt_count(PREEMPT_ACTIVE);
4538 schedule();
4539 sub_preempt_count(PREEMPT_ACTIVE);
4540 } while (need_resched());
4543 int __sched cond_resched(void)
4545 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4546 system_state == SYSTEM_RUNNING) {
4547 __cond_resched();
4548 return 1;
4550 return 0;
4552 EXPORT_SYMBOL(cond_resched);
4555 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4556 * call schedule, and on return reacquire the lock.
4558 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4559 * operations here to prevent schedule() from being called twice (once via
4560 * spin_unlock(), once by hand).
4562 int cond_resched_lock(spinlock_t *lock)
4564 int ret = 0;
4566 if (need_lockbreak(lock)) {
4567 spin_unlock(lock);
4568 cpu_relax();
4569 ret = 1;
4570 spin_lock(lock);
4572 if (need_resched() && system_state == SYSTEM_RUNNING) {
4573 spin_release(&lock->dep_map, 1, _THIS_IP_);
4574 _raw_spin_unlock(lock);
4575 preempt_enable_no_resched();
4576 __cond_resched();
4577 ret = 1;
4578 spin_lock(lock);
4580 return ret;
4582 EXPORT_SYMBOL(cond_resched_lock);
4584 int __sched cond_resched_softirq(void)
4586 BUG_ON(!in_softirq());
4588 if (need_resched() && system_state == SYSTEM_RUNNING) {
4589 local_bh_enable();
4590 __cond_resched();
4591 local_bh_disable();
4592 return 1;
4594 return 0;
4596 EXPORT_SYMBOL(cond_resched_softirq);
4599 * yield - yield the current processor to other threads.
4601 * This is a shortcut for kernel-space yielding - it marks the
4602 * thread runnable and calls sys_sched_yield().
4604 void __sched yield(void)
4606 set_current_state(TASK_RUNNING);
4607 sys_sched_yield();
4609 EXPORT_SYMBOL(yield);
4612 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4613 * that process accounting knows that this is a task in IO wait state.
4615 * But don't do that if it is a deliberate, throttling IO wait (this task
4616 * has set its backing_dev_info: the queue against which it should throttle)
4618 void __sched io_schedule(void)
4620 struct rq *rq = &__raw_get_cpu_var(runqueues);
4622 delayacct_blkio_start();
4623 atomic_inc(&rq->nr_iowait);
4624 schedule();
4625 atomic_dec(&rq->nr_iowait);
4626 delayacct_blkio_end();
4628 EXPORT_SYMBOL(io_schedule);
4630 long __sched io_schedule_timeout(long timeout)
4632 struct rq *rq = &__raw_get_cpu_var(runqueues);
4633 long ret;
4635 delayacct_blkio_start();
4636 atomic_inc(&rq->nr_iowait);
4637 ret = schedule_timeout(timeout);
4638 atomic_dec(&rq->nr_iowait);
4639 delayacct_blkio_end();
4640 return ret;
4644 * sys_sched_get_priority_max - return maximum RT priority.
4645 * @policy: scheduling class.
4647 * this syscall returns the maximum rt_priority that can be used
4648 * by a given scheduling class.
4650 asmlinkage long sys_sched_get_priority_max(int policy)
4652 int ret = -EINVAL;
4654 switch (policy) {
4655 case SCHED_FIFO:
4656 case SCHED_RR:
4657 ret = MAX_USER_RT_PRIO-1;
4658 break;
4659 case SCHED_NORMAL:
4660 case SCHED_BATCH:
4661 case SCHED_IDLE:
4662 ret = 0;
4663 break;
4665 return ret;
4669 * sys_sched_get_priority_min - return minimum RT priority.
4670 * @policy: scheduling class.
4672 * this syscall returns the minimum rt_priority that can be used
4673 * by a given scheduling class.
4675 asmlinkage long sys_sched_get_priority_min(int policy)
4677 int ret = -EINVAL;
4679 switch (policy) {
4680 case SCHED_FIFO:
4681 case SCHED_RR:
4682 ret = 1;
4683 break;
4684 case SCHED_NORMAL:
4685 case SCHED_BATCH:
4686 case SCHED_IDLE:
4687 ret = 0;
4689 return ret;
4693 * sys_sched_rr_get_interval - return the default timeslice of a process.
4694 * @pid: pid of the process.
4695 * @interval: userspace pointer to the timeslice value.
4697 * this syscall writes the default timeslice value of a given process
4698 * into the user-space timespec buffer. A value of '0' means infinity.
4700 asmlinkage
4701 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4703 struct task_struct *p;
4704 int retval = -EINVAL;
4705 struct timespec t;
4707 if (pid < 0)
4708 goto out_nounlock;
4710 retval = -ESRCH;
4711 read_lock(&tasklist_lock);
4712 p = find_process_by_pid(pid);
4713 if (!p)
4714 goto out_unlock;
4716 retval = security_task_getscheduler(p);
4717 if (retval)
4718 goto out_unlock;
4720 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4721 0 : static_prio_timeslice(p->static_prio), &t);
4722 read_unlock(&tasklist_lock);
4723 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4724 out_nounlock:
4725 return retval;
4726 out_unlock:
4727 read_unlock(&tasklist_lock);
4728 return retval;
4731 static const char stat_nam[] = "RSDTtZX";
4733 static void show_task(struct task_struct *p)
4735 unsigned long free = 0;
4736 unsigned state;
4738 state = p->state ? __ffs(p->state) + 1 : 0;
4739 printk("%-13.13s %c", p->comm,
4740 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4741 #if BITS_PER_LONG == 32
4742 if (state == TASK_RUNNING)
4743 printk(" running ");
4744 else
4745 printk(" %08lx ", thread_saved_pc(p));
4746 #else
4747 if (state == TASK_RUNNING)
4748 printk(" running task ");
4749 else
4750 printk(" %016lx ", thread_saved_pc(p));
4751 #endif
4752 #ifdef CONFIG_DEBUG_STACK_USAGE
4754 unsigned long *n = end_of_stack(p);
4755 while (!*n)
4756 n++;
4757 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4759 #endif
4760 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4762 if (state != TASK_RUNNING)
4763 show_stack(p, NULL);
4766 void show_state_filter(unsigned long state_filter)
4768 struct task_struct *g, *p;
4770 #if BITS_PER_LONG == 32
4771 printk(KERN_INFO
4772 " task PC stack pid father\n");
4773 #else
4774 printk(KERN_INFO
4775 " task PC stack pid father\n");
4776 #endif
4777 read_lock(&tasklist_lock);
4778 do_each_thread(g, p) {
4780 * reset the NMI-timeout, listing all files on a slow
4781 * console might take alot of time:
4783 touch_nmi_watchdog();
4784 if (!state_filter || (p->state & state_filter))
4785 show_task(p);
4786 } while_each_thread(g, p);
4788 touch_all_softlockup_watchdogs();
4790 #ifdef CONFIG_SCHED_DEBUG
4791 sysrq_sched_debug_show();
4792 #endif
4793 read_unlock(&tasklist_lock);
4795 * Only show locks if all tasks are dumped:
4797 if (state_filter == -1)
4798 debug_show_all_locks();
4801 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4803 idle->sched_class = &idle_sched_class;
4807 * init_idle - set up an idle thread for a given CPU
4808 * @idle: task in question
4809 * @cpu: cpu the idle task belongs to
4811 * NOTE: this function does not set the idle thread's NEED_RESCHED
4812 * flag, to make booting more robust.
4814 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4816 struct rq *rq = cpu_rq(cpu);
4817 unsigned long flags;
4819 __sched_fork(idle);
4820 idle->se.exec_start = sched_clock();
4822 idle->prio = idle->normal_prio = MAX_PRIO;
4823 idle->cpus_allowed = cpumask_of_cpu(cpu);
4824 __set_task_cpu(idle, cpu);
4826 spin_lock_irqsave(&rq->lock, flags);
4827 rq->curr = rq->idle = idle;
4828 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4829 idle->oncpu = 1;
4830 #endif
4831 spin_unlock_irqrestore(&rq->lock, flags);
4833 /* Set the preempt count _outside_ the spinlocks! */
4834 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4835 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4836 #else
4837 task_thread_info(idle)->preempt_count = 0;
4838 #endif
4840 * The idle tasks have their own, simple scheduling class:
4842 idle->sched_class = &idle_sched_class;
4846 * In a system that switches off the HZ timer nohz_cpu_mask
4847 * indicates which cpus entered this state. This is used
4848 * in the rcu update to wait only for active cpus. For system
4849 * which do not switch off the HZ timer nohz_cpu_mask should
4850 * always be CPU_MASK_NONE.
4852 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4855 * Increase the granularity value when there are more CPUs,
4856 * because with more CPUs the 'effective latency' as visible
4857 * to users decreases. But the relationship is not linear,
4858 * so pick a second-best guess by going with the log2 of the
4859 * number of CPUs.
4861 * This idea comes from the SD scheduler of Con Kolivas:
4863 static inline void sched_init_granularity(void)
4865 unsigned int factor = 1 + ilog2(num_online_cpus());
4866 const unsigned long gran_limit = 100000000;
4868 sysctl_sched_granularity *= factor;
4869 if (sysctl_sched_granularity > gran_limit)
4870 sysctl_sched_granularity = gran_limit;
4872 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4873 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4876 #ifdef CONFIG_SMP
4878 * This is how migration works:
4880 * 1) we queue a struct migration_req structure in the source CPU's
4881 * runqueue and wake up that CPU's migration thread.
4882 * 2) we down() the locked semaphore => thread blocks.
4883 * 3) migration thread wakes up (implicitly it forces the migrated
4884 * thread off the CPU)
4885 * 4) it gets the migration request and checks whether the migrated
4886 * task is still in the wrong runqueue.
4887 * 5) if it's in the wrong runqueue then the migration thread removes
4888 * it and puts it into the right queue.
4889 * 6) migration thread up()s the semaphore.
4890 * 7) we wake up and the migration is done.
4894 * Change a given task's CPU affinity. Migrate the thread to a
4895 * proper CPU and schedule it away if the CPU it's executing on
4896 * is removed from the allowed bitmask.
4898 * NOTE: the caller must have a valid reference to the task, the
4899 * task must not exit() & deallocate itself prematurely. The
4900 * call is not atomic; no spinlocks may be held.
4902 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4904 struct migration_req req;
4905 unsigned long flags;
4906 struct rq *rq;
4907 int ret = 0;
4909 rq = task_rq_lock(p, &flags);
4910 if (!cpus_intersects(new_mask, cpu_online_map)) {
4911 ret = -EINVAL;
4912 goto out;
4915 p->cpus_allowed = new_mask;
4916 /* Can the task run on the task's current CPU? If so, we're done */
4917 if (cpu_isset(task_cpu(p), new_mask))
4918 goto out;
4920 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4921 /* Need help from migration thread: drop lock and wait. */
4922 task_rq_unlock(rq, &flags);
4923 wake_up_process(rq->migration_thread);
4924 wait_for_completion(&req.done);
4925 tlb_migrate_finish(p->mm);
4926 return 0;
4928 out:
4929 task_rq_unlock(rq, &flags);
4931 return ret;
4933 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4936 * Move (not current) task off this cpu, onto dest cpu. We're doing
4937 * this because either it can't run here any more (set_cpus_allowed()
4938 * away from this CPU, or CPU going down), or because we're
4939 * attempting to rebalance this task on exec (sched_exec).
4941 * So we race with normal scheduler movements, but that's OK, as long
4942 * as the task is no longer on this CPU.
4944 * Returns non-zero if task was successfully migrated.
4946 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4948 struct rq *rq_dest, *rq_src;
4949 int ret = 0, on_rq;
4951 if (unlikely(cpu_is_offline(dest_cpu)))
4952 return ret;
4954 rq_src = cpu_rq(src_cpu);
4955 rq_dest = cpu_rq(dest_cpu);
4957 double_rq_lock(rq_src, rq_dest);
4958 /* Already moved. */
4959 if (task_cpu(p) != src_cpu)
4960 goto out;
4961 /* Affinity changed (again). */
4962 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4963 goto out;
4965 on_rq = p->se.on_rq;
4966 if (on_rq) {
4967 update_rq_clock(rq_src);
4968 deactivate_task(rq_src, p, 0);
4970 set_task_cpu(p, dest_cpu);
4971 if (on_rq) {
4972 activate_task(rq_dest, p, 0);
4973 check_preempt_curr(rq_dest, p);
4975 ret = 1;
4976 out:
4977 double_rq_unlock(rq_src, rq_dest);
4978 return ret;
4982 * migration_thread - this is a highprio system thread that performs
4983 * thread migration by bumping thread off CPU then 'pushing' onto
4984 * another runqueue.
4986 static int migration_thread(void *data)
4988 int cpu = (long)data;
4989 struct rq *rq;
4991 rq = cpu_rq(cpu);
4992 BUG_ON(rq->migration_thread != current);
4994 set_current_state(TASK_INTERRUPTIBLE);
4995 while (!kthread_should_stop()) {
4996 struct migration_req *req;
4997 struct list_head *head;
4999 spin_lock_irq(&rq->lock);
5001 if (cpu_is_offline(cpu)) {
5002 spin_unlock_irq(&rq->lock);
5003 goto wait_to_die;
5006 if (rq->active_balance) {
5007 active_load_balance(rq, cpu);
5008 rq->active_balance = 0;
5011 head = &rq->migration_queue;
5013 if (list_empty(head)) {
5014 spin_unlock_irq(&rq->lock);
5015 schedule();
5016 set_current_state(TASK_INTERRUPTIBLE);
5017 continue;
5019 req = list_entry(head->next, struct migration_req, list);
5020 list_del_init(head->next);
5022 spin_unlock(&rq->lock);
5023 __migrate_task(req->task, cpu, req->dest_cpu);
5024 local_irq_enable();
5026 complete(&req->done);
5028 __set_current_state(TASK_RUNNING);
5029 return 0;
5031 wait_to_die:
5032 /* Wait for kthread_stop */
5033 set_current_state(TASK_INTERRUPTIBLE);
5034 while (!kthread_should_stop()) {
5035 schedule();
5036 set_current_state(TASK_INTERRUPTIBLE);
5038 __set_current_state(TASK_RUNNING);
5039 return 0;
5042 #ifdef CONFIG_HOTPLUG_CPU
5044 * Figure out where task on dead CPU should go, use force if neccessary.
5045 * NOTE: interrupts should be disabled by the caller
5047 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5049 unsigned long flags;
5050 cpumask_t mask;
5051 struct rq *rq;
5052 int dest_cpu;
5054 restart:
5055 /* On same node? */
5056 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5057 cpus_and(mask, mask, p->cpus_allowed);
5058 dest_cpu = any_online_cpu(mask);
5060 /* On any allowed CPU? */
5061 if (dest_cpu == NR_CPUS)
5062 dest_cpu = any_online_cpu(p->cpus_allowed);
5064 /* No more Mr. Nice Guy. */
5065 if (dest_cpu == NR_CPUS) {
5066 rq = task_rq_lock(p, &flags);
5067 cpus_setall(p->cpus_allowed);
5068 dest_cpu = any_online_cpu(p->cpus_allowed);
5069 task_rq_unlock(rq, &flags);
5072 * Don't tell them about moving exiting tasks or
5073 * kernel threads (both mm NULL), since they never
5074 * leave kernel.
5076 if (p->mm && printk_ratelimit())
5077 printk(KERN_INFO "process %d (%s) no "
5078 "longer affine to cpu%d\n",
5079 p->pid, p->comm, dead_cpu);
5081 if (!__migrate_task(p, dead_cpu, dest_cpu))
5082 goto restart;
5086 * While a dead CPU has no uninterruptible tasks queued at this point,
5087 * it might still have a nonzero ->nr_uninterruptible counter, because
5088 * for performance reasons the counter is not stricly tracking tasks to
5089 * their home CPUs. So we just add the counter to another CPU's counter,
5090 * to keep the global sum constant after CPU-down:
5092 static void migrate_nr_uninterruptible(struct rq *rq_src)
5094 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5095 unsigned long flags;
5097 local_irq_save(flags);
5098 double_rq_lock(rq_src, rq_dest);
5099 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5100 rq_src->nr_uninterruptible = 0;
5101 double_rq_unlock(rq_src, rq_dest);
5102 local_irq_restore(flags);
5105 /* Run through task list and migrate tasks from the dead cpu. */
5106 static void migrate_live_tasks(int src_cpu)
5108 struct task_struct *p, *t;
5110 write_lock_irq(&tasklist_lock);
5112 do_each_thread(t, p) {
5113 if (p == current)
5114 continue;
5116 if (task_cpu(p) == src_cpu)
5117 move_task_off_dead_cpu(src_cpu, p);
5118 } while_each_thread(t, p);
5120 write_unlock_irq(&tasklist_lock);
5124 * Schedules idle task to be the next runnable task on current CPU.
5125 * It does so by boosting its priority to highest possible and adding it to
5126 * the _front_ of the runqueue. Used by CPU offline code.
5128 void sched_idle_next(void)
5130 int this_cpu = smp_processor_id();
5131 struct rq *rq = cpu_rq(this_cpu);
5132 struct task_struct *p = rq->idle;
5133 unsigned long flags;
5135 /* cpu has to be offline */
5136 BUG_ON(cpu_online(this_cpu));
5139 * Strictly not necessary since rest of the CPUs are stopped by now
5140 * and interrupts disabled on the current cpu.
5142 spin_lock_irqsave(&rq->lock, flags);
5144 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5146 /* Add idle task to the _front_ of its priority queue: */
5147 activate_idle_task(p, rq);
5149 spin_unlock_irqrestore(&rq->lock, flags);
5153 * Ensures that the idle task is using init_mm right before its cpu goes
5154 * offline.
5156 void idle_task_exit(void)
5158 struct mm_struct *mm = current->active_mm;
5160 BUG_ON(cpu_online(smp_processor_id()));
5162 if (mm != &init_mm)
5163 switch_mm(mm, &init_mm, current);
5164 mmdrop(mm);
5167 /* called under rq->lock with disabled interrupts */
5168 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5170 struct rq *rq = cpu_rq(dead_cpu);
5172 /* Must be exiting, otherwise would be on tasklist. */
5173 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5175 /* Cannot have done final schedule yet: would have vanished. */
5176 BUG_ON(p->state == TASK_DEAD);
5178 get_task_struct(p);
5181 * Drop lock around migration; if someone else moves it,
5182 * that's OK. No task can be added to this CPU, so iteration is
5183 * fine.
5184 * NOTE: interrupts should be left disabled --dev@
5186 spin_unlock(&rq->lock);
5187 move_task_off_dead_cpu(dead_cpu, p);
5188 spin_lock(&rq->lock);
5190 put_task_struct(p);
5193 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5194 static void migrate_dead_tasks(unsigned int dead_cpu)
5196 struct rq *rq = cpu_rq(dead_cpu);
5197 struct task_struct *next;
5199 for ( ; ; ) {
5200 if (!rq->nr_running)
5201 break;
5202 update_rq_clock(rq);
5203 next = pick_next_task(rq, rq->curr);
5204 if (!next)
5205 break;
5206 migrate_dead(dead_cpu, next);
5210 #endif /* CONFIG_HOTPLUG_CPU */
5212 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5214 static struct ctl_table sd_ctl_dir[] = {
5216 .procname = "sched_domain",
5217 .mode = 0755,
5219 {0,},
5222 static struct ctl_table sd_ctl_root[] = {
5224 .procname = "kernel",
5225 .mode = 0755,
5226 .child = sd_ctl_dir,
5228 {0,},
5231 static struct ctl_table *sd_alloc_ctl_entry(int n)
5233 struct ctl_table *entry =
5234 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5236 BUG_ON(!entry);
5237 memset(entry, 0, n * sizeof(struct ctl_table));
5239 return entry;
5242 static void
5243 set_table_entry(struct ctl_table *entry,
5244 const char *procname, void *data, int maxlen,
5245 mode_t mode, proc_handler *proc_handler)
5247 entry->procname = procname;
5248 entry->data = data;
5249 entry->maxlen = maxlen;
5250 entry->mode = mode;
5251 entry->proc_handler = proc_handler;
5254 static struct ctl_table *
5255 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5257 struct ctl_table *table = sd_alloc_ctl_entry(14);
5259 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5260 sizeof(long), 0644, proc_doulongvec_minmax);
5261 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5262 sizeof(long), 0644, proc_doulongvec_minmax);
5263 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5264 sizeof(int), 0644, proc_dointvec_minmax);
5265 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5266 sizeof(int), 0644, proc_dointvec_minmax);
5267 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5268 sizeof(int), 0644, proc_dointvec_minmax);
5269 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5270 sizeof(int), 0644, proc_dointvec_minmax);
5271 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5272 sizeof(int), 0644, proc_dointvec_minmax);
5273 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5274 sizeof(int), 0644, proc_dointvec_minmax);
5275 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5276 sizeof(int), 0644, proc_dointvec_minmax);
5277 set_table_entry(&table[10], "cache_nice_tries",
5278 &sd->cache_nice_tries,
5279 sizeof(int), 0644, proc_dointvec_minmax);
5280 set_table_entry(&table[12], "flags", &sd->flags,
5281 sizeof(int), 0644, proc_dointvec_minmax);
5283 return table;
5286 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5288 struct ctl_table *entry, *table;
5289 struct sched_domain *sd;
5290 int domain_num = 0, i;
5291 char buf[32];
5293 for_each_domain(cpu, sd)
5294 domain_num++;
5295 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5297 i = 0;
5298 for_each_domain(cpu, sd) {
5299 snprintf(buf, 32, "domain%d", i);
5300 entry->procname = kstrdup(buf, GFP_KERNEL);
5301 entry->mode = 0755;
5302 entry->child = sd_alloc_ctl_domain_table(sd);
5303 entry++;
5304 i++;
5306 return table;
5309 static struct ctl_table_header *sd_sysctl_header;
5310 static void init_sched_domain_sysctl(void)
5312 int i, cpu_num = num_online_cpus();
5313 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5314 char buf[32];
5316 sd_ctl_dir[0].child = entry;
5318 for (i = 0; i < cpu_num; i++, entry++) {
5319 snprintf(buf, 32, "cpu%d", i);
5320 entry->procname = kstrdup(buf, GFP_KERNEL);
5321 entry->mode = 0755;
5322 entry->child = sd_alloc_ctl_cpu_table(i);
5324 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5326 #else
5327 static void init_sched_domain_sysctl(void)
5330 #endif
5333 * migration_call - callback that gets triggered when a CPU is added.
5334 * Here we can start up the necessary migration thread for the new CPU.
5336 static int __cpuinit
5337 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5339 struct task_struct *p;
5340 int cpu = (long)hcpu;
5341 unsigned long flags;
5342 struct rq *rq;
5344 switch (action) {
5345 case CPU_LOCK_ACQUIRE:
5346 mutex_lock(&sched_hotcpu_mutex);
5347 break;
5349 case CPU_UP_PREPARE:
5350 case CPU_UP_PREPARE_FROZEN:
5351 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5352 if (IS_ERR(p))
5353 return NOTIFY_BAD;
5354 kthread_bind(p, cpu);
5355 /* Must be high prio: stop_machine expects to yield to it. */
5356 rq = task_rq_lock(p, &flags);
5357 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5358 task_rq_unlock(rq, &flags);
5359 cpu_rq(cpu)->migration_thread = p;
5360 break;
5362 case CPU_ONLINE:
5363 case CPU_ONLINE_FROZEN:
5364 /* Strictly unneccessary, as first user will wake it. */
5365 wake_up_process(cpu_rq(cpu)->migration_thread);
5366 break;
5368 #ifdef CONFIG_HOTPLUG_CPU
5369 case CPU_UP_CANCELED:
5370 case CPU_UP_CANCELED_FROZEN:
5371 if (!cpu_rq(cpu)->migration_thread)
5372 break;
5373 /* Unbind it from offline cpu so it can run. Fall thru. */
5374 kthread_bind(cpu_rq(cpu)->migration_thread,
5375 any_online_cpu(cpu_online_map));
5376 kthread_stop(cpu_rq(cpu)->migration_thread);
5377 cpu_rq(cpu)->migration_thread = NULL;
5378 break;
5380 case CPU_DEAD:
5381 case CPU_DEAD_FROZEN:
5382 migrate_live_tasks(cpu);
5383 rq = cpu_rq(cpu);
5384 kthread_stop(rq->migration_thread);
5385 rq->migration_thread = NULL;
5386 /* Idle task back to normal (off runqueue, low prio) */
5387 rq = task_rq_lock(rq->idle, &flags);
5388 update_rq_clock(rq);
5389 deactivate_task(rq, rq->idle, 0);
5390 rq->idle->static_prio = MAX_PRIO;
5391 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5392 rq->idle->sched_class = &idle_sched_class;
5393 migrate_dead_tasks(cpu);
5394 task_rq_unlock(rq, &flags);
5395 migrate_nr_uninterruptible(rq);
5396 BUG_ON(rq->nr_running != 0);
5398 /* No need to migrate the tasks: it was best-effort if
5399 * they didn't take sched_hotcpu_mutex. Just wake up
5400 * the requestors. */
5401 spin_lock_irq(&rq->lock);
5402 while (!list_empty(&rq->migration_queue)) {
5403 struct migration_req *req;
5405 req = list_entry(rq->migration_queue.next,
5406 struct migration_req, list);
5407 list_del_init(&req->list);
5408 complete(&req->done);
5410 spin_unlock_irq(&rq->lock);
5411 break;
5412 #endif
5413 case CPU_LOCK_RELEASE:
5414 mutex_unlock(&sched_hotcpu_mutex);
5415 break;
5417 return NOTIFY_OK;
5420 /* Register at highest priority so that task migration (migrate_all_tasks)
5421 * happens before everything else.
5423 static struct notifier_block __cpuinitdata migration_notifier = {
5424 .notifier_call = migration_call,
5425 .priority = 10
5428 int __init migration_init(void)
5430 void *cpu = (void *)(long)smp_processor_id();
5431 int err;
5433 /* Start one for the boot CPU: */
5434 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5435 BUG_ON(err == NOTIFY_BAD);
5436 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5437 register_cpu_notifier(&migration_notifier);
5439 return 0;
5441 #endif
5443 #ifdef CONFIG_SMP
5445 /* Number of possible processor ids */
5446 int nr_cpu_ids __read_mostly = NR_CPUS;
5447 EXPORT_SYMBOL(nr_cpu_ids);
5449 #undef SCHED_DOMAIN_DEBUG
5450 #ifdef SCHED_DOMAIN_DEBUG
5451 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5453 int level = 0;
5455 if (!sd) {
5456 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5457 return;
5460 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5462 do {
5463 int i;
5464 char str[NR_CPUS];
5465 struct sched_group *group = sd->groups;
5466 cpumask_t groupmask;
5468 cpumask_scnprintf(str, NR_CPUS, sd->span);
5469 cpus_clear(groupmask);
5471 printk(KERN_DEBUG);
5472 for (i = 0; i < level + 1; i++)
5473 printk(" ");
5474 printk("domain %d: ", level);
5476 if (!(sd->flags & SD_LOAD_BALANCE)) {
5477 printk("does not load-balance\n");
5478 if (sd->parent)
5479 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5480 " has parent");
5481 break;
5484 printk("span %s\n", str);
5486 if (!cpu_isset(cpu, sd->span))
5487 printk(KERN_ERR "ERROR: domain->span does not contain "
5488 "CPU%d\n", cpu);
5489 if (!cpu_isset(cpu, group->cpumask))
5490 printk(KERN_ERR "ERROR: domain->groups does not contain"
5491 " CPU%d\n", cpu);
5493 printk(KERN_DEBUG);
5494 for (i = 0; i < level + 2; i++)
5495 printk(" ");
5496 printk("groups:");
5497 do {
5498 if (!group) {
5499 printk("\n");
5500 printk(KERN_ERR "ERROR: group is NULL\n");
5501 break;
5504 if (!group->__cpu_power) {
5505 printk("\n");
5506 printk(KERN_ERR "ERROR: domain->cpu_power not "
5507 "set\n");
5510 if (!cpus_weight(group->cpumask)) {
5511 printk("\n");
5512 printk(KERN_ERR "ERROR: empty group\n");
5515 if (cpus_intersects(groupmask, group->cpumask)) {
5516 printk("\n");
5517 printk(KERN_ERR "ERROR: repeated CPUs\n");
5520 cpus_or(groupmask, groupmask, group->cpumask);
5522 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5523 printk(" %s", str);
5525 group = group->next;
5526 } while (group != sd->groups);
5527 printk("\n");
5529 if (!cpus_equal(sd->span, groupmask))
5530 printk(KERN_ERR "ERROR: groups don't span "
5531 "domain->span\n");
5533 level++;
5534 sd = sd->parent;
5535 if (!sd)
5536 continue;
5538 if (!cpus_subset(groupmask, sd->span))
5539 printk(KERN_ERR "ERROR: parent span is not a superset "
5540 "of domain->span\n");
5542 } while (sd);
5544 #else
5545 # define sched_domain_debug(sd, cpu) do { } while (0)
5546 #endif
5548 static int sd_degenerate(struct sched_domain *sd)
5550 if (cpus_weight(sd->span) == 1)
5551 return 1;
5553 /* Following flags need at least 2 groups */
5554 if (sd->flags & (SD_LOAD_BALANCE |
5555 SD_BALANCE_NEWIDLE |
5556 SD_BALANCE_FORK |
5557 SD_BALANCE_EXEC |
5558 SD_SHARE_CPUPOWER |
5559 SD_SHARE_PKG_RESOURCES)) {
5560 if (sd->groups != sd->groups->next)
5561 return 0;
5564 /* Following flags don't use groups */
5565 if (sd->flags & (SD_WAKE_IDLE |
5566 SD_WAKE_AFFINE |
5567 SD_WAKE_BALANCE))
5568 return 0;
5570 return 1;
5573 static int
5574 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5576 unsigned long cflags = sd->flags, pflags = parent->flags;
5578 if (sd_degenerate(parent))
5579 return 1;
5581 if (!cpus_equal(sd->span, parent->span))
5582 return 0;
5584 /* Does parent contain flags not in child? */
5585 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5586 if (cflags & SD_WAKE_AFFINE)
5587 pflags &= ~SD_WAKE_BALANCE;
5588 /* Flags needing groups don't count if only 1 group in parent */
5589 if (parent->groups == parent->groups->next) {
5590 pflags &= ~(SD_LOAD_BALANCE |
5591 SD_BALANCE_NEWIDLE |
5592 SD_BALANCE_FORK |
5593 SD_BALANCE_EXEC |
5594 SD_SHARE_CPUPOWER |
5595 SD_SHARE_PKG_RESOURCES);
5597 if (~cflags & pflags)
5598 return 0;
5600 return 1;
5604 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5605 * hold the hotplug lock.
5607 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5609 struct rq *rq = cpu_rq(cpu);
5610 struct sched_domain *tmp;
5612 /* Remove the sched domains which do not contribute to scheduling. */
5613 for (tmp = sd; tmp; tmp = tmp->parent) {
5614 struct sched_domain *parent = tmp->parent;
5615 if (!parent)
5616 break;
5617 if (sd_parent_degenerate(tmp, parent)) {
5618 tmp->parent = parent->parent;
5619 if (parent->parent)
5620 parent->parent->child = tmp;
5624 if (sd && sd_degenerate(sd)) {
5625 sd = sd->parent;
5626 if (sd)
5627 sd->child = NULL;
5630 sched_domain_debug(sd, cpu);
5632 rcu_assign_pointer(rq->sd, sd);
5635 /* cpus with isolated domains */
5636 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5638 /* Setup the mask of cpus configured for isolated domains */
5639 static int __init isolated_cpu_setup(char *str)
5641 int ints[NR_CPUS], i;
5643 str = get_options(str, ARRAY_SIZE(ints), ints);
5644 cpus_clear(cpu_isolated_map);
5645 for (i = 1; i <= ints[0]; i++)
5646 if (ints[i] < NR_CPUS)
5647 cpu_set(ints[i], cpu_isolated_map);
5648 return 1;
5651 __setup ("isolcpus=", isolated_cpu_setup);
5654 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5655 * to a function which identifies what group(along with sched group) a CPU
5656 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5657 * (due to the fact that we keep track of groups covered with a cpumask_t).
5659 * init_sched_build_groups will build a circular linked list of the groups
5660 * covered by the given span, and will set each group's ->cpumask correctly,
5661 * and ->cpu_power to 0.
5663 static void
5664 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5665 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5666 struct sched_group **sg))
5668 struct sched_group *first = NULL, *last = NULL;
5669 cpumask_t covered = CPU_MASK_NONE;
5670 int i;
5672 for_each_cpu_mask(i, span) {
5673 struct sched_group *sg;
5674 int group = group_fn(i, cpu_map, &sg);
5675 int j;
5677 if (cpu_isset(i, covered))
5678 continue;
5680 sg->cpumask = CPU_MASK_NONE;
5681 sg->__cpu_power = 0;
5683 for_each_cpu_mask(j, span) {
5684 if (group_fn(j, cpu_map, NULL) != group)
5685 continue;
5687 cpu_set(j, covered);
5688 cpu_set(j, sg->cpumask);
5690 if (!first)
5691 first = sg;
5692 if (last)
5693 last->next = sg;
5694 last = sg;
5696 last->next = first;
5699 #define SD_NODES_PER_DOMAIN 16
5701 #ifdef CONFIG_NUMA
5704 * find_next_best_node - find the next node to include in a sched_domain
5705 * @node: node whose sched_domain we're building
5706 * @used_nodes: nodes already in the sched_domain
5708 * Find the next node to include in a given scheduling domain. Simply
5709 * finds the closest node not already in the @used_nodes map.
5711 * Should use nodemask_t.
5713 static int find_next_best_node(int node, unsigned long *used_nodes)
5715 int i, n, val, min_val, best_node = 0;
5717 min_val = INT_MAX;
5719 for (i = 0; i < MAX_NUMNODES; i++) {
5720 /* Start at @node */
5721 n = (node + i) % MAX_NUMNODES;
5723 if (!nr_cpus_node(n))
5724 continue;
5726 /* Skip already used nodes */
5727 if (test_bit(n, used_nodes))
5728 continue;
5730 /* Simple min distance search */
5731 val = node_distance(node, n);
5733 if (val < min_val) {
5734 min_val = val;
5735 best_node = n;
5739 set_bit(best_node, used_nodes);
5740 return best_node;
5744 * sched_domain_node_span - get a cpumask for a node's sched_domain
5745 * @node: node whose cpumask we're constructing
5746 * @size: number of nodes to include in this span
5748 * Given a node, construct a good cpumask for its sched_domain to span. It
5749 * should be one that prevents unnecessary balancing, but also spreads tasks
5750 * out optimally.
5752 static cpumask_t sched_domain_node_span(int node)
5754 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5755 cpumask_t span, nodemask;
5756 int i;
5758 cpus_clear(span);
5759 bitmap_zero(used_nodes, MAX_NUMNODES);
5761 nodemask = node_to_cpumask(node);
5762 cpus_or(span, span, nodemask);
5763 set_bit(node, used_nodes);
5765 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5766 int next_node = find_next_best_node(node, used_nodes);
5768 nodemask = node_to_cpumask(next_node);
5769 cpus_or(span, span, nodemask);
5772 return span;
5774 #endif
5776 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5779 * SMT sched-domains:
5781 #ifdef CONFIG_SCHED_SMT
5782 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5783 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5785 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5786 struct sched_group **sg)
5788 if (sg)
5789 *sg = &per_cpu(sched_group_cpus, cpu);
5790 return cpu;
5792 #endif
5795 * multi-core sched-domains:
5797 #ifdef CONFIG_SCHED_MC
5798 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5799 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5800 #endif
5802 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5803 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5804 struct sched_group **sg)
5806 int group;
5807 cpumask_t mask = cpu_sibling_map[cpu];
5808 cpus_and(mask, mask, *cpu_map);
5809 group = first_cpu(mask);
5810 if (sg)
5811 *sg = &per_cpu(sched_group_core, group);
5812 return group;
5814 #elif defined(CONFIG_SCHED_MC)
5815 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5816 struct sched_group **sg)
5818 if (sg)
5819 *sg = &per_cpu(sched_group_core, cpu);
5820 return cpu;
5822 #endif
5824 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5825 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5827 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5828 struct sched_group **sg)
5830 int group;
5831 #ifdef CONFIG_SCHED_MC
5832 cpumask_t mask = cpu_coregroup_map(cpu);
5833 cpus_and(mask, mask, *cpu_map);
5834 group = first_cpu(mask);
5835 #elif defined(CONFIG_SCHED_SMT)
5836 cpumask_t mask = cpu_sibling_map[cpu];
5837 cpus_and(mask, mask, *cpu_map);
5838 group = first_cpu(mask);
5839 #else
5840 group = cpu;
5841 #endif
5842 if (sg)
5843 *sg = &per_cpu(sched_group_phys, group);
5844 return group;
5847 #ifdef CONFIG_NUMA
5849 * The init_sched_build_groups can't handle what we want to do with node
5850 * groups, so roll our own. Now each node has its own list of groups which
5851 * gets dynamically allocated.
5853 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5854 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5856 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5857 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5859 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5860 struct sched_group **sg)
5862 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5863 int group;
5865 cpus_and(nodemask, nodemask, *cpu_map);
5866 group = first_cpu(nodemask);
5868 if (sg)
5869 *sg = &per_cpu(sched_group_allnodes, group);
5870 return group;
5873 static void init_numa_sched_groups_power(struct sched_group *group_head)
5875 struct sched_group *sg = group_head;
5876 int j;
5878 if (!sg)
5879 return;
5880 next_sg:
5881 for_each_cpu_mask(j, sg->cpumask) {
5882 struct sched_domain *sd;
5884 sd = &per_cpu(phys_domains, j);
5885 if (j != first_cpu(sd->groups->cpumask)) {
5887 * Only add "power" once for each
5888 * physical package.
5890 continue;
5893 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5895 sg = sg->next;
5896 if (sg != group_head)
5897 goto next_sg;
5899 #endif
5901 #ifdef CONFIG_NUMA
5902 /* Free memory allocated for various sched_group structures */
5903 static void free_sched_groups(const cpumask_t *cpu_map)
5905 int cpu, i;
5907 for_each_cpu_mask(cpu, *cpu_map) {
5908 struct sched_group **sched_group_nodes
5909 = sched_group_nodes_bycpu[cpu];
5911 if (!sched_group_nodes)
5912 continue;
5914 for (i = 0; i < MAX_NUMNODES; i++) {
5915 cpumask_t nodemask = node_to_cpumask(i);
5916 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5918 cpus_and(nodemask, nodemask, *cpu_map);
5919 if (cpus_empty(nodemask))
5920 continue;
5922 if (sg == NULL)
5923 continue;
5924 sg = sg->next;
5925 next_sg:
5926 oldsg = sg;
5927 sg = sg->next;
5928 kfree(oldsg);
5929 if (oldsg != sched_group_nodes[i])
5930 goto next_sg;
5932 kfree(sched_group_nodes);
5933 sched_group_nodes_bycpu[cpu] = NULL;
5936 #else
5937 static void free_sched_groups(const cpumask_t *cpu_map)
5940 #endif
5943 * Initialize sched groups cpu_power.
5945 * cpu_power indicates the capacity of sched group, which is used while
5946 * distributing the load between different sched groups in a sched domain.
5947 * Typically cpu_power for all the groups in a sched domain will be same unless
5948 * there are asymmetries in the topology. If there are asymmetries, group
5949 * having more cpu_power will pickup more load compared to the group having
5950 * less cpu_power.
5952 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5953 * the maximum number of tasks a group can handle in the presence of other idle
5954 * or lightly loaded groups in the same sched domain.
5956 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5958 struct sched_domain *child;
5959 struct sched_group *group;
5961 WARN_ON(!sd || !sd->groups);
5963 if (cpu != first_cpu(sd->groups->cpumask))
5964 return;
5966 child = sd->child;
5968 sd->groups->__cpu_power = 0;
5971 * For perf policy, if the groups in child domain share resources
5972 * (for example cores sharing some portions of the cache hierarchy
5973 * or SMT), then set this domain groups cpu_power such that each group
5974 * can handle only one task, when there are other idle groups in the
5975 * same sched domain.
5977 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5978 (child->flags &
5979 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5980 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5981 return;
5985 * add cpu_power of each child group to this groups cpu_power
5987 group = child->groups;
5988 do {
5989 sg_inc_cpu_power(sd->groups, group->__cpu_power);
5990 group = group->next;
5991 } while (group != child->groups);
5995 * Build sched domains for a given set of cpus and attach the sched domains
5996 * to the individual cpus
5998 static int build_sched_domains(const cpumask_t *cpu_map)
6000 int i;
6001 #ifdef CONFIG_NUMA
6002 struct sched_group **sched_group_nodes = NULL;
6003 int sd_allnodes = 0;
6006 * Allocate the per-node list of sched groups
6008 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6009 GFP_KERNEL);
6010 if (!sched_group_nodes) {
6011 printk(KERN_WARNING "Can not alloc sched group node list\n");
6012 return -ENOMEM;
6014 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6015 #endif
6018 * Set up domains for cpus specified by the cpu_map.
6020 for_each_cpu_mask(i, *cpu_map) {
6021 struct sched_domain *sd = NULL, *p;
6022 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6024 cpus_and(nodemask, nodemask, *cpu_map);
6026 #ifdef CONFIG_NUMA
6027 if (cpus_weight(*cpu_map) >
6028 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6029 sd = &per_cpu(allnodes_domains, i);
6030 *sd = SD_ALLNODES_INIT;
6031 sd->span = *cpu_map;
6032 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6033 p = sd;
6034 sd_allnodes = 1;
6035 } else
6036 p = NULL;
6038 sd = &per_cpu(node_domains, i);
6039 *sd = SD_NODE_INIT;
6040 sd->span = sched_domain_node_span(cpu_to_node(i));
6041 sd->parent = p;
6042 if (p)
6043 p->child = sd;
6044 cpus_and(sd->span, sd->span, *cpu_map);
6045 #endif
6047 p = sd;
6048 sd = &per_cpu(phys_domains, i);
6049 *sd = SD_CPU_INIT;
6050 sd->span = nodemask;
6051 sd->parent = p;
6052 if (p)
6053 p->child = sd;
6054 cpu_to_phys_group(i, cpu_map, &sd->groups);
6056 #ifdef CONFIG_SCHED_MC
6057 p = sd;
6058 sd = &per_cpu(core_domains, i);
6059 *sd = SD_MC_INIT;
6060 sd->span = cpu_coregroup_map(i);
6061 cpus_and(sd->span, sd->span, *cpu_map);
6062 sd->parent = p;
6063 p->child = sd;
6064 cpu_to_core_group(i, cpu_map, &sd->groups);
6065 #endif
6067 #ifdef CONFIG_SCHED_SMT
6068 p = sd;
6069 sd = &per_cpu(cpu_domains, i);
6070 *sd = SD_SIBLING_INIT;
6071 sd->span = cpu_sibling_map[i];
6072 cpus_and(sd->span, sd->span, *cpu_map);
6073 sd->parent = p;
6074 p->child = sd;
6075 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6076 #endif
6079 #ifdef CONFIG_SCHED_SMT
6080 /* Set up CPU (sibling) groups */
6081 for_each_cpu_mask(i, *cpu_map) {
6082 cpumask_t this_sibling_map = cpu_sibling_map[i];
6083 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6084 if (i != first_cpu(this_sibling_map))
6085 continue;
6087 init_sched_build_groups(this_sibling_map, cpu_map,
6088 &cpu_to_cpu_group);
6090 #endif
6092 #ifdef CONFIG_SCHED_MC
6093 /* Set up multi-core groups */
6094 for_each_cpu_mask(i, *cpu_map) {
6095 cpumask_t this_core_map = cpu_coregroup_map(i);
6096 cpus_and(this_core_map, this_core_map, *cpu_map);
6097 if (i != first_cpu(this_core_map))
6098 continue;
6099 init_sched_build_groups(this_core_map, cpu_map,
6100 &cpu_to_core_group);
6102 #endif
6104 /* Set up physical groups */
6105 for (i = 0; i < MAX_NUMNODES; i++) {
6106 cpumask_t nodemask = node_to_cpumask(i);
6108 cpus_and(nodemask, nodemask, *cpu_map);
6109 if (cpus_empty(nodemask))
6110 continue;
6112 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6115 #ifdef CONFIG_NUMA
6116 /* Set up node groups */
6117 if (sd_allnodes)
6118 init_sched_build_groups(*cpu_map, cpu_map,
6119 &cpu_to_allnodes_group);
6121 for (i = 0; i < MAX_NUMNODES; i++) {
6122 /* Set up node groups */
6123 struct sched_group *sg, *prev;
6124 cpumask_t nodemask = node_to_cpumask(i);
6125 cpumask_t domainspan;
6126 cpumask_t covered = CPU_MASK_NONE;
6127 int j;
6129 cpus_and(nodemask, nodemask, *cpu_map);
6130 if (cpus_empty(nodemask)) {
6131 sched_group_nodes[i] = NULL;
6132 continue;
6135 domainspan = sched_domain_node_span(i);
6136 cpus_and(domainspan, domainspan, *cpu_map);
6138 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6139 if (!sg) {
6140 printk(KERN_WARNING "Can not alloc domain group for "
6141 "node %d\n", i);
6142 goto error;
6144 sched_group_nodes[i] = sg;
6145 for_each_cpu_mask(j, nodemask) {
6146 struct sched_domain *sd;
6148 sd = &per_cpu(node_domains, j);
6149 sd->groups = sg;
6151 sg->__cpu_power = 0;
6152 sg->cpumask = nodemask;
6153 sg->next = sg;
6154 cpus_or(covered, covered, nodemask);
6155 prev = sg;
6157 for (j = 0; j < MAX_NUMNODES; j++) {
6158 cpumask_t tmp, notcovered;
6159 int n = (i + j) % MAX_NUMNODES;
6161 cpus_complement(notcovered, covered);
6162 cpus_and(tmp, notcovered, *cpu_map);
6163 cpus_and(tmp, tmp, domainspan);
6164 if (cpus_empty(tmp))
6165 break;
6167 nodemask = node_to_cpumask(n);
6168 cpus_and(tmp, tmp, nodemask);
6169 if (cpus_empty(tmp))
6170 continue;
6172 sg = kmalloc_node(sizeof(struct sched_group),
6173 GFP_KERNEL, i);
6174 if (!sg) {
6175 printk(KERN_WARNING
6176 "Can not alloc domain group for node %d\n", j);
6177 goto error;
6179 sg->__cpu_power = 0;
6180 sg->cpumask = tmp;
6181 sg->next = prev->next;
6182 cpus_or(covered, covered, tmp);
6183 prev->next = sg;
6184 prev = sg;
6187 #endif
6189 /* Calculate CPU power for physical packages and nodes */
6190 #ifdef CONFIG_SCHED_SMT
6191 for_each_cpu_mask(i, *cpu_map) {
6192 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6194 init_sched_groups_power(i, sd);
6196 #endif
6197 #ifdef CONFIG_SCHED_MC
6198 for_each_cpu_mask(i, *cpu_map) {
6199 struct sched_domain *sd = &per_cpu(core_domains, i);
6201 init_sched_groups_power(i, sd);
6203 #endif
6205 for_each_cpu_mask(i, *cpu_map) {
6206 struct sched_domain *sd = &per_cpu(phys_domains, i);
6208 init_sched_groups_power(i, sd);
6211 #ifdef CONFIG_NUMA
6212 for (i = 0; i < MAX_NUMNODES; i++)
6213 init_numa_sched_groups_power(sched_group_nodes[i]);
6215 if (sd_allnodes) {
6216 struct sched_group *sg;
6218 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6219 init_numa_sched_groups_power(sg);
6221 #endif
6223 /* Attach the domains */
6224 for_each_cpu_mask(i, *cpu_map) {
6225 struct sched_domain *sd;
6226 #ifdef CONFIG_SCHED_SMT
6227 sd = &per_cpu(cpu_domains, i);
6228 #elif defined(CONFIG_SCHED_MC)
6229 sd = &per_cpu(core_domains, i);
6230 #else
6231 sd = &per_cpu(phys_domains, i);
6232 #endif
6233 cpu_attach_domain(sd, i);
6236 return 0;
6238 #ifdef CONFIG_NUMA
6239 error:
6240 free_sched_groups(cpu_map);
6241 return -ENOMEM;
6242 #endif
6245 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6247 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6249 cpumask_t cpu_default_map;
6250 int err;
6253 * Setup mask for cpus without special case scheduling requirements.
6254 * For now this just excludes isolated cpus, but could be used to
6255 * exclude other special cases in the future.
6257 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6259 err = build_sched_domains(&cpu_default_map);
6261 return err;
6264 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6266 free_sched_groups(cpu_map);
6270 * Detach sched domains from a group of cpus specified in cpu_map
6271 * These cpus will now be attached to the NULL domain
6273 static void detach_destroy_domains(const cpumask_t *cpu_map)
6275 int i;
6277 for_each_cpu_mask(i, *cpu_map)
6278 cpu_attach_domain(NULL, i);
6279 synchronize_sched();
6280 arch_destroy_sched_domains(cpu_map);
6284 * Partition sched domains as specified by the cpumasks below.
6285 * This attaches all cpus from the cpumasks to the NULL domain,
6286 * waits for a RCU quiescent period, recalculates sched
6287 * domain information and then attaches them back to the
6288 * correct sched domains
6289 * Call with hotplug lock held
6291 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6293 cpumask_t change_map;
6294 int err = 0;
6296 cpus_and(*partition1, *partition1, cpu_online_map);
6297 cpus_and(*partition2, *partition2, cpu_online_map);
6298 cpus_or(change_map, *partition1, *partition2);
6300 /* Detach sched domains from all of the affected cpus */
6301 detach_destroy_domains(&change_map);
6302 if (!cpus_empty(*partition1))
6303 err = build_sched_domains(partition1);
6304 if (!err && !cpus_empty(*partition2))
6305 err = build_sched_domains(partition2);
6307 return err;
6310 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6311 int arch_reinit_sched_domains(void)
6313 int err;
6315 mutex_lock(&sched_hotcpu_mutex);
6316 detach_destroy_domains(&cpu_online_map);
6317 err = arch_init_sched_domains(&cpu_online_map);
6318 mutex_unlock(&sched_hotcpu_mutex);
6320 return err;
6323 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6325 int ret;
6327 if (buf[0] != '0' && buf[0] != '1')
6328 return -EINVAL;
6330 if (smt)
6331 sched_smt_power_savings = (buf[0] == '1');
6332 else
6333 sched_mc_power_savings = (buf[0] == '1');
6335 ret = arch_reinit_sched_domains();
6337 return ret ? ret : count;
6340 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6342 int err = 0;
6344 #ifdef CONFIG_SCHED_SMT
6345 if (smt_capable())
6346 err = sysfs_create_file(&cls->kset.kobj,
6347 &attr_sched_smt_power_savings.attr);
6348 #endif
6349 #ifdef CONFIG_SCHED_MC
6350 if (!err && mc_capable())
6351 err = sysfs_create_file(&cls->kset.kobj,
6352 &attr_sched_mc_power_savings.attr);
6353 #endif
6354 return err;
6356 #endif
6358 #ifdef CONFIG_SCHED_MC
6359 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6361 return sprintf(page, "%u\n", sched_mc_power_savings);
6363 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6364 const char *buf, size_t count)
6366 return sched_power_savings_store(buf, count, 0);
6368 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6369 sched_mc_power_savings_store);
6370 #endif
6372 #ifdef CONFIG_SCHED_SMT
6373 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6375 return sprintf(page, "%u\n", sched_smt_power_savings);
6377 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6378 const char *buf, size_t count)
6380 return sched_power_savings_store(buf, count, 1);
6382 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6383 sched_smt_power_savings_store);
6384 #endif
6387 * Force a reinitialization of the sched domains hierarchy. The domains
6388 * and groups cannot be updated in place without racing with the balancing
6389 * code, so we temporarily attach all running cpus to the NULL domain
6390 * which will prevent rebalancing while the sched domains are recalculated.
6392 static int update_sched_domains(struct notifier_block *nfb,
6393 unsigned long action, void *hcpu)
6395 switch (action) {
6396 case CPU_UP_PREPARE:
6397 case CPU_UP_PREPARE_FROZEN:
6398 case CPU_DOWN_PREPARE:
6399 case CPU_DOWN_PREPARE_FROZEN:
6400 detach_destroy_domains(&cpu_online_map);
6401 return NOTIFY_OK;
6403 case CPU_UP_CANCELED:
6404 case CPU_UP_CANCELED_FROZEN:
6405 case CPU_DOWN_FAILED:
6406 case CPU_DOWN_FAILED_FROZEN:
6407 case CPU_ONLINE:
6408 case CPU_ONLINE_FROZEN:
6409 case CPU_DEAD:
6410 case CPU_DEAD_FROZEN:
6412 * Fall through and re-initialise the domains.
6414 break;
6415 default:
6416 return NOTIFY_DONE;
6419 /* The hotplug lock is already held by cpu_up/cpu_down */
6420 arch_init_sched_domains(&cpu_online_map);
6422 return NOTIFY_OK;
6425 void __init sched_init_smp(void)
6427 cpumask_t non_isolated_cpus;
6429 mutex_lock(&sched_hotcpu_mutex);
6430 arch_init_sched_domains(&cpu_online_map);
6431 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6432 if (cpus_empty(non_isolated_cpus))
6433 cpu_set(smp_processor_id(), non_isolated_cpus);
6434 mutex_unlock(&sched_hotcpu_mutex);
6435 /* XXX: Theoretical race here - CPU may be hotplugged now */
6436 hotcpu_notifier(update_sched_domains, 0);
6438 init_sched_domain_sysctl();
6440 /* Move init over to a non-isolated CPU */
6441 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6442 BUG();
6443 sched_init_granularity();
6445 #else
6446 void __init sched_init_smp(void)
6448 sched_init_granularity();
6450 #endif /* CONFIG_SMP */
6452 int in_sched_functions(unsigned long addr)
6454 /* Linker adds these: start and end of __sched functions */
6455 extern char __sched_text_start[], __sched_text_end[];
6457 return in_lock_functions(addr) ||
6458 (addr >= (unsigned long)__sched_text_start
6459 && addr < (unsigned long)__sched_text_end);
6462 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6464 cfs_rq->tasks_timeline = RB_ROOT;
6465 cfs_rq->fair_clock = 1;
6466 #ifdef CONFIG_FAIR_GROUP_SCHED
6467 cfs_rq->rq = rq;
6468 #endif
6471 void __init sched_init(void)
6473 u64 now = sched_clock();
6474 int highest_cpu = 0;
6475 int i, j;
6478 * Link up the scheduling class hierarchy:
6480 rt_sched_class.next = &fair_sched_class;
6481 fair_sched_class.next = &idle_sched_class;
6482 idle_sched_class.next = NULL;
6484 for_each_possible_cpu(i) {
6485 struct rt_prio_array *array;
6486 struct rq *rq;
6488 rq = cpu_rq(i);
6489 spin_lock_init(&rq->lock);
6490 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6491 rq->nr_running = 0;
6492 rq->clock = 1;
6493 init_cfs_rq(&rq->cfs, rq);
6494 #ifdef CONFIG_FAIR_GROUP_SCHED
6495 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6496 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6497 #endif
6498 rq->ls.load_update_last = now;
6499 rq->ls.load_update_start = now;
6501 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6502 rq->cpu_load[j] = 0;
6503 #ifdef CONFIG_SMP
6504 rq->sd = NULL;
6505 rq->active_balance = 0;
6506 rq->next_balance = jiffies;
6507 rq->push_cpu = 0;
6508 rq->cpu = i;
6509 rq->migration_thread = NULL;
6510 INIT_LIST_HEAD(&rq->migration_queue);
6511 #endif
6512 atomic_set(&rq->nr_iowait, 0);
6514 array = &rq->rt.active;
6515 for (j = 0; j < MAX_RT_PRIO; j++) {
6516 INIT_LIST_HEAD(array->queue + j);
6517 __clear_bit(j, array->bitmap);
6519 highest_cpu = i;
6520 /* delimiter for bitsearch: */
6521 __set_bit(MAX_RT_PRIO, array->bitmap);
6524 set_load_weight(&init_task);
6526 #ifdef CONFIG_PREEMPT_NOTIFIERS
6527 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6528 #endif
6530 #ifdef CONFIG_SMP
6531 nr_cpu_ids = highest_cpu + 1;
6532 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6533 #endif
6535 #ifdef CONFIG_RT_MUTEXES
6536 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6537 #endif
6540 * The boot idle thread does lazy MMU switching as well:
6542 atomic_inc(&init_mm.mm_count);
6543 enter_lazy_tlb(&init_mm, current);
6546 * Make us the idle thread. Technically, schedule() should not be
6547 * called from this thread, however somewhere below it might be,
6548 * but because we are the idle thread, we just pick up running again
6549 * when this runqueue becomes "idle".
6551 init_idle(current, smp_processor_id());
6553 * During early bootup we pretend to be a normal task:
6555 current->sched_class = &fair_sched_class;
6558 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6559 void __might_sleep(char *file, int line)
6561 #ifdef in_atomic
6562 static unsigned long prev_jiffy; /* ratelimiting */
6564 if ((in_atomic() || irqs_disabled()) &&
6565 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6566 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6567 return;
6568 prev_jiffy = jiffies;
6569 printk(KERN_ERR "BUG: sleeping function called from invalid"
6570 " context at %s:%d\n", file, line);
6571 printk("in_atomic():%d, irqs_disabled():%d\n",
6572 in_atomic(), irqs_disabled());
6573 debug_show_held_locks(current);
6574 if (irqs_disabled())
6575 print_irqtrace_events(current);
6576 dump_stack();
6578 #endif
6580 EXPORT_SYMBOL(__might_sleep);
6581 #endif
6583 #ifdef CONFIG_MAGIC_SYSRQ
6584 void normalize_rt_tasks(void)
6586 struct task_struct *g, *p;
6587 unsigned long flags;
6588 struct rq *rq;
6589 int on_rq;
6591 read_lock_irq(&tasklist_lock);
6592 do_each_thread(g, p) {
6593 p->se.fair_key = 0;
6594 p->se.wait_runtime = 0;
6595 p->se.exec_start = 0;
6596 p->se.wait_start_fair = 0;
6597 p->se.sleep_start_fair = 0;
6598 #ifdef CONFIG_SCHEDSTATS
6599 p->se.wait_start = 0;
6600 p->se.sleep_start = 0;
6601 p->se.block_start = 0;
6602 #endif
6603 task_rq(p)->cfs.fair_clock = 0;
6604 task_rq(p)->clock = 0;
6606 if (!rt_task(p)) {
6608 * Renice negative nice level userspace
6609 * tasks back to 0:
6611 if (TASK_NICE(p) < 0 && p->mm)
6612 set_user_nice(p, 0);
6613 continue;
6616 spin_lock_irqsave(&p->pi_lock, flags);
6617 rq = __task_rq_lock(p);
6618 #ifdef CONFIG_SMP
6620 * Do not touch the migration thread:
6622 if (p == rq->migration_thread)
6623 goto out_unlock;
6624 #endif
6626 on_rq = p->se.on_rq;
6627 if (on_rq) {
6628 update_rq_clock(task_rq(p));
6629 deactivate_task(task_rq(p), p, 0);
6631 __setscheduler(rq, p, SCHED_NORMAL, 0);
6632 if (on_rq) {
6633 activate_task(task_rq(p), p, 0);
6634 resched_task(rq->curr);
6636 #ifdef CONFIG_SMP
6637 out_unlock:
6638 #endif
6639 __task_rq_unlock(rq);
6640 spin_unlock_irqrestore(&p->pi_lock, flags);
6641 } while_each_thread(g, p);
6643 read_unlock_irq(&tasklist_lock);
6646 #endif /* CONFIG_MAGIC_SYSRQ */
6648 #ifdef CONFIG_IA64
6650 * These functions are only useful for the IA64 MCA handling.
6652 * They can only be called when the whole system has been
6653 * stopped - every CPU needs to be quiescent, and no scheduling
6654 * activity can take place. Using them for anything else would
6655 * be a serious bug, and as a result, they aren't even visible
6656 * under any other configuration.
6660 * curr_task - return the current task for a given cpu.
6661 * @cpu: the processor in question.
6663 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6665 struct task_struct *curr_task(int cpu)
6667 return cpu_curr(cpu);
6671 * set_curr_task - set the current task for a given cpu.
6672 * @cpu: the processor in question.
6673 * @p: the task pointer to set.
6675 * Description: This function must only be used when non-maskable interrupts
6676 * are serviced on a separate stack. It allows the architecture to switch the
6677 * notion of the current task on a cpu in a non-blocking manner. This function
6678 * must be called with all CPU's synchronized, and interrupts disabled, the
6679 * and caller must save the original value of the current task (see
6680 * curr_task() above) and restore that value before reenabling interrupts and
6681 * re-starting the system.
6683 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6685 void set_curr_task(int cpu, struct task_struct *p)
6687 cpu_curr(cpu) = p;
6690 #endif