4 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/signalfd.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/cpuset.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
48 #include <asm/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu_context.h>
53 extern void sem_exit (void);
55 static void exit_mm(struct task_struct
* tsk
);
57 static void __unhash_process(struct task_struct
*p
)
60 detach_pid(p
, PIDTYPE_PID
);
61 if (thread_group_leader(p
)) {
62 detach_pid(p
, PIDTYPE_PGID
);
63 detach_pid(p
, PIDTYPE_SID
);
65 list_del_rcu(&p
->tasks
);
66 __get_cpu_var(process_counts
)--;
68 list_del_rcu(&p
->thread_group
);
73 * This function expects the tasklist_lock write-locked.
75 static void __exit_signal(struct task_struct
*tsk
)
77 struct signal_struct
*sig
= tsk
->signal
;
78 struct sighand_struct
*sighand
;
81 BUG_ON(!atomic_read(&sig
->count
));
84 sighand
= rcu_dereference(tsk
->sighand
);
85 spin_lock(&sighand
->siglock
);
88 * Notify that this sighand has been detached. This must
89 * be called with the tsk->sighand lock held. Also, this
90 * access tsk->sighand internally, so it must be called
91 * before tsk->sighand is reset.
93 signalfd_detach_locked(tsk
);
95 posix_cpu_timers_exit(tsk
);
96 if (atomic_dec_and_test(&sig
->count
))
97 posix_cpu_timers_exit_group(tsk
);
100 * If there is any task waiting for the group exit
103 if (sig
->group_exit_task
&& atomic_read(&sig
->count
) == sig
->notify_count
) {
104 wake_up_process(sig
->group_exit_task
);
105 sig
->group_exit_task
= NULL
;
107 if (tsk
== sig
->curr_target
)
108 sig
->curr_target
= next_thread(tsk
);
110 * Accumulate here the counters for all threads but the
111 * group leader as they die, so they can be added into
112 * the process-wide totals when those are taken.
113 * The group leader stays around as a zombie as long
114 * as there are other threads. When it gets reaped,
115 * the exit.c code will add its counts into these totals.
116 * We won't ever get here for the group leader, since it
117 * will have been the last reference on the signal_struct.
119 sig
->utime
= cputime_add(sig
->utime
, tsk
->utime
);
120 sig
->stime
= cputime_add(sig
->stime
, tsk
->stime
);
121 sig
->min_flt
+= tsk
->min_flt
;
122 sig
->maj_flt
+= tsk
->maj_flt
;
123 sig
->nvcsw
+= tsk
->nvcsw
;
124 sig
->nivcsw
+= tsk
->nivcsw
;
125 sig
->sched_time
+= tsk
->sched_time
;
126 sig
->inblock
+= task_io_get_inblock(tsk
);
127 sig
->oublock
+= task_io_get_oublock(tsk
);
128 sig
= NULL
; /* Marker for below. */
131 __unhash_process(tsk
);
135 spin_unlock(&sighand
->siglock
);
138 __cleanup_sighand(sighand
);
139 clear_tsk_thread_flag(tsk
,TIF_SIGPENDING
);
140 flush_sigqueue(&tsk
->pending
);
142 flush_sigqueue(&sig
->shared_pending
);
143 taskstats_tgid_free(sig
);
144 __cleanup_signal(sig
);
148 static void delayed_put_task_struct(struct rcu_head
*rhp
)
150 put_task_struct(container_of(rhp
, struct task_struct
, rcu
));
153 void release_task(struct task_struct
* p
)
155 struct task_struct
*leader
;
158 atomic_dec(&p
->user
->processes
);
159 write_lock_irq(&tasklist_lock
);
161 BUG_ON(!list_empty(&p
->ptrace_list
) || !list_empty(&p
->ptrace_children
));
165 * If we are the last non-leader member of the thread
166 * group, and the leader is zombie, then notify the
167 * group leader's parent process. (if it wants notification.)
170 leader
= p
->group_leader
;
171 if (leader
!= p
&& thread_group_empty(leader
) && leader
->exit_state
== EXIT_ZOMBIE
) {
172 BUG_ON(leader
->exit_signal
== -1);
173 do_notify_parent(leader
, leader
->exit_signal
);
175 * If we were the last child thread and the leader has
176 * exited already, and the leader's parent ignores SIGCHLD,
177 * then we are the one who should release the leader.
179 * do_notify_parent() will have marked it self-reaping in
182 zap_leader
= (leader
->exit_signal
== -1);
186 write_unlock_irq(&tasklist_lock
);
189 call_rcu(&p
->rcu
, delayed_put_task_struct
);
192 if (unlikely(zap_leader
))
197 * This checks not only the pgrp, but falls back on the pid if no
198 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
201 * The caller must hold rcu lock or the tasklist lock.
203 struct pid
*session_of_pgrp(struct pid
*pgrp
)
205 struct task_struct
*p
;
206 struct pid
*sid
= NULL
;
208 p
= pid_task(pgrp
, PIDTYPE_PGID
);
210 p
= pid_task(pgrp
, PIDTYPE_PID
);
212 sid
= task_session(p
);
218 * Determine if a process group is "orphaned", according to the POSIX
219 * definition in 2.2.2.52. Orphaned process groups are not to be affected
220 * by terminal-generated stop signals. Newly orphaned process groups are
221 * to receive a SIGHUP and a SIGCONT.
223 * "I ask you, have you ever known what it is to be an orphan?"
225 static int will_become_orphaned_pgrp(struct pid
*pgrp
, struct task_struct
*ignored_task
)
227 struct task_struct
*p
;
230 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
231 if (p
== ignored_task
233 || is_init(p
->real_parent
))
235 if (task_pgrp(p
->real_parent
) != pgrp
&&
236 task_session(p
->real_parent
) == task_session(p
)) {
240 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
241 return ret
; /* (sighing) "Often!" */
244 int is_current_pgrp_orphaned(void)
248 read_lock(&tasklist_lock
);
249 retval
= will_become_orphaned_pgrp(task_pgrp(current
), NULL
);
250 read_unlock(&tasklist_lock
);
255 static int has_stopped_jobs(struct pid
*pgrp
)
258 struct task_struct
*p
;
260 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
261 if (p
->state
!= TASK_STOPPED
)
265 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
270 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
272 * If a kernel thread is launched as a result of a system call, or if
273 * it ever exits, it should generally reparent itself to kthreadd so it
274 * isn't in the way of other processes and is correctly cleaned up on exit.
276 * The various task state such as scheduling policy and priority may have
277 * been inherited from a user process, so we reset them to sane values here.
279 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
281 static void reparent_to_kthreadd(void)
283 write_lock_irq(&tasklist_lock
);
285 ptrace_unlink(current
);
286 /* Reparent to init */
287 remove_parent(current
);
288 current
->real_parent
= current
->parent
= kthreadd_task
;
291 /* Set the exit signal to SIGCHLD so we signal init on exit */
292 current
->exit_signal
= SIGCHLD
;
294 if (!has_rt_policy(current
) && (task_nice(current
) < 0))
295 set_user_nice(current
, 0);
299 security_task_reparent_to_init(current
);
300 memcpy(current
->signal
->rlim
, init_task
.signal
->rlim
,
301 sizeof(current
->signal
->rlim
));
302 atomic_inc(&(INIT_USER
->__count
));
303 write_unlock_irq(&tasklist_lock
);
304 switch_uid(INIT_USER
);
307 void __set_special_pids(pid_t session
, pid_t pgrp
)
309 struct task_struct
*curr
= current
->group_leader
;
311 if (process_session(curr
) != session
) {
312 detach_pid(curr
, PIDTYPE_SID
);
313 set_signal_session(curr
->signal
, session
);
314 attach_pid(curr
, PIDTYPE_SID
, find_pid(session
));
316 if (process_group(curr
) != pgrp
) {
317 detach_pid(curr
, PIDTYPE_PGID
);
318 curr
->signal
->pgrp
= pgrp
;
319 attach_pid(curr
, PIDTYPE_PGID
, find_pid(pgrp
));
323 static void set_special_pids(pid_t session
, pid_t pgrp
)
325 write_lock_irq(&tasklist_lock
);
326 __set_special_pids(session
, pgrp
);
327 write_unlock_irq(&tasklist_lock
);
331 * Let kernel threads use this to say that they
332 * allow a certain signal (since daemonize() will
333 * have disabled all of them by default).
335 int allow_signal(int sig
)
337 if (!valid_signal(sig
) || sig
< 1)
340 spin_lock_irq(¤t
->sighand
->siglock
);
341 sigdelset(¤t
->blocked
, sig
);
343 /* Kernel threads handle their own signals.
344 Let the signal code know it'll be handled, so
345 that they don't get converted to SIGKILL or
346 just silently dropped */
347 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= (void __user
*)2;
350 spin_unlock_irq(¤t
->sighand
->siglock
);
354 EXPORT_SYMBOL(allow_signal
);
356 int disallow_signal(int sig
)
358 if (!valid_signal(sig
) || sig
< 1)
361 spin_lock_irq(¤t
->sighand
->siglock
);
362 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= SIG_IGN
;
364 spin_unlock_irq(¤t
->sighand
->siglock
);
368 EXPORT_SYMBOL(disallow_signal
);
371 * Put all the gunge required to become a kernel thread without
372 * attached user resources in one place where it belongs.
375 void daemonize(const char *name
, ...)
378 struct fs_struct
*fs
;
381 va_start(args
, name
);
382 vsnprintf(current
->comm
, sizeof(current
->comm
), name
, args
);
386 * If we were started as result of loading a module, close all of the
387 * user space pages. We don't need them, and if we didn't close them
388 * they would be locked into memory.
392 set_special_pids(1, 1);
393 proc_clear_tty(current
);
395 /* Block and flush all signals */
396 sigfillset(&blocked
);
397 sigprocmask(SIG_BLOCK
, &blocked
, NULL
);
398 flush_signals(current
);
400 /* Become as one with the init task */
402 exit_fs(current
); /* current->fs->count--; */
405 atomic_inc(&fs
->count
);
407 exit_task_namespaces(current
);
408 current
->nsproxy
= init_task
.nsproxy
;
409 get_task_namespaces(current
);
412 current
->files
= init_task
.files
;
413 atomic_inc(¤t
->files
->count
);
415 reparent_to_kthreadd();
418 EXPORT_SYMBOL(daemonize
);
420 static void close_files(struct files_struct
* files
)
428 * It is safe to dereference the fd table without RCU or
429 * ->file_lock because this is the last reference to the
432 fdt
= files_fdtable(files
);
436 if (i
>= fdt
->max_fds
)
438 set
= fdt
->open_fds
->fds_bits
[j
++];
441 struct file
* file
= xchg(&fdt
->fd
[i
], NULL
);
443 filp_close(file
, files
);
453 struct files_struct
*get_files_struct(struct task_struct
*task
)
455 struct files_struct
*files
;
460 atomic_inc(&files
->count
);
466 void fastcall
put_files_struct(struct files_struct
*files
)
470 if (atomic_dec_and_test(&files
->count
)) {
473 * Free the fd and fdset arrays if we expanded them.
474 * If the fdtable was embedded, pass files for freeing
475 * at the end of the RCU grace period. Otherwise,
476 * you can free files immediately.
478 fdt
= files_fdtable(files
);
479 if (fdt
!= &files
->fdtab
)
480 kmem_cache_free(files_cachep
, files
);
485 EXPORT_SYMBOL(put_files_struct
);
487 void reset_files_struct(struct task_struct
*tsk
, struct files_struct
*files
)
489 struct files_struct
*old
;
495 put_files_struct(old
);
497 EXPORT_SYMBOL(reset_files_struct
);
499 static inline void __exit_files(struct task_struct
*tsk
)
501 struct files_struct
* files
= tsk
->files
;
507 put_files_struct(files
);
511 void exit_files(struct task_struct
*tsk
)
516 static inline void __put_fs_struct(struct fs_struct
*fs
)
518 /* No need to hold fs->lock if we are killing it */
519 if (atomic_dec_and_test(&fs
->count
)) {
526 mntput(fs
->altrootmnt
);
528 kmem_cache_free(fs_cachep
, fs
);
532 void put_fs_struct(struct fs_struct
*fs
)
537 static inline void __exit_fs(struct task_struct
*tsk
)
539 struct fs_struct
* fs
= tsk
->fs
;
549 void exit_fs(struct task_struct
*tsk
)
554 EXPORT_SYMBOL_GPL(exit_fs
);
557 * Turn us into a lazy TLB process if we
560 static void exit_mm(struct task_struct
* tsk
)
562 struct mm_struct
*mm
= tsk
->mm
;
568 * Serialize with any possible pending coredump.
569 * We must hold mmap_sem around checking core_waiters
570 * and clearing tsk->mm. The core-inducing thread
571 * will increment core_waiters for each thread in the
572 * group with ->mm != NULL.
574 down_read(&mm
->mmap_sem
);
575 if (mm
->core_waiters
) {
576 up_read(&mm
->mmap_sem
);
577 down_write(&mm
->mmap_sem
);
578 if (!--mm
->core_waiters
)
579 complete(mm
->core_startup_done
);
580 up_write(&mm
->mmap_sem
);
582 wait_for_completion(&mm
->core_done
);
583 down_read(&mm
->mmap_sem
);
585 atomic_inc(&mm
->mm_count
);
586 BUG_ON(mm
!= tsk
->active_mm
);
587 /* more a memory barrier than a real lock */
590 up_read(&mm
->mmap_sem
);
591 enter_lazy_tlb(mm
, current
);
597 choose_new_parent(struct task_struct
*p
, struct task_struct
*reaper
)
600 * Make sure we're not reparenting to ourselves and that
601 * the parent is not a zombie.
603 BUG_ON(p
== reaper
|| reaper
->exit_state
);
604 p
->real_parent
= reaper
;
608 reparent_thread(struct task_struct
*p
, struct task_struct
*father
, int traced
)
610 if (p
->pdeath_signal
)
611 /* We already hold the tasklist_lock here. */
612 group_send_sig_info(p
->pdeath_signal
, SEND_SIG_NOINFO
, p
);
614 /* Move the child from its dying parent to the new one. */
615 if (unlikely(traced
)) {
616 /* Preserve ptrace links if someone else is tracing this child. */
617 list_del_init(&p
->ptrace_list
);
618 if (p
->parent
!= p
->real_parent
)
619 list_add(&p
->ptrace_list
, &p
->real_parent
->ptrace_children
);
621 /* If this child is being traced, then we're the one tracing it
622 * anyway, so let go of it.
626 p
->parent
= p
->real_parent
;
629 if (p
->state
== TASK_TRACED
) {
631 * If it was at a trace stop, turn it into
632 * a normal stop since it's no longer being
639 /* If this is a threaded reparent there is no need to
640 * notify anyone anything has happened.
642 if (p
->real_parent
->group_leader
== father
->group_leader
)
645 /* We don't want people slaying init. */
646 if (p
->exit_signal
!= -1)
647 p
->exit_signal
= SIGCHLD
;
649 /* If we'd notified the old parent about this child's death,
650 * also notify the new parent.
652 if (!traced
&& p
->exit_state
== EXIT_ZOMBIE
&&
653 p
->exit_signal
!= -1 && thread_group_empty(p
))
654 do_notify_parent(p
, p
->exit_signal
);
657 * process group orphan check
658 * Case ii: Our child is in a different pgrp
659 * than we are, and it was the only connection
660 * outside, so the child pgrp is now orphaned.
662 if ((task_pgrp(p
) != task_pgrp(father
)) &&
663 (task_session(p
) == task_session(father
))) {
664 struct pid
*pgrp
= task_pgrp(p
);
666 if (will_become_orphaned_pgrp(pgrp
, NULL
) &&
667 has_stopped_jobs(pgrp
)) {
668 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
669 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
675 * When we die, we re-parent all our children.
676 * Try to give them to another thread in our thread
677 * group, and if no such member exists, give it to
678 * the child reaper process (ie "init") in our pid
682 forget_original_parent(struct task_struct
*father
, struct list_head
*to_release
)
684 struct task_struct
*p
, *reaper
= father
;
685 struct list_head
*_p
, *_n
;
688 reaper
= next_thread(reaper
);
689 if (reaper
== father
) {
690 reaper
= child_reaper(father
);
693 } while (reaper
->exit_state
);
696 * There are only two places where our children can be:
698 * - in our child list
699 * - in our ptraced child list
701 * Search them and reparent children.
703 list_for_each_safe(_p
, _n
, &father
->children
) {
705 p
= list_entry(_p
, struct task_struct
, sibling
);
709 /* if father isn't the real parent, then ptrace must be enabled */
710 BUG_ON(father
!= p
->real_parent
&& !ptrace
);
712 if (father
== p
->real_parent
) {
713 /* reparent with a reaper, real father it's us */
714 choose_new_parent(p
, reaper
);
715 reparent_thread(p
, father
, 0);
717 /* reparent ptraced task to its real parent */
719 if (p
->exit_state
== EXIT_ZOMBIE
&& p
->exit_signal
!= -1 &&
720 thread_group_empty(p
))
721 do_notify_parent(p
, p
->exit_signal
);
725 * if the ptraced child is a zombie with exit_signal == -1
726 * we must collect it before we exit, or it will remain
727 * zombie forever since we prevented it from self-reap itself
728 * while it was being traced by us, to be able to see it in wait4.
730 if (unlikely(ptrace
&& p
->exit_state
== EXIT_ZOMBIE
&& p
->exit_signal
== -1))
731 list_add(&p
->ptrace_list
, to_release
);
733 list_for_each_safe(_p
, _n
, &father
->ptrace_children
) {
734 p
= list_entry(_p
, struct task_struct
, ptrace_list
);
735 choose_new_parent(p
, reaper
);
736 reparent_thread(p
, father
, 1);
741 * Send signals to all our closest relatives so that they know
742 * to properly mourn us..
744 static void exit_notify(struct task_struct
*tsk
)
747 struct task_struct
*t
;
748 struct list_head ptrace_dead
, *_p
, *_n
;
751 if (signal_pending(tsk
) && !(tsk
->signal
->flags
& SIGNAL_GROUP_EXIT
)
752 && !thread_group_empty(tsk
)) {
754 * This occurs when there was a race between our exit
755 * syscall and a group signal choosing us as the one to
756 * wake up. It could be that we are the only thread
757 * alerted to check for pending signals, but another thread
758 * should be woken now to take the signal since we will not.
759 * Now we'll wake all the threads in the group just to make
760 * sure someone gets all the pending signals.
762 read_lock(&tasklist_lock
);
763 spin_lock_irq(&tsk
->sighand
->siglock
);
764 for (t
= next_thread(tsk
); t
!= tsk
; t
= next_thread(t
))
765 if (!signal_pending(t
) && !(t
->flags
& PF_EXITING
))
766 recalc_sigpending_and_wake(t
);
767 spin_unlock_irq(&tsk
->sighand
->siglock
);
768 read_unlock(&tasklist_lock
);
771 write_lock_irq(&tasklist_lock
);
774 * This does two things:
776 * A. Make init inherit all the child processes
777 * B. Check to see if any process groups have become orphaned
778 * as a result of our exiting, and if they have any stopped
779 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
782 INIT_LIST_HEAD(&ptrace_dead
);
783 forget_original_parent(tsk
, &ptrace_dead
);
784 BUG_ON(!list_empty(&tsk
->children
));
785 BUG_ON(!list_empty(&tsk
->ptrace_children
));
788 * Check to see if any process groups have become orphaned
789 * as a result of our exiting, and if they have any stopped
790 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
792 * Case i: Our father is in a different pgrp than we are
793 * and we were the only connection outside, so our pgrp
794 * is about to become orphaned.
797 t
= tsk
->real_parent
;
799 pgrp
= task_pgrp(tsk
);
800 if ((task_pgrp(t
) != pgrp
) &&
801 (task_session(t
) == task_session(tsk
)) &&
802 will_become_orphaned_pgrp(pgrp
, tsk
) &&
803 has_stopped_jobs(pgrp
)) {
804 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
805 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
808 /* Let father know we died
810 * Thread signals are configurable, but you aren't going to use
811 * that to send signals to arbitary processes.
812 * That stops right now.
814 * If the parent exec id doesn't match the exec id we saved
815 * when we started then we know the parent has changed security
818 * If our self_exec id doesn't match our parent_exec_id then
819 * we have changed execution domain as these two values started
820 * the same after a fork.
824 if (tsk
->exit_signal
!= SIGCHLD
&& tsk
->exit_signal
!= -1 &&
825 ( tsk
->parent_exec_id
!= t
->self_exec_id
||
826 tsk
->self_exec_id
!= tsk
->parent_exec_id
)
827 && !capable(CAP_KILL
))
828 tsk
->exit_signal
= SIGCHLD
;
831 /* If something other than our normal parent is ptracing us, then
832 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
833 * only has special meaning to our real parent.
835 if (tsk
->exit_signal
!= -1 && thread_group_empty(tsk
)) {
836 int signal
= tsk
->parent
== tsk
->real_parent
? tsk
->exit_signal
: SIGCHLD
;
837 do_notify_parent(tsk
, signal
);
838 } else if (tsk
->ptrace
) {
839 do_notify_parent(tsk
, SIGCHLD
);
843 if (tsk
->exit_signal
== -1 &&
844 (likely(tsk
->ptrace
== 0) ||
845 unlikely(tsk
->parent
->signal
->flags
& SIGNAL_GROUP_EXIT
)))
847 tsk
->exit_state
= state
;
849 write_unlock_irq(&tasklist_lock
);
851 list_for_each_safe(_p
, _n
, &ptrace_dead
) {
853 t
= list_entry(_p
, struct task_struct
, ptrace_list
);
857 /* If the process is dead, release it - nobody will wait for it */
858 if (state
== EXIT_DEAD
)
862 fastcall NORET_TYPE
void do_exit(long code
)
864 struct task_struct
*tsk
= current
;
867 profile_task_exit(tsk
);
869 WARN_ON(atomic_read(&tsk
->fs_excl
));
871 if (unlikely(in_interrupt()))
872 panic("Aiee, killing interrupt handler!");
873 if (unlikely(!tsk
->pid
))
874 panic("Attempted to kill the idle task!");
875 if (unlikely(tsk
== child_reaper(tsk
))) {
876 if (tsk
->nsproxy
->pid_ns
!= &init_pid_ns
)
877 tsk
->nsproxy
->pid_ns
->child_reaper
= init_pid_ns
.child_reaper
;
879 panic("Attempted to kill init!");
883 if (unlikely(current
->ptrace
& PT_TRACE_EXIT
)) {
884 current
->ptrace_message
= code
;
885 ptrace_notify((PTRACE_EVENT_EXIT
<< 8) | SIGTRAP
);
889 * We're taking recursive faults here in do_exit. Safest is to just
890 * leave this task alone and wait for reboot.
892 if (unlikely(tsk
->flags
& PF_EXITING
)) {
894 "Fixing recursive fault but reboot is needed!\n");
896 * We can do this unlocked here. The futex code uses
897 * this flag just to verify whether the pi state
898 * cleanup has been done or not. In the worst case it
899 * loops once more. We pretend that the cleanup was
900 * done as there is no way to return. Either the
901 * OWNER_DIED bit is set by now or we push the blocked
902 * task into the wait for ever nirwana as well.
904 tsk
->flags
|= PF_EXITPIDONE
;
907 set_current_state(TASK_UNINTERRUPTIBLE
);
912 * tsk->flags are checked in the futex code to protect against
913 * an exiting task cleaning up the robust pi futexes.
915 spin_lock_irq(&tsk
->pi_lock
);
916 tsk
->flags
|= PF_EXITING
;
917 spin_unlock_irq(&tsk
->pi_lock
);
919 if (unlikely(in_atomic()))
920 printk(KERN_INFO
"note: %s[%d] exited with preempt_count %d\n",
921 current
->comm
, current
->pid
,
924 acct_update_integrals(tsk
);
926 update_hiwater_rss(tsk
->mm
);
927 update_hiwater_vm(tsk
->mm
);
929 group_dead
= atomic_dec_and_test(&tsk
->signal
->live
);
931 hrtimer_cancel(&tsk
->signal
->real_timer
);
932 exit_itimers(tsk
->signal
);
934 acct_collect(code
, group_dead
);
935 if (unlikely(tsk
->robust_list
))
936 exit_robust_list(tsk
);
937 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
938 if (unlikely(tsk
->compat_robust_list
))
939 compat_exit_robust_list(tsk
);
941 if (unlikely(tsk
->audit_context
))
944 taskstats_exit(tsk
, group_dead
);
957 if (group_dead
&& tsk
->signal
->leader
)
958 disassociate_ctty(1);
960 module_put(task_thread_info(tsk
)->exec_domain
->module
);
962 module_put(tsk
->binfmt
->module
);
964 tsk
->exit_code
= code
;
965 proc_exit_connector(tsk
);
966 exit_task_namespaces(tsk
);
969 mpol_free(tsk
->mempolicy
);
970 tsk
->mempolicy
= NULL
;
973 * This must happen late, after the PID is not
976 if (unlikely(!list_empty(&tsk
->pi_state_list
)))
977 exit_pi_state_list(tsk
);
978 if (unlikely(current
->pi_state_cache
))
979 kfree(current
->pi_state_cache
);
981 * Make sure we are holding no locks:
983 debug_check_no_locks_held(tsk
);
985 * We can do this unlocked here. The futex code uses this flag
986 * just to verify whether the pi state cleanup has been done
987 * or not. In the worst case it loops once more.
989 tsk
->flags
|= PF_EXITPIDONE
;
994 if (tsk
->splice_pipe
)
995 __free_pipe_info(tsk
->splice_pipe
);
998 /* causes final put_task_struct in finish_task_switch(). */
999 tsk
->state
= TASK_DEAD
;
1003 /* Avoid "noreturn function does return". */
1005 cpu_relax(); /* For when BUG is null */
1008 EXPORT_SYMBOL_GPL(do_exit
);
1010 NORET_TYPE
void complete_and_exit(struct completion
*comp
, long code
)
1018 EXPORT_SYMBOL(complete_and_exit
);
1020 asmlinkage
long sys_exit(int error_code
)
1022 do_exit((error_code
&0xff)<<8);
1026 * Take down every thread in the group. This is called by fatal signals
1027 * as well as by sys_exit_group (below).
1030 do_group_exit(int exit_code
)
1032 BUG_ON(exit_code
& 0x80); /* core dumps don't get here */
1034 if (current
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1035 exit_code
= current
->signal
->group_exit_code
;
1036 else if (!thread_group_empty(current
)) {
1037 struct signal_struct
*const sig
= current
->signal
;
1038 struct sighand_struct
*const sighand
= current
->sighand
;
1039 spin_lock_irq(&sighand
->siglock
);
1040 if (sig
->flags
& SIGNAL_GROUP_EXIT
)
1041 /* Another thread got here before we took the lock. */
1042 exit_code
= sig
->group_exit_code
;
1044 sig
->group_exit_code
= exit_code
;
1045 zap_other_threads(current
);
1047 spin_unlock_irq(&sighand
->siglock
);
1055 * this kills every thread in the thread group. Note that any externally
1056 * wait4()-ing process will get the correct exit code - even if this
1057 * thread is not the thread group leader.
1059 asmlinkage
void sys_exit_group(int error_code
)
1061 do_group_exit((error_code
& 0xff) << 8);
1064 static int eligible_child(pid_t pid
, int options
, struct task_struct
*p
)
1072 if (process_group(p
) != process_group(current
))
1074 } else if (pid
!= -1) {
1075 if (process_group(p
) != -pid
)
1080 * Do not consider detached threads that are
1083 if (p
->exit_signal
== -1 && !p
->ptrace
)
1086 /* Wait for all children (clone and not) if __WALL is set;
1087 * otherwise, wait for clone children *only* if __WCLONE is
1088 * set; otherwise, wait for non-clone children *only*. (Note:
1089 * A "clone" child here is one that reports to its parent
1090 * using a signal other than SIGCHLD.) */
1091 if (((p
->exit_signal
!= SIGCHLD
) ^ ((options
& __WCLONE
) != 0))
1092 && !(options
& __WALL
))
1095 * Do not consider thread group leaders that are
1096 * in a non-empty thread group:
1098 if (delay_group_leader(p
))
1101 err
= security_task_wait(p
);
1108 static int wait_noreap_copyout(struct task_struct
*p
, pid_t pid
, uid_t uid
,
1109 int why
, int status
,
1110 struct siginfo __user
*infop
,
1111 struct rusage __user
*rusagep
)
1113 int retval
= rusagep
? getrusage(p
, RUSAGE_BOTH
, rusagep
) : 0;
1117 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1119 retval
= put_user(0, &infop
->si_errno
);
1121 retval
= put_user((short)why
, &infop
->si_code
);
1123 retval
= put_user(pid
, &infop
->si_pid
);
1125 retval
= put_user(uid
, &infop
->si_uid
);
1127 retval
= put_user(status
, &infop
->si_status
);
1134 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1135 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1136 * the lock and this task is uninteresting. If we return nonzero, we have
1137 * released the lock and the system call should return.
1139 static int wait_task_zombie(struct task_struct
*p
, int noreap
,
1140 struct siginfo __user
*infop
,
1141 int __user
*stat_addr
, struct rusage __user
*ru
)
1143 unsigned long state
;
1147 if (unlikely(noreap
)) {
1150 int exit_code
= p
->exit_code
;
1153 if (unlikely(p
->exit_state
!= EXIT_ZOMBIE
))
1155 if (unlikely(p
->exit_signal
== -1 && p
->ptrace
== 0))
1158 read_unlock(&tasklist_lock
);
1159 if ((exit_code
& 0x7f) == 0) {
1161 status
= exit_code
>> 8;
1163 why
= (exit_code
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1164 status
= exit_code
& 0x7f;
1166 return wait_noreap_copyout(p
, pid
, uid
, why
,
1171 * Try to move the task's state to DEAD
1172 * only one thread is allowed to do this:
1174 state
= xchg(&p
->exit_state
, EXIT_DEAD
);
1175 if (state
!= EXIT_ZOMBIE
) {
1176 BUG_ON(state
!= EXIT_DEAD
);
1179 if (unlikely(p
->exit_signal
== -1 && p
->ptrace
== 0)) {
1181 * This can only happen in a race with a ptraced thread
1182 * dying on another processor.
1187 if (likely(p
->real_parent
== p
->parent
) && likely(p
->signal
)) {
1188 struct signal_struct
*psig
;
1189 struct signal_struct
*sig
;
1192 * The resource counters for the group leader are in its
1193 * own task_struct. Those for dead threads in the group
1194 * are in its signal_struct, as are those for the child
1195 * processes it has previously reaped. All these
1196 * accumulate in the parent's signal_struct c* fields.
1198 * We don't bother to take a lock here to protect these
1199 * p->signal fields, because they are only touched by
1200 * __exit_signal, which runs with tasklist_lock
1201 * write-locked anyway, and so is excluded here. We do
1202 * need to protect the access to p->parent->signal fields,
1203 * as other threads in the parent group can be right
1204 * here reaping other children at the same time.
1206 spin_lock_irq(&p
->parent
->sighand
->siglock
);
1207 psig
= p
->parent
->signal
;
1210 cputime_add(psig
->cutime
,
1211 cputime_add(p
->utime
,
1212 cputime_add(sig
->utime
,
1215 cputime_add(psig
->cstime
,
1216 cputime_add(p
->stime
,
1217 cputime_add(sig
->stime
,
1220 p
->min_flt
+ sig
->min_flt
+ sig
->cmin_flt
;
1222 p
->maj_flt
+ sig
->maj_flt
+ sig
->cmaj_flt
;
1224 p
->nvcsw
+ sig
->nvcsw
+ sig
->cnvcsw
;
1226 p
->nivcsw
+ sig
->nivcsw
+ sig
->cnivcsw
;
1228 task_io_get_inblock(p
) +
1229 sig
->inblock
+ sig
->cinblock
;
1231 task_io_get_oublock(p
) +
1232 sig
->oublock
+ sig
->coublock
;
1233 spin_unlock_irq(&p
->parent
->sighand
->siglock
);
1237 * Now we are sure this task is interesting, and no other
1238 * thread can reap it because we set its state to EXIT_DEAD.
1240 read_unlock(&tasklist_lock
);
1242 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1243 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1244 ? p
->signal
->group_exit_code
: p
->exit_code
;
1245 if (!retval
&& stat_addr
)
1246 retval
= put_user(status
, stat_addr
);
1247 if (!retval
&& infop
)
1248 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1249 if (!retval
&& infop
)
1250 retval
= put_user(0, &infop
->si_errno
);
1251 if (!retval
&& infop
) {
1254 if ((status
& 0x7f) == 0) {
1258 why
= (status
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1261 retval
= put_user((short)why
, &infop
->si_code
);
1263 retval
= put_user(status
, &infop
->si_status
);
1265 if (!retval
&& infop
)
1266 retval
= put_user(p
->pid
, &infop
->si_pid
);
1267 if (!retval
&& infop
)
1268 retval
= put_user(p
->uid
, &infop
->si_uid
);
1270 // TODO: is this safe?
1271 p
->exit_state
= EXIT_ZOMBIE
;
1275 if (p
->real_parent
!= p
->parent
) {
1276 write_lock_irq(&tasklist_lock
);
1277 /* Double-check with lock held. */
1278 if (p
->real_parent
!= p
->parent
) {
1280 // TODO: is this safe?
1281 p
->exit_state
= EXIT_ZOMBIE
;
1283 * If this is not a detached task, notify the parent.
1284 * If it's still not detached after that, don't release
1287 if (p
->exit_signal
!= -1) {
1288 do_notify_parent(p
, p
->exit_signal
);
1289 if (p
->exit_signal
!= -1)
1293 write_unlock_irq(&tasklist_lock
);
1302 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1303 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1304 * the lock and this task is uninteresting. If we return nonzero, we have
1305 * released the lock and the system call should return.
1307 static int wait_task_stopped(struct task_struct
*p
, int delayed_group_leader
,
1308 int noreap
, struct siginfo __user
*infop
,
1309 int __user
*stat_addr
, struct rusage __user
*ru
)
1311 int retval
, exit_code
;
1315 if (delayed_group_leader
&& !(p
->ptrace
& PT_PTRACED
) &&
1316 p
->signal
&& p
->signal
->group_stop_count
> 0)
1318 * A group stop is in progress and this is the group leader.
1319 * We won't report until all threads have stopped.
1324 * Now we are pretty sure this task is interesting.
1325 * Make sure it doesn't get reaped out from under us while we
1326 * give up the lock and then examine it below. We don't want to
1327 * keep holding onto the tasklist_lock while we call getrusage and
1328 * possibly take page faults for user memory.
1331 read_unlock(&tasklist_lock
);
1333 if (unlikely(noreap
)) {
1336 int why
= (p
->ptrace
& PT_PTRACED
) ? CLD_TRAPPED
: CLD_STOPPED
;
1338 exit_code
= p
->exit_code
;
1339 if (unlikely(!exit_code
) ||
1340 unlikely(p
->state
& TASK_TRACED
))
1342 return wait_noreap_copyout(p
, pid
, uid
,
1343 why
, (exit_code
<< 8) | 0x7f,
1347 write_lock_irq(&tasklist_lock
);
1350 * This uses xchg to be atomic with the thread resuming and setting
1351 * it. It must also be done with the write lock held to prevent a
1352 * race with the EXIT_ZOMBIE case.
1354 exit_code
= xchg(&p
->exit_code
, 0);
1355 if (unlikely(p
->exit_state
)) {
1357 * The task resumed and then died. Let the next iteration
1358 * catch it in EXIT_ZOMBIE. Note that exit_code might
1359 * already be zero here if it resumed and did _exit(0).
1360 * The task itself is dead and won't touch exit_code again;
1361 * other processors in this function are locked out.
1363 p
->exit_code
= exit_code
;
1366 if (unlikely(exit_code
== 0)) {
1368 * Another thread in this function got to it first, or it
1369 * resumed, or it resumed and then died.
1371 write_unlock_irq(&tasklist_lock
);
1375 * We are returning to the wait loop without having successfully
1376 * removed the process and having released the lock. We cannot
1377 * continue, since the "p" task pointer is potentially stale.
1379 * Return -EAGAIN, and do_wait() will restart the loop from the
1380 * beginning. Do _not_ re-acquire the lock.
1385 /* move to end of parent's list to avoid starvation */
1389 write_unlock_irq(&tasklist_lock
);
1391 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1392 if (!retval
&& stat_addr
)
1393 retval
= put_user((exit_code
<< 8) | 0x7f, stat_addr
);
1394 if (!retval
&& infop
)
1395 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1396 if (!retval
&& infop
)
1397 retval
= put_user(0, &infop
->si_errno
);
1398 if (!retval
&& infop
)
1399 retval
= put_user((short)((p
->ptrace
& PT_PTRACED
)
1400 ? CLD_TRAPPED
: CLD_STOPPED
),
1402 if (!retval
&& infop
)
1403 retval
= put_user(exit_code
, &infop
->si_status
);
1404 if (!retval
&& infop
)
1405 retval
= put_user(p
->pid
, &infop
->si_pid
);
1406 if (!retval
&& infop
)
1407 retval
= put_user(p
->uid
, &infop
->si_uid
);
1417 * Handle do_wait work for one task in a live, non-stopped state.
1418 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1419 * the lock and this task is uninteresting. If we return nonzero, we have
1420 * released the lock and the system call should return.
1422 static int wait_task_continued(struct task_struct
*p
, int noreap
,
1423 struct siginfo __user
*infop
,
1424 int __user
*stat_addr
, struct rusage __user
*ru
)
1430 if (unlikely(!p
->signal
))
1433 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
))
1436 spin_lock_irq(&p
->sighand
->siglock
);
1437 /* Re-check with the lock held. */
1438 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
)) {
1439 spin_unlock_irq(&p
->sighand
->siglock
);
1443 p
->signal
->flags
&= ~SIGNAL_STOP_CONTINUED
;
1444 spin_unlock_irq(&p
->sighand
->siglock
);
1449 read_unlock(&tasklist_lock
);
1452 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1454 if (!retval
&& stat_addr
)
1455 retval
= put_user(0xffff, stat_addr
);
1459 retval
= wait_noreap_copyout(p
, pid
, uid
,
1460 CLD_CONTINUED
, SIGCONT
,
1462 BUG_ON(retval
== 0);
1469 static inline int my_ptrace_child(struct task_struct
*p
)
1471 if (!(p
->ptrace
& PT_PTRACED
))
1473 if (!(p
->ptrace
& PT_ATTACHED
))
1476 * This child was PTRACE_ATTACH'd. We should be seeing it only if
1477 * we are the attacher. If we are the real parent, this is a race
1478 * inside ptrace_attach. It is waiting for the tasklist_lock,
1479 * which we have to switch the parent links, but has already set
1480 * the flags in p->ptrace.
1482 return (p
->parent
!= p
->real_parent
);
1485 static long do_wait(pid_t pid
, int options
, struct siginfo __user
*infop
,
1486 int __user
*stat_addr
, struct rusage __user
*ru
)
1488 DECLARE_WAITQUEUE(wait
, current
);
1489 struct task_struct
*tsk
;
1491 int allowed
, denied
;
1493 add_wait_queue(¤t
->signal
->wait_chldexit
,&wait
);
1496 * We will set this flag if we see any child that might later
1497 * match our criteria, even if we are not able to reap it yet.
1500 allowed
= denied
= 0;
1501 current
->state
= TASK_INTERRUPTIBLE
;
1502 read_lock(&tasklist_lock
);
1505 struct task_struct
*p
;
1506 struct list_head
*_p
;
1509 list_for_each(_p
,&tsk
->children
) {
1510 p
= list_entry(_p
, struct task_struct
, sibling
);
1512 ret
= eligible_child(pid
, options
, p
);
1516 if (unlikely(ret
< 0)) {
1525 * When we hit the race with PTRACE_ATTACH,
1526 * we will not report this child. But the
1527 * race means it has not yet been moved to
1528 * our ptrace_children list, so we need to
1529 * set the flag here to avoid a spurious ECHILD
1530 * when the race happens with the only child.
1533 if (!my_ptrace_child(p
))
1538 * It's stopped now, so it might later
1539 * continue, exit, or stop again.
1542 if (!(options
& WUNTRACED
) &&
1543 !my_ptrace_child(p
))
1545 retval
= wait_task_stopped(p
, ret
== 2,
1546 (options
& WNOWAIT
),
1549 if (retval
== -EAGAIN
)
1551 if (retval
!= 0) /* He released the lock. */
1556 if (p
->exit_state
== EXIT_DEAD
)
1558 // case EXIT_ZOMBIE:
1559 if (p
->exit_state
== EXIT_ZOMBIE
) {
1561 * Eligible but we cannot release
1565 goto check_continued
;
1566 if (!likely(options
& WEXITED
))
1568 retval
= wait_task_zombie(
1569 p
, (options
& WNOWAIT
),
1570 infop
, stat_addr
, ru
);
1571 /* He released the lock. */
1578 * It's running now, so it might later
1579 * exit, stop, or stop and then continue.
1582 if (!unlikely(options
& WCONTINUED
))
1584 retval
= wait_task_continued(
1585 p
, (options
& WNOWAIT
),
1586 infop
, stat_addr
, ru
);
1587 if (retval
!= 0) /* He released the lock. */
1593 list_for_each(_p
, &tsk
->ptrace_children
) {
1594 p
= list_entry(_p
, struct task_struct
,
1596 if (!eligible_child(pid
, options
, p
))
1602 if (options
& __WNOTHREAD
)
1604 tsk
= next_thread(tsk
);
1605 BUG_ON(tsk
->signal
!= current
->signal
);
1606 } while (tsk
!= current
);
1608 read_unlock(&tasklist_lock
);
1611 if (options
& WNOHANG
)
1613 retval
= -ERESTARTSYS
;
1614 if (signal_pending(current
))
1620 if (unlikely(denied
) && !allowed
)
1623 current
->state
= TASK_RUNNING
;
1624 remove_wait_queue(¤t
->signal
->wait_chldexit
,&wait
);
1630 * For a WNOHANG return, clear out all the fields
1631 * we would set so the user can easily tell the
1635 retval
= put_user(0, &infop
->si_signo
);
1637 retval
= put_user(0, &infop
->si_errno
);
1639 retval
= put_user(0, &infop
->si_code
);
1641 retval
= put_user(0, &infop
->si_pid
);
1643 retval
= put_user(0, &infop
->si_uid
);
1645 retval
= put_user(0, &infop
->si_status
);
1651 asmlinkage
long sys_waitid(int which
, pid_t pid
,
1652 struct siginfo __user
*infop
, int options
,
1653 struct rusage __user
*ru
)
1657 if (options
& ~(WNOHANG
|WNOWAIT
|WEXITED
|WSTOPPED
|WCONTINUED
))
1659 if (!(options
& (WEXITED
|WSTOPPED
|WCONTINUED
)))
1679 ret
= do_wait(pid
, options
, infop
, NULL
, ru
);
1681 /* avoid REGPARM breakage on x86: */
1682 prevent_tail_call(ret
);
1686 asmlinkage
long sys_wait4(pid_t pid
, int __user
*stat_addr
,
1687 int options
, struct rusage __user
*ru
)
1691 if (options
& ~(WNOHANG
|WUNTRACED
|WCONTINUED
|
1692 __WNOTHREAD
|__WCLONE
|__WALL
))
1694 ret
= do_wait(pid
, options
| WEXITED
, NULL
, stat_addr
, ru
);
1696 /* avoid REGPARM breakage on x86: */
1697 prevent_tail_call(ret
);
1701 #ifdef __ARCH_WANT_SYS_WAITPID
1704 * sys_waitpid() remains for compatibility. waitpid() should be
1705 * implemented by calling sys_wait4() from libc.a.
1707 asmlinkage
long sys_waitpid(pid_t pid
, int __user
*stat_addr
, int options
)
1709 return sys_wait4(pid
, stat_addr
, options
, NULL
);