sched: move the __update_rq_clock() call to scheduler_tick()
[usb.git] / fs / ntfs / file.c
blobffcc504a1667be04daea41339c53cd16d7ca84e4
1 /*
2 * file.c - NTFS kernel file operations. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2006 Anton Altaparmakov
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/buffer_head.h>
23 #include <linux/pagemap.h>
24 #include <linux/pagevec.h>
25 #include <linux/sched.h>
26 #include <linux/swap.h>
27 #include <linux/uio.h>
28 #include <linux/writeback.h>
29 #include <linux/sched.h>
31 #include <asm/page.h>
32 #include <asm/uaccess.h>
34 #include "attrib.h"
35 #include "bitmap.h"
36 #include "inode.h"
37 #include "debug.h"
38 #include "lcnalloc.h"
39 #include "malloc.h"
40 #include "mft.h"
41 #include "ntfs.h"
43 /**
44 * ntfs_file_open - called when an inode is about to be opened
45 * @vi: inode to be opened
46 * @filp: file structure describing the inode
48 * Limit file size to the page cache limit on architectures where unsigned long
49 * is 32-bits. This is the most we can do for now without overflowing the page
50 * cache page index. Doing it this way means we don't run into problems because
51 * of existing too large files. It would be better to allow the user to read
52 * the beginning of the file but I doubt very much anyone is going to hit this
53 * check on a 32-bit architecture, so there is no point in adding the extra
54 * complexity required to support this.
56 * On 64-bit architectures, the check is hopefully optimized away by the
57 * compiler.
59 * After the check passes, just call generic_file_open() to do its work.
61 static int ntfs_file_open(struct inode *vi, struct file *filp)
63 if (sizeof(unsigned long) < 8) {
64 if (i_size_read(vi) > MAX_LFS_FILESIZE)
65 return -EFBIG;
67 return generic_file_open(vi, filp);
70 #ifdef NTFS_RW
72 /**
73 * ntfs_attr_extend_initialized - extend the initialized size of an attribute
74 * @ni: ntfs inode of the attribute to extend
75 * @new_init_size: requested new initialized size in bytes
76 * @cached_page: store any allocated but unused page here
77 * @lru_pvec: lru-buffering pagevec of the caller
79 * Extend the initialized size of an attribute described by the ntfs inode @ni
80 * to @new_init_size bytes. This involves zeroing any non-sparse space between
81 * the old initialized size and @new_init_size both in the page cache and on
82 * disk (if relevant complete pages are already uptodate in the page cache then
83 * these are simply marked dirty).
85 * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
86 * in the resident attribute case, it is tied to the initialized size and, in
87 * the non-resident attribute case, it may not fall below the initialized size.
89 * Note that if the attribute is resident, we do not need to touch the page
90 * cache at all. This is because if the page cache page is not uptodate we
91 * bring it uptodate later, when doing the write to the mft record since we
92 * then already have the page mapped. And if the page is uptodate, the
93 * non-initialized region will already have been zeroed when the page was
94 * brought uptodate and the region may in fact already have been overwritten
95 * with new data via mmap() based writes, so we cannot just zero it. And since
96 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
97 * is unspecified, we choose not to do zeroing and thus we do not need to touch
98 * the page at all. For a more detailed explanation see ntfs_truncate() in
99 * fs/ntfs/inode.c.
101 * @cached_page and @lru_pvec are just optimizations for dealing with multiple
102 * pages.
104 * Return 0 on success and -errno on error. In the case that an error is
105 * encountered it is possible that the initialized size will already have been
106 * incremented some way towards @new_init_size but it is guaranteed that if
107 * this is the case, the necessary zeroing will also have happened and that all
108 * metadata is self-consistent.
110 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
111 * held by the caller.
113 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size,
114 struct page **cached_page, struct pagevec *lru_pvec)
116 s64 old_init_size;
117 loff_t old_i_size;
118 pgoff_t index, end_index;
119 unsigned long flags;
120 struct inode *vi = VFS_I(ni);
121 ntfs_inode *base_ni;
122 MFT_RECORD *m = NULL;
123 ATTR_RECORD *a;
124 ntfs_attr_search_ctx *ctx = NULL;
125 struct address_space *mapping;
126 struct page *page = NULL;
127 u8 *kattr;
128 int err;
129 u32 attr_len;
131 read_lock_irqsave(&ni->size_lock, flags);
132 old_init_size = ni->initialized_size;
133 old_i_size = i_size_read(vi);
134 BUG_ON(new_init_size > ni->allocated_size);
135 read_unlock_irqrestore(&ni->size_lock, flags);
136 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
137 "old_initialized_size 0x%llx, "
138 "new_initialized_size 0x%llx, i_size 0x%llx.",
139 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
140 (unsigned long long)old_init_size,
141 (unsigned long long)new_init_size, old_i_size);
142 if (!NInoAttr(ni))
143 base_ni = ni;
144 else
145 base_ni = ni->ext.base_ntfs_ino;
146 /* Use goto to reduce indentation and we need the label below anyway. */
147 if (NInoNonResident(ni))
148 goto do_non_resident_extend;
149 BUG_ON(old_init_size != old_i_size);
150 m = map_mft_record(base_ni);
151 if (IS_ERR(m)) {
152 err = PTR_ERR(m);
153 m = NULL;
154 goto err_out;
156 ctx = ntfs_attr_get_search_ctx(base_ni, m);
157 if (unlikely(!ctx)) {
158 err = -ENOMEM;
159 goto err_out;
161 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
162 CASE_SENSITIVE, 0, NULL, 0, ctx);
163 if (unlikely(err)) {
164 if (err == -ENOENT)
165 err = -EIO;
166 goto err_out;
168 m = ctx->mrec;
169 a = ctx->attr;
170 BUG_ON(a->non_resident);
171 /* The total length of the attribute value. */
172 attr_len = le32_to_cpu(a->data.resident.value_length);
173 BUG_ON(old_i_size != (loff_t)attr_len);
175 * Do the zeroing in the mft record and update the attribute size in
176 * the mft record.
178 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
179 memset(kattr + attr_len, 0, new_init_size - attr_len);
180 a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
181 /* Finally, update the sizes in the vfs and ntfs inodes. */
182 write_lock_irqsave(&ni->size_lock, flags);
183 i_size_write(vi, new_init_size);
184 ni->initialized_size = new_init_size;
185 write_unlock_irqrestore(&ni->size_lock, flags);
186 goto done;
187 do_non_resident_extend:
189 * If the new initialized size @new_init_size exceeds the current file
190 * size (vfs inode->i_size), we need to extend the file size to the
191 * new initialized size.
193 if (new_init_size > old_i_size) {
194 m = map_mft_record(base_ni);
195 if (IS_ERR(m)) {
196 err = PTR_ERR(m);
197 m = NULL;
198 goto err_out;
200 ctx = ntfs_attr_get_search_ctx(base_ni, m);
201 if (unlikely(!ctx)) {
202 err = -ENOMEM;
203 goto err_out;
205 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
206 CASE_SENSITIVE, 0, NULL, 0, ctx);
207 if (unlikely(err)) {
208 if (err == -ENOENT)
209 err = -EIO;
210 goto err_out;
212 m = ctx->mrec;
213 a = ctx->attr;
214 BUG_ON(!a->non_resident);
215 BUG_ON(old_i_size != (loff_t)
216 sle64_to_cpu(a->data.non_resident.data_size));
217 a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
218 flush_dcache_mft_record_page(ctx->ntfs_ino);
219 mark_mft_record_dirty(ctx->ntfs_ino);
220 /* Update the file size in the vfs inode. */
221 i_size_write(vi, new_init_size);
222 ntfs_attr_put_search_ctx(ctx);
223 ctx = NULL;
224 unmap_mft_record(base_ni);
225 m = NULL;
227 mapping = vi->i_mapping;
228 index = old_init_size >> PAGE_CACHE_SHIFT;
229 end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
230 do {
232 * Read the page. If the page is not present, this will zero
233 * the uninitialized regions for us.
235 page = read_mapping_page(mapping, index, NULL);
236 if (IS_ERR(page)) {
237 err = PTR_ERR(page);
238 goto init_err_out;
240 if (unlikely(PageError(page))) {
241 page_cache_release(page);
242 err = -EIO;
243 goto init_err_out;
246 * Update the initialized size in the ntfs inode. This is
247 * enough to make ntfs_writepage() work.
249 write_lock_irqsave(&ni->size_lock, flags);
250 ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT;
251 if (ni->initialized_size > new_init_size)
252 ni->initialized_size = new_init_size;
253 write_unlock_irqrestore(&ni->size_lock, flags);
254 /* Set the page dirty so it gets written out. */
255 set_page_dirty(page);
256 page_cache_release(page);
258 * Play nice with the vm and the rest of the system. This is
259 * very much needed as we can potentially be modifying the
260 * initialised size from a very small value to a really huge
261 * value, e.g.
262 * f = open(somefile, O_TRUNC);
263 * truncate(f, 10GiB);
264 * seek(f, 10GiB);
265 * write(f, 1);
266 * And this would mean we would be marking dirty hundreds of
267 * thousands of pages or as in the above example more than
268 * two and a half million pages!
270 * TODO: For sparse pages could optimize this workload by using
271 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This
272 * would be set in readpage for sparse pages and here we would
273 * not need to mark dirty any pages which have this bit set.
274 * The only caveat is that we have to clear the bit everywhere
275 * where we allocate any clusters that lie in the page or that
276 * contain the page.
278 * TODO: An even greater optimization would be for us to only
279 * call readpage() on pages which are not in sparse regions as
280 * determined from the runlist. This would greatly reduce the
281 * number of pages we read and make dirty in the case of sparse
282 * files.
284 balance_dirty_pages_ratelimited(mapping);
285 cond_resched();
286 } while (++index < end_index);
287 read_lock_irqsave(&ni->size_lock, flags);
288 BUG_ON(ni->initialized_size != new_init_size);
289 read_unlock_irqrestore(&ni->size_lock, flags);
290 /* Now bring in sync the initialized_size in the mft record. */
291 m = map_mft_record(base_ni);
292 if (IS_ERR(m)) {
293 err = PTR_ERR(m);
294 m = NULL;
295 goto init_err_out;
297 ctx = ntfs_attr_get_search_ctx(base_ni, m);
298 if (unlikely(!ctx)) {
299 err = -ENOMEM;
300 goto init_err_out;
302 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
303 CASE_SENSITIVE, 0, NULL, 0, ctx);
304 if (unlikely(err)) {
305 if (err == -ENOENT)
306 err = -EIO;
307 goto init_err_out;
309 m = ctx->mrec;
310 a = ctx->attr;
311 BUG_ON(!a->non_resident);
312 a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
313 done:
314 flush_dcache_mft_record_page(ctx->ntfs_ino);
315 mark_mft_record_dirty(ctx->ntfs_ino);
316 if (ctx)
317 ntfs_attr_put_search_ctx(ctx);
318 if (m)
319 unmap_mft_record(base_ni);
320 ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
321 (unsigned long long)new_init_size, i_size_read(vi));
322 return 0;
323 init_err_out:
324 write_lock_irqsave(&ni->size_lock, flags);
325 ni->initialized_size = old_init_size;
326 write_unlock_irqrestore(&ni->size_lock, flags);
327 err_out:
328 if (ctx)
329 ntfs_attr_put_search_ctx(ctx);
330 if (m)
331 unmap_mft_record(base_ni);
332 ntfs_debug("Failed. Returning error code %i.", err);
333 return err;
337 * ntfs_fault_in_pages_readable -
339 * Fault a number of userspace pages into pagetables.
341 * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
342 * with more than two userspace pages as well as handling the single page case
343 * elegantly.
345 * If you find this difficult to understand, then think of the while loop being
346 * the following code, except that we do without the integer variable ret:
348 * do {
349 * ret = __get_user(c, uaddr);
350 * uaddr += PAGE_SIZE;
351 * } while (!ret && uaddr < end);
353 * Note, the final __get_user() may well run out-of-bounds of the user buffer,
354 * but _not_ out-of-bounds of the page the user buffer belongs to, and since
355 * this is only a read and not a write, and since it is still in the same page,
356 * it should not matter and this makes the code much simpler.
358 static inline void ntfs_fault_in_pages_readable(const char __user *uaddr,
359 int bytes)
361 const char __user *end;
362 volatile char c;
364 /* Set @end to the first byte outside the last page we care about. */
365 end = (const char __user*)PAGE_ALIGN((ptrdiff_t __user)uaddr + bytes);
367 while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end))
372 * ntfs_fault_in_pages_readable_iovec -
374 * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
376 static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov,
377 size_t iov_ofs, int bytes)
379 do {
380 const char __user *buf;
381 unsigned len;
383 buf = iov->iov_base + iov_ofs;
384 len = iov->iov_len - iov_ofs;
385 if (len > bytes)
386 len = bytes;
387 ntfs_fault_in_pages_readable(buf, len);
388 bytes -= len;
389 iov++;
390 iov_ofs = 0;
391 } while (bytes);
395 * __ntfs_grab_cache_pages - obtain a number of locked pages
396 * @mapping: address space mapping from which to obtain page cache pages
397 * @index: starting index in @mapping at which to begin obtaining pages
398 * @nr_pages: number of page cache pages to obtain
399 * @pages: array of pages in which to return the obtained page cache pages
400 * @cached_page: allocated but as yet unused page
401 * @lru_pvec: lru-buffering pagevec of caller
403 * Obtain @nr_pages locked page cache pages from the mapping @maping and
404 * starting at index @index.
406 * If a page is newly created, increment its refcount and add it to the
407 * caller's lru-buffering pagevec @lru_pvec.
409 * This is the same as mm/filemap.c::__grab_cache_page(), except that @nr_pages
410 * are obtained at once instead of just one page and that 0 is returned on
411 * success and -errno on error.
413 * Note, the page locks are obtained in ascending page index order.
415 static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
416 pgoff_t index, const unsigned nr_pages, struct page **pages,
417 struct page **cached_page, struct pagevec *lru_pvec)
419 int err, nr;
421 BUG_ON(!nr_pages);
422 err = nr = 0;
423 do {
424 pages[nr] = find_lock_page(mapping, index);
425 if (!pages[nr]) {
426 if (!*cached_page) {
427 *cached_page = page_cache_alloc(mapping);
428 if (unlikely(!*cached_page)) {
429 err = -ENOMEM;
430 goto err_out;
433 err = add_to_page_cache(*cached_page, mapping, index,
434 GFP_KERNEL);
435 if (unlikely(err)) {
436 if (err == -EEXIST)
437 continue;
438 goto err_out;
440 pages[nr] = *cached_page;
441 page_cache_get(*cached_page);
442 if (unlikely(!pagevec_add(lru_pvec, *cached_page)))
443 __pagevec_lru_add(lru_pvec);
444 *cached_page = NULL;
446 index++;
447 nr++;
448 } while (nr < nr_pages);
449 out:
450 return err;
451 err_out:
452 while (nr > 0) {
453 unlock_page(pages[--nr]);
454 page_cache_release(pages[nr]);
456 goto out;
459 static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
461 lock_buffer(bh);
462 get_bh(bh);
463 bh->b_end_io = end_buffer_read_sync;
464 return submit_bh(READ, bh);
468 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
469 * @pages: array of destination pages
470 * @nr_pages: number of pages in @pages
471 * @pos: byte position in file at which the write begins
472 * @bytes: number of bytes to be written
474 * This is called for non-resident attributes from ntfs_file_buffered_write()
475 * with i_mutex held on the inode (@pages[0]->mapping->host). There are
476 * @nr_pages pages in @pages which are locked but not kmap()ped. The source
477 * data has not yet been copied into the @pages.
479 * Need to fill any holes with actual clusters, allocate buffers if necessary,
480 * ensure all the buffers are mapped, and bring uptodate any buffers that are
481 * only partially being written to.
483 * If @nr_pages is greater than one, we are guaranteed that the cluster size is
484 * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
485 * the same cluster and that they are the entirety of that cluster, and that
486 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
488 * i_size is not to be modified yet.
490 * Return 0 on success or -errno on error.
492 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
493 unsigned nr_pages, s64 pos, size_t bytes)
495 VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
496 LCN lcn;
497 s64 bh_pos, vcn_len, end, initialized_size;
498 sector_t lcn_block;
499 struct page *page;
500 struct inode *vi;
501 ntfs_inode *ni, *base_ni = NULL;
502 ntfs_volume *vol;
503 runlist_element *rl, *rl2;
504 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
505 ntfs_attr_search_ctx *ctx = NULL;
506 MFT_RECORD *m = NULL;
507 ATTR_RECORD *a = NULL;
508 unsigned long flags;
509 u32 attr_rec_len = 0;
510 unsigned blocksize, u;
511 int err, mp_size;
512 bool rl_write_locked, was_hole, is_retry;
513 unsigned char blocksize_bits;
514 struct {
515 u8 runlist_merged:1;
516 u8 mft_attr_mapped:1;
517 u8 mp_rebuilt:1;
518 u8 attr_switched:1;
519 } status = { 0, 0, 0, 0 };
521 BUG_ON(!nr_pages);
522 BUG_ON(!pages);
523 BUG_ON(!*pages);
524 vi = pages[0]->mapping->host;
525 ni = NTFS_I(vi);
526 vol = ni->vol;
527 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
528 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
529 vi->i_ino, ni->type, pages[0]->index, nr_pages,
530 (long long)pos, bytes);
531 blocksize = vol->sb->s_blocksize;
532 blocksize_bits = vol->sb->s_blocksize_bits;
533 u = 0;
534 do {
535 struct page *page = pages[u];
537 * create_empty_buffers() will create uptodate/dirty buffers if
538 * the page is uptodate/dirty.
540 if (!page_has_buffers(page)) {
541 create_empty_buffers(page, blocksize, 0);
542 if (unlikely(!page_has_buffers(page)))
543 return -ENOMEM;
545 } while (++u < nr_pages);
546 rl_write_locked = false;
547 rl = NULL;
548 err = 0;
549 vcn = lcn = -1;
550 vcn_len = 0;
551 lcn_block = -1;
552 was_hole = false;
553 cpos = pos >> vol->cluster_size_bits;
554 end = pos + bytes;
555 cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
557 * Loop over each page and for each page over each buffer. Use goto to
558 * reduce indentation.
560 u = 0;
561 do_next_page:
562 page = pages[u];
563 bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
564 bh = head = page_buffers(page);
565 do {
566 VCN cdelta;
567 s64 bh_end;
568 unsigned bh_cofs;
570 /* Clear buffer_new on all buffers to reinitialise state. */
571 if (buffer_new(bh))
572 clear_buffer_new(bh);
573 bh_end = bh_pos + blocksize;
574 bh_cpos = bh_pos >> vol->cluster_size_bits;
575 bh_cofs = bh_pos & vol->cluster_size_mask;
576 if (buffer_mapped(bh)) {
578 * The buffer is already mapped. If it is uptodate,
579 * ignore it.
581 if (buffer_uptodate(bh))
582 continue;
584 * The buffer is not uptodate. If the page is uptodate
585 * set the buffer uptodate and otherwise ignore it.
587 if (PageUptodate(page)) {
588 set_buffer_uptodate(bh);
589 continue;
592 * Neither the page nor the buffer are uptodate. If
593 * the buffer is only partially being written to, we
594 * need to read it in before the write, i.e. now.
596 if ((bh_pos < pos && bh_end > pos) ||
597 (bh_pos < end && bh_end > end)) {
599 * If the buffer is fully or partially within
600 * the initialized size, do an actual read.
601 * Otherwise, simply zero the buffer.
603 read_lock_irqsave(&ni->size_lock, flags);
604 initialized_size = ni->initialized_size;
605 read_unlock_irqrestore(&ni->size_lock, flags);
606 if (bh_pos < initialized_size) {
607 ntfs_submit_bh_for_read(bh);
608 *wait_bh++ = bh;
609 } else {
610 zero_user_page(page, bh_offset(bh),
611 blocksize, KM_USER0);
612 set_buffer_uptodate(bh);
615 continue;
617 /* Unmapped buffer. Need to map it. */
618 bh->b_bdev = vol->sb->s_bdev;
620 * If the current buffer is in the same clusters as the map
621 * cache, there is no need to check the runlist again. The
622 * map cache is made up of @vcn, which is the first cached file
623 * cluster, @vcn_len which is the number of cached file
624 * clusters, @lcn is the device cluster corresponding to @vcn,
625 * and @lcn_block is the block number corresponding to @lcn.
627 cdelta = bh_cpos - vcn;
628 if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
629 map_buffer_cached:
630 BUG_ON(lcn < 0);
631 bh->b_blocknr = lcn_block +
632 (cdelta << (vol->cluster_size_bits -
633 blocksize_bits)) +
634 (bh_cofs >> blocksize_bits);
635 set_buffer_mapped(bh);
637 * If the page is uptodate so is the buffer. If the
638 * buffer is fully outside the write, we ignore it if
639 * it was already allocated and we mark it dirty so it
640 * gets written out if we allocated it. On the other
641 * hand, if we allocated the buffer but we are not
642 * marking it dirty we set buffer_new so we can do
643 * error recovery.
645 if (PageUptodate(page)) {
646 if (!buffer_uptodate(bh))
647 set_buffer_uptodate(bh);
648 if (unlikely(was_hole)) {
649 /* We allocated the buffer. */
650 unmap_underlying_metadata(bh->b_bdev,
651 bh->b_blocknr);
652 if (bh_end <= pos || bh_pos >= end)
653 mark_buffer_dirty(bh);
654 else
655 set_buffer_new(bh);
657 continue;
659 /* Page is _not_ uptodate. */
660 if (likely(!was_hole)) {
662 * Buffer was already allocated. If it is not
663 * uptodate and is only partially being written
664 * to, we need to read it in before the write,
665 * i.e. now.
667 if (!buffer_uptodate(bh) && bh_pos < end &&
668 bh_end > pos &&
669 (bh_pos < pos ||
670 bh_end > end)) {
672 * If the buffer is fully or partially
673 * within the initialized size, do an
674 * actual read. Otherwise, simply zero
675 * the buffer.
677 read_lock_irqsave(&ni->size_lock,
678 flags);
679 initialized_size = ni->initialized_size;
680 read_unlock_irqrestore(&ni->size_lock,
681 flags);
682 if (bh_pos < initialized_size) {
683 ntfs_submit_bh_for_read(bh);
684 *wait_bh++ = bh;
685 } else {
686 zero_user_page(page,
687 bh_offset(bh),
688 blocksize, KM_USER0);
689 set_buffer_uptodate(bh);
692 continue;
694 /* We allocated the buffer. */
695 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
697 * If the buffer is fully outside the write, zero it,
698 * set it uptodate, and mark it dirty so it gets
699 * written out. If it is partially being written to,
700 * zero region surrounding the write but leave it to
701 * commit write to do anything else. Finally, if the
702 * buffer is fully being overwritten, do nothing.
704 if (bh_end <= pos || bh_pos >= end) {
705 if (!buffer_uptodate(bh)) {
706 zero_user_page(page, bh_offset(bh),
707 blocksize, KM_USER0);
708 set_buffer_uptodate(bh);
710 mark_buffer_dirty(bh);
711 continue;
713 set_buffer_new(bh);
714 if (!buffer_uptodate(bh) &&
715 (bh_pos < pos || bh_end > end)) {
716 u8 *kaddr;
717 unsigned pofs;
719 kaddr = kmap_atomic(page, KM_USER0);
720 if (bh_pos < pos) {
721 pofs = bh_pos & ~PAGE_CACHE_MASK;
722 memset(kaddr + pofs, 0, pos - bh_pos);
724 if (bh_end > end) {
725 pofs = end & ~PAGE_CACHE_MASK;
726 memset(kaddr + pofs, 0, bh_end - end);
728 kunmap_atomic(kaddr, KM_USER0);
729 flush_dcache_page(page);
731 continue;
734 * Slow path: this is the first buffer in the cluster. If it
735 * is outside allocated size and is not uptodate, zero it and
736 * set it uptodate.
738 read_lock_irqsave(&ni->size_lock, flags);
739 initialized_size = ni->allocated_size;
740 read_unlock_irqrestore(&ni->size_lock, flags);
741 if (bh_pos > initialized_size) {
742 if (PageUptodate(page)) {
743 if (!buffer_uptodate(bh))
744 set_buffer_uptodate(bh);
745 } else if (!buffer_uptodate(bh)) {
746 zero_user_page(page, bh_offset(bh), blocksize,
747 KM_USER0);
748 set_buffer_uptodate(bh);
750 continue;
752 is_retry = false;
753 if (!rl) {
754 down_read(&ni->runlist.lock);
755 retry_remap:
756 rl = ni->runlist.rl;
758 if (likely(rl != NULL)) {
759 /* Seek to element containing target cluster. */
760 while (rl->length && rl[1].vcn <= bh_cpos)
761 rl++;
762 lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
763 if (likely(lcn >= 0)) {
765 * Successful remap, setup the map cache and
766 * use that to deal with the buffer.
768 was_hole = false;
769 vcn = bh_cpos;
770 vcn_len = rl[1].vcn - vcn;
771 lcn_block = lcn << (vol->cluster_size_bits -
772 blocksize_bits);
773 cdelta = 0;
775 * If the number of remaining clusters touched
776 * by the write is smaller or equal to the
777 * number of cached clusters, unlock the
778 * runlist as the map cache will be used from
779 * now on.
781 if (likely(vcn + vcn_len >= cend)) {
782 if (rl_write_locked) {
783 up_write(&ni->runlist.lock);
784 rl_write_locked = false;
785 } else
786 up_read(&ni->runlist.lock);
787 rl = NULL;
789 goto map_buffer_cached;
791 } else
792 lcn = LCN_RL_NOT_MAPPED;
794 * If it is not a hole and not out of bounds, the runlist is
795 * probably unmapped so try to map it now.
797 if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
798 if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
799 /* Attempt to map runlist. */
800 if (!rl_write_locked) {
802 * We need the runlist locked for
803 * writing, so if it is locked for
804 * reading relock it now and retry in
805 * case it changed whilst we dropped
806 * the lock.
808 up_read(&ni->runlist.lock);
809 down_write(&ni->runlist.lock);
810 rl_write_locked = true;
811 goto retry_remap;
813 err = ntfs_map_runlist_nolock(ni, bh_cpos,
814 NULL);
815 if (likely(!err)) {
816 is_retry = true;
817 goto retry_remap;
820 * If @vcn is out of bounds, pretend @lcn is
821 * LCN_ENOENT. As long as the buffer is out
822 * of bounds this will work fine.
824 if (err == -ENOENT) {
825 lcn = LCN_ENOENT;
826 err = 0;
827 goto rl_not_mapped_enoent;
829 } else
830 err = -EIO;
831 /* Failed to map the buffer, even after retrying. */
832 bh->b_blocknr = -1;
833 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
834 "attribute type 0x%x, vcn 0x%llx, "
835 "vcn offset 0x%x, because its "
836 "location on disk could not be "
837 "determined%s (error code %i).",
838 ni->mft_no, ni->type,
839 (unsigned long long)bh_cpos,
840 (unsigned)bh_pos &
841 vol->cluster_size_mask,
842 is_retry ? " even after retrying" : "",
843 err);
844 break;
846 rl_not_mapped_enoent:
848 * The buffer is in a hole or out of bounds. We need to fill
849 * the hole, unless the buffer is in a cluster which is not
850 * touched by the write, in which case we just leave the buffer
851 * unmapped. This can only happen when the cluster size is
852 * less than the page cache size.
854 if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) {
855 bh_cend = (bh_end + vol->cluster_size - 1) >>
856 vol->cluster_size_bits;
857 if ((bh_cend <= cpos || bh_cpos >= cend)) {
858 bh->b_blocknr = -1;
860 * If the buffer is uptodate we skip it. If it
861 * is not but the page is uptodate, we can set
862 * the buffer uptodate. If the page is not
863 * uptodate, we can clear the buffer and set it
864 * uptodate. Whether this is worthwhile is
865 * debatable and this could be removed.
867 if (PageUptodate(page)) {
868 if (!buffer_uptodate(bh))
869 set_buffer_uptodate(bh);
870 } else if (!buffer_uptodate(bh)) {
871 zero_user_page(page, bh_offset(bh),
872 blocksize, KM_USER0);
873 set_buffer_uptodate(bh);
875 continue;
879 * Out of bounds buffer is invalid if it was not really out of
880 * bounds.
882 BUG_ON(lcn != LCN_HOLE);
884 * We need the runlist locked for writing, so if it is locked
885 * for reading relock it now and retry in case it changed
886 * whilst we dropped the lock.
888 BUG_ON(!rl);
889 if (!rl_write_locked) {
890 up_read(&ni->runlist.lock);
891 down_write(&ni->runlist.lock);
892 rl_write_locked = true;
893 goto retry_remap;
895 /* Find the previous last allocated cluster. */
896 BUG_ON(rl->lcn != LCN_HOLE);
897 lcn = -1;
898 rl2 = rl;
899 while (--rl2 >= ni->runlist.rl) {
900 if (rl2->lcn >= 0) {
901 lcn = rl2->lcn + rl2->length;
902 break;
905 rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
906 false);
907 if (IS_ERR(rl2)) {
908 err = PTR_ERR(rl2);
909 ntfs_debug("Failed to allocate cluster, error code %i.",
910 err);
911 break;
913 lcn = rl2->lcn;
914 rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
915 if (IS_ERR(rl)) {
916 err = PTR_ERR(rl);
917 if (err != -ENOMEM)
918 err = -EIO;
919 if (ntfs_cluster_free_from_rl(vol, rl2)) {
920 ntfs_error(vol->sb, "Failed to release "
921 "allocated cluster in error "
922 "code path. Run chkdsk to "
923 "recover the lost cluster.");
924 NVolSetErrors(vol);
926 ntfs_free(rl2);
927 break;
929 ni->runlist.rl = rl;
930 status.runlist_merged = 1;
931 ntfs_debug("Allocated cluster, lcn 0x%llx.",
932 (unsigned long long)lcn);
933 /* Map and lock the mft record and get the attribute record. */
934 if (!NInoAttr(ni))
935 base_ni = ni;
936 else
937 base_ni = ni->ext.base_ntfs_ino;
938 m = map_mft_record(base_ni);
939 if (IS_ERR(m)) {
940 err = PTR_ERR(m);
941 break;
943 ctx = ntfs_attr_get_search_ctx(base_ni, m);
944 if (unlikely(!ctx)) {
945 err = -ENOMEM;
946 unmap_mft_record(base_ni);
947 break;
949 status.mft_attr_mapped = 1;
950 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
951 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
952 if (unlikely(err)) {
953 if (err == -ENOENT)
954 err = -EIO;
955 break;
957 m = ctx->mrec;
958 a = ctx->attr;
960 * Find the runlist element with which the attribute extent
961 * starts. Note, we cannot use the _attr_ version because we
962 * have mapped the mft record. That is ok because we know the
963 * runlist fragment must be mapped already to have ever gotten
964 * here, so we can just use the _rl_ version.
966 vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
967 rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
968 BUG_ON(!rl2);
969 BUG_ON(!rl2->length);
970 BUG_ON(rl2->lcn < LCN_HOLE);
971 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
973 * If @highest_vcn is zero, calculate the real highest_vcn
974 * (which can really be zero).
976 if (!highest_vcn)
977 highest_vcn = (sle64_to_cpu(
978 a->data.non_resident.allocated_size) >>
979 vol->cluster_size_bits) - 1;
981 * Determine the size of the mapping pairs array for the new
982 * extent, i.e. the old extent with the hole filled.
984 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
985 highest_vcn);
986 if (unlikely(mp_size <= 0)) {
987 if (!(err = mp_size))
988 err = -EIO;
989 ntfs_debug("Failed to get size for mapping pairs "
990 "array, error code %i.", err);
991 break;
994 * Resize the attribute record to fit the new mapping pairs
995 * array.
997 attr_rec_len = le32_to_cpu(a->length);
998 err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
999 a->data.non_resident.mapping_pairs_offset));
1000 if (unlikely(err)) {
1001 BUG_ON(err != -ENOSPC);
1002 // TODO: Deal with this by using the current attribute
1003 // and fill it with as much of the mapping pairs
1004 // array as possible. Then loop over each attribute
1005 // extent rewriting the mapping pairs arrays as we go
1006 // along and if when we reach the end we have not
1007 // enough space, try to resize the last attribute
1008 // extent and if even that fails, add a new attribute
1009 // extent.
1010 // We could also try to resize at each step in the hope
1011 // that we will not need to rewrite every single extent.
1012 // Note, we may need to decompress some extents to fill
1013 // the runlist as we are walking the extents...
1014 ntfs_error(vol->sb, "Not enough space in the mft "
1015 "record for the extended attribute "
1016 "record. This case is not "
1017 "implemented yet.");
1018 err = -EOPNOTSUPP;
1019 break ;
1021 status.mp_rebuilt = 1;
1023 * Generate the mapping pairs array directly into the attribute
1024 * record.
1026 err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1027 a->data.non_resident.mapping_pairs_offset),
1028 mp_size, rl2, vcn, highest_vcn, NULL);
1029 if (unlikely(err)) {
1030 ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1031 "attribute type 0x%x, because building "
1032 "the mapping pairs failed with error "
1033 "code %i.", vi->i_ino,
1034 (unsigned)le32_to_cpu(ni->type), err);
1035 err = -EIO;
1036 break;
1038 /* Update the highest_vcn but only if it was not set. */
1039 if (unlikely(!a->data.non_resident.highest_vcn))
1040 a->data.non_resident.highest_vcn =
1041 cpu_to_sle64(highest_vcn);
1043 * If the attribute is sparse/compressed, update the compressed
1044 * size in the ntfs_inode structure and the attribute record.
1046 if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1048 * If we are not in the first attribute extent, switch
1049 * to it, but first ensure the changes will make it to
1050 * disk later.
1052 if (a->data.non_resident.lowest_vcn) {
1053 flush_dcache_mft_record_page(ctx->ntfs_ino);
1054 mark_mft_record_dirty(ctx->ntfs_ino);
1055 ntfs_attr_reinit_search_ctx(ctx);
1056 err = ntfs_attr_lookup(ni->type, ni->name,
1057 ni->name_len, CASE_SENSITIVE,
1058 0, NULL, 0, ctx);
1059 if (unlikely(err)) {
1060 status.attr_switched = 1;
1061 break;
1063 /* @m is not used any more so do not set it. */
1064 a = ctx->attr;
1066 write_lock_irqsave(&ni->size_lock, flags);
1067 ni->itype.compressed.size += vol->cluster_size;
1068 a->data.non_resident.compressed_size =
1069 cpu_to_sle64(ni->itype.compressed.size);
1070 write_unlock_irqrestore(&ni->size_lock, flags);
1072 /* Ensure the changes make it to disk. */
1073 flush_dcache_mft_record_page(ctx->ntfs_ino);
1074 mark_mft_record_dirty(ctx->ntfs_ino);
1075 ntfs_attr_put_search_ctx(ctx);
1076 unmap_mft_record(base_ni);
1077 /* Successfully filled the hole. */
1078 status.runlist_merged = 0;
1079 status.mft_attr_mapped = 0;
1080 status.mp_rebuilt = 0;
1081 /* Setup the map cache and use that to deal with the buffer. */
1082 was_hole = true;
1083 vcn = bh_cpos;
1084 vcn_len = 1;
1085 lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1086 cdelta = 0;
1088 * If the number of remaining clusters in the @pages is smaller
1089 * or equal to the number of cached clusters, unlock the
1090 * runlist as the map cache will be used from now on.
1092 if (likely(vcn + vcn_len >= cend)) {
1093 up_write(&ni->runlist.lock);
1094 rl_write_locked = false;
1095 rl = NULL;
1097 goto map_buffer_cached;
1098 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1099 /* If there are no errors, do the next page. */
1100 if (likely(!err && ++u < nr_pages))
1101 goto do_next_page;
1102 /* If there are no errors, release the runlist lock if we took it. */
1103 if (likely(!err)) {
1104 if (unlikely(rl_write_locked)) {
1105 up_write(&ni->runlist.lock);
1106 rl_write_locked = false;
1107 } else if (unlikely(rl))
1108 up_read(&ni->runlist.lock);
1109 rl = NULL;
1111 /* If we issued read requests, let them complete. */
1112 read_lock_irqsave(&ni->size_lock, flags);
1113 initialized_size = ni->initialized_size;
1114 read_unlock_irqrestore(&ni->size_lock, flags);
1115 while (wait_bh > wait) {
1116 bh = *--wait_bh;
1117 wait_on_buffer(bh);
1118 if (likely(buffer_uptodate(bh))) {
1119 page = bh->b_page;
1120 bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) +
1121 bh_offset(bh);
1123 * If the buffer overflows the initialized size, need
1124 * to zero the overflowing region.
1126 if (unlikely(bh_pos + blocksize > initialized_size)) {
1127 int ofs = 0;
1129 if (likely(bh_pos < initialized_size))
1130 ofs = initialized_size - bh_pos;
1131 zero_user_page(page, bh_offset(bh) + ofs,
1132 blocksize - ofs, KM_USER0);
1134 } else /* if (unlikely(!buffer_uptodate(bh))) */
1135 err = -EIO;
1137 if (likely(!err)) {
1138 /* Clear buffer_new on all buffers. */
1139 u = 0;
1140 do {
1141 bh = head = page_buffers(pages[u]);
1142 do {
1143 if (buffer_new(bh))
1144 clear_buffer_new(bh);
1145 } while ((bh = bh->b_this_page) != head);
1146 } while (++u < nr_pages);
1147 ntfs_debug("Done.");
1148 return err;
1150 if (status.attr_switched) {
1151 /* Get back to the attribute extent we modified. */
1152 ntfs_attr_reinit_search_ctx(ctx);
1153 if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1154 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1155 ntfs_error(vol->sb, "Failed to find required "
1156 "attribute extent of attribute in "
1157 "error code path. Run chkdsk to "
1158 "recover.");
1159 write_lock_irqsave(&ni->size_lock, flags);
1160 ni->itype.compressed.size += vol->cluster_size;
1161 write_unlock_irqrestore(&ni->size_lock, flags);
1162 flush_dcache_mft_record_page(ctx->ntfs_ino);
1163 mark_mft_record_dirty(ctx->ntfs_ino);
1165 * The only thing that is now wrong is the compressed
1166 * size of the base attribute extent which chkdsk
1167 * should be able to fix.
1169 NVolSetErrors(vol);
1170 } else {
1171 m = ctx->mrec;
1172 a = ctx->attr;
1173 status.attr_switched = 0;
1177 * If the runlist has been modified, need to restore it by punching a
1178 * hole into it and we then need to deallocate the on-disk cluster as
1179 * well. Note, we only modify the runlist if we are able to generate a
1180 * new mapping pairs array, i.e. only when the mapped attribute extent
1181 * is not switched.
1183 if (status.runlist_merged && !status.attr_switched) {
1184 BUG_ON(!rl_write_locked);
1185 /* Make the file cluster we allocated sparse in the runlist. */
1186 if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1187 ntfs_error(vol->sb, "Failed to punch hole into "
1188 "attribute runlist in error code "
1189 "path. Run chkdsk to recover the "
1190 "lost cluster.");
1191 NVolSetErrors(vol);
1192 } else /* if (success) */ {
1193 status.runlist_merged = 0;
1195 * Deallocate the on-disk cluster we allocated but only
1196 * if we succeeded in punching its vcn out of the
1197 * runlist.
1199 down_write(&vol->lcnbmp_lock);
1200 if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1201 ntfs_error(vol->sb, "Failed to release "
1202 "allocated cluster in error "
1203 "code path. Run chkdsk to "
1204 "recover the lost cluster.");
1205 NVolSetErrors(vol);
1207 up_write(&vol->lcnbmp_lock);
1211 * Resize the attribute record to its old size and rebuild the mapping
1212 * pairs array. Note, we only can do this if the runlist has been
1213 * restored to its old state which also implies that the mapped
1214 * attribute extent is not switched.
1216 if (status.mp_rebuilt && !status.runlist_merged) {
1217 if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1218 ntfs_error(vol->sb, "Failed to restore attribute "
1219 "record in error code path. Run "
1220 "chkdsk to recover.");
1221 NVolSetErrors(vol);
1222 } else /* if (success) */ {
1223 if (ntfs_mapping_pairs_build(vol, (u8*)a +
1224 le16_to_cpu(a->data.non_resident.
1225 mapping_pairs_offset), attr_rec_len -
1226 le16_to_cpu(a->data.non_resident.
1227 mapping_pairs_offset), ni->runlist.rl,
1228 vcn, highest_vcn, NULL)) {
1229 ntfs_error(vol->sb, "Failed to restore "
1230 "mapping pairs array in error "
1231 "code path. Run chkdsk to "
1232 "recover.");
1233 NVolSetErrors(vol);
1235 flush_dcache_mft_record_page(ctx->ntfs_ino);
1236 mark_mft_record_dirty(ctx->ntfs_ino);
1239 /* Release the mft record and the attribute. */
1240 if (status.mft_attr_mapped) {
1241 ntfs_attr_put_search_ctx(ctx);
1242 unmap_mft_record(base_ni);
1244 /* Release the runlist lock. */
1245 if (rl_write_locked)
1246 up_write(&ni->runlist.lock);
1247 else if (rl)
1248 up_read(&ni->runlist.lock);
1250 * Zero out any newly allocated blocks to avoid exposing stale data.
1251 * If BH_New is set, we know that the block was newly allocated above
1252 * and that it has not been fully zeroed and marked dirty yet.
1254 nr_pages = u;
1255 u = 0;
1256 end = bh_cpos << vol->cluster_size_bits;
1257 do {
1258 page = pages[u];
1259 bh = head = page_buffers(page);
1260 do {
1261 if (u == nr_pages &&
1262 ((s64)page->index << PAGE_CACHE_SHIFT) +
1263 bh_offset(bh) >= end)
1264 break;
1265 if (!buffer_new(bh))
1266 continue;
1267 clear_buffer_new(bh);
1268 if (!buffer_uptodate(bh)) {
1269 if (PageUptodate(page))
1270 set_buffer_uptodate(bh);
1271 else {
1272 zero_user_page(page, bh_offset(bh),
1273 blocksize, KM_USER0);
1274 set_buffer_uptodate(bh);
1277 mark_buffer_dirty(bh);
1278 } while ((bh = bh->b_this_page) != head);
1279 } while (++u <= nr_pages);
1280 ntfs_error(vol->sb, "Failed. Returning error code %i.", err);
1281 return err;
1285 * Copy as much as we can into the pages and return the number of bytes which
1286 * were sucessfully copied. If a fault is encountered then clear the pages
1287 * out to (ofs + bytes) and return the number of bytes which were copied.
1289 static inline size_t ntfs_copy_from_user(struct page **pages,
1290 unsigned nr_pages, unsigned ofs, const char __user *buf,
1291 size_t bytes)
1293 struct page **last_page = pages + nr_pages;
1294 char *kaddr;
1295 size_t total = 0;
1296 unsigned len;
1297 int left;
1299 do {
1300 len = PAGE_CACHE_SIZE - ofs;
1301 if (len > bytes)
1302 len = bytes;
1303 kaddr = kmap_atomic(*pages, KM_USER0);
1304 left = __copy_from_user_inatomic(kaddr + ofs, buf, len);
1305 kunmap_atomic(kaddr, KM_USER0);
1306 if (unlikely(left)) {
1307 /* Do it the slow way. */
1308 kaddr = kmap(*pages);
1309 left = __copy_from_user(kaddr + ofs, buf, len);
1310 kunmap(*pages);
1311 if (unlikely(left))
1312 goto err_out;
1314 total += len;
1315 bytes -= len;
1316 if (!bytes)
1317 break;
1318 buf += len;
1319 ofs = 0;
1320 } while (++pages < last_page);
1321 out:
1322 return total;
1323 err_out:
1324 total += len - left;
1325 /* Zero the rest of the target like __copy_from_user(). */
1326 while (++pages < last_page) {
1327 bytes -= len;
1328 if (!bytes)
1329 break;
1330 len = PAGE_CACHE_SIZE;
1331 if (len > bytes)
1332 len = bytes;
1333 zero_user_page(*pages, 0, len, KM_USER0);
1335 goto out;
1338 static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr,
1339 const struct iovec *iov, size_t iov_ofs, size_t bytes)
1341 size_t total = 0;
1343 while (1) {
1344 const char __user *buf = iov->iov_base + iov_ofs;
1345 unsigned len;
1346 size_t left;
1348 len = iov->iov_len - iov_ofs;
1349 if (len > bytes)
1350 len = bytes;
1351 left = __copy_from_user_inatomic(vaddr, buf, len);
1352 total += len;
1353 bytes -= len;
1354 vaddr += len;
1355 if (unlikely(left)) {
1356 total -= left;
1357 break;
1359 if (!bytes)
1360 break;
1361 iov++;
1362 iov_ofs = 0;
1364 return total;
1367 static inline void ntfs_set_next_iovec(const struct iovec **iovp,
1368 size_t *iov_ofsp, size_t bytes)
1370 const struct iovec *iov = *iovp;
1371 size_t iov_ofs = *iov_ofsp;
1373 while (bytes) {
1374 unsigned len;
1376 len = iov->iov_len - iov_ofs;
1377 if (len > bytes)
1378 len = bytes;
1379 bytes -= len;
1380 iov_ofs += len;
1381 if (iov->iov_len == iov_ofs) {
1382 iov++;
1383 iov_ofs = 0;
1386 *iovp = iov;
1387 *iov_ofsp = iov_ofs;
1391 * This has the same side-effects and return value as ntfs_copy_from_user().
1392 * The difference is that on a fault we need to memset the remainder of the
1393 * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
1394 * single-segment behaviour.
1396 * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both
1397 * when atomic and when not atomic. This is ok because
1398 * __ntfs_copy_from_user_iovec_inatomic() calls __copy_from_user_inatomic()
1399 * and it is ok to call this when non-atomic.
1400 * Infact, the only difference between __copy_from_user_inatomic() and
1401 * __copy_from_user() is that the latter calls might_sleep() and the former
1402 * should not zero the tail of the buffer on error. And on many
1403 * architectures __copy_from_user_inatomic() is just defined to
1404 * __copy_from_user() so it makes no difference at all on those architectures.
1406 static inline size_t ntfs_copy_from_user_iovec(struct page **pages,
1407 unsigned nr_pages, unsigned ofs, const struct iovec **iov,
1408 size_t *iov_ofs, size_t bytes)
1410 struct page **last_page = pages + nr_pages;
1411 char *kaddr;
1412 size_t copied, len, total = 0;
1414 do {
1415 len = PAGE_CACHE_SIZE - ofs;
1416 if (len > bytes)
1417 len = bytes;
1418 kaddr = kmap_atomic(*pages, KM_USER0);
1419 copied = __ntfs_copy_from_user_iovec_inatomic(kaddr + ofs,
1420 *iov, *iov_ofs, len);
1421 kunmap_atomic(kaddr, KM_USER0);
1422 if (unlikely(copied != len)) {
1423 /* Do it the slow way. */
1424 kaddr = kmap(*pages);
1425 copied = __ntfs_copy_from_user_iovec_inatomic(kaddr + ofs,
1426 *iov, *iov_ofs, len);
1428 * Zero the rest of the target like __copy_from_user().
1430 memset(kaddr + ofs + copied, 0, len - copied);
1431 kunmap(*pages);
1432 if (unlikely(copied != len))
1433 goto err_out;
1435 total += len;
1436 bytes -= len;
1437 if (!bytes)
1438 break;
1439 ntfs_set_next_iovec(iov, iov_ofs, len);
1440 ofs = 0;
1441 } while (++pages < last_page);
1442 out:
1443 return total;
1444 err_out:
1445 total += copied;
1446 /* Zero the rest of the target like __copy_from_user(). */
1447 while (++pages < last_page) {
1448 bytes -= len;
1449 if (!bytes)
1450 break;
1451 len = PAGE_CACHE_SIZE;
1452 if (len > bytes)
1453 len = bytes;
1454 zero_user_page(*pages, 0, len, KM_USER0);
1456 goto out;
1459 static inline void ntfs_flush_dcache_pages(struct page **pages,
1460 unsigned nr_pages)
1462 BUG_ON(!nr_pages);
1464 * Warning: Do not do the decrement at the same time as the call to
1465 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1466 * decrement never happens so the loop never terminates.
1468 do {
1469 --nr_pages;
1470 flush_dcache_page(pages[nr_pages]);
1471 } while (nr_pages > 0);
1475 * ntfs_commit_pages_after_non_resident_write - commit the received data
1476 * @pages: array of destination pages
1477 * @nr_pages: number of pages in @pages
1478 * @pos: byte position in file at which the write begins
1479 * @bytes: number of bytes to be written
1481 * See description of ntfs_commit_pages_after_write(), below.
1483 static inline int ntfs_commit_pages_after_non_resident_write(
1484 struct page **pages, const unsigned nr_pages,
1485 s64 pos, size_t bytes)
1487 s64 end, initialized_size;
1488 struct inode *vi;
1489 ntfs_inode *ni, *base_ni;
1490 struct buffer_head *bh, *head;
1491 ntfs_attr_search_ctx *ctx;
1492 MFT_RECORD *m;
1493 ATTR_RECORD *a;
1494 unsigned long flags;
1495 unsigned blocksize, u;
1496 int err;
1498 vi = pages[0]->mapping->host;
1499 ni = NTFS_I(vi);
1500 blocksize = vi->i_sb->s_blocksize;
1501 end = pos + bytes;
1502 u = 0;
1503 do {
1504 s64 bh_pos;
1505 struct page *page;
1506 bool partial;
1508 page = pages[u];
1509 bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
1510 bh = head = page_buffers(page);
1511 partial = false;
1512 do {
1513 s64 bh_end;
1515 bh_end = bh_pos + blocksize;
1516 if (bh_end <= pos || bh_pos >= end) {
1517 if (!buffer_uptodate(bh))
1518 partial = true;
1519 } else {
1520 set_buffer_uptodate(bh);
1521 mark_buffer_dirty(bh);
1523 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1525 * If all buffers are now uptodate but the page is not, set the
1526 * page uptodate.
1528 if (!partial && !PageUptodate(page))
1529 SetPageUptodate(page);
1530 } while (++u < nr_pages);
1532 * Finally, if we do not need to update initialized_size or i_size we
1533 * are finished.
1535 read_lock_irqsave(&ni->size_lock, flags);
1536 initialized_size = ni->initialized_size;
1537 read_unlock_irqrestore(&ni->size_lock, flags);
1538 if (end <= initialized_size) {
1539 ntfs_debug("Done.");
1540 return 0;
1543 * Update initialized_size/i_size as appropriate, both in the inode and
1544 * the mft record.
1546 if (!NInoAttr(ni))
1547 base_ni = ni;
1548 else
1549 base_ni = ni->ext.base_ntfs_ino;
1550 /* Map, pin, and lock the mft record. */
1551 m = map_mft_record(base_ni);
1552 if (IS_ERR(m)) {
1553 err = PTR_ERR(m);
1554 m = NULL;
1555 ctx = NULL;
1556 goto err_out;
1558 BUG_ON(!NInoNonResident(ni));
1559 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1560 if (unlikely(!ctx)) {
1561 err = -ENOMEM;
1562 goto err_out;
1564 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1565 CASE_SENSITIVE, 0, NULL, 0, ctx);
1566 if (unlikely(err)) {
1567 if (err == -ENOENT)
1568 err = -EIO;
1569 goto err_out;
1571 a = ctx->attr;
1572 BUG_ON(!a->non_resident);
1573 write_lock_irqsave(&ni->size_lock, flags);
1574 BUG_ON(end > ni->allocated_size);
1575 ni->initialized_size = end;
1576 a->data.non_resident.initialized_size = cpu_to_sle64(end);
1577 if (end > i_size_read(vi)) {
1578 i_size_write(vi, end);
1579 a->data.non_resident.data_size =
1580 a->data.non_resident.initialized_size;
1582 write_unlock_irqrestore(&ni->size_lock, flags);
1583 /* Mark the mft record dirty, so it gets written back. */
1584 flush_dcache_mft_record_page(ctx->ntfs_ino);
1585 mark_mft_record_dirty(ctx->ntfs_ino);
1586 ntfs_attr_put_search_ctx(ctx);
1587 unmap_mft_record(base_ni);
1588 ntfs_debug("Done.");
1589 return 0;
1590 err_out:
1591 if (ctx)
1592 ntfs_attr_put_search_ctx(ctx);
1593 if (m)
1594 unmap_mft_record(base_ni);
1595 ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1596 "code %i).", err);
1597 if (err != -ENOMEM)
1598 NVolSetErrors(ni->vol);
1599 return err;
1603 * ntfs_commit_pages_after_write - commit the received data
1604 * @pages: array of destination pages
1605 * @nr_pages: number of pages in @pages
1606 * @pos: byte position in file at which the write begins
1607 * @bytes: number of bytes to be written
1609 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1610 * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are
1611 * locked but not kmap()ped. The source data has already been copied into the
1612 * @page. ntfs_prepare_pages_for_non_resident_write() has been called before
1613 * the data was copied (for non-resident attributes only) and it returned
1614 * success.
1616 * Need to set uptodate and mark dirty all buffers within the boundary of the
1617 * write. If all buffers in a page are uptodate we set the page uptodate, too.
1619 * Setting the buffers dirty ensures that they get written out later when
1620 * ntfs_writepage() is invoked by the VM.
1622 * Finally, we need to update i_size and initialized_size as appropriate both
1623 * in the inode and the mft record.
1625 * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1626 * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1627 * page are uptodate, and updates i_size if the end of io is beyond i_size. In
1628 * that case, it also marks the inode dirty.
1630 * If things have gone as outlined in
1631 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1632 * content modifications here for non-resident attributes. For resident
1633 * attributes we need to do the uptodate bringing here which we combine with
1634 * the copying into the mft record which means we save one atomic kmap.
1636 * Return 0 on success or -errno on error.
1638 static int ntfs_commit_pages_after_write(struct page **pages,
1639 const unsigned nr_pages, s64 pos, size_t bytes)
1641 s64 end, initialized_size;
1642 loff_t i_size;
1643 struct inode *vi;
1644 ntfs_inode *ni, *base_ni;
1645 struct page *page;
1646 ntfs_attr_search_ctx *ctx;
1647 MFT_RECORD *m;
1648 ATTR_RECORD *a;
1649 char *kattr, *kaddr;
1650 unsigned long flags;
1651 u32 attr_len;
1652 int err;
1654 BUG_ON(!nr_pages);
1655 BUG_ON(!pages);
1656 page = pages[0];
1657 BUG_ON(!page);
1658 vi = page->mapping->host;
1659 ni = NTFS_I(vi);
1660 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1661 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1662 vi->i_ino, ni->type, page->index, nr_pages,
1663 (long long)pos, bytes);
1664 if (NInoNonResident(ni))
1665 return ntfs_commit_pages_after_non_resident_write(pages,
1666 nr_pages, pos, bytes);
1667 BUG_ON(nr_pages > 1);
1669 * Attribute is resident, implying it is not compressed, encrypted, or
1670 * sparse.
1672 if (!NInoAttr(ni))
1673 base_ni = ni;
1674 else
1675 base_ni = ni->ext.base_ntfs_ino;
1676 BUG_ON(NInoNonResident(ni));
1677 /* Map, pin, and lock the mft record. */
1678 m = map_mft_record(base_ni);
1679 if (IS_ERR(m)) {
1680 err = PTR_ERR(m);
1681 m = NULL;
1682 ctx = NULL;
1683 goto err_out;
1685 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1686 if (unlikely(!ctx)) {
1687 err = -ENOMEM;
1688 goto err_out;
1690 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1691 CASE_SENSITIVE, 0, NULL, 0, ctx);
1692 if (unlikely(err)) {
1693 if (err == -ENOENT)
1694 err = -EIO;
1695 goto err_out;
1697 a = ctx->attr;
1698 BUG_ON(a->non_resident);
1699 /* The total length of the attribute value. */
1700 attr_len = le32_to_cpu(a->data.resident.value_length);
1701 i_size = i_size_read(vi);
1702 BUG_ON(attr_len != i_size);
1703 BUG_ON(pos > attr_len);
1704 end = pos + bytes;
1705 BUG_ON(end > le32_to_cpu(a->length) -
1706 le16_to_cpu(a->data.resident.value_offset));
1707 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1708 kaddr = kmap_atomic(page, KM_USER0);
1709 /* Copy the received data from the page to the mft record. */
1710 memcpy(kattr + pos, kaddr + pos, bytes);
1711 /* Update the attribute length if necessary. */
1712 if (end > attr_len) {
1713 attr_len = end;
1714 a->data.resident.value_length = cpu_to_le32(attr_len);
1717 * If the page is not uptodate, bring the out of bounds area(s)
1718 * uptodate by copying data from the mft record to the page.
1720 if (!PageUptodate(page)) {
1721 if (pos > 0)
1722 memcpy(kaddr, kattr, pos);
1723 if (end < attr_len)
1724 memcpy(kaddr + end, kattr + end, attr_len - end);
1725 /* Zero the region outside the end of the attribute value. */
1726 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1727 flush_dcache_page(page);
1728 SetPageUptodate(page);
1730 kunmap_atomic(kaddr, KM_USER0);
1731 /* Update initialized_size/i_size if necessary. */
1732 read_lock_irqsave(&ni->size_lock, flags);
1733 initialized_size = ni->initialized_size;
1734 BUG_ON(end > ni->allocated_size);
1735 read_unlock_irqrestore(&ni->size_lock, flags);
1736 BUG_ON(initialized_size != i_size);
1737 if (end > initialized_size) {
1738 unsigned long flags;
1740 write_lock_irqsave(&ni->size_lock, flags);
1741 ni->initialized_size = end;
1742 i_size_write(vi, end);
1743 write_unlock_irqrestore(&ni->size_lock, flags);
1745 /* Mark the mft record dirty, so it gets written back. */
1746 flush_dcache_mft_record_page(ctx->ntfs_ino);
1747 mark_mft_record_dirty(ctx->ntfs_ino);
1748 ntfs_attr_put_search_ctx(ctx);
1749 unmap_mft_record(base_ni);
1750 ntfs_debug("Done.");
1751 return 0;
1752 err_out:
1753 if (err == -ENOMEM) {
1754 ntfs_warning(vi->i_sb, "Error allocating memory required to "
1755 "commit the write.");
1756 if (PageUptodate(page)) {
1757 ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1758 "dirty so the write will be retried "
1759 "later on by the VM.");
1761 * Put the page on mapping->dirty_pages, but leave its
1762 * buffers' dirty state as-is.
1764 __set_page_dirty_nobuffers(page);
1765 err = 0;
1766 } else
1767 ntfs_error(vi->i_sb, "Page is not uptodate. Written "
1768 "data has been lost.");
1769 } else {
1770 ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1771 "with error %i.", err);
1772 NVolSetErrors(ni->vol);
1774 if (ctx)
1775 ntfs_attr_put_search_ctx(ctx);
1776 if (m)
1777 unmap_mft_record(base_ni);
1778 return err;
1782 * ntfs_file_buffered_write -
1784 * Locking: The vfs is holding ->i_mutex on the inode.
1786 static ssize_t ntfs_file_buffered_write(struct kiocb *iocb,
1787 const struct iovec *iov, unsigned long nr_segs,
1788 loff_t pos, loff_t *ppos, size_t count)
1790 struct file *file = iocb->ki_filp;
1791 struct address_space *mapping = file->f_mapping;
1792 struct inode *vi = mapping->host;
1793 ntfs_inode *ni = NTFS_I(vi);
1794 ntfs_volume *vol = ni->vol;
1795 struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1796 struct page *cached_page = NULL;
1797 char __user *buf = NULL;
1798 s64 end, ll;
1799 VCN last_vcn;
1800 LCN lcn;
1801 unsigned long flags;
1802 size_t bytes, iov_ofs = 0; /* Offset in the current iovec. */
1803 ssize_t status, written;
1804 unsigned nr_pages;
1805 int err;
1806 struct pagevec lru_pvec;
1808 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1809 "pos 0x%llx, count 0x%lx.",
1810 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
1811 (unsigned long long)pos, (unsigned long)count);
1812 if (unlikely(!count))
1813 return 0;
1814 BUG_ON(NInoMstProtected(ni));
1816 * If the attribute is not an index root and it is encrypted or
1817 * compressed, we cannot write to it yet. Note we need to check for
1818 * AT_INDEX_ALLOCATION since this is the type of both directory and
1819 * index inodes.
1821 if (ni->type != AT_INDEX_ALLOCATION) {
1822 /* If file is encrypted, deny access, just like NT4. */
1823 if (NInoEncrypted(ni)) {
1825 * Reminder for later: Encrypted files are _always_
1826 * non-resident so that the content can always be
1827 * encrypted.
1829 ntfs_debug("Denying write access to encrypted file.");
1830 return -EACCES;
1832 if (NInoCompressed(ni)) {
1833 /* Only unnamed $DATA attribute can be compressed. */
1834 BUG_ON(ni->type != AT_DATA);
1835 BUG_ON(ni->name_len);
1837 * Reminder for later: If resident, the data is not
1838 * actually compressed. Only on the switch to non-
1839 * resident does compression kick in. This is in
1840 * contrast to encrypted files (see above).
1842 ntfs_error(vi->i_sb, "Writing to compressed files is "
1843 "not implemented yet. Sorry.");
1844 return -EOPNOTSUPP;
1848 * If a previous ntfs_truncate() failed, repeat it and abort if it
1849 * fails again.
1851 if (unlikely(NInoTruncateFailed(ni))) {
1852 down_write(&vi->i_alloc_sem);
1853 err = ntfs_truncate(vi);
1854 up_write(&vi->i_alloc_sem);
1855 if (err || NInoTruncateFailed(ni)) {
1856 if (!err)
1857 err = -EIO;
1858 ntfs_error(vol->sb, "Cannot perform write to inode "
1859 "0x%lx, attribute type 0x%x, because "
1860 "ntfs_truncate() failed (error code "
1861 "%i).", vi->i_ino,
1862 (unsigned)le32_to_cpu(ni->type), err);
1863 return err;
1866 /* The first byte after the write. */
1867 end = pos + count;
1869 * If the write goes beyond the allocated size, extend the allocation
1870 * to cover the whole of the write, rounded up to the nearest cluster.
1872 read_lock_irqsave(&ni->size_lock, flags);
1873 ll = ni->allocated_size;
1874 read_unlock_irqrestore(&ni->size_lock, flags);
1875 if (end > ll) {
1876 /* Extend the allocation without changing the data size. */
1877 ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
1878 if (likely(ll >= 0)) {
1879 BUG_ON(pos >= ll);
1880 /* If the extension was partial truncate the write. */
1881 if (end > ll) {
1882 ntfs_debug("Truncating write to inode 0x%lx, "
1883 "attribute type 0x%x, because "
1884 "the allocation was only "
1885 "partially extended.",
1886 vi->i_ino, (unsigned)
1887 le32_to_cpu(ni->type));
1888 end = ll;
1889 count = ll - pos;
1891 } else {
1892 err = ll;
1893 read_lock_irqsave(&ni->size_lock, flags);
1894 ll = ni->allocated_size;
1895 read_unlock_irqrestore(&ni->size_lock, flags);
1896 /* Perform a partial write if possible or fail. */
1897 if (pos < ll) {
1898 ntfs_debug("Truncating write to inode 0x%lx, "
1899 "attribute type 0x%x, because "
1900 "extending the allocation "
1901 "failed (error code %i).",
1902 vi->i_ino, (unsigned)
1903 le32_to_cpu(ni->type), err);
1904 end = ll;
1905 count = ll - pos;
1906 } else {
1907 ntfs_error(vol->sb, "Cannot perform write to "
1908 "inode 0x%lx, attribute type "
1909 "0x%x, because extending the "
1910 "allocation failed (error "
1911 "code %i).", vi->i_ino,
1912 (unsigned)
1913 le32_to_cpu(ni->type), err);
1914 return err;
1918 pagevec_init(&lru_pvec, 0);
1919 written = 0;
1921 * If the write starts beyond the initialized size, extend it up to the
1922 * beginning of the write and initialize all non-sparse space between
1923 * the old initialized size and the new one. This automatically also
1924 * increments the vfs inode->i_size to keep it above or equal to the
1925 * initialized_size.
1927 read_lock_irqsave(&ni->size_lock, flags);
1928 ll = ni->initialized_size;
1929 read_unlock_irqrestore(&ni->size_lock, flags);
1930 if (pos > ll) {
1931 err = ntfs_attr_extend_initialized(ni, pos, &cached_page,
1932 &lru_pvec);
1933 if (err < 0) {
1934 ntfs_error(vol->sb, "Cannot perform write to inode "
1935 "0x%lx, attribute type 0x%x, because "
1936 "extending the initialized size "
1937 "failed (error code %i).", vi->i_ino,
1938 (unsigned)le32_to_cpu(ni->type), err);
1939 status = err;
1940 goto err_out;
1944 * Determine the number of pages per cluster for non-resident
1945 * attributes.
1947 nr_pages = 1;
1948 if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni))
1949 nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT;
1950 /* Finally, perform the actual write. */
1951 last_vcn = -1;
1952 if (likely(nr_segs == 1))
1953 buf = iov->iov_base;
1954 do {
1955 VCN vcn;
1956 pgoff_t idx, start_idx;
1957 unsigned ofs, do_pages, u;
1958 size_t copied;
1960 start_idx = idx = pos >> PAGE_CACHE_SHIFT;
1961 ofs = pos & ~PAGE_CACHE_MASK;
1962 bytes = PAGE_CACHE_SIZE - ofs;
1963 do_pages = 1;
1964 if (nr_pages > 1) {
1965 vcn = pos >> vol->cluster_size_bits;
1966 if (vcn != last_vcn) {
1967 last_vcn = vcn;
1969 * Get the lcn of the vcn the write is in. If
1970 * it is a hole, need to lock down all pages in
1971 * the cluster.
1973 down_read(&ni->runlist.lock);
1974 lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1975 vol->cluster_size_bits, false);
1976 up_read(&ni->runlist.lock);
1977 if (unlikely(lcn < LCN_HOLE)) {
1978 status = -EIO;
1979 if (lcn == LCN_ENOMEM)
1980 status = -ENOMEM;
1981 else
1982 ntfs_error(vol->sb, "Cannot "
1983 "perform write to "
1984 "inode 0x%lx, "
1985 "attribute type 0x%x, "
1986 "because the attribute "
1987 "is corrupt.",
1988 vi->i_ino, (unsigned)
1989 le32_to_cpu(ni->type));
1990 break;
1992 if (lcn == LCN_HOLE) {
1993 start_idx = (pos & ~(s64)
1994 vol->cluster_size_mask)
1995 >> PAGE_CACHE_SHIFT;
1996 bytes = vol->cluster_size - (pos &
1997 vol->cluster_size_mask);
1998 do_pages = nr_pages;
2002 if (bytes > count)
2003 bytes = count;
2005 * Bring in the user page(s) that we will copy from _first_.
2006 * Otherwise there is a nasty deadlock on copying from the same
2007 * page(s) as we are writing to, without it/them being marked
2008 * up-to-date. Note, at present there is nothing to stop the
2009 * pages being swapped out between us bringing them into memory
2010 * and doing the actual copying.
2012 if (likely(nr_segs == 1))
2013 ntfs_fault_in_pages_readable(buf, bytes);
2014 else
2015 ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes);
2016 /* Get and lock @do_pages starting at index @start_idx. */
2017 status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
2018 pages, &cached_page, &lru_pvec);
2019 if (unlikely(status))
2020 break;
2022 * For non-resident attributes, we need to fill any holes with
2023 * actual clusters and ensure all bufferes are mapped. We also
2024 * need to bring uptodate any buffers that are only partially
2025 * being written to.
2027 if (NInoNonResident(ni)) {
2028 status = ntfs_prepare_pages_for_non_resident_write(
2029 pages, do_pages, pos, bytes);
2030 if (unlikely(status)) {
2031 loff_t i_size;
2033 do {
2034 unlock_page(pages[--do_pages]);
2035 page_cache_release(pages[do_pages]);
2036 } while (do_pages);
2038 * The write preparation may have instantiated
2039 * allocated space outside i_size. Trim this
2040 * off again. We can ignore any errors in this
2041 * case as we will just be waisting a bit of
2042 * allocated space, which is not a disaster.
2044 i_size = i_size_read(vi);
2045 if (pos + bytes > i_size)
2046 vmtruncate(vi, i_size);
2047 break;
2050 u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index;
2051 if (likely(nr_segs == 1)) {
2052 copied = ntfs_copy_from_user(pages + u, do_pages - u,
2053 ofs, buf, bytes);
2054 buf += copied;
2055 } else
2056 copied = ntfs_copy_from_user_iovec(pages + u,
2057 do_pages - u, ofs, &iov, &iov_ofs,
2058 bytes);
2059 ntfs_flush_dcache_pages(pages + u, do_pages - u);
2060 status = ntfs_commit_pages_after_write(pages, do_pages, pos,
2061 bytes);
2062 if (likely(!status)) {
2063 written += copied;
2064 count -= copied;
2065 pos += copied;
2066 if (unlikely(copied != bytes))
2067 status = -EFAULT;
2069 do {
2070 unlock_page(pages[--do_pages]);
2071 mark_page_accessed(pages[do_pages]);
2072 page_cache_release(pages[do_pages]);
2073 } while (do_pages);
2074 if (unlikely(status))
2075 break;
2076 balance_dirty_pages_ratelimited(mapping);
2077 cond_resched();
2078 } while (count);
2079 err_out:
2080 *ppos = pos;
2081 if (cached_page)
2082 page_cache_release(cached_page);
2083 /* For now, when the user asks for O_SYNC, we actually give O_DSYNC. */
2084 if (likely(!status)) {
2085 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(vi))) {
2086 if (!mapping->a_ops->writepage || !is_sync_kiocb(iocb))
2087 status = generic_osync_inode(vi, mapping,
2088 OSYNC_METADATA|OSYNC_DATA);
2091 pagevec_lru_add(&lru_pvec);
2092 ntfs_debug("Done. Returning %s (written 0x%lx, status %li).",
2093 written ? "written" : "status", (unsigned long)written,
2094 (long)status);
2095 return written ? written : status;
2099 * ntfs_file_aio_write_nolock -
2101 static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb,
2102 const struct iovec *iov, unsigned long nr_segs, loff_t *ppos)
2104 struct file *file = iocb->ki_filp;
2105 struct address_space *mapping = file->f_mapping;
2106 struct inode *inode = mapping->host;
2107 loff_t pos;
2108 size_t count; /* after file limit checks */
2109 ssize_t written, err;
2111 count = 0;
2112 err = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
2113 if (err)
2114 return err;
2115 pos = *ppos;
2116 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2117 /* We can write back this queue in page reclaim. */
2118 current->backing_dev_info = mapping->backing_dev_info;
2119 written = 0;
2120 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2121 if (err)
2122 goto out;
2123 if (!count)
2124 goto out;
2125 err = remove_suid(file->f_path.dentry);
2126 if (err)
2127 goto out;
2128 file_update_time(file);
2129 written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos,
2130 count);
2131 out:
2132 current->backing_dev_info = NULL;
2133 return written ? written : err;
2137 * ntfs_file_aio_write -
2139 static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2140 unsigned long nr_segs, loff_t pos)
2142 struct file *file = iocb->ki_filp;
2143 struct address_space *mapping = file->f_mapping;
2144 struct inode *inode = mapping->host;
2145 ssize_t ret;
2147 BUG_ON(iocb->ki_pos != pos);
2149 mutex_lock(&inode->i_mutex);
2150 ret = ntfs_file_aio_write_nolock(iocb, iov, nr_segs, &iocb->ki_pos);
2151 mutex_unlock(&inode->i_mutex);
2152 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2153 int err = sync_page_range(inode, mapping, pos, ret);
2154 if (err < 0)
2155 ret = err;
2157 return ret;
2161 * ntfs_file_writev -
2163 * Basically the same as generic_file_writev() except that it ends up calling
2164 * ntfs_file_aio_write_nolock() instead of __generic_file_aio_write_nolock().
2166 static ssize_t ntfs_file_writev(struct file *file, const struct iovec *iov,
2167 unsigned long nr_segs, loff_t *ppos)
2169 struct address_space *mapping = file->f_mapping;
2170 struct inode *inode = mapping->host;
2171 struct kiocb kiocb;
2172 ssize_t ret;
2174 mutex_lock(&inode->i_mutex);
2175 init_sync_kiocb(&kiocb, file);
2176 ret = ntfs_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2177 if (ret == -EIOCBQUEUED)
2178 ret = wait_on_sync_kiocb(&kiocb);
2179 mutex_unlock(&inode->i_mutex);
2180 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2181 int err = sync_page_range(inode, mapping, *ppos - ret, ret);
2182 if (err < 0)
2183 ret = err;
2185 return ret;
2189 * ntfs_file_write - simple wrapper for ntfs_file_writev()
2191 static ssize_t ntfs_file_write(struct file *file, const char __user *buf,
2192 size_t count, loff_t *ppos)
2194 struct iovec local_iov = { .iov_base = (void __user *)buf,
2195 .iov_len = count };
2197 return ntfs_file_writev(file, &local_iov, 1, ppos);
2201 * ntfs_file_fsync - sync a file to disk
2202 * @filp: file to be synced
2203 * @dentry: dentry describing the file to sync
2204 * @datasync: if non-zero only flush user data and not metadata
2206 * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync
2207 * system calls. This function is inspired by fs/buffer.c::file_fsync().
2209 * If @datasync is false, write the mft record and all associated extent mft
2210 * records as well as the $DATA attribute and then sync the block device.
2212 * If @datasync is true and the attribute is non-resident, we skip the writing
2213 * of the mft record and all associated extent mft records (this might still
2214 * happen due to the write_inode_now() call).
2216 * Also, if @datasync is true, we do not wait on the inode to be written out
2217 * but we always wait on the page cache pages to be written out.
2219 * Note: In the past @filp could be NULL so we ignore it as we don't need it
2220 * anyway.
2222 * Locking: Caller must hold i_mutex on the inode.
2224 * TODO: We should probably also write all attribute/index inodes associated
2225 * with this inode but since we have no simple way of getting to them we ignore
2226 * this problem for now.
2228 static int ntfs_file_fsync(struct file *filp, struct dentry *dentry,
2229 int datasync)
2231 struct inode *vi = dentry->d_inode;
2232 int err, ret = 0;
2234 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2235 BUG_ON(S_ISDIR(vi->i_mode));
2236 if (!datasync || !NInoNonResident(NTFS_I(vi)))
2237 ret = ntfs_write_inode(vi, 1);
2238 write_inode_now(vi, !datasync);
2240 * NOTE: If we were to use mapping->private_list (see ext2 and
2241 * fs/buffer.c) for dirty blocks then we could optimize the below to be
2242 * sync_mapping_buffers(vi->i_mapping).
2244 err = sync_blockdev(vi->i_sb->s_bdev);
2245 if (unlikely(err && !ret))
2246 ret = err;
2247 if (likely(!ret))
2248 ntfs_debug("Done.");
2249 else
2250 ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx. Error "
2251 "%u.", datasync ? "data" : "", vi->i_ino, -ret);
2252 return ret;
2255 #endif /* NTFS_RW */
2257 const struct file_operations ntfs_file_ops = {
2258 .llseek = generic_file_llseek, /* Seek inside file. */
2259 .read = do_sync_read, /* Read from file. */
2260 .aio_read = generic_file_aio_read, /* Async read from file. */
2261 #ifdef NTFS_RW
2262 .write = ntfs_file_write, /* Write to file. */
2263 .aio_write = ntfs_file_aio_write, /* Async write to file. */
2264 /*.release = ,*/ /* Last file is closed. See
2265 fs/ext2/file.c::
2266 ext2_release_file() for
2267 how to use this to discard
2268 preallocated space for
2269 write opened files. */
2270 .fsync = ntfs_file_fsync, /* Sync a file to disk. */
2271 /*.aio_fsync = ,*/ /* Sync all outstanding async
2272 i/o operations on a
2273 kiocb. */
2274 #endif /* NTFS_RW */
2275 /*.ioctl = ,*/ /* Perform function on the
2276 mounted filesystem. */
2277 .mmap = generic_file_mmap, /* Mmap file. */
2278 .open = ntfs_file_open, /* Open file. */
2279 .splice_read = generic_file_splice_read /* Zero-copy data send with
2280 the data source being on
2281 the ntfs partition. We do
2282 not need to care about the
2283 data destination. */
2284 /*.sendpage = ,*/ /* Zero-copy data send with
2285 the data destination being
2286 on the ntfs partition. We
2287 do not need to care about
2288 the data source. */
2291 const struct inode_operations ntfs_file_inode_ops = {
2292 #ifdef NTFS_RW
2293 .truncate = ntfs_truncate_vfs,
2294 .setattr = ntfs_setattr,
2295 #endif /* NTFS_RW */
2298 const struct file_operations ntfs_empty_file_ops = {};
2300 const struct inode_operations ntfs_empty_inode_ops = {};