sched: remove the 'u64 now' parameter from deactivate_task()
[usb.git] / kernel / sched.c
blob2dc5d2f7b3925bc7ba1e8d6928ee03f4ca445b39
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
65 #include <asm/tlb.h>
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
72 unsigned long long __attribute__((weak)) sched_clock(void)
74 return (unsigned long long)jiffies * (1000000000 / HZ);
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
82 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
91 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96 * Some helpers for converting nanosecond timing to jiffy resolution
98 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101 #define NICE_0_LOAD SCHED_LOAD_SCALE
102 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
105 * These are the 'tuning knobs' of the scheduler:
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
111 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112 #define DEF_TIMESLICE (100 * HZ / 1000)
114 #ifdef CONFIG_SMP
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
128 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 #endif
135 #define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 * to time slice values: [800ms ... 100ms ... 5ms]
142 static unsigned int static_prio_timeslice(int static_prio)
144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
153 static inline int rt_policy(int policy)
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
160 static inline int task_has_rt_policy(struct task_struct *p)
162 return rt_policy(p->policy);
166 * This is the priority-queue data structure of the RT scheduling class:
168 struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
173 struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
179 /* CFS-related fields in a runqueue */
180 struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193 #ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208 #endif
211 /* Real-Time classes' related field in a runqueue: */
212 struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
219 * This is the main, per-CPU runqueue data structure.
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
225 struct rq {
226 spinlock_t lock; /* runqueue lock */
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
232 unsigned long nr_running;
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
235 unsigned char idle_at_tick;
236 #ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238 #endif
239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
243 struct cfs_rq cfs;
244 #ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
246 #endif
247 struct rt_rq rt;
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
255 unsigned long nr_uninterruptible;
257 struct task_struct *curr, *idle;
258 unsigned long next_balance;
259 struct mm_struct *prev_mm;
261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
264 unsigned int clock_warps, clock_overflows;
265 unsigned int clock_unstable_events;
267 atomic_t nr_iowait;
269 #ifdef CONFIG_SMP
270 struct sched_domain *sd;
272 /* For active balancing */
273 int active_balance;
274 int push_cpu;
275 int cpu; /* cpu of this runqueue */
277 struct task_struct *migration_thread;
278 struct list_head migration_queue;
279 #endif
281 #ifdef CONFIG_SCHEDSTATS
282 /* latency stats */
283 struct sched_info rq_sched_info;
285 /* sys_sched_yield() stats */
286 unsigned long yld_exp_empty;
287 unsigned long yld_act_empty;
288 unsigned long yld_both_empty;
289 unsigned long yld_cnt;
291 /* schedule() stats */
292 unsigned long sched_switch;
293 unsigned long sched_cnt;
294 unsigned long sched_goidle;
296 /* try_to_wake_up() stats */
297 unsigned long ttwu_cnt;
298 unsigned long ttwu_local;
299 #endif
300 struct lock_class_key rq_lock_key;
303 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
304 static DEFINE_MUTEX(sched_hotcpu_mutex);
306 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
308 rq->curr->sched_class->check_preempt_curr(rq, p);
311 static inline int cpu_of(struct rq *rq)
313 #ifdef CONFIG_SMP
314 return rq->cpu;
315 #else
316 return 0;
317 #endif
321 * Update the per-runqueue clock, as finegrained as the platform can give
322 * us, but without assuming monotonicity, etc.:
324 static void __update_rq_clock(struct rq *rq)
326 u64 prev_raw = rq->prev_clock_raw;
327 u64 now = sched_clock();
328 s64 delta = now - prev_raw;
329 u64 clock = rq->clock;
331 #ifdef CONFIG_SCHED_DEBUG
332 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
333 #endif
335 * Protect against sched_clock() occasionally going backwards:
337 if (unlikely(delta < 0)) {
338 clock++;
339 rq->clock_warps++;
340 } else {
342 * Catch too large forward jumps too:
344 if (unlikely(delta > 2*TICK_NSEC)) {
345 clock++;
346 rq->clock_overflows++;
347 } else {
348 if (unlikely(delta > rq->clock_max_delta))
349 rq->clock_max_delta = delta;
350 clock += delta;
354 rq->prev_clock_raw = now;
355 rq->clock = clock;
358 static void update_rq_clock(struct rq *rq)
360 if (likely(smp_processor_id() == cpu_of(rq)))
361 __update_rq_clock(rq);
365 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
366 * See detach_destroy_domains: synchronize_sched for details.
368 * The domain tree of any CPU may only be accessed from within
369 * preempt-disabled sections.
371 #define for_each_domain(cpu, __sd) \
372 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
374 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
375 #define this_rq() (&__get_cpu_var(runqueues))
376 #define task_rq(p) cpu_rq(task_cpu(p))
377 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
380 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
381 * clock constructed from sched_clock():
383 unsigned long long cpu_clock(int cpu)
385 unsigned long long now;
386 unsigned long flags;
387 struct rq *rq;
389 local_irq_save(flags);
390 rq = cpu_rq(cpu);
391 update_rq_clock(rq);
392 now = rq->clock;
393 local_irq_restore(flags);
395 return now;
398 #ifdef CONFIG_FAIR_GROUP_SCHED
399 /* Change a task's ->cfs_rq if it moves across CPUs */
400 static inline void set_task_cfs_rq(struct task_struct *p)
402 p->se.cfs_rq = &task_rq(p)->cfs;
404 #else
405 static inline void set_task_cfs_rq(struct task_struct *p)
408 #endif
410 #ifndef prepare_arch_switch
411 # define prepare_arch_switch(next) do { } while (0)
412 #endif
413 #ifndef finish_arch_switch
414 # define finish_arch_switch(prev) do { } while (0)
415 #endif
417 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
418 static inline int task_running(struct rq *rq, struct task_struct *p)
420 return rq->curr == p;
423 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
427 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
429 #ifdef CONFIG_DEBUG_SPINLOCK
430 /* this is a valid case when another task releases the spinlock */
431 rq->lock.owner = current;
432 #endif
434 * If we are tracking spinlock dependencies then we have to
435 * fix up the runqueue lock - which gets 'carried over' from
436 * prev into current:
438 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
440 spin_unlock_irq(&rq->lock);
443 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
444 static inline int task_running(struct rq *rq, struct task_struct *p)
446 #ifdef CONFIG_SMP
447 return p->oncpu;
448 #else
449 return rq->curr == p;
450 #endif
453 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
455 #ifdef CONFIG_SMP
457 * We can optimise this out completely for !SMP, because the
458 * SMP rebalancing from interrupt is the only thing that cares
459 * here.
461 next->oncpu = 1;
462 #endif
463 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
464 spin_unlock_irq(&rq->lock);
465 #else
466 spin_unlock(&rq->lock);
467 #endif
470 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
472 #ifdef CONFIG_SMP
474 * After ->oncpu is cleared, the task can be moved to a different CPU.
475 * We must ensure this doesn't happen until the switch is completely
476 * finished.
478 smp_wmb();
479 prev->oncpu = 0;
480 #endif
481 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
482 local_irq_enable();
483 #endif
485 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
488 * __task_rq_lock - lock the runqueue a given task resides on.
489 * Must be called interrupts disabled.
491 static inline struct rq *__task_rq_lock(struct task_struct *p)
492 __acquires(rq->lock)
494 struct rq *rq;
496 repeat_lock_task:
497 rq = task_rq(p);
498 spin_lock(&rq->lock);
499 if (unlikely(rq != task_rq(p))) {
500 spin_unlock(&rq->lock);
501 goto repeat_lock_task;
503 return rq;
507 * task_rq_lock - lock the runqueue a given task resides on and disable
508 * interrupts. Note the ordering: we can safely lookup the task_rq without
509 * explicitly disabling preemption.
511 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
512 __acquires(rq->lock)
514 struct rq *rq;
516 repeat_lock_task:
517 local_irq_save(*flags);
518 rq = task_rq(p);
519 spin_lock(&rq->lock);
520 if (unlikely(rq != task_rq(p))) {
521 spin_unlock_irqrestore(&rq->lock, *flags);
522 goto repeat_lock_task;
524 return rq;
527 static inline void __task_rq_unlock(struct rq *rq)
528 __releases(rq->lock)
530 spin_unlock(&rq->lock);
533 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
534 __releases(rq->lock)
536 spin_unlock_irqrestore(&rq->lock, *flags);
540 * this_rq_lock - lock this runqueue and disable interrupts.
542 static inline struct rq *this_rq_lock(void)
543 __acquires(rq->lock)
545 struct rq *rq;
547 local_irq_disable();
548 rq = this_rq();
549 spin_lock(&rq->lock);
551 return rq;
555 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
557 void sched_clock_unstable_event(void)
559 unsigned long flags;
560 struct rq *rq;
562 rq = task_rq_lock(current, &flags);
563 rq->prev_clock_raw = sched_clock();
564 rq->clock_unstable_events++;
565 task_rq_unlock(rq, &flags);
569 * resched_task - mark a task 'to be rescheduled now'.
571 * On UP this means the setting of the need_resched flag, on SMP it
572 * might also involve a cross-CPU call to trigger the scheduler on
573 * the target CPU.
575 #ifdef CONFIG_SMP
577 #ifndef tsk_is_polling
578 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
579 #endif
581 static void resched_task(struct task_struct *p)
583 int cpu;
585 assert_spin_locked(&task_rq(p)->lock);
587 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
588 return;
590 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
592 cpu = task_cpu(p);
593 if (cpu == smp_processor_id())
594 return;
596 /* NEED_RESCHED must be visible before we test polling */
597 smp_mb();
598 if (!tsk_is_polling(p))
599 smp_send_reschedule(cpu);
602 static void resched_cpu(int cpu)
604 struct rq *rq = cpu_rq(cpu);
605 unsigned long flags;
607 if (!spin_trylock_irqsave(&rq->lock, flags))
608 return;
609 resched_task(cpu_curr(cpu));
610 spin_unlock_irqrestore(&rq->lock, flags);
612 #else
613 static inline void resched_task(struct task_struct *p)
615 assert_spin_locked(&task_rq(p)->lock);
616 set_tsk_need_resched(p);
618 #endif
620 static u64 div64_likely32(u64 divident, unsigned long divisor)
622 #if BITS_PER_LONG == 32
623 if (likely(divident <= 0xffffffffULL))
624 return (u32)divident / divisor;
625 do_div(divident, divisor);
627 return divident;
628 #else
629 return divident / divisor;
630 #endif
633 #if BITS_PER_LONG == 32
634 # define WMULT_CONST (~0UL)
635 #else
636 # define WMULT_CONST (1UL << 32)
637 #endif
639 #define WMULT_SHIFT 32
641 static unsigned long
642 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
643 struct load_weight *lw)
645 u64 tmp;
647 if (unlikely(!lw->inv_weight))
648 lw->inv_weight = WMULT_CONST / lw->weight;
650 tmp = (u64)delta_exec * weight;
652 * Check whether we'd overflow the 64-bit multiplication:
654 if (unlikely(tmp > WMULT_CONST)) {
655 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
656 >> (WMULT_SHIFT/2);
657 } else {
658 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
661 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
664 static inline unsigned long
665 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
667 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
670 static void update_load_add(struct load_weight *lw, unsigned long inc)
672 lw->weight += inc;
673 lw->inv_weight = 0;
676 static void update_load_sub(struct load_weight *lw, unsigned long dec)
678 lw->weight -= dec;
679 lw->inv_weight = 0;
683 * To aid in avoiding the subversion of "niceness" due to uneven distribution
684 * of tasks with abnormal "nice" values across CPUs the contribution that
685 * each task makes to its run queue's load is weighted according to its
686 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
687 * scaled version of the new time slice allocation that they receive on time
688 * slice expiry etc.
691 #define WEIGHT_IDLEPRIO 2
692 #define WMULT_IDLEPRIO (1 << 31)
695 * Nice levels are multiplicative, with a gentle 10% change for every
696 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
697 * nice 1, it will get ~10% less CPU time than another CPU-bound task
698 * that remained on nice 0.
700 * The "10% effect" is relative and cumulative: from _any_ nice level,
701 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
702 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
703 * If a task goes up by ~10% and another task goes down by ~10% then
704 * the relative distance between them is ~25%.)
706 static const int prio_to_weight[40] = {
707 /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
708 /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
709 /* 0 */ NICE_0_LOAD /* 1024 */,
710 /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
711 /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
715 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
717 * In cases where the weight does not change often, we can use the
718 * precalculated inverse to speed up arithmetics by turning divisions
719 * into multiplications:
721 static const u32 prio_to_wmult[40] = {
722 /* -20 */ 48356, 60446, 75558, 94446, 118058,
723 /* -15 */ 147573, 184467, 230589, 288233, 360285,
724 /* -10 */ 450347, 562979, 703746, 879575, 1099582,
725 /* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
726 /* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
727 /* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
728 /* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
729 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
732 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
735 * runqueue iterator, to support SMP load-balancing between different
736 * scheduling classes, without having to expose their internal data
737 * structures to the load-balancing proper:
739 struct rq_iterator {
740 void *arg;
741 struct task_struct *(*start)(void *);
742 struct task_struct *(*next)(void *);
745 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
746 unsigned long max_nr_move, unsigned long max_load_move,
747 struct sched_domain *sd, enum cpu_idle_type idle,
748 int *all_pinned, unsigned long *load_moved,
749 int *this_best_prio, struct rq_iterator *iterator);
751 #include "sched_stats.h"
752 #include "sched_rt.c"
753 #include "sched_fair.c"
754 #include "sched_idletask.c"
755 #ifdef CONFIG_SCHED_DEBUG
756 # include "sched_debug.c"
757 #endif
759 #define sched_class_highest (&rt_sched_class)
761 static void __update_curr_load(struct rq *rq, struct load_stat *ls)
763 if (rq->curr != rq->idle && ls->load.weight) {
764 ls->delta_exec += ls->delta_stat;
765 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
766 ls->delta_stat = 0;
771 * Update delta_exec, delta_fair fields for rq.
773 * delta_fair clock advances at a rate inversely proportional to
774 * total load (rq->ls.load.weight) on the runqueue, while
775 * delta_exec advances at the same rate as wall-clock (provided
776 * cpu is not idle).
778 * delta_exec / delta_fair is a measure of the (smoothened) load on this
779 * runqueue over any given interval. This (smoothened) load is used
780 * during load balance.
782 * This function is called /before/ updating rq->ls.load
783 * and when switching tasks.
785 static void update_curr_load(struct rq *rq)
787 struct load_stat *ls = &rq->ls;
788 u64 start;
790 start = ls->load_update_start;
791 ls->load_update_start = rq->clock;
792 ls->delta_stat += rq->clock - start;
794 * Stagger updates to ls->delta_fair. Very frequent updates
795 * can be expensive.
797 if (ls->delta_stat >= sysctl_sched_stat_granularity)
798 __update_curr_load(rq, ls);
801 static inline void inc_load(struct rq *rq, const struct task_struct *p)
803 update_curr_load(rq);
804 update_load_add(&rq->ls.load, p->se.load.weight);
807 static inline void dec_load(struct rq *rq, const struct task_struct *p)
809 update_curr_load(rq);
810 update_load_sub(&rq->ls.load, p->se.load.weight);
813 static void inc_nr_running(struct task_struct *p, struct rq *rq)
815 rq->nr_running++;
816 inc_load(rq, p);
819 static void dec_nr_running(struct task_struct *p, struct rq *rq)
821 rq->nr_running--;
822 dec_load(rq, p);
825 static void set_load_weight(struct task_struct *p)
827 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
828 p->se.wait_runtime = 0;
830 if (task_has_rt_policy(p)) {
831 p->se.load.weight = prio_to_weight[0] * 2;
832 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
833 return;
837 * SCHED_IDLE tasks get minimal weight:
839 if (p->policy == SCHED_IDLE) {
840 p->se.load.weight = WEIGHT_IDLEPRIO;
841 p->se.load.inv_weight = WMULT_IDLEPRIO;
842 return;
845 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
846 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
849 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
851 sched_info_queued(p);
852 p->sched_class->enqueue_task(rq, p, wakeup);
853 p->se.on_rq = 1;
856 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
858 p->sched_class->dequeue_task(rq, p, sleep);
859 p->se.on_rq = 0;
863 * __normal_prio - return the priority that is based on the static prio
865 static inline int __normal_prio(struct task_struct *p)
867 return p->static_prio;
871 * Calculate the expected normal priority: i.e. priority
872 * without taking RT-inheritance into account. Might be
873 * boosted by interactivity modifiers. Changes upon fork,
874 * setprio syscalls, and whenever the interactivity
875 * estimator recalculates.
877 static inline int normal_prio(struct task_struct *p)
879 int prio;
881 if (task_has_rt_policy(p))
882 prio = MAX_RT_PRIO-1 - p->rt_priority;
883 else
884 prio = __normal_prio(p);
885 return prio;
889 * Calculate the current priority, i.e. the priority
890 * taken into account by the scheduler. This value might
891 * be boosted by RT tasks, or might be boosted by
892 * interactivity modifiers. Will be RT if the task got
893 * RT-boosted. If not then it returns p->normal_prio.
895 static int effective_prio(struct task_struct *p)
897 p->normal_prio = normal_prio(p);
899 * If we are RT tasks or we were boosted to RT priority,
900 * keep the priority unchanged. Otherwise, update priority
901 * to the normal priority:
903 if (!rt_prio(p->prio))
904 return p->normal_prio;
905 return p->prio;
909 * activate_task - move a task to the runqueue.
911 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
913 u64 now;
915 update_rq_clock(rq);
916 now = rq->clock;
918 if (p->state == TASK_UNINTERRUPTIBLE)
919 rq->nr_uninterruptible--;
921 enqueue_task(rq, p, wakeup);
922 inc_nr_running(p, rq);
926 * activate_idle_task - move idle task to the _front_ of runqueue.
928 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
930 u64 now;
932 update_rq_clock(rq);
933 now = rq->clock;
935 if (p->state == TASK_UNINTERRUPTIBLE)
936 rq->nr_uninterruptible--;
938 enqueue_task(rq, p, 0);
939 inc_nr_running(p, rq);
943 * deactivate_task - remove a task from the runqueue.
945 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
947 if (p->state == TASK_UNINTERRUPTIBLE)
948 rq->nr_uninterruptible++;
950 dequeue_task(rq, p, sleep);
951 dec_nr_running(p, rq);
955 * task_curr - is this task currently executing on a CPU?
956 * @p: the task in question.
958 inline int task_curr(const struct task_struct *p)
960 return cpu_curr(task_cpu(p)) == p;
963 /* Used instead of source_load when we know the type == 0 */
964 unsigned long weighted_cpuload(const int cpu)
966 return cpu_rq(cpu)->ls.load.weight;
969 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
971 #ifdef CONFIG_SMP
972 task_thread_info(p)->cpu = cpu;
973 set_task_cfs_rq(p);
974 #endif
977 #ifdef CONFIG_SMP
979 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
981 int old_cpu = task_cpu(p);
982 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
983 u64 clock_offset, fair_clock_offset;
985 clock_offset = old_rq->clock - new_rq->clock;
986 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
988 if (p->se.wait_start_fair)
989 p->se.wait_start_fair -= fair_clock_offset;
990 if (p->se.sleep_start_fair)
991 p->se.sleep_start_fair -= fair_clock_offset;
993 #ifdef CONFIG_SCHEDSTATS
994 if (p->se.wait_start)
995 p->se.wait_start -= clock_offset;
996 if (p->se.sleep_start)
997 p->se.sleep_start -= clock_offset;
998 if (p->se.block_start)
999 p->se.block_start -= clock_offset;
1000 #endif
1002 __set_task_cpu(p, new_cpu);
1005 struct migration_req {
1006 struct list_head list;
1008 struct task_struct *task;
1009 int dest_cpu;
1011 struct completion done;
1015 * The task's runqueue lock must be held.
1016 * Returns true if you have to wait for migration thread.
1018 static int
1019 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1021 struct rq *rq = task_rq(p);
1024 * If the task is not on a runqueue (and not running), then
1025 * it is sufficient to simply update the task's cpu field.
1027 if (!p->se.on_rq && !task_running(rq, p)) {
1028 set_task_cpu(p, dest_cpu);
1029 return 0;
1032 init_completion(&req->done);
1033 req->task = p;
1034 req->dest_cpu = dest_cpu;
1035 list_add(&req->list, &rq->migration_queue);
1037 return 1;
1041 * wait_task_inactive - wait for a thread to unschedule.
1043 * The caller must ensure that the task *will* unschedule sometime soon,
1044 * else this function might spin for a *long* time. This function can't
1045 * be called with interrupts off, or it may introduce deadlock with
1046 * smp_call_function() if an IPI is sent by the same process we are
1047 * waiting to become inactive.
1049 void wait_task_inactive(struct task_struct *p)
1051 unsigned long flags;
1052 int running, on_rq;
1053 struct rq *rq;
1055 repeat:
1057 * We do the initial early heuristics without holding
1058 * any task-queue locks at all. We'll only try to get
1059 * the runqueue lock when things look like they will
1060 * work out!
1062 rq = task_rq(p);
1065 * If the task is actively running on another CPU
1066 * still, just relax and busy-wait without holding
1067 * any locks.
1069 * NOTE! Since we don't hold any locks, it's not
1070 * even sure that "rq" stays as the right runqueue!
1071 * But we don't care, since "task_running()" will
1072 * return false if the runqueue has changed and p
1073 * is actually now running somewhere else!
1075 while (task_running(rq, p))
1076 cpu_relax();
1079 * Ok, time to look more closely! We need the rq
1080 * lock now, to be *sure*. If we're wrong, we'll
1081 * just go back and repeat.
1083 rq = task_rq_lock(p, &flags);
1084 running = task_running(rq, p);
1085 on_rq = p->se.on_rq;
1086 task_rq_unlock(rq, &flags);
1089 * Was it really running after all now that we
1090 * checked with the proper locks actually held?
1092 * Oops. Go back and try again..
1094 if (unlikely(running)) {
1095 cpu_relax();
1096 goto repeat;
1100 * It's not enough that it's not actively running,
1101 * it must be off the runqueue _entirely_, and not
1102 * preempted!
1104 * So if it wa still runnable (but just not actively
1105 * running right now), it's preempted, and we should
1106 * yield - it could be a while.
1108 if (unlikely(on_rq)) {
1109 yield();
1110 goto repeat;
1114 * Ahh, all good. It wasn't running, and it wasn't
1115 * runnable, which means that it will never become
1116 * running in the future either. We're all done!
1120 /***
1121 * kick_process - kick a running thread to enter/exit the kernel
1122 * @p: the to-be-kicked thread
1124 * Cause a process which is running on another CPU to enter
1125 * kernel-mode, without any delay. (to get signals handled.)
1127 * NOTE: this function doesnt have to take the runqueue lock,
1128 * because all it wants to ensure is that the remote task enters
1129 * the kernel. If the IPI races and the task has been migrated
1130 * to another CPU then no harm is done and the purpose has been
1131 * achieved as well.
1133 void kick_process(struct task_struct *p)
1135 int cpu;
1137 preempt_disable();
1138 cpu = task_cpu(p);
1139 if ((cpu != smp_processor_id()) && task_curr(p))
1140 smp_send_reschedule(cpu);
1141 preempt_enable();
1145 * Return a low guess at the load of a migration-source cpu weighted
1146 * according to the scheduling class and "nice" value.
1148 * We want to under-estimate the load of migration sources, to
1149 * balance conservatively.
1151 static inline unsigned long source_load(int cpu, int type)
1153 struct rq *rq = cpu_rq(cpu);
1154 unsigned long total = weighted_cpuload(cpu);
1156 if (type == 0)
1157 return total;
1159 return min(rq->cpu_load[type-1], total);
1163 * Return a high guess at the load of a migration-target cpu weighted
1164 * according to the scheduling class and "nice" value.
1166 static inline unsigned long target_load(int cpu, int type)
1168 struct rq *rq = cpu_rq(cpu);
1169 unsigned long total = weighted_cpuload(cpu);
1171 if (type == 0)
1172 return total;
1174 return max(rq->cpu_load[type-1], total);
1178 * Return the average load per task on the cpu's run queue
1180 static inline unsigned long cpu_avg_load_per_task(int cpu)
1182 struct rq *rq = cpu_rq(cpu);
1183 unsigned long total = weighted_cpuload(cpu);
1184 unsigned long n = rq->nr_running;
1186 return n ? total / n : SCHED_LOAD_SCALE;
1190 * find_idlest_group finds and returns the least busy CPU group within the
1191 * domain.
1193 static struct sched_group *
1194 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1196 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1197 unsigned long min_load = ULONG_MAX, this_load = 0;
1198 int load_idx = sd->forkexec_idx;
1199 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1201 do {
1202 unsigned long load, avg_load;
1203 int local_group;
1204 int i;
1206 /* Skip over this group if it has no CPUs allowed */
1207 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1208 goto nextgroup;
1210 local_group = cpu_isset(this_cpu, group->cpumask);
1212 /* Tally up the load of all CPUs in the group */
1213 avg_load = 0;
1215 for_each_cpu_mask(i, group->cpumask) {
1216 /* Bias balancing toward cpus of our domain */
1217 if (local_group)
1218 load = source_load(i, load_idx);
1219 else
1220 load = target_load(i, load_idx);
1222 avg_load += load;
1225 /* Adjust by relative CPU power of the group */
1226 avg_load = sg_div_cpu_power(group,
1227 avg_load * SCHED_LOAD_SCALE);
1229 if (local_group) {
1230 this_load = avg_load;
1231 this = group;
1232 } else if (avg_load < min_load) {
1233 min_load = avg_load;
1234 idlest = group;
1236 nextgroup:
1237 group = group->next;
1238 } while (group != sd->groups);
1240 if (!idlest || 100*this_load < imbalance*min_load)
1241 return NULL;
1242 return idlest;
1246 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1248 static int
1249 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1251 cpumask_t tmp;
1252 unsigned long load, min_load = ULONG_MAX;
1253 int idlest = -1;
1254 int i;
1256 /* Traverse only the allowed CPUs */
1257 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1259 for_each_cpu_mask(i, tmp) {
1260 load = weighted_cpuload(i);
1262 if (load < min_load || (load == min_load && i == this_cpu)) {
1263 min_load = load;
1264 idlest = i;
1268 return idlest;
1272 * sched_balance_self: balance the current task (running on cpu) in domains
1273 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1274 * SD_BALANCE_EXEC.
1276 * Balance, ie. select the least loaded group.
1278 * Returns the target CPU number, or the same CPU if no balancing is needed.
1280 * preempt must be disabled.
1282 static int sched_balance_self(int cpu, int flag)
1284 struct task_struct *t = current;
1285 struct sched_domain *tmp, *sd = NULL;
1287 for_each_domain(cpu, tmp) {
1289 * If power savings logic is enabled for a domain, stop there.
1291 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1292 break;
1293 if (tmp->flags & flag)
1294 sd = tmp;
1297 while (sd) {
1298 cpumask_t span;
1299 struct sched_group *group;
1300 int new_cpu, weight;
1302 if (!(sd->flags & flag)) {
1303 sd = sd->child;
1304 continue;
1307 span = sd->span;
1308 group = find_idlest_group(sd, t, cpu);
1309 if (!group) {
1310 sd = sd->child;
1311 continue;
1314 new_cpu = find_idlest_cpu(group, t, cpu);
1315 if (new_cpu == -1 || new_cpu == cpu) {
1316 /* Now try balancing at a lower domain level of cpu */
1317 sd = sd->child;
1318 continue;
1321 /* Now try balancing at a lower domain level of new_cpu */
1322 cpu = new_cpu;
1323 sd = NULL;
1324 weight = cpus_weight(span);
1325 for_each_domain(cpu, tmp) {
1326 if (weight <= cpus_weight(tmp->span))
1327 break;
1328 if (tmp->flags & flag)
1329 sd = tmp;
1331 /* while loop will break here if sd == NULL */
1334 return cpu;
1337 #endif /* CONFIG_SMP */
1340 * wake_idle() will wake a task on an idle cpu if task->cpu is
1341 * not idle and an idle cpu is available. The span of cpus to
1342 * search starts with cpus closest then further out as needed,
1343 * so we always favor a closer, idle cpu.
1345 * Returns the CPU we should wake onto.
1347 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1348 static int wake_idle(int cpu, struct task_struct *p)
1350 cpumask_t tmp;
1351 struct sched_domain *sd;
1352 int i;
1355 * If it is idle, then it is the best cpu to run this task.
1357 * This cpu is also the best, if it has more than one task already.
1358 * Siblings must be also busy(in most cases) as they didn't already
1359 * pickup the extra load from this cpu and hence we need not check
1360 * sibling runqueue info. This will avoid the checks and cache miss
1361 * penalities associated with that.
1363 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1364 return cpu;
1366 for_each_domain(cpu, sd) {
1367 if (sd->flags & SD_WAKE_IDLE) {
1368 cpus_and(tmp, sd->span, p->cpus_allowed);
1369 for_each_cpu_mask(i, tmp) {
1370 if (idle_cpu(i))
1371 return i;
1373 } else {
1374 break;
1377 return cpu;
1379 #else
1380 static inline int wake_idle(int cpu, struct task_struct *p)
1382 return cpu;
1384 #endif
1386 /***
1387 * try_to_wake_up - wake up a thread
1388 * @p: the to-be-woken-up thread
1389 * @state: the mask of task states that can be woken
1390 * @sync: do a synchronous wakeup?
1392 * Put it on the run-queue if it's not already there. The "current"
1393 * thread is always on the run-queue (except when the actual
1394 * re-schedule is in progress), and as such you're allowed to do
1395 * the simpler "current->state = TASK_RUNNING" to mark yourself
1396 * runnable without the overhead of this.
1398 * returns failure only if the task is already active.
1400 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1402 int cpu, this_cpu, success = 0;
1403 unsigned long flags;
1404 long old_state;
1405 struct rq *rq;
1406 #ifdef CONFIG_SMP
1407 struct sched_domain *sd, *this_sd = NULL;
1408 unsigned long load, this_load;
1409 int new_cpu;
1410 #endif
1412 rq = task_rq_lock(p, &flags);
1413 old_state = p->state;
1414 if (!(old_state & state))
1415 goto out;
1417 if (p->se.on_rq)
1418 goto out_running;
1420 cpu = task_cpu(p);
1421 this_cpu = smp_processor_id();
1423 #ifdef CONFIG_SMP
1424 if (unlikely(task_running(rq, p)))
1425 goto out_activate;
1427 new_cpu = cpu;
1429 schedstat_inc(rq, ttwu_cnt);
1430 if (cpu == this_cpu) {
1431 schedstat_inc(rq, ttwu_local);
1432 goto out_set_cpu;
1435 for_each_domain(this_cpu, sd) {
1436 if (cpu_isset(cpu, sd->span)) {
1437 schedstat_inc(sd, ttwu_wake_remote);
1438 this_sd = sd;
1439 break;
1443 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1444 goto out_set_cpu;
1447 * Check for affine wakeup and passive balancing possibilities.
1449 if (this_sd) {
1450 int idx = this_sd->wake_idx;
1451 unsigned int imbalance;
1453 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1455 load = source_load(cpu, idx);
1456 this_load = target_load(this_cpu, idx);
1458 new_cpu = this_cpu; /* Wake to this CPU if we can */
1460 if (this_sd->flags & SD_WAKE_AFFINE) {
1461 unsigned long tl = this_load;
1462 unsigned long tl_per_task;
1464 tl_per_task = cpu_avg_load_per_task(this_cpu);
1467 * If sync wakeup then subtract the (maximum possible)
1468 * effect of the currently running task from the load
1469 * of the current CPU:
1471 if (sync)
1472 tl -= current->se.load.weight;
1474 if ((tl <= load &&
1475 tl + target_load(cpu, idx) <= tl_per_task) ||
1476 100*(tl + p->se.load.weight) <= imbalance*load) {
1478 * This domain has SD_WAKE_AFFINE and
1479 * p is cache cold in this domain, and
1480 * there is no bad imbalance.
1482 schedstat_inc(this_sd, ttwu_move_affine);
1483 goto out_set_cpu;
1488 * Start passive balancing when half the imbalance_pct
1489 * limit is reached.
1491 if (this_sd->flags & SD_WAKE_BALANCE) {
1492 if (imbalance*this_load <= 100*load) {
1493 schedstat_inc(this_sd, ttwu_move_balance);
1494 goto out_set_cpu;
1499 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1500 out_set_cpu:
1501 new_cpu = wake_idle(new_cpu, p);
1502 if (new_cpu != cpu) {
1503 set_task_cpu(p, new_cpu);
1504 task_rq_unlock(rq, &flags);
1505 /* might preempt at this point */
1506 rq = task_rq_lock(p, &flags);
1507 old_state = p->state;
1508 if (!(old_state & state))
1509 goto out;
1510 if (p->se.on_rq)
1511 goto out_running;
1513 this_cpu = smp_processor_id();
1514 cpu = task_cpu(p);
1517 out_activate:
1518 #endif /* CONFIG_SMP */
1519 activate_task(rq, p, 1);
1521 * Sync wakeups (i.e. those types of wakeups where the waker
1522 * has indicated that it will leave the CPU in short order)
1523 * don't trigger a preemption, if the woken up task will run on
1524 * this cpu. (in this case the 'I will reschedule' promise of
1525 * the waker guarantees that the freshly woken up task is going
1526 * to be considered on this CPU.)
1528 if (!sync || cpu != this_cpu)
1529 check_preempt_curr(rq, p);
1530 success = 1;
1532 out_running:
1533 p->state = TASK_RUNNING;
1534 out:
1535 task_rq_unlock(rq, &flags);
1537 return success;
1540 int fastcall wake_up_process(struct task_struct *p)
1542 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1543 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1545 EXPORT_SYMBOL(wake_up_process);
1547 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1549 return try_to_wake_up(p, state, 0);
1553 * Perform scheduler related setup for a newly forked process p.
1554 * p is forked by current.
1556 * __sched_fork() is basic setup used by init_idle() too:
1558 static void __sched_fork(struct task_struct *p)
1560 p->se.wait_start_fair = 0;
1561 p->se.exec_start = 0;
1562 p->se.sum_exec_runtime = 0;
1563 p->se.delta_exec = 0;
1564 p->se.delta_fair_run = 0;
1565 p->se.delta_fair_sleep = 0;
1566 p->se.wait_runtime = 0;
1567 p->se.sleep_start_fair = 0;
1569 #ifdef CONFIG_SCHEDSTATS
1570 p->se.wait_start = 0;
1571 p->se.sum_wait_runtime = 0;
1572 p->se.sum_sleep_runtime = 0;
1573 p->se.sleep_start = 0;
1574 p->se.block_start = 0;
1575 p->se.sleep_max = 0;
1576 p->se.block_max = 0;
1577 p->se.exec_max = 0;
1578 p->se.wait_max = 0;
1579 p->se.wait_runtime_overruns = 0;
1580 p->se.wait_runtime_underruns = 0;
1581 #endif
1583 INIT_LIST_HEAD(&p->run_list);
1584 p->se.on_rq = 0;
1586 #ifdef CONFIG_PREEMPT_NOTIFIERS
1587 INIT_HLIST_HEAD(&p->preempt_notifiers);
1588 #endif
1591 * We mark the process as running here, but have not actually
1592 * inserted it onto the runqueue yet. This guarantees that
1593 * nobody will actually run it, and a signal or other external
1594 * event cannot wake it up and insert it on the runqueue either.
1596 p->state = TASK_RUNNING;
1600 * fork()/clone()-time setup:
1602 void sched_fork(struct task_struct *p, int clone_flags)
1604 int cpu = get_cpu();
1606 __sched_fork(p);
1608 #ifdef CONFIG_SMP
1609 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1610 #endif
1611 __set_task_cpu(p, cpu);
1614 * Make sure we do not leak PI boosting priority to the child:
1616 p->prio = current->normal_prio;
1618 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1619 if (likely(sched_info_on()))
1620 memset(&p->sched_info, 0, sizeof(p->sched_info));
1621 #endif
1622 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1623 p->oncpu = 0;
1624 #endif
1625 #ifdef CONFIG_PREEMPT
1626 /* Want to start with kernel preemption disabled. */
1627 task_thread_info(p)->preempt_count = 1;
1628 #endif
1629 put_cpu();
1633 * After fork, child runs first. (default) If set to 0 then
1634 * parent will (try to) run first.
1636 unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1639 * wake_up_new_task - wake up a newly created task for the first time.
1641 * This function will do some initial scheduler statistics housekeeping
1642 * that must be done for every newly created context, then puts the task
1643 * on the runqueue and wakes it.
1645 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1647 unsigned long flags;
1648 struct rq *rq;
1649 int this_cpu;
1650 u64 now;
1652 rq = task_rq_lock(p, &flags);
1653 BUG_ON(p->state != TASK_RUNNING);
1654 this_cpu = smp_processor_id(); /* parent's CPU */
1655 update_rq_clock(rq);
1656 now = rq->clock;
1658 p->prio = effective_prio(p);
1660 if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
1661 (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
1662 !current->se.on_rq) {
1664 activate_task(rq, p, 0);
1665 } else {
1667 * Let the scheduling class do new task startup
1668 * management (if any):
1670 p->sched_class->task_new(rq, p);
1671 inc_nr_running(p, rq);
1673 check_preempt_curr(rq, p);
1674 task_rq_unlock(rq, &flags);
1677 #ifdef CONFIG_PREEMPT_NOTIFIERS
1680 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1681 * @notifier: notifier struct to register
1683 void preempt_notifier_register(struct preempt_notifier *notifier)
1685 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1687 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1690 * preempt_notifier_unregister - no longer interested in preemption notifications
1691 * @notifier: notifier struct to unregister
1693 * This is safe to call from within a preemption notifier.
1695 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1697 hlist_del(&notifier->link);
1699 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1701 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1703 struct preempt_notifier *notifier;
1704 struct hlist_node *node;
1706 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1707 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1710 static void
1711 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1712 struct task_struct *next)
1714 struct preempt_notifier *notifier;
1715 struct hlist_node *node;
1717 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1718 notifier->ops->sched_out(notifier, next);
1721 #else
1723 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1727 static void
1728 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1729 struct task_struct *next)
1733 #endif
1736 * prepare_task_switch - prepare to switch tasks
1737 * @rq: the runqueue preparing to switch
1738 * @prev: the current task that is being switched out
1739 * @next: the task we are going to switch to.
1741 * This is called with the rq lock held and interrupts off. It must
1742 * be paired with a subsequent finish_task_switch after the context
1743 * switch.
1745 * prepare_task_switch sets up locking and calls architecture specific
1746 * hooks.
1748 static inline void
1749 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1750 struct task_struct *next)
1752 fire_sched_out_preempt_notifiers(prev, next);
1753 prepare_lock_switch(rq, next);
1754 prepare_arch_switch(next);
1758 * finish_task_switch - clean up after a task-switch
1759 * @rq: runqueue associated with task-switch
1760 * @prev: the thread we just switched away from.
1762 * finish_task_switch must be called after the context switch, paired
1763 * with a prepare_task_switch call before the context switch.
1764 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1765 * and do any other architecture-specific cleanup actions.
1767 * Note that we may have delayed dropping an mm in context_switch(). If
1768 * so, we finish that here outside of the runqueue lock. (Doing it
1769 * with the lock held can cause deadlocks; see schedule() for
1770 * details.)
1772 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1773 __releases(rq->lock)
1775 struct mm_struct *mm = rq->prev_mm;
1776 long prev_state;
1778 rq->prev_mm = NULL;
1781 * A task struct has one reference for the use as "current".
1782 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1783 * schedule one last time. The schedule call will never return, and
1784 * the scheduled task must drop that reference.
1785 * The test for TASK_DEAD must occur while the runqueue locks are
1786 * still held, otherwise prev could be scheduled on another cpu, die
1787 * there before we look at prev->state, and then the reference would
1788 * be dropped twice.
1789 * Manfred Spraul <manfred@colorfullife.com>
1791 prev_state = prev->state;
1792 finish_arch_switch(prev);
1793 finish_lock_switch(rq, prev);
1794 fire_sched_in_preempt_notifiers(current);
1795 if (mm)
1796 mmdrop(mm);
1797 if (unlikely(prev_state == TASK_DEAD)) {
1799 * Remove function-return probe instances associated with this
1800 * task and put them back on the free list.
1802 kprobe_flush_task(prev);
1803 put_task_struct(prev);
1808 * schedule_tail - first thing a freshly forked thread must call.
1809 * @prev: the thread we just switched away from.
1811 asmlinkage void schedule_tail(struct task_struct *prev)
1812 __releases(rq->lock)
1814 struct rq *rq = this_rq();
1816 finish_task_switch(rq, prev);
1817 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1818 /* In this case, finish_task_switch does not reenable preemption */
1819 preempt_enable();
1820 #endif
1821 if (current->set_child_tid)
1822 put_user(current->pid, current->set_child_tid);
1826 * context_switch - switch to the new MM and the new
1827 * thread's register state.
1829 static inline void
1830 context_switch(struct rq *rq, struct task_struct *prev,
1831 struct task_struct *next)
1833 struct mm_struct *mm, *oldmm;
1835 prepare_task_switch(rq, prev, next);
1836 mm = next->mm;
1837 oldmm = prev->active_mm;
1839 * For paravirt, this is coupled with an exit in switch_to to
1840 * combine the page table reload and the switch backend into
1841 * one hypercall.
1843 arch_enter_lazy_cpu_mode();
1845 if (unlikely(!mm)) {
1846 next->active_mm = oldmm;
1847 atomic_inc(&oldmm->mm_count);
1848 enter_lazy_tlb(oldmm, next);
1849 } else
1850 switch_mm(oldmm, mm, next);
1852 if (unlikely(!prev->mm)) {
1853 prev->active_mm = NULL;
1854 rq->prev_mm = oldmm;
1857 * Since the runqueue lock will be released by the next
1858 * task (which is an invalid locking op but in the case
1859 * of the scheduler it's an obvious special-case), so we
1860 * do an early lockdep release here:
1862 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1863 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1864 #endif
1866 /* Here we just switch the register state and the stack. */
1867 switch_to(prev, next, prev);
1869 barrier();
1871 * this_rq must be evaluated again because prev may have moved
1872 * CPUs since it called schedule(), thus the 'rq' on its stack
1873 * frame will be invalid.
1875 finish_task_switch(this_rq(), prev);
1879 * nr_running, nr_uninterruptible and nr_context_switches:
1881 * externally visible scheduler statistics: current number of runnable
1882 * threads, current number of uninterruptible-sleeping threads, total
1883 * number of context switches performed since bootup.
1885 unsigned long nr_running(void)
1887 unsigned long i, sum = 0;
1889 for_each_online_cpu(i)
1890 sum += cpu_rq(i)->nr_running;
1892 return sum;
1895 unsigned long nr_uninterruptible(void)
1897 unsigned long i, sum = 0;
1899 for_each_possible_cpu(i)
1900 sum += cpu_rq(i)->nr_uninterruptible;
1903 * Since we read the counters lockless, it might be slightly
1904 * inaccurate. Do not allow it to go below zero though:
1906 if (unlikely((long)sum < 0))
1907 sum = 0;
1909 return sum;
1912 unsigned long long nr_context_switches(void)
1914 int i;
1915 unsigned long long sum = 0;
1917 for_each_possible_cpu(i)
1918 sum += cpu_rq(i)->nr_switches;
1920 return sum;
1923 unsigned long nr_iowait(void)
1925 unsigned long i, sum = 0;
1927 for_each_possible_cpu(i)
1928 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1930 return sum;
1933 unsigned long nr_active(void)
1935 unsigned long i, running = 0, uninterruptible = 0;
1937 for_each_online_cpu(i) {
1938 running += cpu_rq(i)->nr_running;
1939 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1942 if (unlikely((long)uninterruptible < 0))
1943 uninterruptible = 0;
1945 return running + uninterruptible;
1949 * Update rq->cpu_load[] statistics. This function is usually called every
1950 * scheduler tick (TICK_NSEC).
1952 static void update_cpu_load(struct rq *this_rq)
1954 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1955 unsigned long total_load = this_rq->ls.load.weight;
1956 unsigned long this_load = total_load;
1957 struct load_stat *ls = &this_rq->ls;
1958 u64 now;
1959 int i, scale;
1961 __update_rq_clock(this_rq);
1962 now = this_rq->clock;
1964 this_rq->nr_load_updates++;
1965 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1966 goto do_avg;
1968 /* Update delta_fair/delta_exec fields first */
1969 update_curr_load(this_rq);
1971 fair_delta64 = ls->delta_fair + 1;
1972 ls->delta_fair = 0;
1974 exec_delta64 = ls->delta_exec + 1;
1975 ls->delta_exec = 0;
1977 sample_interval64 = this_rq->clock - ls->load_update_last;
1978 ls->load_update_last = this_rq->clock;
1980 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1981 sample_interval64 = TICK_NSEC;
1983 if (exec_delta64 > sample_interval64)
1984 exec_delta64 = sample_interval64;
1986 idle_delta64 = sample_interval64 - exec_delta64;
1988 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1989 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1991 this_load = (unsigned long)tmp64;
1993 do_avg:
1995 /* Update our load: */
1996 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1997 unsigned long old_load, new_load;
1999 /* scale is effectively 1 << i now, and >> i divides by scale */
2001 old_load = this_rq->cpu_load[i];
2002 new_load = this_load;
2004 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2008 #ifdef CONFIG_SMP
2011 * double_rq_lock - safely lock two runqueues
2013 * Note this does not disable interrupts like task_rq_lock,
2014 * you need to do so manually before calling.
2016 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2017 __acquires(rq1->lock)
2018 __acquires(rq2->lock)
2020 BUG_ON(!irqs_disabled());
2021 if (rq1 == rq2) {
2022 spin_lock(&rq1->lock);
2023 __acquire(rq2->lock); /* Fake it out ;) */
2024 } else {
2025 if (rq1 < rq2) {
2026 spin_lock(&rq1->lock);
2027 spin_lock(&rq2->lock);
2028 } else {
2029 spin_lock(&rq2->lock);
2030 spin_lock(&rq1->lock);
2036 * double_rq_unlock - safely unlock two runqueues
2038 * Note this does not restore interrupts like task_rq_unlock,
2039 * you need to do so manually after calling.
2041 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2042 __releases(rq1->lock)
2043 __releases(rq2->lock)
2045 spin_unlock(&rq1->lock);
2046 if (rq1 != rq2)
2047 spin_unlock(&rq2->lock);
2048 else
2049 __release(rq2->lock);
2053 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2055 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2056 __releases(this_rq->lock)
2057 __acquires(busiest->lock)
2058 __acquires(this_rq->lock)
2060 if (unlikely(!irqs_disabled())) {
2061 /* printk() doesn't work good under rq->lock */
2062 spin_unlock(&this_rq->lock);
2063 BUG_ON(1);
2065 if (unlikely(!spin_trylock(&busiest->lock))) {
2066 if (busiest < this_rq) {
2067 spin_unlock(&this_rq->lock);
2068 spin_lock(&busiest->lock);
2069 spin_lock(&this_rq->lock);
2070 } else
2071 spin_lock(&busiest->lock);
2076 * If dest_cpu is allowed for this process, migrate the task to it.
2077 * This is accomplished by forcing the cpu_allowed mask to only
2078 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2079 * the cpu_allowed mask is restored.
2081 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2083 struct migration_req req;
2084 unsigned long flags;
2085 struct rq *rq;
2087 rq = task_rq_lock(p, &flags);
2088 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2089 || unlikely(cpu_is_offline(dest_cpu)))
2090 goto out;
2092 /* force the process onto the specified CPU */
2093 if (migrate_task(p, dest_cpu, &req)) {
2094 /* Need to wait for migration thread (might exit: take ref). */
2095 struct task_struct *mt = rq->migration_thread;
2097 get_task_struct(mt);
2098 task_rq_unlock(rq, &flags);
2099 wake_up_process(mt);
2100 put_task_struct(mt);
2101 wait_for_completion(&req.done);
2103 return;
2105 out:
2106 task_rq_unlock(rq, &flags);
2110 * sched_exec - execve() is a valuable balancing opportunity, because at
2111 * this point the task has the smallest effective memory and cache footprint.
2113 void sched_exec(void)
2115 int new_cpu, this_cpu = get_cpu();
2116 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2117 put_cpu();
2118 if (new_cpu != this_cpu)
2119 sched_migrate_task(current, new_cpu);
2123 * pull_task - move a task from a remote runqueue to the local runqueue.
2124 * Both runqueues must be locked.
2126 static void pull_task(struct rq *src_rq, struct task_struct *p,
2127 struct rq *this_rq, int this_cpu)
2129 update_rq_clock(src_rq);
2130 deactivate_task(src_rq, p, 0);
2131 set_task_cpu(p, this_cpu);
2132 activate_task(this_rq, p, 0);
2134 * Note that idle threads have a prio of MAX_PRIO, for this test
2135 * to be always true for them.
2137 check_preempt_curr(this_rq, p);
2141 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2143 static
2144 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2145 struct sched_domain *sd, enum cpu_idle_type idle,
2146 int *all_pinned)
2149 * We do not migrate tasks that are:
2150 * 1) running (obviously), or
2151 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2152 * 3) are cache-hot on their current CPU.
2154 if (!cpu_isset(this_cpu, p->cpus_allowed))
2155 return 0;
2156 *all_pinned = 0;
2158 if (task_running(rq, p))
2159 return 0;
2162 * Aggressive migration if too many balance attempts have failed:
2164 if (sd->nr_balance_failed > sd->cache_nice_tries)
2165 return 1;
2167 return 1;
2170 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2171 unsigned long max_nr_move, unsigned long max_load_move,
2172 struct sched_domain *sd, enum cpu_idle_type idle,
2173 int *all_pinned, unsigned long *load_moved,
2174 int *this_best_prio, struct rq_iterator *iterator)
2176 int pulled = 0, pinned = 0, skip_for_load;
2177 struct task_struct *p;
2178 long rem_load_move = max_load_move;
2180 if (max_nr_move == 0 || max_load_move == 0)
2181 goto out;
2183 pinned = 1;
2186 * Start the load-balancing iterator:
2188 p = iterator->start(iterator->arg);
2189 next:
2190 if (!p)
2191 goto out;
2193 * To help distribute high priority tasks accross CPUs we don't
2194 * skip a task if it will be the highest priority task (i.e. smallest
2195 * prio value) on its new queue regardless of its load weight
2197 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2198 SCHED_LOAD_SCALE_FUZZ;
2199 if ((skip_for_load && p->prio >= *this_best_prio) ||
2200 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2201 p = iterator->next(iterator->arg);
2202 goto next;
2205 pull_task(busiest, p, this_rq, this_cpu);
2206 pulled++;
2207 rem_load_move -= p->se.load.weight;
2210 * We only want to steal up to the prescribed number of tasks
2211 * and the prescribed amount of weighted load.
2213 if (pulled < max_nr_move && rem_load_move > 0) {
2214 if (p->prio < *this_best_prio)
2215 *this_best_prio = p->prio;
2216 p = iterator->next(iterator->arg);
2217 goto next;
2219 out:
2221 * Right now, this is the only place pull_task() is called,
2222 * so we can safely collect pull_task() stats here rather than
2223 * inside pull_task().
2225 schedstat_add(sd, lb_gained[idle], pulled);
2227 if (all_pinned)
2228 *all_pinned = pinned;
2229 *load_moved = max_load_move - rem_load_move;
2230 return pulled;
2234 * move_tasks tries to move up to max_load_move weighted load from busiest to
2235 * this_rq, as part of a balancing operation within domain "sd".
2236 * Returns 1 if successful and 0 otherwise.
2238 * Called with both runqueues locked.
2240 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2241 unsigned long max_load_move,
2242 struct sched_domain *sd, enum cpu_idle_type idle,
2243 int *all_pinned)
2245 struct sched_class *class = sched_class_highest;
2246 unsigned long total_load_moved = 0;
2247 int this_best_prio = this_rq->curr->prio;
2249 do {
2250 total_load_moved +=
2251 class->load_balance(this_rq, this_cpu, busiest,
2252 ULONG_MAX, max_load_move - total_load_moved,
2253 sd, idle, all_pinned, &this_best_prio);
2254 class = class->next;
2255 } while (class && max_load_move > total_load_moved);
2257 return total_load_moved > 0;
2261 * move_one_task tries to move exactly one task from busiest to this_rq, as
2262 * part of active balancing operations within "domain".
2263 * Returns 1 if successful and 0 otherwise.
2265 * Called with both runqueues locked.
2267 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2268 struct sched_domain *sd, enum cpu_idle_type idle)
2270 struct sched_class *class;
2271 int this_best_prio = MAX_PRIO;
2273 for (class = sched_class_highest; class; class = class->next)
2274 if (class->load_balance(this_rq, this_cpu, busiest,
2275 1, ULONG_MAX, sd, idle, NULL,
2276 &this_best_prio))
2277 return 1;
2279 return 0;
2283 * find_busiest_group finds and returns the busiest CPU group within the
2284 * domain. It calculates and returns the amount of weighted load which
2285 * should be moved to restore balance via the imbalance parameter.
2287 static struct sched_group *
2288 find_busiest_group(struct sched_domain *sd, int this_cpu,
2289 unsigned long *imbalance, enum cpu_idle_type idle,
2290 int *sd_idle, cpumask_t *cpus, int *balance)
2292 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2293 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2294 unsigned long max_pull;
2295 unsigned long busiest_load_per_task, busiest_nr_running;
2296 unsigned long this_load_per_task, this_nr_running;
2297 int load_idx;
2298 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2299 int power_savings_balance = 1;
2300 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2301 unsigned long min_nr_running = ULONG_MAX;
2302 struct sched_group *group_min = NULL, *group_leader = NULL;
2303 #endif
2305 max_load = this_load = total_load = total_pwr = 0;
2306 busiest_load_per_task = busiest_nr_running = 0;
2307 this_load_per_task = this_nr_running = 0;
2308 if (idle == CPU_NOT_IDLE)
2309 load_idx = sd->busy_idx;
2310 else if (idle == CPU_NEWLY_IDLE)
2311 load_idx = sd->newidle_idx;
2312 else
2313 load_idx = sd->idle_idx;
2315 do {
2316 unsigned long load, group_capacity;
2317 int local_group;
2318 int i;
2319 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2320 unsigned long sum_nr_running, sum_weighted_load;
2322 local_group = cpu_isset(this_cpu, group->cpumask);
2324 if (local_group)
2325 balance_cpu = first_cpu(group->cpumask);
2327 /* Tally up the load of all CPUs in the group */
2328 sum_weighted_load = sum_nr_running = avg_load = 0;
2330 for_each_cpu_mask(i, group->cpumask) {
2331 struct rq *rq;
2333 if (!cpu_isset(i, *cpus))
2334 continue;
2336 rq = cpu_rq(i);
2338 if (*sd_idle && rq->nr_running)
2339 *sd_idle = 0;
2341 /* Bias balancing toward cpus of our domain */
2342 if (local_group) {
2343 if (idle_cpu(i) && !first_idle_cpu) {
2344 first_idle_cpu = 1;
2345 balance_cpu = i;
2348 load = target_load(i, load_idx);
2349 } else
2350 load = source_load(i, load_idx);
2352 avg_load += load;
2353 sum_nr_running += rq->nr_running;
2354 sum_weighted_load += weighted_cpuload(i);
2358 * First idle cpu or the first cpu(busiest) in this sched group
2359 * is eligible for doing load balancing at this and above
2360 * domains. In the newly idle case, we will allow all the cpu's
2361 * to do the newly idle load balance.
2363 if (idle != CPU_NEWLY_IDLE && local_group &&
2364 balance_cpu != this_cpu && balance) {
2365 *balance = 0;
2366 goto ret;
2369 total_load += avg_load;
2370 total_pwr += group->__cpu_power;
2372 /* Adjust by relative CPU power of the group */
2373 avg_load = sg_div_cpu_power(group,
2374 avg_load * SCHED_LOAD_SCALE);
2376 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2378 if (local_group) {
2379 this_load = avg_load;
2380 this = group;
2381 this_nr_running = sum_nr_running;
2382 this_load_per_task = sum_weighted_load;
2383 } else if (avg_load > max_load &&
2384 sum_nr_running > group_capacity) {
2385 max_load = avg_load;
2386 busiest = group;
2387 busiest_nr_running = sum_nr_running;
2388 busiest_load_per_task = sum_weighted_load;
2391 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2393 * Busy processors will not participate in power savings
2394 * balance.
2396 if (idle == CPU_NOT_IDLE ||
2397 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2398 goto group_next;
2401 * If the local group is idle or completely loaded
2402 * no need to do power savings balance at this domain
2404 if (local_group && (this_nr_running >= group_capacity ||
2405 !this_nr_running))
2406 power_savings_balance = 0;
2409 * If a group is already running at full capacity or idle,
2410 * don't include that group in power savings calculations
2412 if (!power_savings_balance || sum_nr_running >= group_capacity
2413 || !sum_nr_running)
2414 goto group_next;
2417 * Calculate the group which has the least non-idle load.
2418 * This is the group from where we need to pick up the load
2419 * for saving power
2421 if ((sum_nr_running < min_nr_running) ||
2422 (sum_nr_running == min_nr_running &&
2423 first_cpu(group->cpumask) <
2424 first_cpu(group_min->cpumask))) {
2425 group_min = group;
2426 min_nr_running = sum_nr_running;
2427 min_load_per_task = sum_weighted_load /
2428 sum_nr_running;
2432 * Calculate the group which is almost near its
2433 * capacity but still has some space to pick up some load
2434 * from other group and save more power
2436 if (sum_nr_running <= group_capacity - 1) {
2437 if (sum_nr_running > leader_nr_running ||
2438 (sum_nr_running == leader_nr_running &&
2439 first_cpu(group->cpumask) >
2440 first_cpu(group_leader->cpumask))) {
2441 group_leader = group;
2442 leader_nr_running = sum_nr_running;
2445 group_next:
2446 #endif
2447 group = group->next;
2448 } while (group != sd->groups);
2450 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2451 goto out_balanced;
2453 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2455 if (this_load >= avg_load ||
2456 100*max_load <= sd->imbalance_pct*this_load)
2457 goto out_balanced;
2459 busiest_load_per_task /= busiest_nr_running;
2461 * We're trying to get all the cpus to the average_load, so we don't
2462 * want to push ourselves above the average load, nor do we wish to
2463 * reduce the max loaded cpu below the average load, as either of these
2464 * actions would just result in more rebalancing later, and ping-pong
2465 * tasks around. Thus we look for the minimum possible imbalance.
2466 * Negative imbalances (*we* are more loaded than anyone else) will
2467 * be counted as no imbalance for these purposes -- we can't fix that
2468 * by pulling tasks to us. Be careful of negative numbers as they'll
2469 * appear as very large values with unsigned longs.
2471 if (max_load <= busiest_load_per_task)
2472 goto out_balanced;
2475 * In the presence of smp nice balancing, certain scenarios can have
2476 * max load less than avg load(as we skip the groups at or below
2477 * its cpu_power, while calculating max_load..)
2479 if (max_load < avg_load) {
2480 *imbalance = 0;
2481 goto small_imbalance;
2484 /* Don't want to pull so many tasks that a group would go idle */
2485 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2487 /* How much load to actually move to equalise the imbalance */
2488 *imbalance = min(max_pull * busiest->__cpu_power,
2489 (avg_load - this_load) * this->__cpu_power)
2490 / SCHED_LOAD_SCALE;
2493 * if *imbalance is less than the average load per runnable task
2494 * there is no gaurantee that any tasks will be moved so we'll have
2495 * a think about bumping its value to force at least one task to be
2496 * moved
2498 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2499 unsigned long tmp, pwr_now, pwr_move;
2500 unsigned int imbn;
2502 small_imbalance:
2503 pwr_move = pwr_now = 0;
2504 imbn = 2;
2505 if (this_nr_running) {
2506 this_load_per_task /= this_nr_running;
2507 if (busiest_load_per_task > this_load_per_task)
2508 imbn = 1;
2509 } else
2510 this_load_per_task = SCHED_LOAD_SCALE;
2512 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2513 busiest_load_per_task * imbn) {
2514 *imbalance = busiest_load_per_task;
2515 return busiest;
2519 * OK, we don't have enough imbalance to justify moving tasks,
2520 * however we may be able to increase total CPU power used by
2521 * moving them.
2524 pwr_now += busiest->__cpu_power *
2525 min(busiest_load_per_task, max_load);
2526 pwr_now += this->__cpu_power *
2527 min(this_load_per_task, this_load);
2528 pwr_now /= SCHED_LOAD_SCALE;
2530 /* Amount of load we'd subtract */
2531 tmp = sg_div_cpu_power(busiest,
2532 busiest_load_per_task * SCHED_LOAD_SCALE);
2533 if (max_load > tmp)
2534 pwr_move += busiest->__cpu_power *
2535 min(busiest_load_per_task, max_load - tmp);
2537 /* Amount of load we'd add */
2538 if (max_load * busiest->__cpu_power <
2539 busiest_load_per_task * SCHED_LOAD_SCALE)
2540 tmp = sg_div_cpu_power(this,
2541 max_load * busiest->__cpu_power);
2542 else
2543 tmp = sg_div_cpu_power(this,
2544 busiest_load_per_task * SCHED_LOAD_SCALE);
2545 pwr_move += this->__cpu_power *
2546 min(this_load_per_task, this_load + tmp);
2547 pwr_move /= SCHED_LOAD_SCALE;
2549 /* Move if we gain throughput */
2550 if (pwr_move <= pwr_now)
2551 goto out_balanced;
2553 *imbalance = busiest_load_per_task;
2556 return busiest;
2558 out_balanced:
2559 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2560 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2561 goto ret;
2563 if (this == group_leader && group_leader != group_min) {
2564 *imbalance = min_load_per_task;
2565 return group_min;
2567 #endif
2568 ret:
2569 *imbalance = 0;
2570 return NULL;
2574 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2576 static struct rq *
2577 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2578 unsigned long imbalance, cpumask_t *cpus)
2580 struct rq *busiest = NULL, *rq;
2581 unsigned long max_load = 0;
2582 int i;
2584 for_each_cpu_mask(i, group->cpumask) {
2585 unsigned long wl;
2587 if (!cpu_isset(i, *cpus))
2588 continue;
2590 rq = cpu_rq(i);
2591 wl = weighted_cpuload(i);
2593 if (rq->nr_running == 1 && wl > imbalance)
2594 continue;
2596 if (wl > max_load) {
2597 max_load = wl;
2598 busiest = rq;
2602 return busiest;
2606 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2607 * so long as it is large enough.
2609 #define MAX_PINNED_INTERVAL 512
2612 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2613 * tasks if there is an imbalance.
2615 static int load_balance(int this_cpu, struct rq *this_rq,
2616 struct sched_domain *sd, enum cpu_idle_type idle,
2617 int *balance)
2619 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2620 struct sched_group *group;
2621 unsigned long imbalance;
2622 struct rq *busiest;
2623 cpumask_t cpus = CPU_MASK_ALL;
2624 unsigned long flags;
2627 * When power savings policy is enabled for the parent domain, idle
2628 * sibling can pick up load irrespective of busy siblings. In this case,
2629 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2630 * portraying it as CPU_NOT_IDLE.
2632 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2633 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2634 sd_idle = 1;
2636 schedstat_inc(sd, lb_cnt[idle]);
2638 redo:
2639 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2640 &cpus, balance);
2642 if (*balance == 0)
2643 goto out_balanced;
2645 if (!group) {
2646 schedstat_inc(sd, lb_nobusyg[idle]);
2647 goto out_balanced;
2650 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2651 if (!busiest) {
2652 schedstat_inc(sd, lb_nobusyq[idle]);
2653 goto out_balanced;
2656 BUG_ON(busiest == this_rq);
2658 schedstat_add(sd, lb_imbalance[idle], imbalance);
2660 ld_moved = 0;
2661 if (busiest->nr_running > 1) {
2663 * Attempt to move tasks. If find_busiest_group has found
2664 * an imbalance but busiest->nr_running <= 1, the group is
2665 * still unbalanced. ld_moved simply stays zero, so it is
2666 * correctly treated as an imbalance.
2668 local_irq_save(flags);
2669 double_rq_lock(this_rq, busiest);
2670 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2671 imbalance, sd, idle, &all_pinned);
2672 double_rq_unlock(this_rq, busiest);
2673 local_irq_restore(flags);
2676 * some other cpu did the load balance for us.
2678 if (ld_moved && this_cpu != smp_processor_id())
2679 resched_cpu(this_cpu);
2681 /* All tasks on this runqueue were pinned by CPU affinity */
2682 if (unlikely(all_pinned)) {
2683 cpu_clear(cpu_of(busiest), cpus);
2684 if (!cpus_empty(cpus))
2685 goto redo;
2686 goto out_balanced;
2690 if (!ld_moved) {
2691 schedstat_inc(sd, lb_failed[idle]);
2692 sd->nr_balance_failed++;
2694 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2696 spin_lock_irqsave(&busiest->lock, flags);
2698 /* don't kick the migration_thread, if the curr
2699 * task on busiest cpu can't be moved to this_cpu
2701 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2702 spin_unlock_irqrestore(&busiest->lock, flags);
2703 all_pinned = 1;
2704 goto out_one_pinned;
2707 if (!busiest->active_balance) {
2708 busiest->active_balance = 1;
2709 busiest->push_cpu = this_cpu;
2710 active_balance = 1;
2712 spin_unlock_irqrestore(&busiest->lock, flags);
2713 if (active_balance)
2714 wake_up_process(busiest->migration_thread);
2717 * We've kicked active balancing, reset the failure
2718 * counter.
2720 sd->nr_balance_failed = sd->cache_nice_tries+1;
2722 } else
2723 sd->nr_balance_failed = 0;
2725 if (likely(!active_balance)) {
2726 /* We were unbalanced, so reset the balancing interval */
2727 sd->balance_interval = sd->min_interval;
2728 } else {
2730 * If we've begun active balancing, start to back off. This
2731 * case may not be covered by the all_pinned logic if there
2732 * is only 1 task on the busy runqueue (because we don't call
2733 * move_tasks).
2735 if (sd->balance_interval < sd->max_interval)
2736 sd->balance_interval *= 2;
2739 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2740 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2741 return -1;
2742 return ld_moved;
2744 out_balanced:
2745 schedstat_inc(sd, lb_balanced[idle]);
2747 sd->nr_balance_failed = 0;
2749 out_one_pinned:
2750 /* tune up the balancing interval */
2751 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2752 (sd->balance_interval < sd->max_interval))
2753 sd->balance_interval *= 2;
2755 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2756 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2757 return -1;
2758 return 0;
2762 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2763 * tasks if there is an imbalance.
2765 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2766 * this_rq is locked.
2768 static int
2769 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2771 struct sched_group *group;
2772 struct rq *busiest = NULL;
2773 unsigned long imbalance;
2774 int ld_moved = 0;
2775 int sd_idle = 0;
2776 int all_pinned = 0;
2777 cpumask_t cpus = CPU_MASK_ALL;
2780 * When power savings policy is enabled for the parent domain, idle
2781 * sibling can pick up load irrespective of busy siblings. In this case,
2782 * let the state of idle sibling percolate up as IDLE, instead of
2783 * portraying it as CPU_NOT_IDLE.
2785 if (sd->flags & SD_SHARE_CPUPOWER &&
2786 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2787 sd_idle = 1;
2789 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2790 redo:
2791 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2792 &sd_idle, &cpus, NULL);
2793 if (!group) {
2794 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2795 goto out_balanced;
2798 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2799 &cpus);
2800 if (!busiest) {
2801 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2802 goto out_balanced;
2805 BUG_ON(busiest == this_rq);
2807 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2809 ld_moved = 0;
2810 if (busiest->nr_running > 1) {
2811 /* Attempt to move tasks */
2812 double_lock_balance(this_rq, busiest);
2813 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2814 imbalance, sd, CPU_NEWLY_IDLE,
2815 &all_pinned);
2816 spin_unlock(&busiest->lock);
2818 if (unlikely(all_pinned)) {
2819 cpu_clear(cpu_of(busiest), cpus);
2820 if (!cpus_empty(cpus))
2821 goto redo;
2825 if (!ld_moved) {
2826 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2827 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2828 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2829 return -1;
2830 } else
2831 sd->nr_balance_failed = 0;
2833 return ld_moved;
2835 out_balanced:
2836 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2837 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2838 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2839 return -1;
2840 sd->nr_balance_failed = 0;
2842 return 0;
2846 * idle_balance is called by schedule() if this_cpu is about to become
2847 * idle. Attempts to pull tasks from other CPUs.
2849 static void idle_balance(int this_cpu, struct rq *this_rq)
2851 struct sched_domain *sd;
2852 int pulled_task = -1;
2853 unsigned long next_balance = jiffies + HZ;
2855 for_each_domain(this_cpu, sd) {
2856 unsigned long interval;
2858 if (!(sd->flags & SD_LOAD_BALANCE))
2859 continue;
2861 if (sd->flags & SD_BALANCE_NEWIDLE)
2862 /* If we've pulled tasks over stop searching: */
2863 pulled_task = load_balance_newidle(this_cpu,
2864 this_rq, sd);
2866 interval = msecs_to_jiffies(sd->balance_interval);
2867 if (time_after(next_balance, sd->last_balance + interval))
2868 next_balance = sd->last_balance + interval;
2869 if (pulled_task)
2870 break;
2872 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2874 * We are going idle. next_balance may be set based on
2875 * a busy processor. So reset next_balance.
2877 this_rq->next_balance = next_balance;
2882 * active_load_balance is run by migration threads. It pushes running tasks
2883 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2884 * running on each physical CPU where possible, and avoids physical /
2885 * logical imbalances.
2887 * Called with busiest_rq locked.
2889 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2891 int target_cpu = busiest_rq->push_cpu;
2892 struct sched_domain *sd;
2893 struct rq *target_rq;
2895 /* Is there any task to move? */
2896 if (busiest_rq->nr_running <= 1)
2897 return;
2899 target_rq = cpu_rq(target_cpu);
2902 * This condition is "impossible", if it occurs
2903 * we need to fix it. Originally reported by
2904 * Bjorn Helgaas on a 128-cpu setup.
2906 BUG_ON(busiest_rq == target_rq);
2908 /* move a task from busiest_rq to target_rq */
2909 double_lock_balance(busiest_rq, target_rq);
2911 /* Search for an sd spanning us and the target CPU. */
2912 for_each_domain(target_cpu, sd) {
2913 if ((sd->flags & SD_LOAD_BALANCE) &&
2914 cpu_isset(busiest_cpu, sd->span))
2915 break;
2918 if (likely(sd)) {
2919 schedstat_inc(sd, alb_cnt);
2921 if (move_one_task(target_rq, target_cpu, busiest_rq,
2922 sd, CPU_IDLE))
2923 schedstat_inc(sd, alb_pushed);
2924 else
2925 schedstat_inc(sd, alb_failed);
2927 spin_unlock(&target_rq->lock);
2930 #ifdef CONFIG_NO_HZ
2931 static struct {
2932 atomic_t load_balancer;
2933 cpumask_t cpu_mask;
2934 } nohz ____cacheline_aligned = {
2935 .load_balancer = ATOMIC_INIT(-1),
2936 .cpu_mask = CPU_MASK_NONE,
2940 * This routine will try to nominate the ilb (idle load balancing)
2941 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2942 * load balancing on behalf of all those cpus. If all the cpus in the system
2943 * go into this tickless mode, then there will be no ilb owner (as there is
2944 * no need for one) and all the cpus will sleep till the next wakeup event
2945 * arrives...
2947 * For the ilb owner, tick is not stopped. And this tick will be used
2948 * for idle load balancing. ilb owner will still be part of
2949 * nohz.cpu_mask..
2951 * While stopping the tick, this cpu will become the ilb owner if there
2952 * is no other owner. And will be the owner till that cpu becomes busy
2953 * or if all cpus in the system stop their ticks at which point
2954 * there is no need for ilb owner.
2956 * When the ilb owner becomes busy, it nominates another owner, during the
2957 * next busy scheduler_tick()
2959 int select_nohz_load_balancer(int stop_tick)
2961 int cpu = smp_processor_id();
2963 if (stop_tick) {
2964 cpu_set(cpu, nohz.cpu_mask);
2965 cpu_rq(cpu)->in_nohz_recently = 1;
2968 * If we are going offline and still the leader, give up!
2970 if (cpu_is_offline(cpu) &&
2971 atomic_read(&nohz.load_balancer) == cpu) {
2972 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2973 BUG();
2974 return 0;
2977 /* time for ilb owner also to sleep */
2978 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2979 if (atomic_read(&nohz.load_balancer) == cpu)
2980 atomic_set(&nohz.load_balancer, -1);
2981 return 0;
2984 if (atomic_read(&nohz.load_balancer) == -1) {
2985 /* make me the ilb owner */
2986 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2987 return 1;
2988 } else if (atomic_read(&nohz.load_balancer) == cpu)
2989 return 1;
2990 } else {
2991 if (!cpu_isset(cpu, nohz.cpu_mask))
2992 return 0;
2994 cpu_clear(cpu, nohz.cpu_mask);
2996 if (atomic_read(&nohz.load_balancer) == cpu)
2997 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2998 BUG();
3000 return 0;
3002 #endif
3004 static DEFINE_SPINLOCK(balancing);
3007 * It checks each scheduling domain to see if it is due to be balanced,
3008 * and initiates a balancing operation if so.
3010 * Balancing parameters are set up in arch_init_sched_domains.
3012 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3014 int balance = 1;
3015 struct rq *rq = cpu_rq(cpu);
3016 unsigned long interval;
3017 struct sched_domain *sd;
3018 /* Earliest time when we have to do rebalance again */
3019 unsigned long next_balance = jiffies + 60*HZ;
3021 for_each_domain(cpu, sd) {
3022 if (!(sd->flags & SD_LOAD_BALANCE))
3023 continue;
3025 interval = sd->balance_interval;
3026 if (idle != CPU_IDLE)
3027 interval *= sd->busy_factor;
3029 /* scale ms to jiffies */
3030 interval = msecs_to_jiffies(interval);
3031 if (unlikely(!interval))
3032 interval = 1;
3033 if (interval > HZ*NR_CPUS/10)
3034 interval = HZ*NR_CPUS/10;
3037 if (sd->flags & SD_SERIALIZE) {
3038 if (!spin_trylock(&balancing))
3039 goto out;
3042 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3043 if (load_balance(cpu, rq, sd, idle, &balance)) {
3045 * We've pulled tasks over so either we're no
3046 * longer idle, or one of our SMT siblings is
3047 * not idle.
3049 idle = CPU_NOT_IDLE;
3051 sd->last_balance = jiffies;
3053 if (sd->flags & SD_SERIALIZE)
3054 spin_unlock(&balancing);
3055 out:
3056 if (time_after(next_balance, sd->last_balance + interval))
3057 next_balance = sd->last_balance + interval;
3060 * Stop the load balance at this level. There is another
3061 * CPU in our sched group which is doing load balancing more
3062 * actively.
3064 if (!balance)
3065 break;
3067 rq->next_balance = next_balance;
3071 * run_rebalance_domains is triggered when needed from the scheduler tick.
3072 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3073 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3075 static void run_rebalance_domains(struct softirq_action *h)
3077 int this_cpu = smp_processor_id();
3078 struct rq *this_rq = cpu_rq(this_cpu);
3079 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3080 CPU_IDLE : CPU_NOT_IDLE;
3082 rebalance_domains(this_cpu, idle);
3084 #ifdef CONFIG_NO_HZ
3086 * If this cpu is the owner for idle load balancing, then do the
3087 * balancing on behalf of the other idle cpus whose ticks are
3088 * stopped.
3090 if (this_rq->idle_at_tick &&
3091 atomic_read(&nohz.load_balancer) == this_cpu) {
3092 cpumask_t cpus = nohz.cpu_mask;
3093 struct rq *rq;
3094 int balance_cpu;
3096 cpu_clear(this_cpu, cpus);
3097 for_each_cpu_mask(balance_cpu, cpus) {
3099 * If this cpu gets work to do, stop the load balancing
3100 * work being done for other cpus. Next load
3101 * balancing owner will pick it up.
3103 if (need_resched())
3104 break;
3106 rebalance_domains(balance_cpu, SCHED_IDLE);
3108 rq = cpu_rq(balance_cpu);
3109 if (time_after(this_rq->next_balance, rq->next_balance))
3110 this_rq->next_balance = rq->next_balance;
3113 #endif
3117 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3119 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3120 * idle load balancing owner or decide to stop the periodic load balancing,
3121 * if the whole system is idle.
3123 static inline void trigger_load_balance(struct rq *rq, int cpu)
3125 #ifdef CONFIG_NO_HZ
3127 * If we were in the nohz mode recently and busy at the current
3128 * scheduler tick, then check if we need to nominate new idle
3129 * load balancer.
3131 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3132 rq->in_nohz_recently = 0;
3134 if (atomic_read(&nohz.load_balancer) == cpu) {
3135 cpu_clear(cpu, nohz.cpu_mask);
3136 atomic_set(&nohz.load_balancer, -1);
3139 if (atomic_read(&nohz.load_balancer) == -1) {
3141 * simple selection for now: Nominate the
3142 * first cpu in the nohz list to be the next
3143 * ilb owner.
3145 * TBD: Traverse the sched domains and nominate
3146 * the nearest cpu in the nohz.cpu_mask.
3148 int ilb = first_cpu(nohz.cpu_mask);
3150 if (ilb != NR_CPUS)
3151 resched_cpu(ilb);
3156 * If this cpu is idle and doing idle load balancing for all the
3157 * cpus with ticks stopped, is it time for that to stop?
3159 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3160 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3161 resched_cpu(cpu);
3162 return;
3166 * If this cpu is idle and the idle load balancing is done by
3167 * someone else, then no need raise the SCHED_SOFTIRQ
3169 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3170 cpu_isset(cpu, nohz.cpu_mask))
3171 return;
3172 #endif
3173 if (time_after_eq(jiffies, rq->next_balance))
3174 raise_softirq(SCHED_SOFTIRQ);
3177 #else /* CONFIG_SMP */
3180 * on UP we do not need to balance between CPUs:
3182 static inline void idle_balance(int cpu, struct rq *rq)
3186 /* Avoid "used but not defined" warning on UP */
3187 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3188 unsigned long max_nr_move, unsigned long max_load_move,
3189 struct sched_domain *sd, enum cpu_idle_type idle,
3190 int *all_pinned, unsigned long *load_moved,
3191 int *this_best_prio, struct rq_iterator *iterator)
3193 *load_moved = 0;
3195 return 0;
3198 #endif
3200 DEFINE_PER_CPU(struct kernel_stat, kstat);
3202 EXPORT_PER_CPU_SYMBOL(kstat);
3205 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3206 * that have not yet been banked in case the task is currently running.
3208 unsigned long long task_sched_runtime(struct task_struct *p)
3210 unsigned long flags;
3211 u64 ns, delta_exec;
3212 struct rq *rq;
3214 rq = task_rq_lock(p, &flags);
3215 ns = p->se.sum_exec_runtime;
3216 if (rq->curr == p) {
3217 update_rq_clock(rq);
3218 delta_exec = rq->clock - p->se.exec_start;
3219 if ((s64)delta_exec > 0)
3220 ns += delta_exec;
3222 task_rq_unlock(rq, &flags);
3224 return ns;
3228 * Account user cpu time to a process.
3229 * @p: the process that the cpu time gets accounted to
3230 * @hardirq_offset: the offset to subtract from hardirq_count()
3231 * @cputime: the cpu time spent in user space since the last update
3233 void account_user_time(struct task_struct *p, cputime_t cputime)
3235 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3236 cputime64_t tmp;
3238 p->utime = cputime_add(p->utime, cputime);
3240 /* Add user time to cpustat. */
3241 tmp = cputime_to_cputime64(cputime);
3242 if (TASK_NICE(p) > 0)
3243 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3244 else
3245 cpustat->user = cputime64_add(cpustat->user, tmp);
3249 * Account system cpu time to a process.
3250 * @p: the process that the cpu time gets accounted to
3251 * @hardirq_offset: the offset to subtract from hardirq_count()
3252 * @cputime: the cpu time spent in kernel space since the last update
3254 void account_system_time(struct task_struct *p, int hardirq_offset,
3255 cputime_t cputime)
3257 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3258 struct rq *rq = this_rq();
3259 cputime64_t tmp;
3261 p->stime = cputime_add(p->stime, cputime);
3263 /* Add system time to cpustat. */
3264 tmp = cputime_to_cputime64(cputime);
3265 if (hardirq_count() - hardirq_offset)
3266 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3267 else if (softirq_count())
3268 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3269 else if (p != rq->idle)
3270 cpustat->system = cputime64_add(cpustat->system, tmp);
3271 else if (atomic_read(&rq->nr_iowait) > 0)
3272 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3273 else
3274 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3275 /* Account for system time used */
3276 acct_update_integrals(p);
3280 * Account for involuntary wait time.
3281 * @p: the process from which the cpu time has been stolen
3282 * @steal: the cpu time spent in involuntary wait
3284 void account_steal_time(struct task_struct *p, cputime_t steal)
3286 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3287 cputime64_t tmp = cputime_to_cputime64(steal);
3288 struct rq *rq = this_rq();
3290 if (p == rq->idle) {
3291 p->stime = cputime_add(p->stime, steal);
3292 if (atomic_read(&rq->nr_iowait) > 0)
3293 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3294 else
3295 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3296 } else
3297 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3301 * This function gets called by the timer code, with HZ frequency.
3302 * We call it with interrupts disabled.
3304 * It also gets called by the fork code, when changing the parent's
3305 * timeslices.
3307 void scheduler_tick(void)
3309 int cpu = smp_processor_id();
3310 struct rq *rq = cpu_rq(cpu);
3311 struct task_struct *curr = rq->curr;
3313 spin_lock(&rq->lock);
3314 update_cpu_load(rq);
3315 if (curr != rq->idle) /* FIXME: needed? */
3316 curr->sched_class->task_tick(rq, curr);
3317 spin_unlock(&rq->lock);
3319 #ifdef CONFIG_SMP
3320 rq->idle_at_tick = idle_cpu(cpu);
3321 trigger_load_balance(rq, cpu);
3322 #endif
3325 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3327 void fastcall add_preempt_count(int val)
3330 * Underflow?
3332 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3333 return;
3334 preempt_count() += val;
3336 * Spinlock count overflowing soon?
3338 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3339 PREEMPT_MASK - 10);
3341 EXPORT_SYMBOL(add_preempt_count);
3343 void fastcall sub_preempt_count(int val)
3346 * Underflow?
3348 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3349 return;
3351 * Is the spinlock portion underflowing?
3353 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3354 !(preempt_count() & PREEMPT_MASK)))
3355 return;
3357 preempt_count() -= val;
3359 EXPORT_SYMBOL(sub_preempt_count);
3361 #endif
3364 * Print scheduling while atomic bug:
3366 static noinline void __schedule_bug(struct task_struct *prev)
3368 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3369 prev->comm, preempt_count(), prev->pid);
3370 debug_show_held_locks(prev);
3371 if (irqs_disabled())
3372 print_irqtrace_events(prev);
3373 dump_stack();
3377 * Various schedule()-time debugging checks and statistics:
3379 static inline void schedule_debug(struct task_struct *prev)
3382 * Test if we are atomic. Since do_exit() needs to call into
3383 * schedule() atomically, we ignore that path for now.
3384 * Otherwise, whine if we are scheduling when we should not be.
3386 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3387 __schedule_bug(prev);
3389 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3391 schedstat_inc(this_rq(), sched_cnt);
3395 * Pick up the highest-prio task:
3397 static inline struct task_struct *
3398 pick_next_task(struct rq *rq, struct task_struct *prev)
3400 struct sched_class *class;
3401 struct task_struct *p;
3404 * Optimization: we know that if all tasks are in
3405 * the fair class we can call that function directly:
3407 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3408 p = fair_sched_class.pick_next_task(rq);
3409 if (likely(p))
3410 return p;
3413 class = sched_class_highest;
3414 for ( ; ; ) {
3415 p = class->pick_next_task(rq);
3416 if (p)
3417 return p;
3419 * Will never be NULL as the idle class always
3420 * returns a non-NULL p:
3422 class = class->next;
3427 * schedule() is the main scheduler function.
3429 asmlinkage void __sched schedule(void)
3431 struct task_struct *prev, *next;
3432 long *switch_count;
3433 struct rq *rq;
3434 u64 now;
3435 int cpu;
3437 need_resched:
3438 preempt_disable();
3439 cpu = smp_processor_id();
3440 rq = cpu_rq(cpu);
3441 rcu_qsctr_inc(cpu);
3442 prev = rq->curr;
3443 switch_count = &prev->nivcsw;
3445 release_kernel_lock(prev);
3446 need_resched_nonpreemptible:
3448 schedule_debug(prev);
3450 spin_lock_irq(&rq->lock);
3451 clear_tsk_need_resched(prev);
3452 __update_rq_clock(rq);
3453 now = rq->clock;
3455 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3456 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3457 unlikely(signal_pending(prev)))) {
3458 prev->state = TASK_RUNNING;
3459 } else {
3460 deactivate_task(rq, prev, 1);
3462 switch_count = &prev->nvcsw;
3465 if (unlikely(!rq->nr_running))
3466 idle_balance(cpu, rq);
3468 prev->sched_class->put_prev_task(rq, prev);
3469 next = pick_next_task(rq, prev);
3471 sched_info_switch(prev, next);
3473 if (likely(prev != next)) {
3474 rq->nr_switches++;
3475 rq->curr = next;
3476 ++*switch_count;
3478 context_switch(rq, prev, next); /* unlocks the rq */
3479 } else
3480 spin_unlock_irq(&rq->lock);
3482 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3483 cpu = smp_processor_id();
3484 rq = cpu_rq(cpu);
3485 goto need_resched_nonpreemptible;
3487 preempt_enable_no_resched();
3488 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3489 goto need_resched;
3491 EXPORT_SYMBOL(schedule);
3493 #ifdef CONFIG_PREEMPT
3495 * this is the entry point to schedule() from in-kernel preemption
3496 * off of preempt_enable. Kernel preemptions off return from interrupt
3497 * occur there and call schedule directly.
3499 asmlinkage void __sched preempt_schedule(void)
3501 struct thread_info *ti = current_thread_info();
3502 #ifdef CONFIG_PREEMPT_BKL
3503 struct task_struct *task = current;
3504 int saved_lock_depth;
3505 #endif
3507 * If there is a non-zero preempt_count or interrupts are disabled,
3508 * we do not want to preempt the current task. Just return..
3510 if (likely(ti->preempt_count || irqs_disabled()))
3511 return;
3513 need_resched:
3514 add_preempt_count(PREEMPT_ACTIVE);
3516 * We keep the big kernel semaphore locked, but we
3517 * clear ->lock_depth so that schedule() doesnt
3518 * auto-release the semaphore:
3520 #ifdef CONFIG_PREEMPT_BKL
3521 saved_lock_depth = task->lock_depth;
3522 task->lock_depth = -1;
3523 #endif
3524 schedule();
3525 #ifdef CONFIG_PREEMPT_BKL
3526 task->lock_depth = saved_lock_depth;
3527 #endif
3528 sub_preempt_count(PREEMPT_ACTIVE);
3530 /* we could miss a preemption opportunity between schedule and now */
3531 barrier();
3532 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3533 goto need_resched;
3535 EXPORT_SYMBOL(preempt_schedule);
3538 * this is the entry point to schedule() from kernel preemption
3539 * off of irq context.
3540 * Note, that this is called and return with irqs disabled. This will
3541 * protect us against recursive calling from irq.
3543 asmlinkage void __sched preempt_schedule_irq(void)
3545 struct thread_info *ti = current_thread_info();
3546 #ifdef CONFIG_PREEMPT_BKL
3547 struct task_struct *task = current;
3548 int saved_lock_depth;
3549 #endif
3550 /* Catch callers which need to be fixed */
3551 BUG_ON(ti->preempt_count || !irqs_disabled());
3553 need_resched:
3554 add_preempt_count(PREEMPT_ACTIVE);
3556 * We keep the big kernel semaphore locked, but we
3557 * clear ->lock_depth so that schedule() doesnt
3558 * auto-release the semaphore:
3560 #ifdef CONFIG_PREEMPT_BKL
3561 saved_lock_depth = task->lock_depth;
3562 task->lock_depth = -1;
3563 #endif
3564 local_irq_enable();
3565 schedule();
3566 local_irq_disable();
3567 #ifdef CONFIG_PREEMPT_BKL
3568 task->lock_depth = saved_lock_depth;
3569 #endif
3570 sub_preempt_count(PREEMPT_ACTIVE);
3572 /* we could miss a preemption opportunity between schedule and now */
3573 barrier();
3574 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3575 goto need_resched;
3578 #endif /* CONFIG_PREEMPT */
3580 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3581 void *key)
3583 return try_to_wake_up(curr->private, mode, sync);
3585 EXPORT_SYMBOL(default_wake_function);
3588 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3589 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3590 * number) then we wake all the non-exclusive tasks and one exclusive task.
3592 * There are circumstances in which we can try to wake a task which has already
3593 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3594 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3596 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3597 int nr_exclusive, int sync, void *key)
3599 struct list_head *tmp, *next;
3601 list_for_each_safe(tmp, next, &q->task_list) {
3602 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3603 unsigned flags = curr->flags;
3605 if (curr->func(curr, mode, sync, key) &&
3606 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3607 break;
3612 * __wake_up - wake up threads blocked on a waitqueue.
3613 * @q: the waitqueue
3614 * @mode: which threads
3615 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3616 * @key: is directly passed to the wakeup function
3618 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3619 int nr_exclusive, void *key)
3621 unsigned long flags;
3623 spin_lock_irqsave(&q->lock, flags);
3624 __wake_up_common(q, mode, nr_exclusive, 0, key);
3625 spin_unlock_irqrestore(&q->lock, flags);
3627 EXPORT_SYMBOL(__wake_up);
3630 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3632 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3634 __wake_up_common(q, mode, 1, 0, NULL);
3638 * __wake_up_sync - wake up threads blocked on a waitqueue.
3639 * @q: the waitqueue
3640 * @mode: which threads
3641 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3643 * The sync wakeup differs that the waker knows that it will schedule
3644 * away soon, so while the target thread will be woken up, it will not
3645 * be migrated to another CPU - ie. the two threads are 'synchronized'
3646 * with each other. This can prevent needless bouncing between CPUs.
3648 * On UP it can prevent extra preemption.
3650 void fastcall
3651 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3653 unsigned long flags;
3654 int sync = 1;
3656 if (unlikely(!q))
3657 return;
3659 if (unlikely(!nr_exclusive))
3660 sync = 0;
3662 spin_lock_irqsave(&q->lock, flags);
3663 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3664 spin_unlock_irqrestore(&q->lock, flags);
3666 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3668 void fastcall complete(struct completion *x)
3670 unsigned long flags;
3672 spin_lock_irqsave(&x->wait.lock, flags);
3673 x->done++;
3674 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3675 1, 0, NULL);
3676 spin_unlock_irqrestore(&x->wait.lock, flags);
3678 EXPORT_SYMBOL(complete);
3680 void fastcall complete_all(struct completion *x)
3682 unsigned long flags;
3684 spin_lock_irqsave(&x->wait.lock, flags);
3685 x->done += UINT_MAX/2;
3686 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3687 0, 0, NULL);
3688 spin_unlock_irqrestore(&x->wait.lock, flags);
3690 EXPORT_SYMBOL(complete_all);
3692 void fastcall __sched wait_for_completion(struct completion *x)
3694 might_sleep();
3696 spin_lock_irq(&x->wait.lock);
3697 if (!x->done) {
3698 DECLARE_WAITQUEUE(wait, current);
3700 wait.flags |= WQ_FLAG_EXCLUSIVE;
3701 __add_wait_queue_tail(&x->wait, &wait);
3702 do {
3703 __set_current_state(TASK_UNINTERRUPTIBLE);
3704 spin_unlock_irq(&x->wait.lock);
3705 schedule();
3706 spin_lock_irq(&x->wait.lock);
3707 } while (!x->done);
3708 __remove_wait_queue(&x->wait, &wait);
3710 x->done--;
3711 spin_unlock_irq(&x->wait.lock);
3713 EXPORT_SYMBOL(wait_for_completion);
3715 unsigned long fastcall __sched
3716 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3718 might_sleep();
3720 spin_lock_irq(&x->wait.lock);
3721 if (!x->done) {
3722 DECLARE_WAITQUEUE(wait, current);
3724 wait.flags |= WQ_FLAG_EXCLUSIVE;
3725 __add_wait_queue_tail(&x->wait, &wait);
3726 do {
3727 __set_current_state(TASK_UNINTERRUPTIBLE);
3728 spin_unlock_irq(&x->wait.lock);
3729 timeout = schedule_timeout(timeout);
3730 spin_lock_irq(&x->wait.lock);
3731 if (!timeout) {
3732 __remove_wait_queue(&x->wait, &wait);
3733 goto out;
3735 } while (!x->done);
3736 __remove_wait_queue(&x->wait, &wait);
3738 x->done--;
3739 out:
3740 spin_unlock_irq(&x->wait.lock);
3741 return timeout;
3743 EXPORT_SYMBOL(wait_for_completion_timeout);
3745 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3747 int ret = 0;
3749 might_sleep();
3751 spin_lock_irq(&x->wait.lock);
3752 if (!x->done) {
3753 DECLARE_WAITQUEUE(wait, current);
3755 wait.flags |= WQ_FLAG_EXCLUSIVE;
3756 __add_wait_queue_tail(&x->wait, &wait);
3757 do {
3758 if (signal_pending(current)) {
3759 ret = -ERESTARTSYS;
3760 __remove_wait_queue(&x->wait, &wait);
3761 goto out;
3763 __set_current_state(TASK_INTERRUPTIBLE);
3764 spin_unlock_irq(&x->wait.lock);
3765 schedule();
3766 spin_lock_irq(&x->wait.lock);
3767 } while (!x->done);
3768 __remove_wait_queue(&x->wait, &wait);
3770 x->done--;
3771 out:
3772 spin_unlock_irq(&x->wait.lock);
3774 return ret;
3776 EXPORT_SYMBOL(wait_for_completion_interruptible);
3778 unsigned long fastcall __sched
3779 wait_for_completion_interruptible_timeout(struct completion *x,
3780 unsigned long timeout)
3782 might_sleep();
3784 spin_lock_irq(&x->wait.lock);
3785 if (!x->done) {
3786 DECLARE_WAITQUEUE(wait, current);
3788 wait.flags |= WQ_FLAG_EXCLUSIVE;
3789 __add_wait_queue_tail(&x->wait, &wait);
3790 do {
3791 if (signal_pending(current)) {
3792 timeout = -ERESTARTSYS;
3793 __remove_wait_queue(&x->wait, &wait);
3794 goto out;
3796 __set_current_state(TASK_INTERRUPTIBLE);
3797 spin_unlock_irq(&x->wait.lock);
3798 timeout = schedule_timeout(timeout);
3799 spin_lock_irq(&x->wait.lock);
3800 if (!timeout) {
3801 __remove_wait_queue(&x->wait, &wait);
3802 goto out;
3804 } while (!x->done);
3805 __remove_wait_queue(&x->wait, &wait);
3807 x->done--;
3808 out:
3809 spin_unlock_irq(&x->wait.lock);
3810 return timeout;
3812 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3814 static inline void
3815 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3817 spin_lock_irqsave(&q->lock, *flags);
3818 __add_wait_queue(q, wait);
3819 spin_unlock(&q->lock);
3822 static inline void
3823 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3825 spin_lock_irq(&q->lock);
3826 __remove_wait_queue(q, wait);
3827 spin_unlock_irqrestore(&q->lock, *flags);
3830 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3832 unsigned long flags;
3833 wait_queue_t wait;
3835 init_waitqueue_entry(&wait, current);
3837 current->state = TASK_INTERRUPTIBLE;
3839 sleep_on_head(q, &wait, &flags);
3840 schedule();
3841 sleep_on_tail(q, &wait, &flags);
3843 EXPORT_SYMBOL(interruptible_sleep_on);
3845 long __sched
3846 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3848 unsigned long flags;
3849 wait_queue_t wait;
3851 init_waitqueue_entry(&wait, current);
3853 current->state = TASK_INTERRUPTIBLE;
3855 sleep_on_head(q, &wait, &flags);
3856 timeout = schedule_timeout(timeout);
3857 sleep_on_tail(q, &wait, &flags);
3859 return timeout;
3861 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3863 void __sched sleep_on(wait_queue_head_t *q)
3865 unsigned long flags;
3866 wait_queue_t wait;
3868 init_waitqueue_entry(&wait, current);
3870 current->state = TASK_UNINTERRUPTIBLE;
3872 sleep_on_head(q, &wait, &flags);
3873 schedule();
3874 sleep_on_tail(q, &wait, &flags);
3876 EXPORT_SYMBOL(sleep_on);
3878 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3880 unsigned long flags;
3881 wait_queue_t wait;
3883 init_waitqueue_entry(&wait, current);
3885 current->state = TASK_UNINTERRUPTIBLE;
3887 sleep_on_head(q, &wait, &flags);
3888 timeout = schedule_timeout(timeout);
3889 sleep_on_tail(q, &wait, &flags);
3891 return timeout;
3893 EXPORT_SYMBOL(sleep_on_timeout);
3895 #ifdef CONFIG_RT_MUTEXES
3898 * rt_mutex_setprio - set the current priority of a task
3899 * @p: task
3900 * @prio: prio value (kernel-internal form)
3902 * This function changes the 'effective' priority of a task. It does
3903 * not touch ->normal_prio like __setscheduler().
3905 * Used by the rt_mutex code to implement priority inheritance logic.
3907 void rt_mutex_setprio(struct task_struct *p, int prio)
3909 unsigned long flags;
3910 int oldprio, on_rq;
3911 struct rq *rq;
3912 u64 now;
3914 BUG_ON(prio < 0 || prio > MAX_PRIO);
3916 rq = task_rq_lock(p, &flags);
3917 update_rq_clock(rq);
3918 now = rq->clock;
3920 oldprio = p->prio;
3921 on_rq = p->se.on_rq;
3922 if (on_rq)
3923 dequeue_task(rq, p, 0);
3925 if (rt_prio(prio))
3926 p->sched_class = &rt_sched_class;
3927 else
3928 p->sched_class = &fair_sched_class;
3930 p->prio = prio;
3932 if (on_rq) {
3933 enqueue_task(rq, p, 0);
3935 * Reschedule if we are currently running on this runqueue and
3936 * our priority decreased, or if we are not currently running on
3937 * this runqueue and our priority is higher than the current's
3939 if (task_running(rq, p)) {
3940 if (p->prio > oldprio)
3941 resched_task(rq->curr);
3942 } else {
3943 check_preempt_curr(rq, p);
3946 task_rq_unlock(rq, &flags);
3949 #endif
3951 void set_user_nice(struct task_struct *p, long nice)
3953 int old_prio, delta, on_rq;
3954 unsigned long flags;
3955 struct rq *rq;
3956 u64 now;
3958 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3959 return;
3961 * We have to be careful, if called from sys_setpriority(),
3962 * the task might be in the middle of scheduling on another CPU.
3964 rq = task_rq_lock(p, &flags);
3965 update_rq_clock(rq);
3966 now = rq->clock;
3968 * The RT priorities are set via sched_setscheduler(), but we still
3969 * allow the 'normal' nice value to be set - but as expected
3970 * it wont have any effect on scheduling until the task is
3971 * SCHED_FIFO/SCHED_RR:
3973 if (task_has_rt_policy(p)) {
3974 p->static_prio = NICE_TO_PRIO(nice);
3975 goto out_unlock;
3977 on_rq = p->se.on_rq;
3978 if (on_rq) {
3979 dequeue_task(rq, p, 0);
3980 dec_load(rq, p);
3983 p->static_prio = NICE_TO_PRIO(nice);
3984 set_load_weight(p);
3985 old_prio = p->prio;
3986 p->prio = effective_prio(p);
3987 delta = p->prio - old_prio;
3989 if (on_rq) {
3990 enqueue_task(rq, p, 0);
3991 inc_load(rq, p);
3993 * If the task increased its priority or is running and
3994 * lowered its priority, then reschedule its CPU:
3996 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3997 resched_task(rq->curr);
3999 out_unlock:
4000 task_rq_unlock(rq, &flags);
4002 EXPORT_SYMBOL(set_user_nice);
4005 * can_nice - check if a task can reduce its nice value
4006 * @p: task
4007 * @nice: nice value
4009 int can_nice(const struct task_struct *p, const int nice)
4011 /* convert nice value [19,-20] to rlimit style value [1,40] */
4012 int nice_rlim = 20 - nice;
4014 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4015 capable(CAP_SYS_NICE));
4018 #ifdef __ARCH_WANT_SYS_NICE
4021 * sys_nice - change the priority of the current process.
4022 * @increment: priority increment
4024 * sys_setpriority is a more generic, but much slower function that
4025 * does similar things.
4027 asmlinkage long sys_nice(int increment)
4029 long nice, retval;
4032 * Setpriority might change our priority at the same moment.
4033 * We don't have to worry. Conceptually one call occurs first
4034 * and we have a single winner.
4036 if (increment < -40)
4037 increment = -40;
4038 if (increment > 40)
4039 increment = 40;
4041 nice = PRIO_TO_NICE(current->static_prio) + increment;
4042 if (nice < -20)
4043 nice = -20;
4044 if (nice > 19)
4045 nice = 19;
4047 if (increment < 0 && !can_nice(current, nice))
4048 return -EPERM;
4050 retval = security_task_setnice(current, nice);
4051 if (retval)
4052 return retval;
4054 set_user_nice(current, nice);
4055 return 0;
4058 #endif
4061 * task_prio - return the priority value of a given task.
4062 * @p: the task in question.
4064 * This is the priority value as seen by users in /proc.
4065 * RT tasks are offset by -200. Normal tasks are centered
4066 * around 0, value goes from -16 to +15.
4068 int task_prio(const struct task_struct *p)
4070 return p->prio - MAX_RT_PRIO;
4074 * task_nice - return the nice value of a given task.
4075 * @p: the task in question.
4077 int task_nice(const struct task_struct *p)
4079 return TASK_NICE(p);
4081 EXPORT_SYMBOL_GPL(task_nice);
4084 * idle_cpu - is a given cpu idle currently?
4085 * @cpu: the processor in question.
4087 int idle_cpu(int cpu)
4089 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4093 * idle_task - return the idle task for a given cpu.
4094 * @cpu: the processor in question.
4096 struct task_struct *idle_task(int cpu)
4098 return cpu_rq(cpu)->idle;
4102 * find_process_by_pid - find a process with a matching PID value.
4103 * @pid: the pid in question.
4105 static inline struct task_struct *find_process_by_pid(pid_t pid)
4107 return pid ? find_task_by_pid(pid) : current;
4110 /* Actually do priority change: must hold rq lock. */
4111 static void
4112 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4114 BUG_ON(p->se.on_rq);
4116 p->policy = policy;
4117 switch (p->policy) {
4118 case SCHED_NORMAL:
4119 case SCHED_BATCH:
4120 case SCHED_IDLE:
4121 p->sched_class = &fair_sched_class;
4122 break;
4123 case SCHED_FIFO:
4124 case SCHED_RR:
4125 p->sched_class = &rt_sched_class;
4126 break;
4129 p->rt_priority = prio;
4130 p->normal_prio = normal_prio(p);
4131 /* we are holding p->pi_lock already */
4132 p->prio = rt_mutex_getprio(p);
4133 set_load_weight(p);
4137 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4138 * @p: the task in question.
4139 * @policy: new policy.
4140 * @param: structure containing the new RT priority.
4142 * NOTE that the task may be already dead.
4144 int sched_setscheduler(struct task_struct *p, int policy,
4145 struct sched_param *param)
4147 int retval, oldprio, oldpolicy = -1, on_rq;
4148 unsigned long flags;
4149 struct rq *rq;
4151 /* may grab non-irq protected spin_locks */
4152 BUG_ON(in_interrupt());
4153 recheck:
4154 /* double check policy once rq lock held */
4155 if (policy < 0)
4156 policy = oldpolicy = p->policy;
4157 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4158 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4159 policy != SCHED_IDLE)
4160 return -EINVAL;
4162 * Valid priorities for SCHED_FIFO and SCHED_RR are
4163 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4164 * SCHED_BATCH and SCHED_IDLE is 0.
4166 if (param->sched_priority < 0 ||
4167 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4168 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4169 return -EINVAL;
4170 if (rt_policy(policy) != (param->sched_priority != 0))
4171 return -EINVAL;
4174 * Allow unprivileged RT tasks to decrease priority:
4176 if (!capable(CAP_SYS_NICE)) {
4177 if (rt_policy(policy)) {
4178 unsigned long rlim_rtprio;
4180 if (!lock_task_sighand(p, &flags))
4181 return -ESRCH;
4182 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4183 unlock_task_sighand(p, &flags);
4185 /* can't set/change the rt policy */
4186 if (policy != p->policy && !rlim_rtprio)
4187 return -EPERM;
4189 /* can't increase priority */
4190 if (param->sched_priority > p->rt_priority &&
4191 param->sched_priority > rlim_rtprio)
4192 return -EPERM;
4195 * Like positive nice levels, dont allow tasks to
4196 * move out of SCHED_IDLE either:
4198 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4199 return -EPERM;
4201 /* can't change other user's priorities */
4202 if ((current->euid != p->euid) &&
4203 (current->euid != p->uid))
4204 return -EPERM;
4207 retval = security_task_setscheduler(p, policy, param);
4208 if (retval)
4209 return retval;
4211 * make sure no PI-waiters arrive (or leave) while we are
4212 * changing the priority of the task:
4214 spin_lock_irqsave(&p->pi_lock, flags);
4216 * To be able to change p->policy safely, the apropriate
4217 * runqueue lock must be held.
4219 rq = __task_rq_lock(p);
4220 /* recheck policy now with rq lock held */
4221 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4222 policy = oldpolicy = -1;
4223 __task_rq_unlock(rq);
4224 spin_unlock_irqrestore(&p->pi_lock, flags);
4225 goto recheck;
4227 on_rq = p->se.on_rq;
4228 if (on_rq) {
4229 update_rq_clock(rq);
4230 deactivate_task(rq, p, 0);
4232 oldprio = p->prio;
4233 __setscheduler(rq, p, policy, param->sched_priority);
4234 if (on_rq) {
4235 activate_task(rq, p, 0);
4237 * Reschedule if we are currently running on this runqueue and
4238 * our priority decreased, or if we are not currently running on
4239 * this runqueue and our priority is higher than the current's
4241 if (task_running(rq, p)) {
4242 if (p->prio > oldprio)
4243 resched_task(rq->curr);
4244 } else {
4245 check_preempt_curr(rq, p);
4248 __task_rq_unlock(rq);
4249 spin_unlock_irqrestore(&p->pi_lock, flags);
4251 rt_mutex_adjust_pi(p);
4253 return 0;
4255 EXPORT_SYMBOL_GPL(sched_setscheduler);
4257 static int
4258 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4260 struct sched_param lparam;
4261 struct task_struct *p;
4262 int retval;
4264 if (!param || pid < 0)
4265 return -EINVAL;
4266 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4267 return -EFAULT;
4269 rcu_read_lock();
4270 retval = -ESRCH;
4271 p = find_process_by_pid(pid);
4272 if (p != NULL)
4273 retval = sched_setscheduler(p, policy, &lparam);
4274 rcu_read_unlock();
4276 return retval;
4280 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4281 * @pid: the pid in question.
4282 * @policy: new policy.
4283 * @param: structure containing the new RT priority.
4285 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4286 struct sched_param __user *param)
4288 /* negative values for policy are not valid */
4289 if (policy < 0)
4290 return -EINVAL;
4292 return do_sched_setscheduler(pid, policy, param);
4296 * sys_sched_setparam - set/change the RT priority of a thread
4297 * @pid: the pid in question.
4298 * @param: structure containing the new RT priority.
4300 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4302 return do_sched_setscheduler(pid, -1, param);
4306 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4307 * @pid: the pid in question.
4309 asmlinkage long sys_sched_getscheduler(pid_t pid)
4311 struct task_struct *p;
4312 int retval = -EINVAL;
4314 if (pid < 0)
4315 goto out_nounlock;
4317 retval = -ESRCH;
4318 read_lock(&tasklist_lock);
4319 p = find_process_by_pid(pid);
4320 if (p) {
4321 retval = security_task_getscheduler(p);
4322 if (!retval)
4323 retval = p->policy;
4325 read_unlock(&tasklist_lock);
4327 out_nounlock:
4328 return retval;
4332 * sys_sched_getscheduler - get the RT priority of a thread
4333 * @pid: the pid in question.
4334 * @param: structure containing the RT priority.
4336 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4338 struct sched_param lp;
4339 struct task_struct *p;
4340 int retval = -EINVAL;
4342 if (!param || pid < 0)
4343 goto out_nounlock;
4345 read_lock(&tasklist_lock);
4346 p = find_process_by_pid(pid);
4347 retval = -ESRCH;
4348 if (!p)
4349 goto out_unlock;
4351 retval = security_task_getscheduler(p);
4352 if (retval)
4353 goto out_unlock;
4355 lp.sched_priority = p->rt_priority;
4356 read_unlock(&tasklist_lock);
4359 * This one might sleep, we cannot do it with a spinlock held ...
4361 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4363 out_nounlock:
4364 return retval;
4366 out_unlock:
4367 read_unlock(&tasklist_lock);
4368 return retval;
4371 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4373 cpumask_t cpus_allowed;
4374 struct task_struct *p;
4375 int retval;
4377 mutex_lock(&sched_hotcpu_mutex);
4378 read_lock(&tasklist_lock);
4380 p = find_process_by_pid(pid);
4381 if (!p) {
4382 read_unlock(&tasklist_lock);
4383 mutex_unlock(&sched_hotcpu_mutex);
4384 return -ESRCH;
4388 * It is not safe to call set_cpus_allowed with the
4389 * tasklist_lock held. We will bump the task_struct's
4390 * usage count and then drop tasklist_lock.
4392 get_task_struct(p);
4393 read_unlock(&tasklist_lock);
4395 retval = -EPERM;
4396 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4397 !capable(CAP_SYS_NICE))
4398 goto out_unlock;
4400 retval = security_task_setscheduler(p, 0, NULL);
4401 if (retval)
4402 goto out_unlock;
4404 cpus_allowed = cpuset_cpus_allowed(p);
4405 cpus_and(new_mask, new_mask, cpus_allowed);
4406 retval = set_cpus_allowed(p, new_mask);
4408 out_unlock:
4409 put_task_struct(p);
4410 mutex_unlock(&sched_hotcpu_mutex);
4411 return retval;
4414 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4415 cpumask_t *new_mask)
4417 if (len < sizeof(cpumask_t)) {
4418 memset(new_mask, 0, sizeof(cpumask_t));
4419 } else if (len > sizeof(cpumask_t)) {
4420 len = sizeof(cpumask_t);
4422 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4426 * sys_sched_setaffinity - set the cpu affinity of a process
4427 * @pid: pid of the process
4428 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4429 * @user_mask_ptr: user-space pointer to the new cpu mask
4431 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4432 unsigned long __user *user_mask_ptr)
4434 cpumask_t new_mask;
4435 int retval;
4437 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4438 if (retval)
4439 return retval;
4441 return sched_setaffinity(pid, new_mask);
4445 * Represents all cpu's present in the system
4446 * In systems capable of hotplug, this map could dynamically grow
4447 * as new cpu's are detected in the system via any platform specific
4448 * method, such as ACPI for e.g.
4451 cpumask_t cpu_present_map __read_mostly;
4452 EXPORT_SYMBOL(cpu_present_map);
4454 #ifndef CONFIG_SMP
4455 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4456 EXPORT_SYMBOL(cpu_online_map);
4458 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4459 EXPORT_SYMBOL(cpu_possible_map);
4460 #endif
4462 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4464 struct task_struct *p;
4465 int retval;
4467 mutex_lock(&sched_hotcpu_mutex);
4468 read_lock(&tasklist_lock);
4470 retval = -ESRCH;
4471 p = find_process_by_pid(pid);
4472 if (!p)
4473 goto out_unlock;
4475 retval = security_task_getscheduler(p);
4476 if (retval)
4477 goto out_unlock;
4479 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4481 out_unlock:
4482 read_unlock(&tasklist_lock);
4483 mutex_unlock(&sched_hotcpu_mutex);
4485 return retval;
4489 * sys_sched_getaffinity - get the cpu affinity of a process
4490 * @pid: pid of the process
4491 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4492 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4494 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4495 unsigned long __user *user_mask_ptr)
4497 int ret;
4498 cpumask_t mask;
4500 if (len < sizeof(cpumask_t))
4501 return -EINVAL;
4503 ret = sched_getaffinity(pid, &mask);
4504 if (ret < 0)
4505 return ret;
4507 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4508 return -EFAULT;
4510 return sizeof(cpumask_t);
4514 * sys_sched_yield - yield the current processor to other threads.
4516 * This function yields the current CPU to other tasks. If there are no
4517 * other threads running on this CPU then this function will return.
4519 asmlinkage long sys_sched_yield(void)
4521 struct rq *rq = this_rq_lock();
4523 schedstat_inc(rq, yld_cnt);
4524 if (unlikely(rq->nr_running == 1))
4525 schedstat_inc(rq, yld_act_empty);
4526 else
4527 current->sched_class->yield_task(rq, current);
4530 * Since we are going to call schedule() anyway, there's
4531 * no need to preempt or enable interrupts:
4533 __release(rq->lock);
4534 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4535 _raw_spin_unlock(&rq->lock);
4536 preempt_enable_no_resched();
4538 schedule();
4540 return 0;
4543 static void __cond_resched(void)
4545 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4546 __might_sleep(__FILE__, __LINE__);
4547 #endif
4549 * The BKS might be reacquired before we have dropped
4550 * PREEMPT_ACTIVE, which could trigger a second
4551 * cond_resched() call.
4553 do {
4554 add_preempt_count(PREEMPT_ACTIVE);
4555 schedule();
4556 sub_preempt_count(PREEMPT_ACTIVE);
4557 } while (need_resched());
4560 int __sched cond_resched(void)
4562 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4563 system_state == SYSTEM_RUNNING) {
4564 __cond_resched();
4565 return 1;
4567 return 0;
4569 EXPORT_SYMBOL(cond_resched);
4572 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4573 * call schedule, and on return reacquire the lock.
4575 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4576 * operations here to prevent schedule() from being called twice (once via
4577 * spin_unlock(), once by hand).
4579 int cond_resched_lock(spinlock_t *lock)
4581 int ret = 0;
4583 if (need_lockbreak(lock)) {
4584 spin_unlock(lock);
4585 cpu_relax();
4586 ret = 1;
4587 spin_lock(lock);
4589 if (need_resched() && system_state == SYSTEM_RUNNING) {
4590 spin_release(&lock->dep_map, 1, _THIS_IP_);
4591 _raw_spin_unlock(lock);
4592 preempt_enable_no_resched();
4593 __cond_resched();
4594 ret = 1;
4595 spin_lock(lock);
4597 return ret;
4599 EXPORT_SYMBOL(cond_resched_lock);
4601 int __sched cond_resched_softirq(void)
4603 BUG_ON(!in_softirq());
4605 if (need_resched() && system_state == SYSTEM_RUNNING) {
4606 local_bh_enable();
4607 __cond_resched();
4608 local_bh_disable();
4609 return 1;
4611 return 0;
4613 EXPORT_SYMBOL(cond_resched_softirq);
4616 * yield - yield the current processor to other threads.
4618 * This is a shortcut for kernel-space yielding - it marks the
4619 * thread runnable and calls sys_sched_yield().
4621 void __sched yield(void)
4623 set_current_state(TASK_RUNNING);
4624 sys_sched_yield();
4626 EXPORT_SYMBOL(yield);
4629 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4630 * that process accounting knows that this is a task in IO wait state.
4632 * But don't do that if it is a deliberate, throttling IO wait (this task
4633 * has set its backing_dev_info: the queue against which it should throttle)
4635 void __sched io_schedule(void)
4637 struct rq *rq = &__raw_get_cpu_var(runqueues);
4639 delayacct_blkio_start();
4640 atomic_inc(&rq->nr_iowait);
4641 schedule();
4642 atomic_dec(&rq->nr_iowait);
4643 delayacct_blkio_end();
4645 EXPORT_SYMBOL(io_schedule);
4647 long __sched io_schedule_timeout(long timeout)
4649 struct rq *rq = &__raw_get_cpu_var(runqueues);
4650 long ret;
4652 delayacct_blkio_start();
4653 atomic_inc(&rq->nr_iowait);
4654 ret = schedule_timeout(timeout);
4655 atomic_dec(&rq->nr_iowait);
4656 delayacct_blkio_end();
4657 return ret;
4661 * sys_sched_get_priority_max - return maximum RT priority.
4662 * @policy: scheduling class.
4664 * this syscall returns the maximum rt_priority that can be used
4665 * by a given scheduling class.
4667 asmlinkage long sys_sched_get_priority_max(int policy)
4669 int ret = -EINVAL;
4671 switch (policy) {
4672 case SCHED_FIFO:
4673 case SCHED_RR:
4674 ret = MAX_USER_RT_PRIO-1;
4675 break;
4676 case SCHED_NORMAL:
4677 case SCHED_BATCH:
4678 case SCHED_IDLE:
4679 ret = 0;
4680 break;
4682 return ret;
4686 * sys_sched_get_priority_min - return minimum RT priority.
4687 * @policy: scheduling class.
4689 * this syscall returns the minimum rt_priority that can be used
4690 * by a given scheduling class.
4692 asmlinkage long sys_sched_get_priority_min(int policy)
4694 int ret = -EINVAL;
4696 switch (policy) {
4697 case SCHED_FIFO:
4698 case SCHED_RR:
4699 ret = 1;
4700 break;
4701 case SCHED_NORMAL:
4702 case SCHED_BATCH:
4703 case SCHED_IDLE:
4704 ret = 0;
4706 return ret;
4710 * sys_sched_rr_get_interval - return the default timeslice of a process.
4711 * @pid: pid of the process.
4712 * @interval: userspace pointer to the timeslice value.
4714 * this syscall writes the default timeslice value of a given process
4715 * into the user-space timespec buffer. A value of '0' means infinity.
4717 asmlinkage
4718 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4720 struct task_struct *p;
4721 int retval = -EINVAL;
4722 struct timespec t;
4724 if (pid < 0)
4725 goto out_nounlock;
4727 retval = -ESRCH;
4728 read_lock(&tasklist_lock);
4729 p = find_process_by_pid(pid);
4730 if (!p)
4731 goto out_unlock;
4733 retval = security_task_getscheduler(p);
4734 if (retval)
4735 goto out_unlock;
4737 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4738 0 : static_prio_timeslice(p->static_prio), &t);
4739 read_unlock(&tasklist_lock);
4740 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4741 out_nounlock:
4742 return retval;
4743 out_unlock:
4744 read_unlock(&tasklist_lock);
4745 return retval;
4748 static const char stat_nam[] = "RSDTtZX";
4750 static void show_task(struct task_struct *p)
4752 unsigned long free = 0;
4753 unsigned state;
4755 state = p->state ? __ffs(p->state) + 1 : 0;
4756 printk("%-13.13s %c", p->comm,
4757 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4758 #if BITS_PER_LONG == 32
4759 if (state == TASK_RUNNING)
4760 printk(" running ");
4761 else
4762 printk(" %08lx ", thread_saved_pc(p));
4763 #else
4764 if (state == TASK_RUNNING)
4765 printk(" running task ");
4766 else
4767 printk(" %016lx ", thread_saved_pc(p));
4768 #endif
4769 #ifdef CONFIG_DEBUG_STACK_USAGE
4771 unsigned long *n = end_of_stack(p);
4772 while (!*n)
4773 n++;
4774 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4776 #endif
4777 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4779 if (state != TASK_RUNNING)
4780 show_stack(p, NULL);
4783 void show_state_filter(unsigned long state_filter)
4785 struct task_struct *g, *p;
4787 #if BITS_PER_LONG == 32
4788 printk(KERN_INFO
4789 " task PC stack pid father\n");
4790 #else
4791 printk(KERN_INFO
4792 " task PC stack pid father\n");
4793 #endif
4794 read_lock(&tasklist_lock);
4795 do_each_thread(g, p) {
4797 * reset the NMI-timeout, listing all files on a slow
4798 * console might take alot of time:
4800 touch_nmi_watchdog();
4801 if (!state_filter || (p->state & state_filter))
4802 show_task(p);
4803 } while_each_thread(g, p);
4805 touch_all_softlockup_watchdogs();
4807 #ifdef CONFIG_SCHED_DEBUG
4808 sysrq_sched_debug_show();
4809 #endif
4810 read_unlock(&tasklist_lock);
4812 * Only show locks if all tasks are dumped:
4814 if (state_filter == -1)
4815 debug_show_all_locks();
4818 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4820 idle->sched_class = &idle_sched_class;
4824 * init_idle - set up an idle thread for a given CPU
4825 * @idle: task in question
4826 * @cpu: cpu the idle task belongs to
4828 * NOTE: this function does not set the idle thread's NEED_RESCHED
4829 * flag, to make booting more robust.
4831 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4833 struct rq *rq = cpu_rq(cpu);
4834 unsigned long flags;
4836 __sched_fork(idle);
4837 idle->se.exec_start = sched_clock();
4839 idle->prio = idle->normal_prio = MAX_PRIO;
4840 idle->cpus_allowed = cpumask_of_cpu(cpu);
4841 __set_task_cpu(idle, cpu);
4843 spin_lock_irqsave(&rq->lock, flags);
4844 rq->curr = rq->idle = idle;
4845 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4846 idle->oncpu = 1;
4847 #endif
4848 spin_unlock_irqrestore(&rq->lock, flags);
4850 /* Set the preempt count _outside_ the spinlocks! */
4851 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4852 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4853 #else
4854 task_thread_info(idle)->preempt_count = 0;
4855 #endif
4857 * The idle tasks have their own, simple scheduling class:
4859 idle->sched_class = &idle_sched_class;
4863 * In a system that switches off the HZ timer nohz_cpu_mask
4864 * indicates which cpus entered this state. This is used
4865 * in the rcu update to wait only for active cpus. For system
4866 * which do not switch off the HZ timer nohz_cpu_mask should
4867 * always be CPU_MASK_NONE.
4869 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4872 * Increase the granularity value when there are more CPUs,
4873 * because with more CPUs the 'effective latency' as visible
4874 * to users decreases. But the relationship is not linear,
4875 * so pick a second-best guess by going with the log2 of the
4876 * number of CPUs.
4878 * This idea comes from the SD scheduler of Con Kolivas:
4880 static inline void sched_init_granularity(void)
4882 unsigned int factor = 1 + ilog2(num_online_cpus());
4883 const unsigned long gran_limit = 100000000;
4885 sysctl_sched_granularity *= factor;
4886 if (sysctl_sched_granularity > gran_limit)
4887 sysctl_sched_granularity = gran_limit;
4889 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4890 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4893 #ifdef CONFIG_SMP
4895 * This is how migration works:
4897 * 1) we queue a struct migration_req structure in the source CPU's
4898 * runqueue and wake up that CPU's migration thread.
4899 * 2) we down() the locked semaphore => thread blocks.
4900 * 3) migration thread wakes up (implicitly it forces the migrated
4901 * thread off the CPU)
4902 * 4) it gets the migration request and checks whether the migrated
4903 * task is still in the wrong runqueue.
4904 * 5) if it's in the wrong runqueue then the migration thread removes
4905 * it and puts it into the right queue.
4906 * 6) migration thread up()s the semaphore.
4907 * 7) we wake up and the migration is done.
4911 * Change a given task's CPU affinity. Migrate the thread to a
4912 * proper CPU and schedule it away if the CPU it's executing on
4913 * is removed from the allowed bitmask.
4915 * NOTE: the caller must have a valid reference to the task, the
4916 * task must not exit() & deallocate itself prematurely. The
4917 * call is not atomic; no spinlocks may be held.
4919 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4921 struct migration_req req;
4922 unsigned long flags;
4923 struct rq *rq;
4924 int ret = 0;
4926 rq = task_rq_lock(p, &flags);
4927 if (!cpus_intersects(new_mask, cpu_online_map)) {
4928 ret = -EINVAL;
4929 goto out;
4932 p->cpus_allowed = new_mask;
4933 /* Can the task run on the task's current CPU? If so, we're done */
4934 if (cpu_isset(task_cpu(p), new_mask))
4935 goto out;
4937 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4938 /* Need help from migration thread: drop lock and wait. */
4939 task_rq_unlock(rq, &flags);
4940 wake_up_process(rq->migration_thread);
4941 wait_for_completion(&req.done);
4942 tlb_migrate_finish(p->mm);
4943 return 0;
4945 out:
4946 task_rq_unlock(rq, &flags);
4948 return ret;
4950 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4953 * Move (not current) task off this cpu, onto dest cpu. We're doing
4954 * this because either it can't run here any more (set_cpus_allowed()
4955 * away from this CPU, or CPU going down), or because we're
4956 * attempting to rebalance this task on exec (sched_exec).
4958 * So we race with normal scheduler movements, but that's OK, as long
4959 * as the task is no longer on this CPU.
4961 * Returns non-zero if task was successfully migrated.
4963 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4965 struct rq *rq_dest, *rq_src;
4966 int ret = 0, on_rq;
4968 if (unlikely(cpu_is_offline(dest_cpu)))
4969 return ret;
4971 rq_src = cpu_rq(src_cpu);
4972 rq_dest = cpu_rq(dest_cpu);
4974 double_rq_lock(rq_src, rq_dest);
4975 /* Already moved. */
4976 if (task_cpu(p) != src_cpu)
4977 goto out;
4978 /* Affinity changed (again). */
4979 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4980 goto out;
4982 on_rq = p->se.on_rq;
4983 if (on_rq) {
4984 update_rq_clock(rq_src);
4985 deactivate_task(rq_src, p, 0);
4987 set_task_cpu(p, dest_cpu);
4988 if (on_rq) {
4989 activate_task(rq_dest, p, 0);
4990 check_preempt_curr(rq_dest, p);
4992 ret = 1;
4993 out:
4994 double_rq_unlock(rq_src, rq_dest);
4995 return ret;
4999 * migration_thread - this is a highprio system thread that performs
5000 * thread migration by bumping thread off CPU then 'pushing' onto
5001 * another runqueue.
5003 static int migration_thread(void *data)
5005 int cpu = (long)data;
5006 struct rq *rq;
5008 rq = cpu_rq(cpu);
5009 BUG_ON(rq->migration_thread != current);
5011 set_current_state(TASK_INTERRUPTIBLE);
5012 while (!kthread_should_stop()) {
5013 struct migration_req *req;
5014 struct list_head *head;
5016 spin_lock_irq(&rq->lock);
5018 if (cpu_is_offline(cpu)) {
5019 spin_unlock_irq(&rq->lock);
5020 goto wait_to_die;
5023 if (rq->active_balance) {
5024 active_load_balance(rq, cpu);
5025 rq->active_balance = 0;
5028 head = &rq->migration_queue;
5030 if (list_empty(head)) {
5031 spin_unlock_irq(&rq->lock);
5032 schedule();
5033 set_current_state(TASK_INTERRUPTIBLE);
5034 continue;
5036 req = list_entry(head->next, struct migration_req, list);
5037 list_del_init(head->next);
5039 spin_unlock(&rq->lock);
5040 __migrate_task(req->task, cpu, req->dest_cpu);
5041 local_irq_enable();
5043 complete(&req->done);
5045 __set_current_state(TASK_RUNNING);
5046 return 0;
5048 wait_to_die:
5049 /* Wait for kthread_stop */
5050 set_current_state(TASK_INTERRUPTIBLE);
5051 while (!kthread_should_stop()) {
5052 schedule();
5053 set_current_state(TASK_INTERRUPTIBLE);
5055 __set_current_state(TASK_RUNNING);
5056 return 0;
5059 #ifdef CONFIG_HOTPLUG_CPU
5061 * Figure out where task on dead CPU should go, use force if neccessary.
5062 * NOTE: interrupts should be disabled by the caller
5064 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5066 unsigned long flags;
5067 cpumask_t mask;
5068 struct rq *rq;
5069 int dest_cpu;
5071 restart:
5072 /* On same node? */
5073 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5074 cpus_and(mask, mask, p->cpus_allowed);
5075 dest_cpu = any_online_cpu(mask);
5077 /* On any allowed CPU? */
5078 if (dest_cpu == NR_CPUS)
5079 dest_cpu = any_online_cpu(p->cpus_allowed);
5081 /* No more Mr. Nice Guy. */
5082 if (dest_cpu == NR_CPUS) {
5083 rq = task_rq_lock(p, &flags);
5084 cpus_setall(p->cpus_allowed);
5085 dest_cpu = any_online_cpu(p->cpus_allowed);
5086 task_rq_unlock(rq, &flags);
5089 * Don't tell them about moving exiting tasks or
5090 * kernel threads (both mm NULL), since they never
5091 * leave kernel.
5093 if (p->mm && printk_ratelimit())
5094 printk(KERN_INFO "process %d (%s) no "
5095 "longer affine to cpu%d\n",
5096 p->pid, p->comm, dead_cpu);
5098 if (!__migrate_task(p, dead_cpu, dest_cpu))
5099 goto restart;
5103 * While a dead CPU has no uninterruptible tasks queued at this point,
5104 * it might still have a nonzero ->nr_uninterruptible counter, because
5105 * for performance reasons the counter is not stricly tracking tasks to
5106 * their home CPUs. So we just add the counter to another CPU's counter,
5107 * to keep the global sum constant after CPU-down:
5109 static void migrate_nr_uninterruptible(struct rq *rq_src)
5111 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5112 unsigned long flags;
5114 local_irq_save(flags);
5115 double_rq_lock(rq_src, rq_dest);
5116 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5117 rq_src->nr_uninterruptible = 0;
5118 double_rq_unlock(rq_src, rq_dest);
5119 local_irq_restore(flags);
5122 /* Run through task list and migrate tasks from the dead cpu. */
5123 static void migrate_live_tasks(int src_cpu)
5125 struct task_struct *p, *t;
5127 write_lock_irq(&tasklist_lock);
5129 do_each_thread(t, p) {
5130 if (p == current)
5131 continue;
5133 if (task_cpu(p) == src_cpu)
5134 move_task_off_dead_cpu(src_cpu, p);
5135 } while_each_thread(t, p);
5137 write_unlock_irq(&tasklist_lock);
5141 * Schedules idle task to be the next runnable task on current CPU.
5142 * It does so by boosting its priority to highest possible and adding it to
5143 * the _front_ of the runqueue. Used by CPU offline code.
5145 void sched_idle_next(void)
5147 int this_cpu = smp_processor_id();
5148 struct rq *rq = cpu_rq(this_cpu);
5149 struct task_struct *p = rq->idle;
5150 unsigned long flags;
5152 /* cpu has to be offline */
5153 BUG_ON(cpu_online(this_cpu));
5156 * Strictly not necessary since rest of the CPUs are stopped by now
5157 * and interrupts disabled on the current cpu.
5159 spin_lock_irqsave(&rq->lock, flags);
5161 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5163 /* Add idle task to the _front_ of its priority queue: */
5164 activate_idle_task(p, rq);
5166 spin_unlock_irqrestore(&rq->lock, flags);
5170 * Ensures that the idle task is using init_mm right before its cpu goes
5171 * offline.
5173 void idle_task_exit(void)
5175 struct mm_struct *mm = current->active_mm;
5177 BUG_ON(cpu_online(smp_processor_id()));
5179 if (mm != &init_mm)
5180 switch_mm(mm, &init_mm, current);
5181 mmdrop(mm);
5184 /* called under rq->lock with disabled interrupts */
5185 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5187 struct rq *rq = cpu_rq(dead_cpu);
5189 /* Must be exiting, otherwise would be on tasklist. */
5190 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5192 /* Cannot have done final schedule yet: would have vanished. */
5193 BUG_ON(p->state == TASK_DEAD);
5195 get_task_struct(p);
5198 * Drop lock around migration; if someone else moves it,
5199 * that's OK. No task can be added to this CPU, so iteration is
5200 * fine.
5201 * NOTE: interrupts should be left disabled --dev@
5203 spin_unlock(&rq->lock);
5204 move_task_off_dead_cpu(dead_cpu, p);
5205 spin_lock(&rq->lock);
5207 put_task_struct(p);
5210 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5211 static void migrate_dead_tasks(unsigned int dead_cpu)
5213 struct rq *rq = cpu_rq(dead_cpu);
5214 struct task_struct *next;
5216 for ( ; ; ) {
5217 if (!rq->nr_running)
5218 break;
5219 update_rq_clock(rq);
5220 next = pick_next_task(rq, rq->curr);
5221 if (!next)
5222 break;
5223 migrate_dead(dead_cpu, next);
5227 #endif /* CONFIG_HOTPLUG_CPU */
5229 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5231 static struct ctl_table sd_ctl_dir[] = {
5233 .procname = "sched_domain",
5234 .mode = 0755,
5236 {0,},
5239 static struct ctl_table sd_ctl_root[] = {
5241 .procname = "kernel",
5242 .mode = 0755,
5243 .child = sd_ctl_dir,
5245 {0,},
5248 static struct ctl_table *sd_alloc_ctl_entry(int n)
5250 struct ctl_table *entry =
5251 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5253 BUG_ON(!entry);
5254 memset(entry, 0, n * sizeof(struct ctl_table));
5256 return entry;
5259 static void
5260 set_table_entry(struct ctl_table *entry,
5261 const char *procname, void *data, int maxlen,
5262 mode_t mode, proc_handler *proc_handler)
5264 entry->procname = procname;
5265 entry->data = data;
5266 entry->maxlen = maxlen;
5267 entry->mode = mode;
5268 entry->proc_handler = proc_handler;
5271 static struct ctl_table *
5272 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5274 struct ctl_table *table = sd_alloc_ctl_entry(14);
5276 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5277 sizeof(long), 0644, proc_doulongvec_minmax);
5278 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5279 sizeof(long), 0644, proc_doulongvec_minmax);
5280 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5281 sizeof(int), 0644, proc_dointvec_minmax);
5282 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5283 sizeof(int), 0644, proc_dointvec_minmax);
5284 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5285 sizeof(int), 0644, proc_dointvec_minmax);
5286 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5287 sizeof(int), 0644, proc_dointvec_minmax);
5288 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5289 sizeof(int), 0644, proc_dointvec_minmax);
5290 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5291 sizeof(int), 0644, proc_dointvec_minmax);
5292 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5293 sizeof(int), 0644, proc_dointvec_minmax);
5294 set_table_entry(&table[10], "cache_nice_tries",
5295 &sd->cache_nice_tries,
5296 sizeof(int), 0644, proc_dointvec_minmax);
5297 set_table_entry(&table[12], "flags", &sd->flags,
5298 sizeof(int), 0644, proc_dointvec_minmax);
5300 return table;
5303 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5305 struct ctl_table *entry, *table;
5306 struct sched_domain *sd;
5307 int domain_num = 0, i;
5308 char buf[32];
5310 for_each_domain(cpu, sd)
5311 domain_num++;
5312 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5314 i = 0;
5315 for_each_domain(cpu, sd) {
5316 snprintf(buf, 32, "domain%d", i);
5317 entry->procname = kstrdup(buf, GFP_KERNEL);
5318 entry->mode = 0755;
5319 entry->child = sd_alloc_ctl_domain_table(sd);
5320 entry++;
5321 i++;
5323 return table;
5326 static struct ctl_table_header *sd_sysctl_header;
5327 static void init_sched_domain_sysctl(void)
5329 int i, cpu_num = num_online_cpus();
5330 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5331 char buf[32];
5333 sd_ctl_dir[0].child = entry;
5335 for (i = 0; i < cpu_num; i++, entry++) {
5336 snprintf(buf, 32, "cpu%d", i);
5337 entry->procname = kstrdup(buf, GFP_KERNEL);
5338 entry->mode = 0755;
5339 entry->child = sd_alloc_ctl_cpu_table(i);
5341 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5343 #else
5344 static void init_sched_domain_sysctl(void)
5347 #endif
5350 * migration_call - callback that gets triggered when a CPU is added.
5351 * Here we can start up the necessary migration thread for the new CPU.
5353 static int __cpuinit
5354 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5356 struct task_struct *p;
5357 int cpu = (long)hcpu;
5358 unsigned long flags;
5359 struct rq *rq;
5361 switch (action) {
5362 case CPU_LOCK_ACQUIRE:
5363 mutex_lock(&sched_hotcpu_mutex);
5364 break;
5366 case CPU_UP_PREPARE:
5367 case CPU_UP_PREPARE_FROZEN:
5368 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5369 if (IS_ERR(p))
5370 return NOTIFY_BAD;
5371 kthread_bind(p, cpu);
5372 /* Must be high prio: stop_machine expects to yield to it. */
5373 rq = task_rq_lock(p, &flags);
5374 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5375 task_rq_unlock(rq, &flags);
5376 cpu_rq(cpu)->migration_thread = p;
5377 break;
5379 case CPU_ONLINE:
5380 case CPU_ONLINE_FROZEN:
5381 /* Strictly unneccessary, as first user will wake it. */
5382 wake_up_process(cpu_rq(cpu)->migration_thread);
5383 break;
5385 #ifdef CONFIG_HOTPLUG_CPU
5386 case CPU_UP_CANCELED:
5387 case CPU_UP_CANCELED_FROZEN:
5388 if (!cpu_rq(cpu)->migration_thread)
5389 break;
5390 /* Unbind it from offline cpu so it can run. Fall thru. */
5391 kthread_bind(cpu_rq(cpu)->migration_thread,
5392 any_online_cpu(cpu_online_map));
5393 kthread_stop(cpu_rq(cpu)->migration_thread);
5394 cpu_rq(cpu)->migration_thread = NULL;
5395 break;
5397 case CPU_DEAD:
5398 case CPU_DEAD_FROZEN:
5399 migrate_live_tasks(cpu);
5400 rq = cpu_rq(cpu);
5401 kthread_stop(rq->migration_thread);
5402 rq->migration_thread = NULL;
5403 /* Idle task back to normal (off runqueue, low prio) */
5404 rq = task_rq_lock(rq->idle, &flags);
5405 update_rq_clock(rq);
5406 deactivate_task(rq, rq->idle, 0);
5407 rq->idle->static_prio = MAX_PRIO;
5408 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5409 rq->idle->sched_class = &idle_sched_class;
5410 migrate_dead_tasks(cpu);
5411 task_rq_unlock(rq, &flags);
5412 migrate_nr_uninterruptible(rq);
5413 BUG_ON(rq->nr_running != 0);
5415 /* No need to migrate the tasks: it was best-effort if
5416 * they didn't take sched_hotcpu_mutex. Just wake up
5417 * the requestors. */
5418 spin_lock_irq(&rq->lock);
5419 while (!list_empty(&rq->migration_queue)) {
5420 struct migration_req *req;
5422 req = list_entry(rq->migration_queue.next,
5423 struct migration_req, list);
5424 list_del_init(&req->list);
5425 complete(&req->done);
5427 spin_unlock_irq(&rq->lock);
5428 break;
5429 #endif
5430 case CPU_LOCK_RELEASE:
5431 mutex_unlock(&sched_hotcpu_mutex);
5432 break;
5434 return NOTIFY_OK;
5437 /* Register at highest priority so that task migration (migrate_all_tasks)
5438 * happens before everything else.
5440 static struct notifier_block __cpuinitdata migration_notifier = {
5441 .notifier_call = migration_call,
5442 .priority = 10
5445 int __init migration_init(void)
5447 void *cpu = (void *)(long)smp_processor_id();
5448 int err;
5450 /* Start one for the boot CPU: */
5451 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5452 BUG_ON(err == NOTIFY_BAD);
5453 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5454 register_cpu_notifier(&migration_notifier);
5456 return 0;
5458 #endif
5460 #ifdef CONFIG_SMP
5462 /* Number of possible processor ids */
5463 int nr_cpu_ids __read_mostly = NR_CPUS;
5464 EXPORT_SYMBOL(nr_cpu_ids);
5466 #undef SCHED_DOMAIN_DEBUG
5467 #ifdef SCHED_DOMAIN_DEBUG
5468 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5470 int level = 0;
5472 if (!sd) {
5473 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5474 return;
5477 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5479 do {
5480 int i;
5481 char str[NR_CPUS];
5482 struct sched_group *group = sd->groups;
5483 cpumask_t groupmask;
5485 cpumask_scnprintf(str, NR_CPUS, sd->span);
5486 cpus_clear(groupmask);
5488 printk(KERN_DEBUG);
5489 for (i = 0; i < level + 1; i++)
5490 printk(" ");
5491 printk("domain %d: ", level);
5493 if (!(sd->flags & SD_LOAD_BALANCE)) {
5494 printk("does not load-balance\n");
5495 if (sd->parent)
5496 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5497 " has parent");
5498 break;
5501 printk("span %s\n", str);
5503 if (!cpu_isset(cpu, sd->span))
5504 printk(KERN_ERR "ERROR: domain->span does not contain "
5505 "CPU%d\n", cpu);
5506 if (!cpu_isset(cpu, group->cpumask))
5507 printk(KERN_ERR "ERROR: domain->groups does not contain"
5508 " CPU%d\n", cpu);
5510 printk(KERN_DEBUG);
5511 for (i = 0; i < level + 2; i++)
5512 printk(" ");
5513 printk("groups:");
5514 do {
5515 if (!group) {
5516 printk("\n");
5517 printk(KERN_ERR "ERROR: group is NULL\n");
5518 break;
5521 if (!group->__cpu_power) {
5522 printk("\n");
5523 printk(KERN_ERR "ERROR: domain->cpu_power not "
5524 "set\n");
5527 if (!cpus_weight(group->cpumask)) {
5528 printk("\n");
5529 printk(KERN_ERR "ERROR: empty group\n");
5532 if (cpus_intersects(groupmask, group->cpumask)) {
5533 printk("\n");
5534 printk(KERN_ERR "ERROR: repeated CPUs\n");
5537 cpus_or(groupmask, groupmask, group->cpumask);
5539 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5540 printk(" %s", str);
5542 group = group->next;
5543 } while (group != sd->groups);
5544 printk("\n");
5546 if (!cpus_equal(sd->span, groupmask))
5547 printk(KERN_ERR "ERROR: groups don't span "
5548 "domain->span\n");
5550 level++;
5551 sd = sd->parent;
5552 if (!sd)
5553 continue;
5555 if (!cpus_subset(groupmask, sd->span))
5556 printk(KERN_ERR "ERROR: parent span is not a superset "
5557 "of domain->span\n");
5559 } while (sd);
5561 #else
5562 # define sched_domain_debug(sd, cpu) do { } while (0)
5563 #endif
5565 static int sd_degenerate(struct sched_domain *sd)
5567 if (cpus_weight(sd->span) == 1)
5568 return 1;
5570 /* Following flags need at least 2 groups */
5571 if (sd->flags & (SD_LOAD_BALANCE |
5572 SD_BALANCE_NEWIDLE |
5573 SD_BALANCE_FORK |
5574 SD_BALANCE_EXEC |
5575 SD_SHARE_CPUPOWER |
5576 SD_SHARE_PKG_RESOURCES)) {
5577 if (sd->groups != sd->groups->next)
5578 return 0;
5581 /* Following flags don't use groups */
5582 if (sd->flags & (SD_WAKE_IDLE |
5583 SD_WAKE_AFFINE |
5584 SD_WAKE_BALANCE))
5585 return 0;
5587 return 1;
5590 static int
5591 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5593 unsigned long cflags = sd->flags, pflags = parent->flags;
5595 if (sd_degenerate(parent))
5596 return 1;
5598 if (!cpus_equal(sd->span, parent->span))
5599 return 0;
5601 /* Does parent contain flags not in child? */
5602 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5603 if (cflags & SD_WAKE_AFFINE)
5604 pflags &= ~SD_WAKE_BALANCE;
5605 /* Flags needing groups don't count if only 1 group in parent */
5606 if (parent->groups == parent->groups->next) {
5607 pflags &= ~(SD_LOAD_BALANCE |
5608 SD_BALANCE_NEWIDLE |
5609 SD_BALANCE_FORK |
5610 SD_BALANCE_EXEC |
5611 SD_SHARE_CPUPOWER |
5612 SD_SHARE_PKG_RESOURCES);
5614 if (~cflags & pflags)
5615 return 0;
5617 return 1;
5621 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5622 * hold the hotplug lock.
5624 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5626 struct rq *rq = cpu_rq(cpu);
5627 struct sched_domain *tmp;
5629 /* Remove the sched domains which do not contribute to scheduling. */
5630 for (tmp = sd; tmp; tmp = tmp->parent) {
5631 struct sched_domain *parent = tmp->parent;
5632 if (!parent)
5633 break;
5634 if (sd_parent_degenerate(tmp, parent)) {
5635 tmp->parent = parent->parent;
5636 if (parent->parent)
5637 parent->parent->child = tmp;
5641 if (sd && sd_degenerate(sd)) {
5642 sd = sd->parent;
5643 if (sd)
5644 sd->child = NULL;
5647 sched_domain_debug(sd, cpu);
5649 rcu_assign_pointer(rq->sd, sd);
5652 /* cpus with isolated domains */
5653 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5655 /* Setup the mask of cpus configured for isolated domains */
5656 static int __init isolated_cpu_setup(char *str)
5658 int ints[NR_CPUS], i;
5660 str = get_options(str, ARRAY_SIZE(ints), ints);
5661 cpus_clear(cpu_isolated_map);
5662 for (i = 1; i <= ints[0]; i++)
5663 if (ints[i] < NR_CPUS)
5664 cpu_set(ints[i], cpu_isolated_map);
5665 return 1;
5668 __setup ("isolcpus=", isolated_cpu_setup);
5671 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5672 * to a function which identifies what group(along with sched group) a CPU
5673 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5674 * (due to the fact that we keep track of groups covered with a cpumask_t).
5676 * init_sched_build_groups will build a circular linked list of the groups
5677 * covered by the given span, and will set each group's ->cpumask correctly,
5678 * and ->cpu_power to 0.
5680 static void
5681 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5682 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5683 struct sched_group **sg))
5685 struct sched_group *first = NULL, *last = NULL;
5686 cpumask_t covered = CPU_MASK_NONE;
5687 int i;
5689 for_each_cpu_mask(i, span) {
5690 struct sched_group *sg;
5691 int group = group_fn(i, cpu_map, &sg);
5692 int j;
5694 if (cpu_isset(i, covered))
5695 continue;
5697 sg->cpumask = CPU_MASK_NONE;
5698 sg->__cpu_power = 0;
5700 for_each_cpu_mask(j, span) {
5701 if (group_fn(j, cpu_map, NULL) != group)
5702 continue;
5704 cpu_set(j, covered);
5705 cpu_set(j, sg->cpumask);
5707 if (!first)
5708 first = sg;
5709 if (last)
5710 last->next = sg;
5711 last = sg;
5713 last->next = first;
5716 #define SD_NODES_PER_DOMAIN 16
5718 #ifdef CONFIG_NUMA
5721 * find_next_best_node - find the next node to include in a sched_domain
5722 * @node: node whose sched_domain we're building
5723 * @used_nodes: nodes already in the sched_domain
5725 * Find the next node to include in a given scheduling domain. Simply
5726 * finds the closest node not already in the @used_nodes map.
5728 * Should use nodemask_t.
5730 static int find_next_best_node(int node, unsigned long *used_nodes)
5732 int i, n, val, min_val, best_node = 0;
5734 min_val = INT_MAX;
5736 for (i = 0; i < MAX_NUMNODES; i++) {
5737 /* Start at @node */
5738 n = (node + i) % MAX_NUMNODES;
5740 if (!nr_cpus_node(n))
5741 continue;
5743 /* Skip already used nodes */
5744 if (test_bit(n, used_nodes))
5745 continue;
5747 /* Simple min distance search */
5748 val = node_distance(node, n);
5750 if (val < min_val) {
5751 min_val = val;
5752 best_node = n;
5756 set_bit(best_node, used_nodes);
5757 return best_node;
5761 * sched_domain_node_span - get a cpumask for a node's sched_domain
5762 * @node: node whose cpumask we're constructing
5763 * @size: number of nodes to include in this span
5765 * Given a node, construct a good cpumask for its sched_domain to span. It
5766 * should be one that prevents unnecessary balancing, but also spreads tasks
5767 * out optimally.
5769 static cpumask_t sched_domain_node_span(int node)
5771 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5772 cpumask_t span, nodemask;
5773 int i;
5775 cpus_clear(span);
5776 bitmap_zero(used_nodes, MAX_NUMNODES);
5778 nodemask = node_to_cpumask(node);
5779 cpus_or(span, span, nodemask);
5780 set_bit(node, used_nodes);
5782 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5783 int next_node = find_next_best_node(node, used_nodes);
5785 nodemask = node_to_cpumask(next_node);
5786 cpus_or(span, span, nodemask);
5789 return span;
5791 #endif
5793 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5796 * SMT sched-domains:
5798 #ifdef CONFIG_SCHED_SMT
5799 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5800 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5802 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5803 struct sched_group **sg)
5805 if (sg)
5806 *sg = &per_cpu(sched_group_cpus, cpu);
5807 return cpu;
5809 #endif
5812 * multi-core sched-domains:
5814 #ifdef CONFIG_SCHED_MC
5815 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5816 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5817 #endif
5819 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5820 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5821 struct sched_group **sg)
5823 int group;
5824 cpumask_t mask = cpu_sibling_map[cpu];
5825 cpus_and(mask, mask, *cpu_map);
5826 group = first_cpu(mask);
5827 if (sg)
5828 *sg = &per_cpu(sched_group_core, group);
5829 return group;
5831 #elif defined(CONFIG_SCHED_MC)
5832 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5833 struct sched_group **sg)
5835 if (sg)
5836 *sg = &per_cpu(sched_group_core, cpu);
5837 return cpu;
5839 #endif
5841 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5842 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5844 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5845 struct sched_group **sg)
5847 int group;
5848 #ifdef CONFIG_SCHED_MC
5849 cpumask_t mask = cpu_coregroup_map(cpu);
5850 cpus_and(mask, mask, *cpu_map);
5851 group = first_cpu(mask);
5852 #elif defined(CONFIG_SCHED_SMT)
5853 cpumask_t mask = cpu_sibling_map[cpu];
5854 cpus_and(mask, mask, *cpu_map);
5855 group = first_cpu(mask);
5856 #else
5857 group = cpu;
5858 #endif
5859 if (sg)
5860 *sg = &per_cpu(sched_group_phys, group);
5861 return group;
5864 #ifdef CONFIG_NUMA
5866 * The init_sched_build_groups can't handle what we want to do with node
5867 * groups, so roll our own. Now each node has its own list of groups which
5868 * gets dynamically allocated.
5870 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5871 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5873 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5874 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5876 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5877 struct sched_group **sg)
5879 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5880 int group;
5882 cpus_and(nodemask, nodemask, *cpu_map);
5883 group = first_cpu(nodemask);
5885 if (sg)
5886 *sg = &per_cpu(sched_group_allnodes, group);
5887 return group;
5890 static void init_numa_sched_groups_power(struct sched_group *group_head)
5892 struct sched_group *sg = group_head;
5893 int j;
5895 if (!sg)
5896 return;
5897 next_sg:
5898 for_each_cpu_mask(j, sg->cpumask) {
5899 struct sched_domain *sd;
5901 sd = &per_cpu(phys_domains, j);
5902 if (j != first_cpu(sd->groups->cpumask)) {
5904 * Only add "power" once for each
5905 * physical package.
5907 continue;
5910 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5912 sg = sg->next;
5913 if (sg != group_head)
5914 goto next_sg;
5916 #endif
5918 #ifdef CONFIG_NUMA
5919 /* Free memory allocated for various sched_group structures */
5920 static void free_sched_groups(const cpumask_t *cpu_map)
5922 int cpu, i;
5924 for_each_cpu_mask(cpu, *cpu_map) {
5925 struct sched_group **sched_group_nodes
5926 = sched_group_nodes_bycpu[cpu];
5928 if (!sched_group_nodes)
5929 continue;
5931 for (i = 0; i < MAX_NUMNODES; i++) {
5932 cpumask_t nodemask = node_to_cpumask(i);
5933 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5935 cpus_and(nodemask, nodemask, *cpu_map);
5936 if (cpus_empty(nodemask))
5937 continue;
5939 if (sg == NULL)
5940 continue;
5941 sg = sg->next;
5942 next_sg:
5943 oldsg = sg;
5944 sg = sg->next;
5945 kfree(oldsg);
5946 if (oldsg != sched_group_nodes[i])
5947 goto next_sg;
5949 kfree(sched_group_nodes);
5950 sched_group_nodes_bycpu[cpu] = NULL;
5953 #else
5954 static void free_sched_groups(const cpumask_t *cpu_map)
5957 #endif
5960 * Initialize sched groups cpu_power.
5962 * cpu_power indicates the capacity of sched group, which is used while
5963 * distributing the load between different sched groups in a sched domain.
5964 * Typically cpu_power for all the groups in a sched domain will be same unless
5965 * there are asymmetries in the topology. If there are asymmetries, group
5966 * having more cpu_power will pickup more load compared to the group having
5967 * less cpu_power.
5969 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5970 * the maximum number of tasks a group can handle in the presence of other idle
5971 * or lightly loaded groups in the same sched domain.
5973 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5975 struct sched_domain *child;
5976 struct sched_group *group;
5978 WARN_ON(!sd || !sd->groups);
5980 if (cpu != first_cpu(sd->groups->cpumask))
5981 return;
5983 child = sd->child;
5985 sd->groups->__cpu_power = 0;
5988 * For perf policy, if the groups in child domain share resources
5989 * (for example cores sharing some portions of the cache hierarchy
5990 * or SMT), then set this domain groups cpu_power such that each group
5991 * can handle only one task, when there are other idle groups in the
5992 * same sched domain.
5994 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5995 (child->flags &
5996 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5997 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5998 return;
6002 * add cpu_power of each child group to this groups cpu_power
6004 group = child->groups;
6005 do {
6006 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6007 group = group->next;
6008 } while (group != child->groups);
6012 * Build sched domains for a given set of cpus and attach the sched domains
6013 * to the individual cpus
6015 static int build_sched_domains(const cpumask_t *cpu_map)
6017 int i;
6018 #ifdef CONFIG_NUMA
6019 struct sched_group **sched_group_nodes = NULL;
6020 int sd_allnodes = 0;
6023 * Allocate the per-node list of sched groups
6025 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6026 GFP_KERNEL);
6027 if (!sched_group_nodes) {
6028 printk(KERN_WARNING "Can not alloc sched group node list\n");
6029 return -ENOMEM;
6031 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6032 #endif
6035 * Set up domains for cpus specified by the cpu_map.
6037 for_each_cpu_mask(i, *cpu_map) {
6038 struct sched_domain *sd = NULL, *p;
6039 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6041 cpus_and(nodemask, nodemask, *cpu_map);
6043 #ifdef CONFIG_NUMA
6044 if (cpus_weight(*cpu_map) >
6045 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6046 sd = &per_cpu(allnodes_domains, i);
6047 *sd = SD_ALLNODES_INIT;
6048 sd->span = *cpu_map;
6049 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6050 p = sd;
6051 sd_allnodes = 1;
6052 } else
6053 p = NULL;
6055 sd = &per_cpu(node_domains, i);
6056 *sd = SD_NODE_INIT;
6057 sd->span = sched_domain_node_span(cpu_to_node(i));
6058 sd->parent = p;
6059 if (p)
6060 p->child = sd;
6061 cpus_and(sd->span, sd->span, *cpu_map);
6062 #endif
6064 p = sd;
6065 sd = &per_cpu(phys_domains, i);
6066 *sd = SD_CPU_INIT;
6067 sd->span = nodemask;
6068 sd->parent = p;
6069 if (p)
6070 p->child = sd;
6071 cpu_to_phys_group(i, cpu_map, &sd->groups);
6073 #ifdef CONFIG_SCHED_MC
6074 p = sd;
6075 sd = &per_cpu(core_domains, i);
6076 *sd = SD_MC_INIT;
6077 sd->span = cpu_coregroup_map(i);
6078 cpus_and(sd->span, sd->span, *cpu_map);
6079 sd->parent = p;
6080 p->child = sd;
6081 cpu_to_core_group(i, cpu_map, &sd->groups);
6082 #endif
6084 #ifdef CONFIG_SCHED_SMT
6085 p = sd;
6086 sd = &per_cpu(cpu_domains, i);
6087 *sd = SD_SIBLING_INIT;
6088 sd->span = cpu_sibling_map[i];
6089 cpus_and(sd->span, sd->span, *cpu_map);
6090 sd->parent = p;
6091 p->child = sd;
6092 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6093 #endif
6096 #ifdef CONFIG_SCHED_SMT
6097 /* Set up CPU (sibling) groups */
6098 for_each_cpu_mask(i, *cpu_map) {
6099 cpumask_t this_sibling_map = cpu_sibling_map[i];
6100 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6101 if (i != first_cpu(this_sibling_map))
6102 continue;
6104 init_sched_build_groups(this_sibling_map, cpu_map,
6105 &cpu_to_cpu_group);
6107 #endif
6109 #ifdef CONFIG_SCHED_MC
6110 /* Set up multi-core groups */
6111 for_each_cpu_mask(i, *cpu_map) {
6112 cpumask_t this_core_map = cpu_coregroup_map(i);
6113 cpus_and(this_core_map, this_core_map, *cpu_map);
6114 if (i != first_cpu(this_core_map))
6115 continue;
6116 init_sched_build_groups(this_core_map, cpu_map,
6117 &cpu_to_core_group);
6119 #endif
6121 /* Set up physical groups */
6122 for (i = 0; i < MAX_NUMNODES; i++) {
6123 cpumask_t nodemask = node_to_cpumask(i);
6125 cpus_and(nodemask, nodemask, *cpu_map);
6126 if (cpus_empty(nodemask))
6127 continue;
6129 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6132 #ifdef CONFIG_NUMA
6133 /* Set up node groups */
6134 if (sd_allnodes)
6135 init_sched_build_groups(*cpu_map, cpu_map,
6136 &cpu_to_allnodes_group);
6138 for (i = 0; i < MAX_NUMNODES; i++) {
6139 /* Set up node groups */
6140 struct sched_group *sg, *prev;
6141 cpumask_t nodemask = node_to_cpumask(i);
6142 cpumask_t domainspan;
6143 cpumask_t covered = CPU_MASK_NONE;
6144 int j;
6146 cpus_and(nodemask, nodemask, *cpu_map);
6147 if (cpus_empty(nodemask)) {
6148 sched_group_nodes[i] = NULL;
6149 continue;
6152 domainspan = sched_domain_node_span(i);
6153 cpus_and(domainspan, domainspan, *cpu_map);
6155 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6156 if (!sg) {
6157 printk(KERN_WARNING "Can not alloc domain group for "
6158 "node %d\n", i);
6159 goto error;
6161 sched_group_nodes[i] = sg;
6162 for_each_cpu_mask(j, nodemask) {
6163 struct sched_domain *sd;
6165 sd = &per_cpu(node_domains, j);
6166 sd->groups = sg;
6168 sg->__cpu_power = 0;
6169 sg->cpumask = nodemask;
6170 sg->next = sg;
6171 cpus_or(covered, covered, nodemask);
6172 prev = sg;
6174 for (j = 0; j < MAX_NUMNODES; j++) {
6175 cpumask_t tmp, notcovered;
6176 int n = (i + j) % MAX_NUMNODES;
6178 cpus_complement(notcovered, covered);
6179 cpus_and(tmp, notcovered, *cpu_map);
6180 cpus_and(tmp, tmp, domainspan);
6181 if (cpus_empty(tmp))
6182 break;
6184 nodemask = node_to_cpumask(n);
6185 cpus_and(tmp, tmp, nodemask);
6186 if (cpus_empty(tmp))
6187 continue;
6189 sg = kmalloc_node(sizeof(struct sched_group),
6190 GFP_KERNEL, i);
6191 if (!sg) {
6192 printk(KERN_WARNING
6193 "Can not alloc domain group for node %d\n", j);
6194 goto error;
6196 sg->__cpu_power = 0;
6197 sg->cpumask = tmp;
6198 sg->next = prev->next;
6199 cpus_or(covered, covered, tmp);
6200 prev->next = sg;
6201 prev = sg;
6204 #endif
6206 /* Calculate CPU power for physical packages and nodes */
6207 #ifdef CONFIG_SCHED_SMT
6208 for_each_cpu_mask(i, *cpu_map) {
6209 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6211 init_sched_groups_power(i, sd);
6213 #endif
6214 #ifdef CONFIG_SCHED_MC
6215 for_each_cpu_mask(i, *cpu_map) {
6216 struct sched_domain *sd = &per_cpu(core_domains, i);
6218 init_sched_groups_power(i, sd);
6220 #endif
6222 for_each_cpu_mask(i, *cpu_map) {
6223 struct sched_domain *sd = &per_cpu(phys_domains, i);
6225 init_sched_groups_power(i, sd);
6228 #ifdef CONFIG_NUMA
6229 for (i = 0; i < MAX_NUMNODES; i++)
6230 init_numa_sched_groups_power(sched_group_nodes[i]);
6232 if (sd_allnodes) {
6233 struct sched_group *sg;
6235 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6236 init_numa_sched_groups_power(sg);
6238 #endif
6240 /* Attach the domains */
6241 for_each_cpu_mask(i, *cpu_map) {
6242 struct sched_domain *sd;
6243 #ifdef CONFIG_SCHED_SMT
6244 sd = &per_cpu(cpu_domains, i);
6245 #elif defined(CONFIG_SCHED_MC)
6246 sd = &per_cpu(core_domains, i);
6247 #else
6248 sd = &per_cpu(phys_domains, i);
6249 #endif
6250 cpu_attach_domain(sd, i);
6253 return 0;
6255 #ifdef CONFIG_NUMA
6256 error:
6257 free_sched_groups(cpu_map);
6258 return -ENOMEM;
6259 #endif
6262 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6264 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6266 cpumask_t cpu_default_map;
6267 int err;
6270 * Setup mask for cpus without special case scheduling requirements.
6271 * For now this just excludes isolated cpus, but could be used to
6272 * exclude other special cases in the future.
6274 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6276 err = build_sched_domains(&cpu_default_map);
6278 return err;
6281 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6283 free_sched_groups(cpu_map);
6287 * Detach sched domains from a group of cpus specified in cpu_map
6288 * These cpus will now be attached to the NULL domain
6290 static void detach_destroy_domains(const cpumask_t *cpu_map)
6292 int i;
6294 for_each_cpu_mask(i, *cpu_map)
6295 cpu_attach_domain(NULL, i);
6296 synchronize_sched();
6297 arch_destroy_sched_domains(cpu_map);
6301 * Partition sched domains as specified by the cpumasks below.
6302 * This attaches all cpus from the cpumasks to the NULL domain,
6303 * waits for a RCU quiescent period, recalculates sched
6304 * domain information and then attaches them back to the
6305 * correct sched domains
6306 * Call with hotplug lock held
6308 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6310 cpumask_t change_map;
6311 int err = 0;
6313 cpus_and(*partition1, *partition1, cpu_online_map);
6314 cpus_and(*partition2, *partition2, cpu_online_map);
6315 cpus_or(change_map, *partition1, *partition2);
6317 /* Detach sched domains from all of the affected cpus */
6318 detach_destroy_domains(&change_map);
6319 if (!cpus_empty(*partition1))
6320 err = build_sched_domains(partition1);
6321 if (!err && !cpus_empty(*partition2))
6322 err = build_sched_domains(partition2);
6324 return err;
6327 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6328 int arch_reinit_sched_domains(void)
6330 int err;
6332 mutex_lock(&sched_hotcpu_mutex);
6333 detach_destroy_domains(&cpu_online_map);
6334 err = arch_init_sched_domains(&cpu_online_map);
6335 mutex_unlock(&sched_hotcpu_mutex);
6337 return err;
6340 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6342 int ret;
6344 if (buf[0] != '0' && buf[0] != '1')
6345 return -EINVAL;
6347 if (smt)
6348 sched_smt_power_savings = (buf[0] == '1');
6349 else
6350 sched_mc_power_savings = (buf[0] == '1');
6352 ret = arch_reinit_sched_domains();
6354 return ret ? ret : count;
6357 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6359 int err = 0;
6361 #ifdef CONFIG_SCHED_SMT
6362 if (smt_capable())
6363 err = sysfs_create_file(&cls->kset.kobj,
6364 &attr_sched_smt_power_savings.attr);
6365 #endif
6366 #ifdef CONFIG_SCHED_MC
6367 if (!err && mc_capable())
6368 err = sysfs_create_file(&cls->kset.kobj,
6369 &attr_sched_mc_power_savings.attr);
6370 #endif
6371 return err;
6373 #endif
6375 #ifdef CONFIG_SCHED_MC
6376 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6378 return sprintf(page, "%u\n", sched_mc_power_savings);
6380 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6381 const char *buf, size_t count)
6383 return sched_power_savings_store(buf, count, 0);
6385 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6386 sched_mc_power_savings_store);
6387 #endif
6389 #ifdef CONFIG_SCHED_SMT
6390 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6392 return sprintf(page, "%u\n", sched_smt_power_savings);
6394 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6395 const char *buf, size_t count)
6397 return sched_power_savings_store(buf, count, 1);
6399 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6400 sched_smt_power_savings_store);
6401 #endif
6404 * Force a reinitialization of the sched domains hierarchy. The domains
6405 * and groups cannot be updated in place without racing with the balancing
6406 * code, so we temporarily attach all running cpus to the NULL domain
6407 * which will prevent rebalancing while the sched domains are recalculated.
6409 static int update_sched_domains(struct notifier_block *nfb,
6410 unsigned long action, void *hcpu)
6412 switch (action) {
6413 case CPU_UP_PREPARE:
6414 case CPU_UP_PREPARE_FROZEN:
6415 case CPU_DOWN_PREPARE:
6416 case CPU_DOWN_PREPARE_FROZEN:
6417 detach_destroy_domains(&cpu_online_map);
6418 return NOTIFY_OK;
6420 case CPU_UP_CANCELED:
6421 case CPU_UP_CANCELED_FROZEN:
6422 case CPU_DOWN_FAILED:
6423 case CPU_DOWN_FAILED_FROZEN:
6424 case CPU_ONLINE:
6425 case CPU_ONLINE_FROZEN:
6426 case CPU_DEAD:
6427 case CPU_DEAD_FROZEN:
6429 * Fall through and re-initialise the domains.
6431 break;
6432 default:
6433 return NOTIFY_DONE;
6436 /* The hotplug lock is already held by cpu_up/cpu_down */
6437 arch_init_sched_domains(&cpu_online_map);
6439 return NOTIFY_OK;
6442 void __init sched_init_smp(void)
6444 cpumask_t non_isolated_cpus;
6446 mutex_lock(&sched_hotcpu_mutex);
6447 arch_init_sched_domains(&cpu_online_map);
6448 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6449 if (cpus_empty(non_isolated_cpus))
6450 cpu_set(smp_processor_id(), non_isolated_cpus);
6451 mutex_unlock(&sched_hotcpu_mutex);
6452 /* XXX: Theoretical race here - CPU may be hotplugged now */
6453 hotcpu_notifier(update_sched_domains, 0);
6455 init_sched_domain_sysctl();
6457 /* Move init over to a non-isolated CPU */
6458 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6459 BUG();
6460 sched_init_granularity();
6462 #else
6463 void __init sched_init_smp(void)
6465 sched_init_granularity();
6467 #endif /* CONFIG_SMP */
6469 int in_sched_functions(unsigned long addr)
6471 /* Linker adds these: start and end of __sched functions */
6472 extern char __sched_text_start[], __sched_text_end[];
6474 return in_lock_functions(addr) ||
6475 (addr >= (unsigned long)__sched_text_start
6476 && addr < (unsigned long)__sched_text_end);
6479 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6481 cfs_rq->tasks_timeline = RB_ROOT;
6482 cfs_rq->fair_clock = 1;
6483 #ifdef CONFIG_FAIR_GROUP_SCHED
6484 cfs_rq->rq = rq;
6485 #endif
6488 void __init sched_init(void)
6490 u64 now = sched_clock();
6491 int highest_cpu = 0;
6492 int i, j;
6495 * Link up the scheduling class hierarchy:
6497 rt_sched_class.next = &fair_sched_class;
6498 fair_sched_class.next = &idle_sched_class;
6499 idle_sched_class.next = NULL;
6501 for_each_possible_cpu(i) {
6502 struct rt_prio_array *array;
6503 struct rq *rq;
6505 rq = cpu_rq(i);
6506 spin_lock_init(&rq->lock);
6507 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6508 rq->nr_running = 0;
6509 rq->clock = 1;
6510 init_cfs_rq(&rq->cfs, rq);
6511 #ifdef CONFIG_FAIR_GROUP_SCHED
6512 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6513 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6514 #endif
6515 rq->ls.load_update_last = now;
6516 rq->ls.load_update_start = now;
6518 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6519 rq->cpu_load[j] = 0;
6520 #ifdef CONFIG_SMP
6521 rq->sd = NULL;
6522 rq->active_balance = 0;
6523 rq->next_balance = jiffies;
6524 rq->push_cpu = 0;
6525 rq->cpu = i;
6526 rq->migration_thread = NULL;
6527 INIT_LIST_HEAD(&rq->migration_queue);
6528 #endif
6529 atomic_set(&rq->nr_iowait, 0);
6531 array = &rq->rt.active;
6532 for (j = 0; j < MAX_RT_PRIO; j++) {
6533 INIT_LIST_HEAD(array->queue + j);
6534 __clear_bit(j, array->bitmap);
6536 highest_cpu = i;
6537 /* delimiter for bitsearch: */
6538 __set_bit(MAX_RT_PRIO, array->bitmap);
6541 set_load_weight(&init_task);
6543 #ifdef CONFIG_PREEMPT_NOTIFIERS
6544 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6545 #endif
6547 #ifdef CONFIG_SMP
6548 nr_cpu_ids = highest_cpu + 1;
6549 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6550 #endif
6552 #ifdef CONFIG_RT_MUTEXES
6553 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6554 #endif
6557 * The boot idle thread does lazy MMU switching as well:
6559 atomic_inc(&init_mm.mm_count);
6560 enter_lazy_tlb(&init_mm, current);
6563 * Make us the idle thread. Technically, schedule() should not be
6564 * called from this thread, however somewhere below it might be,
6565 * but because we are the idle thread, we just pick up running again
6566 * when this runqueue becomes "idle".
6568 init_idle(current, smp_processor_id());
6570 * During early bootup we pretend to be a normal task:
6572 current->sched_class = &fair_sched_class;
6575 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6576 void __might_sleep(char *file, int line)
6578 #ifdef in_atomic
6579 static unsigned long prev_jiffy; /* ratelimiting */
6581 if ((in_atomic() || irqs_disabled()) &&
6582 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6583 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6584 return;
6585 prev_jiffy = jiffies;
6586 printk(KERN_ERR "BUG: sleeping function called from invalid"
6587 " context at %s:%d\n", file, line);
6588 printk("in_atomic():%d, irqs_disabled():%d\n",
6589 in_atomic(), irqs_disabled());
6590 debug_show_held_locks(current);
6591 if (irqs_disabled())
6592 print_irqtrace_events(current);
6593 dump_stack();
6595 #endif
6597 EXPORT_SYMBOL(__might_sleep);
6598 #endif
6600 #ifdef CONFIG_MAGIC_SYSRQ
6601 void normalize_rt_tasks(void)
6603 struct task_struct *g, *p;
6604 unsigned long flags;
6605 struct rq *rq;
6606 int on_rq;
6608 read_lock_irq(&tasklist_lock);
6609 do_each_thread(g, p) {
6610 p->se.fair_key = 0;
6611 p->se.wait_runtime = 0;
6612 p->se.exec_start = 0;
6613 p->se.wait_start_fair = 0;
6614 p->se.sleep_start_fair = 0;
6615 #ifdef CONFIG_SCHEDSTATS
6616 p->se.wait_start = 0;
6617 p->se.sleep_start = 0;
6618 p->se.block_start = 0;
6619 #endif
6620 task_rq(p)->cfs.fair_clock = 0;
6621 task_rq(p)->clock = 0;
6623 if (!rt_task(p)) {
6625 * Renice negative nice level userspace
6626 * tasks back to 0:
6628 if (TASK_NICE(p) < 0 && p->mm)
6629 set_user_nice(p, 0);
6630 continue;
6633 spin_lock_irqsave(&p->pi_lock, flags);
6634 rq = __task_rq_lock(p);
6635 #ifdef CONFIG_SMP
6637 * Do not touch the migration thread:
6639 if (p == rq->migration_thread)
6640 goto out_unlock;
6641 #endif
6643 on_rq = p->se.on_rq;
6644 if (on_rq) {
6645 update_rq_clock(task_rq(p));
6646 deactivate_task(task_rq(p), p, 0);
6648 __setscheduler(rq, p, SCHED_NORMAL, 0);
6649 if (on_rq) {
6650 activate_task(task_rq(p), p, 0);
6651 resched_task(rq->curr);
6653 #ifdef CONFIG_SMP
6654 out_unlock:
6655 #endif
6656 __task_rq_unlock(rq);
6657 spin_unlock_irqrestore(&p->pi_lock, flags);
6658 } while_each_thread(g, p);
6660 read_unlock_irq(&tasklist_lock);
6663 #endif /* CONFIG_MAGIC_SYSRQ */
6665 #ifdef CONFIG_IA64
6667 * These functions are only useful for the IA64 MCA handling.
6669 * They can only be called when the whole system has been
6670 * stopped - every CPU needs to be quiescent, and no scheduling
6671 * activity can take place. Using them for anything else would
6672 * be a serious bug, and as a result, they aren't even visible
6673 * under any other configuration.
6677 * curr_task - return the current task for a given cpu.
6678 * @cpu: the processor in question.
6680 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6682 struct task_struct *curr_task(int cpu)
6684 return cpu_curr(cpu);
6688 * set_curr_task - set the current task for a given cpu.
6689 * @cpu: the processor in question.
6690 * @p: the task pointer to set.
6692 * Description: This function must only be used when non-maskable interrupts
6693 * are serviced on a separate stack. It allows the architecture to switch the
6694 * notion of the current task on a cpu in a non-blocking manner. This function
6695 * must be called with all CPU's synchronized, and interrupts disabled, the
6696 * and caller must save the original value of the current task (see
6697 * curr_task() above) and restore that value before reenabling interrupts and
6698 * re-starting the system.
6700 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6702 void set_curr_task(int cpu, struct task_struct *p)
6704 cpu_curr(cpu) = p;
6707 #endif