1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
30 #define MLOG_MASK_PREFIX ML_FILE_IO
31 #include <cluster/masklog.h>
38 #include "extent_map.h"
46 #include "buffer_head_io.h"
48 static int ocfs2_symlink_get_block(struct inode
*inode
, sector_t iblock
,
49 struct buffer_head
*bh_result
, int create
)
53 struct ocfs2_dinode
*fe
= NULL
;
54 struct buffer_head
*bh
= NULL
;
55 struct buffer_head
*buffer_cache_bh
= NULL
;
56 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
59 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode
,
60 (unsigned long long)iblock
, bh_result
, create
);
62 BUG_ON(ocfs2_inode_is_fast_symlink(inode
));
64 if ((iblock
<< inode
->i_sb
->s_blocksize_bits
) > PATH_MAX
+ 1) {
65 mlog(ML_ERROR
, "block offset > PATH_MAX: %llu",
66 (unsigned long long)iblock
);
70 status
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
),
71 OCFS2_I(inode
)->ip_blkno
,
72 &bh
, OCFS2_BH_CACHED
, inode
);
77 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
79 if (!OCFS2_IS_VALID_DINODE(fe
)) {
80 mlog(ML_ERROR
, "Invalid dinode #%llu: signature = %.*s\n",
81 (unsigned long long)le64_to_cpu(fe
->i_blkno
), 7,
86 if ((u64
)iblock
>= ocfs2_clusters_to_blocks(inode
->i_sb
,
87 le32_to_cpu(fe
->i_clusters
))) {
88 mlog(ML_ERROR
, "block offset is outside the allocated size: "
89 "%llu\n", (unsigned long long)iblock
);
93 /* We don't use the page cache to create symlink data, so if
94 * need be, copy it over from the buffer cache. */
95 if (!buffer_uptodate(bh_result
) && ocfs2_inode_is_new(inode
)) {
96 u64 blkno
= le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) +
98 buffer_cache_bh
= sb_getblk(osb
->sb
, blkno
);
99 if (!buffer_cache_bh
) {
100 mlog(ML_ERROR
, "couldn't getblock for symlink!\n");
104 /* we haven't locked out transactions, so a commit
105 * could've happened. Since we've got a reference on
106 * the bh, even if it commits while we're doing the
107 * copy, the data is still good. */
108 if (buffer_jbd(buffer_cache_bh
)
109 && ocfs2_inode_is_new(inode
)) {
110 kaddr
= kmap_atomic(bh_result
->b_page
, KM_USER0
);
112 mlog(ML_ERROR
, "couldn't kmap!\n");
115 memcpy(kaddr
+ (bh_result
->b_size
* iblock
),
116 buffer_cache_bh
->b_data
,
118 kunmap_atomic(kaddr
, KM_USER0
);
119 set_buffer_uptodate(bh_result
);
121 brelse(buffer_cache_bh
);
124 map_bh(bh_result
, inode
->i_sb
,
125 le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) + iblock
);
137 static int ocfs2_get_block(struct inode
*inode
, sector_t iblock
,
138 struct buffer_head
*bh_result
, int create
)
141 unsigned int ext_flags
;
142 u64 p_blkno
, past_eof
;
143 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
145 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode
,
146 (unsigned long long)iblock
, bh_result
, create
);
148 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_SYSTEM_FILE
)
149 mlog(ML_NOTICE
, "get_block on system inode 0x%p (%lu)\n",
150 inode
, inode
->i_ino
);
152 if (S_ISLNK(inode
->i_mode
)) {
153 /* this always does I/O for some reason. */
154 err
= ocfs2_symlink_get_block(inode
, iblock
, bh_result
, create
);
158 err
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
, NULL
,
161 mlog(ML_ERROR
, "Error %d from get_blocks(0x%p, %llu, 1, "
162 "%llu, NULL)\n", err
, inode
, (unsigned long long)iblock
,
163 (unsigned long long)p_blkno
);
168 * ocfs2 never allocates in this function - the only time we
169 * need to use BH_New is when we're extending i_size on a file
170 * system which doesn't support holes, in which case BH_New
171 * allows block_prepare_write() to zero.
173 mlog_bug_on_msg(create
&& p_blkno
== 0 && ocfs2_sparse_alloc(osb
),
174 "ino %lu, iblock %llu\n", inode
->i_ino
,
175 (unsigned long long)iblock
);
177 /* Treat the unwritten extent as a hole for zeroing purposes. */
178 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
179 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
181 if (!ocfs2_sparse_alloc(osb
)) {
185 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
186 (unsigned long long)iblock
,
187 (unsigned long long)p_blkno
,
188 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
189 mlog(ML_ERROR
, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode
), OCFS2_I(inode
)->ip_clusters
);
193 past_eof
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
194 mlog(0, "Inode %lu, past_eof = %llu\n", inode
->i_ino
,
195 (unsigned long long)past_eof
);
197 if (create
&& (iblock
>= past_eof
))
198 set_buffer_new(bh_result
);
209 static int ocfs2_readpage(struct file
*file
, struct page
*page
)
211 struct inode
*inode
= page
->mapping
->host
;
212 loff_t start
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
215 mlog_entry("(0x%p, %lu)\n", file
, (page
? page
->index
: 0));
217 ret
= ocfs2_meta_lock_with_page(inode
, NULL
, 0, page
);
219 if (ret
== AOP_TRUNCATED_PAGE
)
225 if (down_read_trylock(&OCFS2_I(inode
)->ip_alloc_sem
) == 0) {
226 ret
= AOP_TRUNCATED_PAGE
;
227 goto out_meta_unlock
;
231 * i_size might have just been updated as we grabed the meta lock. We
232 * might now be discovering a truncate that hit on another node.
233 * block_read_full_page->get_block freaks out if it is asked to read
234 * beyond the end of a file, so we check here. Callers
235 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
236 * and notice that the page they just read isn't needed.
238 * XXX sys_readahead() seems to get that wrong?
240 if (start
>= i_size_read(inode
)) {
241 zero_user_page(page
, 0, PAGE_SIZE
, KM_USER0
);
242 SetPageUptodate(page
);
247 ret
= ocfs2_data_lock_with_page(inode
, 0, page
);
249 if (ret
== AOP_TRUNCATED_PAGE
)
255 ret
= block_read_full_page(page
, ocfs2_get_block
);
258 ocfs2_data_unlock(inode
, 0);
260 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
262 ocfs2_meta_unlock(inode
, 0);
270 /* Note: Because we don't support holes, our allocation has
271 * already happened (allocation writes zeros to the file data)
272 * so we don't have to worry about ordered writes in
275 * ->writepage is called during the process of invalidating the page cache
276 * during blocked lock processing. It can't block on any cluster locks
277 * to during block mapping. It's relying on the fact that the block
278 * mapping can't have disappeared under the dirty pages that it is
279 * being asked to write back.
281 static int ocfs2_writepage(struct page
*page
, struct writeback_control
*wbc
)
285 mlog_entry("(0x%p)\n", page
);
287 ret
= block_write_full_page(page
, ocfs2_get_block
, wbc
);
295 * This is called from ocfs2_write_zero_page() which has handled it's
296 * own cluster locking and has ensured allocation exists for those
297 * blocks to be written.
299 int ocfs2_prepare_write_nolock(struct inode
*inode
, struct page
*page
,
300 unsigned from
, unsigned to
)
304 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
306 ret
= block_prepare_write(page
, from
, to
, ocfs2_get_block
);
308 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
313 /* Taken from ext3. We don't necessarily need the full blown
314 * functionality yet, but IMHO it's better to cut and paste the whole
315 * thing so we can avoid introducing our own bugs (and easily pick up
316 * their fixes when they happen) --Mark */
317 int walk_page_buffers( handle_t
*handle
,
318 struct buffer_head
*head
,
322 int (*fn
)( handle_t
*handle
,
323 struct buffer_head
*bh
))
325 struct buffer_head
*bh
;
326 unsigned block_start
, block_end
;
327 unsigned blocksize
= head
->b_size
;
329 struct buffer_head
*next
;
331 for ( bh
= head
, block_start
= 0;
332 ret
== 0 && (bh
!= head
|| !block_start
);
333 block_start
= block_end
, bh
= next
)
335 next
= bh
->b_this_page
;
336 block_end
= block_start
+ blocksize
;
337 if (block_end
<= from
|| block_start
>= to
) {
338 if (partial
&& !buffer_uptodate(bh
))
342 err
= (*fn
)(handle
, bh
);
349 handle_t
*ocfs2_start_walk_page_trans(struct inode
*inode
,
354 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
355 handle_t
*handle
= NULL
;
358 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
365 if (ocfs2_should_order_data(inode
)) {
366 ret
= walk_page_buffers(handle
,
369 ocfs2_journal_dirty_data
);
376 ocfs2_commit_trans(osb
, handle
);
377 handle
= ERR_PTR(ret
);
382 static sector_t
ocfs2_bmap(struct address_space
*mapping
, sector_t block
)
387 struct inode
*inode
= mapping
->host
;
389 mlog_entry("(block = %llu)\n", (unsigned long long)block
);
391 /* We don't need to lock journal system files, since they aren't
392 * accessed concurrently from multiple nodes.
394 if (!INODE_JOURNAL(inode
)) {
395 err
= ocfs2_meta_lock(inode
, NULL
, 0);
401 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
404 err
= ocfs2_extent_map_get_blocks(inode
, block
, &p_blkno
, NULL
, NULL
);
406 if (!INODE_JOURNAL(inode
)) {
407 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
408 ocfs2_meta_unlock(inode
, 0);
412 mlog(ML_ERROR
, "get_blocks() failed, block = %llu\n",
413 (unsigned long long)block
);
420 status
= err
? 0 : p_blkno
;
422 mlog_exit((int)status
);
428 * TODO: Make this into a generic get_blocks function.
430 * From do_direct_io in direct-io.c:
431 * "So what we do is to permit the ->get_blocks function to populate
432 * bh.b_size with the size of IO which is permitted at this offset and
435 * This function is called directly from get_more_blocks in direct-io.c.
437 * called like this: dio->get_blocks(dio->inode, fs_startblk,
438 * fs_count, map_bh, dio->rw == WRITE);
440 static int ocfs2_direct_IO_get_blocks(struct inode
*inode
, sector_t iblock
,
441 struct buffer_head
*bh_result
, int create
)
444 u64 p_blkno
, inode_blocks
, contig_blocks
;
445 unsigned int ext_flags
;
446 unsigned char blocksize_bits
= inode
->i_sb
->s_blocksize_bits
;
447 unsigned long max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
449 /* This function won't even be called if the request isn't all
450 * nicely aligned and of the right size, so there's no need
451 * for us to check any of that. */
453 inode_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
456 * Any write past EOF is not allowed because we'd be extending.
458 if (create
&& (iblock
+ max_blocks
) > inode_blocks
) {
463 /* This figures out the size of the next contiguous block, and
464 * our logical offset */
465 ret
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
,
466 &contig_blocks
, &ext_flags
);
468 mlog(ML_ERROR
, "get_blocks() failed iblock=%llu\n",
469 (unsigned long long)iblock
);
474 if (!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)) && !p_blkno
) {
475 ocfs2_error(inode
->i_sb
,
476 "Inode %llu has a hole at block %llu\n",
477 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
478 (unsigned long long)iblock
);
484 * get_more_blocks() expects us to describe a hole by clearing
485 * the mapped bit on bh_result().
487 * Consider an unwritten extent as a hole.
489 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
490 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
493 * ocfs2_prepare_inode_for_write() should have caught
494 * the case where we'd be filling a hole and triggered
495 * a buffered write instead.
503 clear_buffer_mapped(bh_result
);
506 /* make sure we don't map more than max_blocks blocks here as
507 that's all the kernel will handle at this point. */
508 if (max_blocks
< contig_blocks
)
509 contig_blocks
= max_blocks
;
510 bh_result
->b_size
= contig_blocks
<< blocksize_bits
;
516 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
517 * particularly interested in the aio/dio case. Like the core uses
518 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
519 * truncation on another.
521 static void ocfs2_dio_end_io(struct kiocb
*iocb
,
526 struct inode
*inode
= iocb
->ki_filp
->f_path
.dentry
->d_inode
;
529 /* this io's submitter should not have unlocked this before we could */
530 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb
));
532 ocfs2_iocb_clear_rw_locked(iocb
);
534 level
= ocfs2_iocb_rw_locked_level(iocb
);
536 up_read(&inode
->i_alloc_sem
);
537 ocfs2_rw_unlock(inode
, level
);
541 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
542 * from ext3. PageChecked() bits have been removed as OCFS2 does not
543 * do journalled data.
545 static void ocfs2_invalidatepage(struct page
*page
, unsigned long offset
)
547 journal_t
*journal
= OCFS2_SB(page
->mapping
->host
->i_sb
)->journal
->j_journal
;
549 journal_invalidatepage(journal
, page
, offset
);
552 static int ocfs2_releasepage(struct page
*page
, gfp_t wait
)
554 journal_t
*journal
= OCFS2_SB(page
->mapping
->host
->i_sb
)->journal
->j_journal
;
556 if (!page_has_buffers(page
))
558 return journal_try_to_free_buffers(journal
, page
, wait
);
561 static ssize_t
ocfs2_direct_IO(int rw
,
563 const struct iovec
*iov
,
565 unsigned long nr_segs
)
567 struct file
*file
= iocb
->ki_filp
;
568 struct inode
*inode
= file
->f_path
.dentry
->d_inode
->i_mapping
->host
;
573 if (!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
))) {
575 * We get PR data locks even for O_DIRECT. This
576 * allows concurrent O_DIRECT I/O but doesn't let
577 * O_DIRECT with extending and buffered zeroing writes
578 * race. If they did race then the buffered zeroing
579 * could be written back after the O_DIRECT I/O. It's
580 * one thing to tell people not to mix buffered and
581 * O_DIRECT writes, but expecting them to understand
582 * that file extension is also an implicit buffered
583 * write is too much. By getting the PR we force
584 * writeback of the buffered zeroing before
587 ret
= ocfs2_data_lock(inode
, 0);
592 ocfs2_data_unlock(inode
, 0);
595 ret
= blockdev_direct_IO_no_locking(rw
, iocb
, inode
,
596 inode
->i_sb
->s_bdev
, iov
, offset
,
598 ocfs2_direct_IO_get_blocks
,
605 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super
*osb
,
610 unsigned int cluster_start
= 0, cluster_end
= PAGE_CACHE_SIZE
;
612 if (unlikely(PAGE_CACHE_SHIFT
> osb
->s_clustersize_bits
)) {
615 cpp
= 1 << (PAGE_CACHE_SHIFT
- osb
->s_clustersize_bits
);
617 cluster_start
= cpos
% cpp
;
618 cluster_start
= cluster_start
<< osb
->s_clustersize_bits
;
620 cluster_end
= cluster_start
+ osb
->s_clustersize
;
623 BUG_ON(cluster_start
> PAGE_SIZE
);
624 BUG_ON(cluster_end
> PAGE_SIZE
);
627 *start
= cluster_start
;
633 * 'from' and 'to' are the region in the page to avoid zeroing.
635 * If pagesize > clustersize, this function will avoid zeroing outside
636 * of the cluster boundary.
638 * from == to == 0 is code for "zero the entire cluster region"
640 static void ocfs2_clear_page_regions(struct page
*page
,
641 struct ocfs2_super
*osb
, u32 cpos
,
642 unsigned from
, unsigned to
)
645 unsigned int cluster_start
, cluster_end
;
647 ocfs2_figure_cluster_boundaries(osb
, cpos
, &cluster_start
, &cluster_end
);
649 kaddr
= kmap_atomic(page
, KM_USER0
);
652 if (from
> cluster_start
)
653 memset(kaddr
+ cluster_start
, 0, from
- cluster_start
);
654 if (to
< cluster_end
)
655 memset(kaddr
+ to
, 0, cluster_end
- to
);
657 memset(kaddr
+ cluster_start
, 0, cluster_end
- cluster_start
);
660 kunmap_atomic(kaddr
, KM_USER0
);
664 * Some of this taken from block_prepare_write(). We already have our
665 * mapping by now though, and the entire write will be allocating or
666 * it won't, so not much need to use BH_New.
668 * This will also skip zeroing, which is handled externally.
670 int ocfs2_map_page_blocks(struct page
*page
, u64
*p_blkno
,
671 struct inode
*inode
, unsigned int from
,
672 unsigned int to
, int new)
675 struct buffer_head
*head
, *bh
, *wait
[2], **wait_bh
= wait
;
676 unsigned int block_end
, block_start
;
677 unsigned int bsize
= 1 << inode
->i_blkbits
;
679 if (!page_has_buffers(page
))
680 create_empty_buffers(page
, bsize
, 0);
682 head
= page_buffers(page
);
683 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
684 bh
= bh
->b_this_page
, block_start
+= bsize
) {
685 block_end
= block_start
+ bsize
;
687 clear_buffer_new(bh
);
690 * Ignore blocks outside of our i/o range -
691 * they may belong to unallocated clusters.
693 if (block_start
>= to
|| block_end
<= from
) {
694 if (PageUptodate(page
))
695 set_buffer_uptodate(bh
);
700 * For an allocating write with cluster size >= page
701 * size, we always write the entire page.
706 if (!buffer_mapped(bh
)) {
707 map_bh(bh
, inode
->i_sb
, *p_blkno
);
708 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
711 if (PageUptodate(page
)) {
712 if (!buffer_uptodate(bh
))
713 set_buffer_uptodate(bh
);
714 } else if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
716 (block_start
< from
|| block_end
> to
)) {
717 ll_rw_block(READ
, 1, &bh
);
721 *p_blkno
= *p_blkno
+ 1;
725 * If we issued read requests - let them complete.
727 while(wait_bh
> wait
) {
728 wait_on_buffer(*--wait_bh
);
729 if (!buffer_uptodate(*wait_bh
))
733 if (ret
== 0 || !new)
737 * If we get -EIO above, zero out any newly allocated blocks
738 * to avoid exposing stale data.
743 block_end
= block_start
+ bsize
;
744 if (block_end
<= from
)
746 if (block_start
>= to
)
749 zero_user_page(page
, block_start
, bh
->b_size
, KM_USER0
);
750 set_buffer_uptodate(bh
);
751 mark_buffer_dirty(bh
);
754 block_start
= block_end
;
755 bh
= bh
->b_this_page
;
756 } while (bh
!= head
);
761 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
762 #define OCFS2_MAX_CTXT_PAGES 1
764 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
767 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
770 * Describe the state of a single cluster to be written to.
772 struct ocfs2_write_cluster_desc
{
776 * Give this a unique field because c_phys eventually gets
780 unsigned c_unwritten
;
783 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc
*d
)
785 return d
->c_new
|| d
->c_unwritten
;
788 struct ocfs2_write_ctxt
{
789 /* Logical cluster position / len of write */
793 struct ocfs2_write_cluster_desc w_desc
[OCFS2_MAX_CLUSTERS_PER_PAGE
];
796 * This is true if page_size > cluster_size.
798 * It triggers a set of special cases during write which might
799 * have to deal with allocating writes to partial pages.
801 unsigned int w_large_pages
;
804 * Pages involved in this write.
806 * w_target_page is the page being written to by the user.
808 * w_pages is an array of pages which always contains
809 * w_target_page, and in the case of an allocating write with
810 * page_size < cluster size, it will contain zero'd and mapped
811 * pages adjacent to w_target_page which need to be written
812 * out in so that future reads from that region will get
815 struct page
*w_pages
[OCFS2_MAX_CTXT_PAGES
];
816 unsigned int w_num_pages
;
817 struct page
*w_target_page
;
820 * ocfs2_write_end() uses this to know what the real range to
821 * write in the target should be.
823 unsigned int w_target_from
;
824 unsigned int w_target_to
;
827 * We could use journal_current_handle() but this is cleaner,
832 struct buffer_head
*w_di_bh
;
834 struct ocfs2_cached_dealloc_ctxt w_dealloc
;
837 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt
*wc
)
841 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
842 if (wc
->w_pages
[i
] == NULL
)
845 unlock_page(wc
->w_pages
[i
]);
846 mark_page_accessed(wc
->w_pages
[i
]);
847 page_cache_release(wc
->w_pages
[i
]);
854 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt
**wcp
,
855 struct ocfs2_super
*osb
, loff_t pos
,
856 unsigned len
, struct buffer_head
*di_bh
)
858 struct ocfs2_write_ctxt
*wc
;
860 wc
= kzalloc(sizeof(struct ocfs2_write_ctxt
), GFP_NOFS
);
864 wc
->w_cpos
= pos
>> osb
->s_clustersize_bits
;
865 wc
->w_clen
= ocfs2_clusters_for_bytes(osb
->sb
, len
);
869 if (unlikely(PAGE_CACHE_SHIFT
> osb
->s_clustersize_bits
))
870 wc
->w_large_pages
= 1;
872 wc
->w_large_pages
= 0;
874 ocfs2_init_dealloc_ctxt(&wc
->w_dealloc
);
882 * If a page has any new buffers, zero them out here, and mark them uptodate
883 * and dirty so they'll be written out (in order to prevent uninitialised
884 * block data from leaking). And clear the new bit.
886 static void ocfs2_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
888 unsigned int block_start
, block_end
;
889 struct buffer_head
*head
, *bh
;
891 BUG_ON(!PageLocked(page
));
892 if (!page_has_buffers(page
))
895 bh
= head
= page_buffers(page
);
898 block_end
= block_start
+ bh
->b_size
;
900 if (buffer_new(bh
)) {
901 if (block_end
> from
&& block_start
< to
) {
902 if (!PageUptodate(page
)) {
905 start
= max(from
, block_start
);
906 end
= min(to
, block_end
);
908 zero_user_page(page
, start
, end
- start
, KM_USER0
);
909 set_buffer_uptodate(bh
);
912 clear_buffer_new(bh
);
913 mark_buffer_dirty(bh
);
917 block_start
= block_end
;
918 bh
= bh
->b_this_page
;
919 } while (bh
!= head
);
923 * Only called when we have a failure during allocating write to write
924 * zero's to the newly allocated region.
926 static void ocfs2_write_failure(struct inode
*inode
,
927 struct ocfs2_write_ctxt
*wc
,
928 loff_t user_pos
, unsigned user_len
)
932 struct page
*tmppage
;
934 ocfs2_zero_new_buffers(wc
->w_target_page
, user_pos
, user_len
);
936 if (wc
->w_large_pages
) {
937 from
= wc
->w_target_from
;
938 to
= wc
->w_target_to
;
941 to
= PAGE_CACHE_SIZE
;
944 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
945 tmppage
= wc
->w_pages
[i
];
947 if (ocfs2_should_order_data(inode
))
948 walk_page_buffers(wc
->w_handle
, page_buffers(tmppage
),
950 ocfs2_journal_dirty_data
);
952 block_commit_write(tmppage
, from
, to
);
956 static int ocfs2_prepare_page_for_write(struct inode
*inode
, u64
*p_blkno
,
957 struct ocfs2_write_ctxt
*wc
,
958 struct page
*page
, u32 cpos
,
959 loff_t user_pos
, unsigned user_len
,
963 unsigned int map_from
= 0, map_to
= 0;
964 unsigned int cluster_start
, cluster_end
;
965 unsigned int user_data_from
= 0, user_data_to
= 0;
967 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode
->i_sb
), cpos
,
968 &cluster_start
, &cluster_end
);
970 if (page
== wc
->w_target_page
) {
971 map_from
= user_pos
& (PAGE_CACHE_SIZE
- 1);
972 map_to
= map_from
+ user_len
;
975 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
976 cluster_start
, cluster_end
,
979 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
980 map_from
, map_to
, new);
986 user_data_from
= map_from
;
987 user_data_to
= map_to
;
989 map_from
= cluster_start
;
990 map_to
= cluster_end
;
993 wc
->w_target_from
= map_from
;
994 wc
->w_target_to
= map_to
;
997 * If we haven't allocated the new page yet, we
998 * shouldn't be writing it out without copying user
999 * data. This is likely a math error from the caller.
1003 map_from
= cluster_start
;
1004 map_to
= cluster_end
;
1006 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1007 cluster_start
, cluster_end
, new);
1015 * Parts of newly allocated pages need to be zero'd.
1017 * Above, we have also rewritten 'to' and 'from' - as far as
1018 * the rest of the function is concerned, the entire cluster
1019 * range inside of a page needs to be written.
1021 * We can skip this if the page is up to date - it's already
1022 * been zero'd from being read in as a hole.
1024 if (new && !PageUptodate(page
))
1025 ocfs2_clear_page_regions(page
, OCFS2_SB(inode
->i_sb
),
1026 cpos
, user_data_from
, user_data_to
);
1028 flush_dcache_page(page
);
1035 * This function will only grab one clusters worth of pages.
1037 static int ocfs2_grab_pages_for_write(struct address_space
*mapping
,
1038 struct ocfs2_write_ctxt
*wc
,
1039 u32 cpos
, loff_t user_pos
, int new,
1040 struct page
*mmap_page
)
1043 unsigned long start
, target_index
, index
;
1044 struct inode
*inode
= mapping
->host
;
1046 target_index
= user_pos
>> PAGE_CACHE_SHIFT
;
1049 * Figure out how many pages we'll be manipulating here. For
1050 * non allocating write, we just change the one
1051 * page. Otherwise, we'll need a whole clusters worth.
1054 wc
->w_num_pages
= ocfs2_pages_per_cluster(inode
->i_sb
);
1055 start
= ocfs2_align_clusters_to_page_index(inode
->i_sb
, cpos
);
1057 wc
->w_num_pages
= 1;
1058 start
= target_index
;
1061 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1064 if (index
== target_index
&& mmap_page
) {
1066 * ocfs2_pagemkwrite() is a little different
1067 * and wants us to directly use the page
1070 lock_page(mmap_page
);
1072 if (mmap_page
->mapping
!= mapping
) {
1073 unlock_page(mmap_page
);
1075 * Sanity check - the locking in
1076 * ocfs2_pagemkwrite() should ensure
1077 * that this code doesn't trigger.
1084 page_cache_get(mmap_page
);
1085 wc
->w_pages
[i
] = mmap_page
;
1087 wc
->w_pages
[i
] = find_or_create_page(mapping
, index
,
1089 if (!wc
->w_pages
[i
]) {
1096 if (index
== target_index
)
1097 wc
->w_target_page
= wc
->w_pages
[i
];
1104 * Prepare a single cluster for write one cluster into the file.
1106 static int ocfs2_write_cluster(struct address_space
*mapping
,
1107 u32 phys
, unsigned int unwritten
,
1108 struct ocfs2_alloc_context
*data_ac
,
1109 struct ocfs2_alloc_context
*meta_ac
,
1110 struct ocfs2_write_ctxt
*wc
, u32 cpos
,
1111 loff_t user_pos
, unsigned user_len
)
1113 int ret
, i
, new, should_zero
= 0;
1114 u64 v_blkno
, p_blkno
;
1115 struct inode
*inode
= mapping
->host
;
1117 new = phys
== 0 ? 1 : 0;
1118 if (new || unwritten
)
1125 * This is safe to call with the page locks - it won't take
1126 * any additional semaphores or cluster locks.
1129 ret
= ocfs2_do_extend_allocation(OCFS2_SB(inode
->i_sb
), inode
,
1130 &tmp_pos
, 1, 0, wc
->w_di_bh
,
1131 wc
->w_handle
, data_ac
,
1134 * This shouldn't happen because we must have already
1135 * calculated the correct meta data allocation required. The
1136 * internal tree allocation code should know how to increase
1137 * transaction credits itself.
1139 * If need be, we could handle -EAGAIN for a
1140 * RESTART_TRANS here.
1142 mlog_bug_on_msg(ret
== -EAGAIN
,
1143 "Inode %llu: EAGAIN return during allocation.\n",
1144 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
1149 } else if (unwritten
) {
1150 ret
= ocfs2_mark_extent_written(inode
, wc
->w_di_bh
,
1151 wc
->w_handle
, cpos
, 1, phys
,
1152 meta_ac
, &wc
->w_dealloc
);
1160 v_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, cpos
);
1162 v_blkno
= user_pos
>> inode
->i_sb
->s_blocksize_bits
;
1165 * The only reason this should fail is due to an inability to
1166 * find the extent added.
1168 ret
= ocfs2_extent_map_get_blocks(inode
, v_blkno
, &p_blkno
, NULL
,
1171 ocfs2_error(inode
->i_sb
, "Corrupting extend for inode %llu, "
1172 "at logical block %llu",
1173 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1174 (unsigned long long)v_blkno
);
1178 BUG_ON(p_blkno
== 0);
1180 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1183 tmpret
= ocfs2_prepare_page_for_write(inode
, &p_blkno
, wc
,
1184 wc
->w_pages
[i
], cpos
,
1195 * We only have cleanup to do in case of allocating write.
1198 ocfs2_write_failure(inode
, wc
, user_pos
, user_len
);
1205 static int ocfs2_write_cluster_by_desc(struct address_space
*mapping
,
1206 struct ocfs2_alloc_context
*data_ac
,
1207 struct ocfs2_alloc_context
*meta_ac
,
1208 struct ocfs2_write_ctxt
*wc
,
1209 loff_t pos
, unsigned len
)
1212 struct ocfs2_write_cluster_desc
*desc
;
1214 for (i
= 0; i
< wc
->w_clen
; i
++) {
1215 desc
= &wc
->w_desc
[i
];
1217 ret
= ocfs2_write_cluster(mapping
, desc
->c_phys
,
1218 desc
->c_unwritten
, data_ac
, meta_ac
,
1219 wc
, desc
->c_cpos
, pos
, len
);
1232 * ocfs2_write_end() wants to know which parts of the target page it
1233 * should complete the write on. It's easiest to compute them ahead of
1234 * time when a more complete view of the write is available.
1236 static void ocfs2_set_target_boundaries(struct ocfs2_super
*osb
,
1237 struct ocfs2_write_ctxt
*wc
,
1238 loff_t pos
, unsigned len
, int alloc
)
1240 struct ocfs2_write_cluster_desc
*desc
;
1242 wc
->w_target_from
= pos
& (PAGE_CACHE_SIZE
- 1);
1243 wc
->w_target_to
= wc
->w_target_from
+ len
;
1249 * Allocating write - we may have different boundaries based
1250 * on page size and cluster size.
1252 * NOTE: We can no longer compute one value from the other as
1253 * the actual write length and user provided length may be
1257 if (wc
->w_large_pages
) {
1259 * We only care about the 1st and last cluster within
1260 * our range and whether they should be zero'd or not. Either
1261 * value may be extended out to the start/end of a
1262 * newly allocated cluster.
1264 desc
= &wc
->w_desc
[0];
1265 if (ocfs2_should_zero_cluster(desc
))
1266 ocfs2_figure_cluster_boundaries(osb
,
1271 desc
= &wc
->w_desc
[wc
->w_clen
- 1];
1272 if (ocfs2_should_zero_cluster(desc
))
1273 ocfs2_figure_cluster_boundaries(osb
,
1278 wc
->w_target_from
= 0;
1279 wc
->w_target_to
= PAGE_CACHE_SIZE
;
1284 * Populate each single-cluster write descriptor in the write context
1285 * with information about the i/o to be done.
1287 * Returns the number of clusters that will have to be allocated, as
1288 * well as a worst case estimate of the number of extent records that
1289 * would have to be created during a write to an unwritten region.
1291 static int ocfs2_populate_write_desc(struct inode
*inode
,
1292 struct ocfs2_write_ctxt
*wc
,
1293 unsigned int *clusters_to_alloc
,
1294 unsigned int *extents_to_split
)
1297 struct ocfs2_write_cluster_desc
*desc
;
1298 unsigned int num_clusters
= 0;
1299 unsigned int ext_flags
= 0;
1303 *clusters_to_alloc
= 0;
1304 *extents_to_split
= 0;
1306 for (i
= 0; i
< wc
->w_clen
; i
++) {
1307 desc
= &wc
->w_desc
[i
];
1308 desc
->c_cpos
= wc
->w_cpos
+ i
;
1310 if (num_clusters
== 0) {
1312 * Need to look up the next extent record.
1314 ret
= ocfs2_get_clusters(inode
, desc
->c_cpos
, &phys
,
1315 &num_clusters
, &ext_flags
);
1322 * Assume worst case - that we're writing in
1323 * the middle of the extent.
1325 * We can assume that the write proceeds from
1326 * left to right, in which case the extent
1327 * insert code is smart enough to coalesce the
1328 * next splits into the previous records created.
1330 if (ext_flags
& OCFS2_EXT_UNWRITTEN
)
1331 *extents_to_split
= *extents_to_split
+ 2;
1334 * Only increment phys if it doesn't describe
1340 desc
->c_phys
= phys
;
1343 *clusters_to_alloc
= *clusters_to_alloc
+ 1;
1345 if (ext_flags
& OCFS2_EXT_UNWRITTEN
)
1346 desc
->c_unwritten
= 1;
1356 int ocfs2_write_begin_nolock(struct address_space
*mapping
,
1357 loff_t pos
, unsigned len
, unsigned flags
,
1358 struct page
**pagep
, void **fsdata
,
1359 struct buffer_head
*di_bh
, struct page
*mmap_page
)
1361 int ret
, credits
= OCFS2_INODE_UPDATE_CREDITS
;
1362 unsigned int clusters_to_alloc
, extents_to_split
;
1363 struct ocfs2_write_ctxt
*wc
;
1364 struct inode
*inode
= mapping
->host
;
1365 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1366 struct ocfs2_dinode
*di
;
1367 struct ocfs2_alloc_context
*data_ac
= NULL
;
1368 struct ocfs2_alloc_context
*meta_ac
= NULL
;
1371 ret
= ocfs2_alloc_write_ctxt(&wc
, osb
, pos
, len
, di_bh
);
1377 ret
= ocfs2_populate_write_desc(inode
, wc
, &clusters_to_alloc
,
1384 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1387 * We set w_target_from, w_target_to here so that
1388 * ocfs2_write_end() knows which range in the target page to
1389 * write out. An allocation requires that we write the entire
1392 if (clusters_to_alloc
|| extents_to_split
) {
1394 * XXX: We are stretching the limits of
1395 * ocfs2_lock_allocators(). It greatly over-estimates
1396 * the work to be done.
1398 ret
= ocfs2_lock_allocators(inode
, di
, clusters_to_alloc
,
1399 extents_to_split
, &data_ac
, &meta_ac
);
1405 credits
= ocfs2_calc_extend_credits(inode
->i_sb
, di
,
1410 ocfs2_set_target_boundaries(osb
, wc
, pos
, len
,
1411 clusters_to_alloc
+ extents_to_split
);
1413 handle
= ocfs2_start_trans(osb
, credits
);
1414 if (IS_ERR(handle
)) {
1415 ret
= PTR_ERR(handle
);
1420 wc
->w_handle
= handle
;
1423 * We don't want this to fail in ocfs2_write_end(), so do it
1426 ret
= ocfs2_journal_access(handle
, inode
, wc
->w_di_bh
,
1427 OCFS2_JOURNAL_ACCESS_WRITE
);
1434 * Fill our page array first. That way we've grabbed enough so
1435 * that we can zero and flush if we error after adding the
1438 ret
= ocfs2_grab_pages_for_write(mapping
, wc
, wc
->w_cpos
, pos
,
1439 clusters_to_alloc
+ extents_to_split
,
1446 ret
= ocfs2_write_cluster_by_desc(mapping
, data_ac
, meta_ac
, wc
, pos
,
1454 ocfs2_free_alloc_context(data_ac
);
1456 ocfs2_free_alloc_context(meta_ac
);
1458 *pagep
= wc
->w_target_page
;
1462 ocfs2_commit_trans(osb
, handle
);
1465 ocfs2_free_write_ctxt(wc
);
1468 ocfs2_free_alloc_context(data_ac
);
1470 ocfs2_free_alloc_context(meta_ac
);
1474 int ocfs2_write_begin(struct file
*file
, struct address_space
*mapping
,
1475 loff_t pos
, unsigned len
, unsigned flags
,
1476 struct page
**pagep
, void **fsdata
)
1479 struct buffer_head
*di_bh
= NULL
;
1480 struct inode
*inode
= mapping
->host
;
1482 ret
= ocfs2_meta_lock(inode
, &di_bh
, 1);
1489 * Take alloc sem here to prevent concurrent lookups. That way
1490 * the mapping, zeroing and tree manipulation within
1491 * ocfs2_write() will be safe against ->readpage(). This
1492 * should also serve to lock out allocation from a shared
1495 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1497 ret
= ocfs2_data_lock(inode
, 1);
1503 ret
= ocfs2_write_begin_nolock(mapping
, pos
, len
, flags
, pagep
,
1504 fsdata
, di_bh
, NULL
);
1515 ocfs2_data_unlock(inode
, 1);
1517 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1520 ocfs2_meta_unlock(inode
, 1);
1525 int ocfs2_write_end_nolock(struct address_space
*mapping
,
1526 loff_t pos
, unsigned len
, unsigned copied
,
1527 struct page
*page
, void *fsdata
)
1530 unsigned from
, to
, start
= pos
& (PAGE_CACHE_SIZE
- 1);
1531 struct inode
*inode
= mapping
->host
;
1532 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1533 struct ocfs2_write_ctxt
*wc
= fsdata
;
1534 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1535 handle_t
*handle
= wc
->w_handle
;
1536 struct page
*tmppage
;
1538 if (unlikely(copied
< len
)) {
1539 if (!PageUptodate(wc
->w_target_page
))
1542 ocfs2_zero_new_buffers(wc
->w_target_page
, start
+copied
,
1545 flush_dcache_page(wc
->w_target_page
);
1547 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1548 tmppage
= wc
->w_pages
[i
];
1550 if (tmppage
== wc
->w_target_page
) {
1551 from
= wc
->w_target_from
;
1552 to
= wc
->w_target_to
;
1554 BUG_ON(from
> PAGE_CACHE_SIZE
||
1555 to
> PAGE_CACHE_SIZE
||
1559 * Pages adjacent to the target (if any) imply
1560 * a hole-filling write in which case we want
1561 * to flush their entire range.
1564 to
= PAGE_CACHE_SIZE
;
1567 if (ocfs2_should_order_data(inode
))
1568 walk_page_buffers(wc
->w_handle
, page_buffers(tmppage
),
1570 ocfs2_journal_dirty_data
);
1572 block_commit_write(tmppage
, from
, to
);
1576 if (pos
> inode
->i_size
) {
1577 i_size_write(inode
, pos
);
1578 mark_inode_dirty(inode
);
1580 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
1581 di
->i_size
= cpu_to_le64((u64
)i_size_read(inode
));
1582 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1583 di
->i_mtime
= di
->i_ctime
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
1584 di
->i_mtime_nsec
= di
->i_ctime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
1585 ocfs2_journal_dirty(handle
, wc
->w_di_bh
);
1587 ocfs2_commit_trans(osb
, handle
);
1589 ocfs2_run_deallocs(osb
, &wc
->w_dealloc
);
1591 ocfs2_free_write_ctxt(wc
);
1596 int ocfs2_write_end(struct file
*file
, struct address_space
*mapping
,
1597 loff_t pos
, unsigned len
, unsigned copied
,
1598 struct page
*page
, void *fsdata
)
1601 struct inode
*inode
= mapping
->host
;
1603 ret
= ocfs2_write_end_nolock(mapping
, pos
, len
, copied
, page
, fsdata
);
1605 ocfs2_data_unlock(inode
, 1);
1606 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1607 ocfs2_meta_unlock(inode
, 1);
1612 const struct address_space_operations ocfs2_aops
= {
1613 .readpage
= ocfs2_readpage
,
1614 .writepage
= ocfs2_writepage
,
1616 .sync_page
= block_sync_page
,
1617 .direct_IO
= ocfs2_direct_IO
,
1618 .invalidatepage
= ocfs2_invalidatepage
,
1619 .releasepage
= ocfs2_releasepage
,
1620 .migratepage
= buffer_migrate_page
,