2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
41 #include <asm/tlbflush.h>
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
48 nodemask_t node_online_map __read_mostly
= { { [0] = 1UL } };
49 EXPORT_SYMBOL(node_online_map
);
50 nodemask_t node_possible_map __read_mostly
= NODE_MASK_ALL
;
51 EXPORT_SYMBOL(node_possible_map
);
52 unsigned long totalram_pages __read_mostly
;
53 unsigned long totalhigh_pages __read_mostly
;
54 unsigned long totalreserve_pages __read_mostly
;
56 int percpu_pagelist_fraction
;
58 static void __free_pages_ok(struct page
*page
, unsigned int order
);
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
71 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = { 256, 256, 32 };
73 EXPORT_SYMBOL(totalram_pages
);
76 * Used by page_zone() to look up the address of the struct zone whose
77 * id is encoded in the upper bits of page->flags
79 struct zone
*zone_table
[1 << ZONETABLE_SHIFT
] __read_mostly
;
80 EXPORT_SYMBOL(zone_table
);
82 static char *zone_names
[MAX_NR_ZONES
] = { "DMA", "DMA32", "Normal", "HighMem" };
83 int min_free_kbytes
= 1024;
85 unsigned long __initdata nr_kernel_pages
;
86 unsigned long __initdata nr_all_pages
;
88 #ifdef CONFIG_DEBUG_VM
89 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
93 unsigned long pfn
= page_to_pfn(page
);
96 seq
= zone_span_seqbegin(zone
);
97 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
99 else if (pfn
< zone
->zone_start_pfn
)
101 } while (zone_span_seqretry(zone
, seq
));
106 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
108 #ifdef CONFIG_HOLES_IN_ZONE
109 if (!pfn_valid(page_to_pfn(page
)))
112 if (zone
!= page_zone(page
))
118 * Temporary debugging check for pages not lying within a given zone.
120 static int bad_range(struct zone
*zone
, struct page
*page
)
122 if (page_outside_zone_boundaries(zone
, page
))
124 if (!page_is_consistent(zone
, page
))
131 static inline int bad_range(struct zone
*zone
, struct page
*page
)
137 static void bad_page(struct page
*page
)
139 printk(KERN_EMERG
"Bad page state in process '%s'\n"
140 KERN_EMERG
"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
141 KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
142 KERN_EMERG
"Backtrace:\n",
143 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
144 (unsigned long)page
->flags
, page
->mapping
,
145 page_mapcount(page
), page_count(page
));
147 page
->flags
&= ~(1 << PG_lru
|
157 set_page_count(page
, 0);
158 reset_page_mapcount(page
);
159 page
->mapping
= NULL
;
160 add_taint(TAINT_BAD_PAGE
);
164 * Higher-order pages are called "compound pages". They are structured thusly:
166 * The first PAGE_SIZE page is called the "head page".
168 * The remaining PAGE_SIZE pages are called "tail pages".
170 * All pages have PG_compound set. All pages have their ->private pointing at
171 * the head page (even the head page has this).
173 * The first tail page's ->lru.next holds the address of the compound page's
174 * put_page() function. Its ->lru.prev holds the order of allocation.
175 * This usage means that zero-order pages may not be compound.
178 static void free_compound_page(struct page
*page
)
180 __free_pages_ok(page
, (unsigned long)page
[1].lru
.prev
);
183 static void prep_compound_page(struct page
*page
, unsigned long order
)
186 int nr_pages
= 1 << order
;
188 page
[1].lru
.next
= (void *)free_compound_page
; /* set dtor */
189 page
[1].lru
.prev
= (void *)order
;
190 for (i
= 0; i
< nr_pages
; i
++) {
191 struct page
*p
= page
+ i
;
193 __SetPageCompound(p
);
194 set_page_private(p
, (unsigned long)page
);
198 static void destroy_compound_page(struct page
*page
, unsigned long order
)
201 int nr_pages
= 1 << order
;
203 if (unlikely((unsigned long)page
[1].lru
.prev
!= order
))
206 for (i
= 0; i
< nr_pages
; i
++) {
207 struct page
*p
= page
+ i
;
209 if (unlikely(!PageCompound(p
) |
210 (page_private(p
) != (unsigned long)page
)))
212 __ClearPageCompound(p
);
216 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
220 BUG_ON((gfp_flags
& (__GFP_WAIT
| __GFP_HIGHMEM
)) == __GFP_HIGHMEM
);
222 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
223 * and __GFP_HIGHMEM from hard or soft interrupt context.
225 BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
226 for (i
= 0; i
< (1 << order
); i
++)
227 clear_highpage(page
+ i
);
231 * function for dealing with page's order in buddy system.
232 * zone->lock is already acquired when we use these.
233 * So, we don't need atomic page->flags operations here.
235 static inline unsigned long page_order(struct page
*page
) {
236 return page_private(page
);
239 static inline void set_page_order(struct page
*page
, int order
) {
240 set_page_private(page
, order
);
241 __SetPageBuddy(page
);
244 static inline void rmv_page_order(struct page
*page
)
246 __ClearPageBuddy(page
);
247 set_page_private(page
, 0);
251 * Locate the struct page for both the matching buddy in our
252 * pair (buddy1) and the combined O(n+1) page they form (page).
254 * 1) Any buddy B1 will have an order O twin B2 which satisfies
255 * the following equation:
257 * For example, if the starting buddy (buddy2) is #8 its order
259 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
261 * 2) Any buddy B will have an order O+1 parent P which
262 * satisfies the following equation:
265 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
267 static inline struct page
*
268 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
270 unsigned long buddy_idx
= page_idx
^ (1 << order
);
272 return page
+ (buddy_idx
- page_idx
);
275 static inline unsigned long
276 __find_combined_index(unsigned long page_idx
, unsigned int order
)
278 return (page_idx
& ~(1 << order
));
282 * This function checks whether a page is free && is the buddy
283 * we can do coalesce a page and its buddy if
284 * (a) the buddy is not in a hole &&
285 * (b) the buddy is in the buddy system &&
286 * (c) a page and its buddy have the same order.
288 * For recording whether a page is in the buddy system, we use PG_buddy.
289 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
291 * For recording page's order, we use page_private(page).
293 static inline int page_is_buddy(struct page
*page
, int order
)
295 #ifdef CONFIG_HOLES_IN_ZONE
296 if (!pfn_valid(page_to_pfn(page
)))
300 if (PageBuddy(page
) && page_order(page
) == order
) {
301 BUG_ON(page_count(page
) != 0);
308 * Freeing function for a buddy system allocator.
310 * The concept of a buddy system is to maintain direct-mapped table
311 * (containing bit values) for memory blocks of various "orders".
312 * The bottom level table contains the map for the smallest allocatable
313 * units of memory (here, pages), and each level above it describes
314 * pairs of units from the levels below, hence, "buddies".
315 * At a high level, all that happens here is marking the table entry
316 * at the bottom level available, and propagating the changes upward
317 * as necessary, plus some accounting needed to play nicely with other
318 * parts of the VM system.
319 * At each level, we keep a list of pages, which are heads of continuous
320 * free pages of length of (1 << order) and marked with PG_buddy. Page's
321 * order is recorded in page_private(page) field.
322 * So when we are allocating or freeing one, we can derive the state of the
323 * other. That is, if we allocate a small block, and both were
324 * free, the remainder of the region must be split into blocks.
325 * If a block is freed, and its buddy is also free, then this
326 * triggers coalescing into a block of larger size.
331 static inline void __free_one_page(struct page
*page
,
332 struct zone
*zone
, unsigned int order
)
334 unsigned long page_idx
;
335 int order_size
= 1 << order
;
337 if (unlikely(PageCompound(page
)))
338 destroy_compound_page(page
, order
);
340 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
342 BUG_ON(page_idx
& (order_size
- 1));
343 BUG_ON(bad_range(zone
, page
));
345 zone
->free_pages
+= order_size
;
346 while (order
< MAX_ORDER
-1) {
347 unsigned long combined_idx
;
348 struct free_area
*area
;
351 buddy
= __page_find_buddy(page
, page_idx
, order
);
352 if (!page_is_buddy(buddy
, order
))
353 break; /* Move the buddy up one level. */
355 list_del(&buddy
->lru
);
356 area
= zone
->free_area
+ order
;
358 rmv_page_order(buddy
);
359 combined_idx
= __find_combined_index(page_idx
, order
);
360 page
= page
+ (combined_idx
- page_idx
);
361 page_idx
= combined_idx
;
364 set_page_order(page
, order
);
365 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
);
366 zone
->free_area
[order
].nr_free
++;
369 static inline int free_pages_check(struct page
*page
)
371 if (unlikely(page_mapcount(page
) |
372 (page
->mapping
!= NULL
) |
373 (page_count(page
) != 0) |
387 __ClearPageDirty(page
);
389 * For now, we report if PG_reserved was found set, but do not
390 * clear it, and do not free the page. But we shall soon need
391 * to do more, for when the ZERO_PAGE count wraps negative.
393 return PageReserved(page
);
397 * Frees a list of pages.
398 * Assumes all pages on list are in same zone, and of same order.
399 * count is the number of pages to free.
401 * If the zone was previously in an "all pages pinned" state then look to
402 * see if this freeing clears that state.
404 * And clear the zone's pages_scanned counter, to hold off the "all pages are
405 * pinned" detection logic.
407 static void free_pages_bulk(struct zone
*zone
, int count
,
408 struct list_head
*list
, int order
)
410 spin_lock(&zone
->lock
);
411 zone
->all_unreclaimable
= 0;
412 zone
->pages_scanned
= 0;
416 BUG_ON(list_empty(list
));
417 page
= list_entry(list
->prev
, struct page
, lru
);
418 /* have to delete it as __free_one_page list manipulates */
419 list_del(&page
->lru
);
420 __free_one_page(page
, zone
, order
);
422 spin_unlock(&zone
->lock
);
425 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
428 list_add(&page
->lru
, &list
);
429 free_pages_bulk(zone
, 1, &list
, order
);
432 static void __free_pages_ok(struct page
*page
, unsigned int order
)
438 arch_free_page(page
, order
);
439 if (!PageHighMem(page
))
440 mutex_debug_check_no_locks_freed(page_address(page
),
443 for (i
= 0 ; i
< (1 << order
) ; ++i
)
444 reserved
+= free_pages_check(page
+ i
);
448 kernel_map_pages(page
, 1 << order
, 0);
449 local_irq_save(flags
);
450 __mod_page_state(pgfree
, 1 << order
);
451 free_one_page(page_zone(page
), page
, order
);
452 local_irq_restore(flags
);
456 * permit the bootmem allocator to evade page validation on high-order frees
458 void fastcall __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
461 __ClearPageReserved(page
);
462 set_page_count(page
, 0);
463 set_page_refcounted(page
);
469 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
470 struct page
*p
= &page
[loop
];
472 if (loop
+ 1 < BITS_PER_LONG
)
474 __ClearPageReserved(p
);
475 set_page_count(p
, 0);
478 set_page_refcounted(page
);
479 __free_pages(page
, order
);
485 * The order of subdivision here is critical for the IO subsystem.
486 * Please do not alter this order without good reasons and regression
487 * testing. Specifically, as large blocks of memory are subdivided,
488 * the order in which smaller blocks are delivered depends on the order
489 * they're subdivided in this function. This is the primary factor
490 * influencing the order in which pages are delivered to the IO
491 * subsystem according to empirical testing, and this is also justified
492 * by considering the behavior of a buddy system containing a single
493 * large block of memory acted on by a series of small allocations.
494 * This behavior is a critical factor in sglist merging's success.
498 static inline void expand(struct zone
*zone
, struct page
*page
,
499 int low
, int high
, struct free_area
*area
)
501 unsigned long size
= 1 << high
;
507 BUG_ON(bad_range(zone
, &page
[size
]));
508 list_add(&page
[size
].lru
, &area
->free_list
);
510 set_page_order(&page
[size
], high
);
515 * This page is about to be returned from the page allocator
517 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
519 if (unlikely(page_mapcount(page
) |
520 (page
->mapping
!= NULL
) |
521 (page_count(page
) != 0) |
537 * For now, we report if PG_reserved was found set, but do not
538 * clear it, and do not allocate the page: as a safety net.
540 if (PageReserved(page
))
543 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
|
544 1 << PG_referenced
| 1 << PG_arch_1
|
545 1 << PG_checked
| 1 << PG_mappedtodisk
);
546 set_page_private(page
, 0);
547 set_page_refcounted(page
);
548 kernel_map_pages(page
, 1 << order
, 1);
550 if (gfp_flags
& __GFP_ZERO
)
551 prep_zero_page(page
, order
, gfp_flags
);
553 if (order
&& (gfp_flags
& __GFP_COMP
))
554 prep_compound_page(page
, order
);
560 * Do the hard work of removing an element from the buddy allocator.
561 * Call me with the zone->lock already held.
563 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
)
565 struct free_area
* area
;
566 unsigned int current_order
;
569 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
570 area
= zone
->free_area
+ current_order
;
571 if (list_empty(&area
->free_list
))
574 page
= list_entry(area
->free_list
.next
, struct page
, lru
);
575 list_del(&page
->lru
);
576 rmv_page_order(page
);
578 zone
->free_pages
-= 1UL << order
;
579 expand(zone
, page
, order
, current_order
, area
);
587 * Obtain a specified number of elements from the buddy allocator, all under
588 * a single hold of the lock, for efficiency. Add them to the supplied list.
589 * Returns the number of new pages which were placed at *list.
591 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
592 unsigned long count
, struct list_head
*list
)
596 spin_lock(&zone
->lock
);
597 for (i
= 0; i
< count
; ++i
) {
598 struct page
*page
= __rmqueue(zone
, order
);
599 if (unlikely(page
== NULL
))
601 list_add_tail(&page
->lru
, list
);
603 spin_unlock(&zone
->lock
);
609 * Called from the slab reaper to drain pagesets on a particular node that
610 * belong to the currently executing processor.
611 * Note that this function must be called with the thread pinned to
612 * a single processor.
614 void drain_node_pages(int nodeid
)
619 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
620 struct zone
*zone
= NODE_DATA(nodeid
)->node_zones
+ z
;
621 struct per_cpu_pageset
*pset
;
623 pset
= zone_pcp(zone
, smp_processor_id());
624 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
625 struct per_cpu_pages
*pcp
;
629 local_irq_save(flags
);
630 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
632 local_irq_restore(flags
);
639 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
640 static void __drain_pages(unsigned int cpu
)
646 for_each_zone(zone
) {
647 struct per_cpu_pageset
*pset
;
649 pset
= zone_pcp(zone
, cpu
);
650 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
651 struct per_cpu_pages
*pcp
;
654 local_irq_save(flags
);
655 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
657 local_irq_restore(flags
);
661 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
665 void mark_free_pages(struct zone
*zone
)
667 unsigned long zone_pfn
, flags
;
669 struct list_head
*curr
;
671 if (!zone
->spanned_pages
)
674 spin_lock_irqsave(&zone
->lock
, flags
);
675 for (zone_pfn
= 0; zone_pfn
< zone
->spanned_pages
; ++zone_pfn
)
676 ClearPageNosaveFree(pfn_to_page(zone_pfn
+ zone
->zone_start_pfn
));
678 for (order
= MAX_ORDER
- 1; order
>= 0; --order
)
679 list_for_each(curr
, &zone
->free_area
[order
].free_list
) {
680 unsigned long start_pfn
, i
;
682 start_pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
684 for (i
=0; i
< (1<<order
); i
++)
685 SetPageNosaveFree(pfn_to_page(start_pfn
+i
));
687 spin_unlock_irqrestore(&zone
->lock
, flags
);
691 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
693 void drain_local_pages(void)
697 local_irq_save(flags
);
698 __drain_pages(smp_processor_id());
699 local_irq_restore(flags
);
701 #endif /* CONFIG_PM */
703 static void zone_statistics(struct zonelist
*zonelist
, struct zone
*z
, int cpu
)
706 pg_data_t
*pg
= z
->zone_pgdat
;
707 pg_data_t
*orig
= zonelist
->zones
[0]->zone_pgdat
;
708 struct per_cpu_pageset
*p
;
710 p
= zone_pcp(z
, cpu
);
715 zone_pcp(zonelist
->zones
[0], cpu
)->numa_foreign
++;
717 if (pg
== NODE_DATA(numa_node_id()))
725 * Free a 0-order page
727 static void fastcall
free_hot_cold_page(struct page
*page
, int cold
)
729 struct zone
*zone
= page_zone(page
);
730 struct per_cpu_pages
*pcp
;
733 arch_free_page(page
, 0);
736 page
->mapping
= NULL
;
737 if (free_pages_check(page
))
740 kernel_map_pages(page
, 1, 0);
742 pcp
= &zone_pcp(zone
, get_cpu())->pcp
[cold
];
743 local_irq_save(flags
);
744 __inc_page_state(pgfree
);
745 list_add(&page
->lru
, &pcp
->list
);
747 if (pcp
->count
>= pcp
->high
) {
748 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
749 pcp
->count
-= pcp
->batch
;
751 local_irq_restore(flags
);
755 void fastcall
free_hot_page(struct page
*page
)
757 free_hot_cold_page(page
, 0);
760 void fastcall
free_cold_page(struct page
*page
)
762 free_hot_cold_page(page
, 1);
766 * split_page takes a non-compound higher-order page, and splits it into
767 * n (1<<order) sub-pages: page[0..n]
768 * Each sub-page must be freed individually.
770 * Note: this is probably too low level an operation for use in drivers.
771 * Please consult with lkml before using this in your driver.
773 void split_page(struct page
*page
, unsigned int order
)
777 BUG_ON(PageCompound(page
));
778 BUG_ON(!page_count(page
));
779 for (i
= 1; i
< (1 << order
); i
++)
780 set_page_refcounted(page
+ i
);
784 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
785 * we cheat by calling it from here, in the order > 0 path. Saves a branch
788 static struct page
*buffered_rmqueue(struct zonelist
*zonelist
,
789 struct zone
*zone
, int order
, gfp_t gfp_flags
)
793 int cold
= !!(gfp_flags
& __GFP_COLD
);
798 if (likely(order
== 0)) {
799 struct per_cpu_pages
*pcp
;
801 pcp
= &zone_pcp(zone
, cpu
)->pcp
[cold
];
802 local_irq_save(flags
);
804 pcp
->count
+= rmqueue_bulk(zone
, 0,
805 pcp
->batch
, &pcp
->list
);
806 if (unlikely(!pcp
->count
))
809 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
810 list_del(&page
->lru
);
813 spin_lock_irqsave(&zone
->lock
, flags
);
814 page
= __rmqueue(zone
, order
);
815 spin_unlock(&zone
->lock
);
820 __mod_page_state_zone(zone
, pgalloc
, 1 << order
);
821 zone_statistics(zonelist
, zone
, cpu
);
822 local_irq_restore(flags
);
825 BUG_ON(bad_range(zone
, page
));
826 if (prep_new_page(page
, order
, gfp_flags
))
831 local_irq_restore(flags
);
836 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
837 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
838 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
839 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
840 #define ALLOC_HARDER 0x10 /* try to alloc harder */
841 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
842 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
845 * Return 1 if free pages are above 'mark'. This takes into account the order
848 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
849 int classzone_idx
, int alloc_flags
)
851 /* free_pages my go negative - that's OK */
852 long min
= mark
, free_pages
= z
->free_pages
- (1 << order
) + 1;
855 if (alloc_flags
& ALLOC_HIGH
)
857 if (alloc_flags
& ALLOC_HARDER
)
860 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
862 for (o
= 0; o
< order
; o
++) {
863 /* At the next order, this order's pages become unavailable */
864 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
866 /* Require fewer higher order pages to be free */
869 if (free_pages
<= min
)
876 * get_page_from_freeliest goes through the zonelist trying to allocate
880 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
,
881 struct zonelist
*zonelist
, int alloc_flags
)
883 struct zone
**z
= zonelist
->zones
;
884 struct page
*page
= NULL
;
885 int classzone_idx
= zone_idx(*z
);
888 * Go through the zonelist once, looking for a zone with enough free.
889 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
892 if ((alloc_flags
& ALLOC_CPUSET
) &&
893 !cpuset_zone_allowed(*z
, gfp_mask
))
896 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
898 if (alloc_flags
& ALLOC_WMARK_MIN
)
899 mark
= (*z
)->pages_min
;
900 else if (alloc_flags
& ALLOC_WMARK_LOW
)
901 mark
= (*z
)->pages_low
;
903 mark
= (*z
)->pages_high
;
904 if (!zone_watermark_ok(*z
, order
, mark
,
905 classzone_idx
, alloc_flags
))
906 if (!zone_reclaim_mode
||
907 !zone_reclaim(*z
, gfp_mask
, order
))
911 page
= buffered_rmqueue(zonelist
, *z
, order
, gfp_mask
);
915 } while (*(++z
) != NULL
);
920 * This is the 'heart' of the zoned buddy allocator.
922 struct page
* fastcall
923 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
924 struct zonelist
*zonelist
)
926 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
929 struct reclaim_state reclaim_state
;
930 struct task_struct
*p
= current
;
933 int did_some_progress
;
935 might_sleep_if(wait
);
938 z
= zonelist
->zones
; /* the list of zones suitable for gfp_mask */
940 if (unlikely(*z
== NULL
)) {
941 /* Should this ever happen?? */
945 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
946 zonelist
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
951 if (cpuset_zone_allowed(*z
, gfp_mask
))
952 wakeup_kswapd(*z
, order
);
956 * OK, we're below the kswapd watermark and have kicked background
957 * reclaim. Now things get more complex, so set up alloc_flags according
958 * to how we want to proceed.
960 * The caller may dip into page reserves a bit more if the caller
961 * cannot run direct reclaim, or if the caller has realtime scheduling
962 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
963 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
965 alloc_flags
= ALLOC_WMARK_MIN
;
966 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
967 alloc_flags
|= ALLOC_HARDER
;
968 if (gfp_mask
& __GFP_HIGH
)
969 alloc_flags
|= ALLOC_HIGH
;
970 alloc_flags
|= ALLOC_CPUSET
;
973 * Go through the zonelist again. Let __GFP_HIGH and allocations
974 * coming from realtime tasks go deeper into reserves.
976 * This is the last chance, in general, before the goto nopage.
977 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
978 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
980 page
= get_page_from_freelist(gfp_mask
, order
, zonelist
, alloc_flags
);
984 /* This allocation should allow future memory freeing. */
986 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
987 && !in_interrupt()) {
988 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
990 /* go through the zonelist yet again, ignoring mins */
991 page
= get_page_from_freelist(gfp_mask
, order
,
992 zonelist
, ALLOC_NO_WATERMARKS
);
995 if (gfp_mask
& __GFP_NOFAIL
) {
996 blk_congestion_wait(WRITE
, HZ
/50);
1003 /* Atomic allocations - we can't balance anything */
1010 /* We now go into synchronous reclaim */
1011 cpuset_memory_pressure_bump();
1012 p
->flags
|= PF_MEMALLOC
;
1013 reclaim_state
.reclaimed_slab
= 0;
1014 p
->reclaim_state
= &reclaim_state
;
1016 did_some_progress
= try_to_free_pages(zonelist
->zones
, gfp_mask
);
1018 p
->reclaim_state
= NULL
;
1019 p
->flags
&= ~PF_MEMALLOC
;
1023 if (likely(did_some_progress
)) {
1024 page
= get_page_from_freelist(gfp_mask
, order
,
1025 zonelist
, alloc_flags
);
1028 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1030 * Go through the zonelist yet one more time, keep
1031 * very high watermark here, this is only to catch
1032 * a parallel oom killing, we must fail if we're still
1033 * under heavy pressure.
1035 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1036 zonelist
, ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1040 out_of_memory(zonelist
, gfp_mask
, order
);
1045 * Don't let big-order allocations loop unless the caller explicitly
1046 * requests that. Wait for some write requests to complete then retry.
1048 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1049 * <= 3, but that may not be true in other implementations.
1052 if (!(gfp_mask
& __GFP_NORETRY
)) {
1053 if ((order
<= 3) || (gfp_mask
& __GFP_REPEAT
))
1055 if (gfp_mask
& __GFP_NOFAIL
)
1059 blk_congestion_wait(WRITE
, HZ
/50);
1064 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1065 printk(KERN_WARNING
"%s: page allocation failure."
1066 " order:%d, mode:0x%x\n",
1067 p
->comm
, order
, gfp_mask
);
1075 EXPORT_SYMBOL(__alloc_pages
);
1078 * Common helper functions.
1080 fastcall
unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1083 page
= alloc_pages(gfp_mask
, order
);
1086 return (unsigned long) page_address(page
);
1089 EXPORT_SYMBOL(__get_free_pages
);
1091 fastcall
unsigned long get_zeroed_page(gfp_t gfp_mask
)
1096 * get_zeroed_page() returns a 32-bit address, which cannot represent
1099 BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1101 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1103 return (unsigned long) page_address(page
);
1107 EXPORT_SYMBOL(get_zeroed_page
);
1109 void __pagevec_free(struct pagevec
*pvec
)
1111 int i
= pagevec_count(pvec
);
1114 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1117 fastcall
void __free_pages(struct page
*page
, unsigned int order
)
1119 if (put_page_testzero(page
)) {
1121 free_hot_page(page
);
1123 __free_pages_ok(page
, order
);
1127 EXPORT_SYMBOL(__free_pages
);
1129 fastcall
void free_pages(unsigned long addr
, unsigned int order
)
1132 BUG_ON(!virt_addr_valid((void *)addr
));
1133 __free_pages(virt_to_page((void *)addr
), order
);
1137 EXPORT_SYMBOL(free_pages
);
1140 * Total amount of free (allocatable) RAM:
1142 unsigned int nr_free_pages(void)
1144 unsigned int sum
= 0;
1148 sum
+= zone
->free_pages
;
1153 EXPORT_SYMBOL(nr_free_pages
);
1156 unsigned int nr_free_pages_pgdat(pg_data_t
*pgdat
)
1158 unsigned int i
, sum
= 0;
1160 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1161 sum
+= pgdat
->node_zones
[i
].free_pages
;
1167 static unsigned int nr_free_zone_pages(int offset
)
1169 /* Just pick one node, since fallback list is circular */
1170 pg_data_t
*pgdat
= NODE_DATA(numa_node_id());
1171 unsigned int sum
= 0;
1173 struct zonelist
*zonelist
= pgdat
->node_zonelists
+ offset
;
1174 struct zone
**zonep
= zonelist
->zones
;
1177 for (zone
= *zonep
++; zone
; zone
= *zonep
++) {
1178 unsigned long size
= zone
->present_pages
;
1179 unsigned long high
= zone
->pages_high
;
1188 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1190 unsigned int nr_free_buffer_pages(void)
1192 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1196 * Amount of free RAM allocatable within all zones
1198 unsigned int nr_free_pagecache_pages(void)
1200 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER
));
1203 #ifdef CONFIG_HIGHMEM
1204 unsigned int nr_free_highpages (void)
1207 unsigned int pages
= 0;
1209 for_each_online_pgdat(pgdat
)
1210 pages
+= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1217 static void show_node(struct zone
*zone
)
1219 printk("Node %d ", zone
->zone_pgdat
->node_id
);
1222 #define show_node(zone) do { } while (0)
1226 * Accumulate the page_state information across all CPUs.
1227 * The result is unavoidably approximate - it can change
1228 * during and after execution of this function.
1230 static DEFINE_PER_CPU(struct page_state
, page_states
) = {0};
1232 atomic_t nr_pagecache
= ATOMIC_INIT(0);
1233 EXPORT_SYMBOL(nr_pagecache
);
1235 DEFINE_PER_CPU(long, nr_pagecache_local
) = 0;
1238 static void __get_page_state(struct page_state
*ret
, int nr
, cpumask_t
*cpumask
)
1242 memset(ret
, 0, nr
* sizeof(unsigned long));
1243 cpus_and(*cpumask
, *cpumask
, cpu_online_map
);
1245 for_each_cpu_mask(cpu
, *cpumask
) {
1251 in
= (unsigned long *)&per_cpu(page_states
, cpu
);
1253 next_cpu
= next_cpu(cpu
, *cpumask
);
1254 if (likely(next_cpu
< NR_CPUS
))
1255 prefetch(&per_cpu(page_states
, next_cpu
));
1257 out
= (unsigned long *)ret
;
1258 for (off
= 0; off
< nr
; off
++)
1263 void get_page_state_node(struct page_state
*ret
, int node
)
1266 cpumask_t mask
= node_to_cpumask(node
);
1268 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
1269 nr
/= sizeof(unsigned long);
1271 __get_page_state(ret
, nr
+1, &mask
);
1274 void get_page_state(struct page_state
*ret
)
1277 cpumask_t mask
= CPU_MASK_ALL
;
1279 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
1280 nr
/= sizeof(unsigned long);
1282 __get_page_state(ret
, nr
+ 1, &mask
);
1285 void get_full_page_state(struct page_state
*ret
)
1287 cpumask_t mask
= CPU_MASK_ALL
;
1289 __get_page_state(ret
, sizeof(*ret
) / sizeof(unsigned long), &mask
);
1292 unsigned long read_page_state_offset(unsigned long offset
)
1294 unsigned long ret
= 0;
1297 for_each_online_cpu(cpu
) {
1300 in
= (unsigned long)&per_cpu(page_states
, cpu
) + offset
;
1301 ret
+= *((unsigned long *)in
);
1306 void __mod_page_state_offset(unsigned long offset
, unsigned long delta
)
1310 ptr
= &__get_cpu_var(page_states
);
1311 *(unsigned long *)(ptr
+ offset
) += delta
;
1313 EXPORT_SYMBOL(__mod_page_state_offset
);
1315 void mod_page_state_offset(unsigned long offset
, unsigned long delta
)
1317 unsigned long flags
;
1320 local_irq_save(flags
);
1321 ptr
= &__get_cpu_var(page_states
);
1322 *(unsigned long *)(ptr
+ offset
) += delta
;
1323 local_irq_restore(flags
);
1325 EXPORT_SYMBOL(mod_page_state_offset
);
1327 void __get_zone_counts(unsigned long *active
, unsigned long *inactive
,
1328 unsigned long *free
, struct pglist_data
*pgdat
)
1330 struct zone
*zones
= pgdat
->node_zones
;
1336 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1337 *active
+= zones
[i
].nr_active
;
1338 *inactive
+= zones
[i
].nr_inactive
;
1339 *free
+= zones
[i
].free_pages
;
1343 void get_zone_counts(unsigned long *active
,
1344 unsigned long *inactive
, unsigned long *free
)
1346 struct pglist_data
*pgdat
;
1351 for_each_online_pgdat(pgdat
) {
1352 unsigned long l
, m
, n
;
1353 __get_zone_counts(&l
, &m
, &n
, pgdat
);
1360 void si_meminfo(struct sysinfo
*val
)
1362 val
->totalram
= totalram_pages
;
1364 val
->freeram
= nr_free_pages();
1365 val
->bufferram
= nr_blockdev_pages();
1366 #ifdef CONFIG_HIGHMEM
1367 val
->totalhigh
= totalhigh_pages
;
1368 val
->freehigh
= nr_free_highpages();
1373 val
->mem_unit
= PAGE_SIZE
;
1376 EXPORT_SYMBOL(si_meminfo
);
1379 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1381 pg_data_t
*pgdat
= NODE_DATA(nid
);
1383 val
->totalram
= pgdat
->node_present_pages
;
1384 val
->freeram
= nr_free_pages_pgdat(pgdat
);
1385 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1386 val
->freehigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1387 val
->mem_unit
= PAGE_SIZE
;
1391 #define K(x) ((x) << (PAGE_SHIFT-10))
1394 * Show free area list (used inside shift_scroll-lock stuff)
1395 * We also calculate the percentage fragmentation. We do this by counting the
1396 * memory on each free list with the exception of the first item on the list.
1398 void show_free_areas(void)
1400 struct page_state ps
;
1401 int cpu
, temperature
;
1402 unsigned long active
;
1403 unsigned long inactive
;
1407 for_each_zone(zone
) {
1409 printk("%s per-cpu:", zone
->name
);
1411 if (!populated_zone(zone
)) {
1417 for_each_online_cpu(cpu
) {
1418 struct per_cpu_pageset
*pageset
;
1420 pageset
= zone_pcp(zone
, cpu
);
1422 for (temperature
= 0; temperature
< 2; temperature
++)
1423 printk("cpu %d %s: high %d, batch %d used:%d\n",
1425 temperature
? "cold" : "hot",
1426 pageset
->pcp
[temperature
].high
,
1427 pageset
->pcp
[temperature
].batch
,
1428 pageset
->pcp
[temperature
].count
);
1432 get_page_state(&ps
);
1433 get_zone_counts(&active
, &inactive
, &free
);
1435 printk("Free pages: %11ukB (%ukB HighMem)\n",
1437 K(nr_free_highpages()));
1439 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1440 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1449 ps
.nr_page_table_pages
);
1451 for_each_zone(zone
) {
1463 " pages_scanned:%lu"
1464 " all_unreclaimable? %s"
1467 K(zone
->free_pages
),
1470 K(zone
->pages_high
),
1472 K(zone
->nr_inactive
),
1473 K(zone
->present_pages
),
1474 zone
->pages_scanned
,
1475 (zone
->all_unreclaimable
? "yes" : "no")
1477 printk("lowmem_reserve[]:");
1478 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1479 printk(" %lu", zone
->lowmem_reserve
[i
]);
1483 for_each_zone(zone
) {
1484 unsigned long nr
, flags
, order
, total
= 0;
1487 printk("%s: ", zone
->name
);
1488 if (!populated_zone(zone
)) {
1493 spin_lock_irqsave(&zone
->lock
, flags
);
1494 for (order
= 0; order
< MAX_ORDER
; order
++) {
1495 nr
= zone
->free_area
[order
].nr_free
;
1496 total
+= nr
<< order
;
1497 printk("%lu*%lukB ", nr
, K(1UL) << order
);
1499 spin_unlock_irqrestore(&zone
->lock
, flags
);
1500 printk("= %lukB\n", K(total
));
1503 show_swap_cache_info();
1507 * Builds allocation fallback zone lists.
1509 * Add all populated zones of a node to the zonelist.
1511 static int __init
build_zonelists_node(pg_data_t
*pgdat
,
1512 struct zonelist
*zonelist
, int nr_zones
, int zone_type
)
1516 BUG_ON(zone_type
> ZONE_HIGHMEM
);
1519 zone
= pgdat
->node_zones
+ zone_type
;
1520 if (populated_zone(zone
)) {
1521 #ifndef CONFIG_HIGHMEM
1522 BUG_ON(zone_type
> ZONE_NORMAL
);
1524 zonelist
->zones
[nr_zones
++] = zone
;
1525 check_highest_zone(zone_type
);
1529 } while (zone_type
>= 0);
1533 static inline int highest_zone(int zone_bits
)
1535 int res
= ZONE_NORMAL
;
1536 if (zone_bits
& (__force
int)__GFP_HIGHMEM
)
1538 if (zone_bits
& (__force
int)__GFP_DMA32
)
1540 if (zone_bits
& (__force
int)__GFP_DMA
)
1546 #define MAX_NODE_LOAD (num_online_nodes())
1547 static int __initdata node_load
[MAX_NUMNODES
];
1549 * find_next_best_node - find the next node that should appear in a given node's fallback list
1550 * @node: node whose fallback list we're appending
1551 * @used_node_mask: nodemask_t of already used nodes
1553 * We use a number of factors to determine which is the next node that should
1554 * appear on a given node's fallback list. The node should not have appeared
1555 * already in @node's fallback list, and it should be the next closest node
1556 * according to the distance array (which contains arbitrary distance values
1557 * from each node to each node in the system), and should also prefer nodes
1558 * with no CPUs, since presumably they'll have very little allocation pressure
1559 * on them otherwise.
1560 * It returns -1 if no node is found.
1562 static int __init
find_next_best_node(int node
, nodemask_t
*used_node_mask
)
1565 int min_val
= INT_MAX
;
1568 /* Use the local node if we haven't already */
1569 if (!node_isset(node
, *used_node_mask
)) {
1570 node_set(node
, *used_node_mask
);
1574 for_each_online_node(n
) {
1577 /* Don't want a node to appear more than once */
1578 if (node_isset(n
, *used_node_mask
))
1581 /* Use the distance array to find the distance */
1582 val
= node_distance(node
, n
);
1584 /* Penalize nodes under us ("prefer the next node") */
1587 /* Give preference to headless and unused nodes */
1588 tmp
= node_to_cpumask(n
);
1589 if (!cpus_empty(tmp
))
1590 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
1592 /* Slight preference for less loaded node */
1593 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
1594 val
+= node_load
[n
];
1596 if (val
< min_val
) {
1603 node_set(best_node
, *used_node_mask
);
1608 static void __init
build_zonelists(pg_data_t
*pgdat
)
1610 int i
, j
, k
, node
, local_node
;
1611 int prev_node
, load
;
1612 struct zonelist
*zonelist
;
1613 nodemask_t used_mask
;
1615 /* initialize zonelists */
1616 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1617 zonelist
= pgdat
->node_zonelists
+ i
;
1618 zonelist
->zones
[0] = NULL
;
1621 /* NUMA-aware ordering of nodes */
1622 local_node
= pgdat
->node_id
;
1623 load
= num_online_nodes();
1624 prev_node
= local_node
;
1625 nodes_clear(used_mask
);
1626 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
1627 int distance
= node_distance(local_node
, node
);
1630 * If another node is sufficiently far away then it is better
1631 * to reclaim pages in a zone before going off node.
1633 if (distance
> RECLAIM_DISTANCE
)
1634 zone_reclaim_mode
= 1;
1637 * We don't want to pressure a particular node.
1638 * So adding penalty to the first node in same
1639 * distance group to make it round-robin.
1642 if (distance
!= node_distance(local_node
, prev_node
))
1643 node_load
[node
] += load
;
1646 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1647 zonelist
= pgdat
->node_zonelists
+ i
;
1648 for (j
= 0; zonelist
->zones
[j
] != NULL
; j
++);
1650 k
= highest_zone(i
);
1652 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1653 zonelist
->zones
[j
] = NULL
;
1658 #else /* CONFIG_NUMA */
1660 static void __init
build_zonelists(pg_data_t
*pgdat
)
1662 int i
, j
, k
, node
, local_node
;
1664 local_node
= pgdat
->node_id
;
1665 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1666 struct zonelist
*zonelist
;
1668 zonelist
= pgdat
->node_zonelists
+ i
;
1671 k
= highest_zone(i
);
1672 j
= build_zonelists_node(pgdat
, zonelist
, j
, k
);
1674 * Now we build the zonelist so that it contains the zones
1675 * of all the other nodes.
1676 * We don't want to pressure a particular node, so when
1677 * building the zones for node N, we make sure that the
1678 * zones coming right after the local ones are those from
1679 * node N+1 (modulo N)
1681 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
1682 if (!node_online(node
))
1684 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1686 for (node
= 0; node
< local_node
; node
++) {
1687 if (!node_online(node
))
1689 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1692 zonelist
->zones
[j
] = NULL
;
1696 #endif /* CONFIG_NUMA */
1698 void __init
build_all_zonelists(void)
1702 for_each_online_node(i
)
1703 build_zonelists(NODE_DATA(i
));
1704 printk("Built %i zonelists\n", num_online_nodes());
1705 cpuset_init_current_mems_allowed();
1709 * Helper functions to size the waitqueue hash table.
1710 * Essentially these want to choose hash table sizes sufficiently
1711 * large so that collisions trying to wait on pages are rare.
1712 * But in fact, the number of active page waitqueues on typical
1713 * systems is ridiculously low, less than 200. So this is even
1714 * conservative, even though it seems large.
1716 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1717 * waitqueues, i.e. the size of the waitq table given the number of pages.
1719 #define PAGES_PER_WAITQUEUE 256
1721 static inline unsigned long wait_table_size(unsigned long pages
)
1723 unsigned long size
= 1;
1725 pages
/= PAGES_PER_WAITQUEUE
;
1727 while (size
< pages
)
1731 * Once we have dozens or even hundreds of threads sleeping
1732 * on IO we've got bigger problems than wait queue collision.
1733 * Limit the size of the wait table to a reasonable size.
1735 size
= min(size
, 4096UL);
1737 return max(size
, 4UL);
1741 * This is an integer logarithm so that shifts can be used later
1742 * to extract the more random high bits from the multiplicative
1743 * hash function before the remainder is taken.
1745 static inline unsigned long wait_table_bits(unsigned long size
)
1750 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1752 static void __init
calculate_zone_totalpages(struct pglist_data
*pgdat
,
1753 unsigned long *zones_size
, unsigned long *zholes_size
)
1755 unsigned long realtotalpages
, totalpages
= 0;
1758 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1759 totalpages
+= zones_size
[i
];
1760 pgdat
->node_spanned_pages
= totalpages
;
1762 realtotalpages
= totalpages
;
1764 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1765 realtotalpages
-= zholes_size
[i
];
1766 pgdat
->node_present_pages
= realtotalpages
;
1767 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
, realtotalpages
);
1772 * Initially all pages are reserved - free ones are freed
1773 * up by free_all_bootmem() once the early boot process is
1774 * done. Non-atomic initialization, single-pass.
1776 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
1777 unsigned long start_pfn
)
1780 unsigned long end_pfn
= start_pfn
+ size
;
1783 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1784 if (!early_pfn_valid(pfn
))
1786 page
= pfn_to_page(pfn
);
1787 set_page_links(page
, zone
, nid
, pfn
);
1788 init_page_count(page
);
1789 reset_page_mapcount(page
);
1790 SetPageReserved(page
);
1791 INIT_LIST_HEAD(&page
->lru
);
1792 #ifdef WANT_PAGE_VIRTUAL
1793 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1794 if (!is_highmem_idx(zone
))
1795 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1800 void zone_init_free_lists(struct pglist_data
*pgdat
, struct zone
*zone
,
1804 for (order
= 0; order
< MAX_ORDER
; order
++) {
1805 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
);
1806 zone
->free_area
[order
].nr_free
= 0;
1810 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1811 void zonetable_add(struct zone
*zone
, int nid
, int zid
, unsigned long pfn
,
1814 unsigned long snum
= pfn_to_section_nr(pfn
);
1815 unsigned long end
= pfn_to_section_nr(pfn
+ size
);
1818 zone_table
[ZONETABLE_INDEX(nid
, zid
)] = zone
;
1820 for (; snum
<= end
; snum
++)
1821 zone_table
[ZONETABLE_INDEX(snum
, zid
)] = zone
;
1824 #ifndef __HAVE_ARCH_MEMMAP_INIT
1825 #define memmap_init(size, nid, zone, start_pfn) \
1826 memmap_init_zone((size), (nid), (zone), (start_pfn))
1829 static int __cpuinit
zone_batchsize(struct zone
*zone
)
1834 * The per-cpu-pages pools are set to around 1000th of the
1835 * size of the zone. But no more than 1/2 of a meg.
1837 * OK, so we don't know how big the cache is. So guess.
1839 batch
= zone
->present_pages
/ 1024;
1840 if (batch
* PAGE_SIZE
> 512 * 1024)
1841 batch
= (512 * 1024) / PAGE_SIZE
;
1842 batch
/= 4; /* We effectively *= 4 below */
1847 * Clamp the batch to a 2^n - 1 value. Having a power
1848 * of 2 value was found to be more likely to have
1849 * suboptimal cache aliasing properties in some cases.
1851 * For example if 2 tasks are alternately allocating
1852 * batches of pages, one task can end up with a lot
1853 * of pages of one half of the possible page colors
1854 * and the other with pages of the other colors.
1856 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
1861 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
1863 struct per_cpu_pages
*pcp
;
1865 memset(p
, 0, sizeof(*p
));
1867 pcp
= &p
->pcp
[0]; /* hot */
1869 pcp
->high
= 6 * batch
;
1870 pcp
->batch
= max(1UL, 1 * batch
);
1871 INIT_LIST_HEAD(&pcp
->list
);
1873 pcp
= &p
->pcp
[1]; /* cold*/
1875 pcp
->high
= 2 * batch
;
1876 pcp
->batch
= max(1UL, batch
/2);
1877 INIT_LIST_HEAD(&pcp
->list
);
1881 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1882 * to the value high for the pageset p.
1885 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
1888 struct per_cpu_pages
*pcp
;
1890 pcp
= &p
->pcp
[0]; /* hot list */
1892 pcp
->batch
= max(1UL, high
/4);
1893 if ((high
/4) > (PAGE_SHIFT
* 8))
1894 pcp
->batch
= PAGE_SHIFT
* 8;
1900 * Boot pageset table. One per cpu which is going to be used for all
1901 * zones and all nodes. The parameters will be set in such a way
1902 * that an item put on a list will immediately be handed over to
1903 * the buddy list. This is safe since pageset manipulation is done
1904 * with interrupts disabled.
1906 * Some NUMA counter updates may also be caught by the boot pagesets.
1908 * The boot_pagesets must be kept even after bootup is complete for
1909 * unused processors and/or zones. They do play a role for bootstrapping
1910 * hotplugged processors.
1912 * zoneinfo_show() and maybe other functions do
1913 * not check if the processor is online before following the pageset pointer.
1914 * Other parts of the kernel may not check if the zone is available.
1916 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
1919 * Dynamically allocate memory for the
1920 * per cpu pageset array in struct zone.
1922 static int __cpuinit
process_zones(int cpu
)
1924 struct zone
*zone
, *dzone
;
1926 for_each_zone(zone
) {
1928 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
1929 GFP_KERNEL
, cpu_to_node(cpu
));
1930 if (!zone_pcp(zone
, cpu
))
1933 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
1935 if (percpu_pagelist_fraction
)
1936 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
1937 (zone
->present_pages
/ percpu_pagelist_fraction
));
1942 for_each_zone(dzone
) {
1945 kfree(zone_pcp(dzone
, cpu
));
1946 zone_pcp(dzone
, cpu
) = NULL
;
1951 static inline void free_zone_pagesets(int cpu
)
1955 for_each_zone(zone
) {
1956 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
1958 zone_pcp(zone
, cpu
) = NULL
;
1963 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
1964 unsigned long action
,
1967 int cpu
= (long)hcpu
;
1968 int ret
= NOTIFY_OK
;
1971 case CPU_UP_PREPARE
:
1972 if (process_zones(cpu
))
1975 case CPU_UP_CANCELED
:
1977 free_zone_pagesets(cpu
);
1985 static struct notifier_block pageset_notifier
=
1986 { &pageset_cpuup_callback
, NULL
, 0 };
1988 void __init
setup_per_cpu_pageset(void)
1992 /* Initialize per_cpu_pageset for cpu 0.
1993 * A cpuup callback will do this for every cpu
1994 * as it comes online
1996 err
= process_zones(smp_processor_id());
1998 register_cpu_notifier(&pageset_notifier
);
2004 void zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
2007 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2010 * The per-page waitqueue mechanism uses hashed waitqueues
2013 zone
->wait_table_size
= wait_table_size(zone_size_pages
);
2014 zone
->wait_table_bits
= wait_table_bits(zone
->wait_table_size
);
2015 zone
->wait_table
= (wait_queue_head_t
*)
2016 alloc_bootmem_node(pgdat
, zone
->wait_table_size
2017 * sizeof(wait_queue_head_t
));
2019 for(i
= 0; i
< zone
->wait_table_size
; ++i
)
2020 init_waitqueue_head(zone
->wait_table
+ i
);
2023 static __meminit
void zone_pcp_init(struct zone
*zone
)
2026 unsigned long batch
= zone_batchsize(zone
);
2028 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2030 /* Early boot. Slab allocator not functional yet */
2031 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2032 setup_pageset(&boot_pageset
[cpu
],0);
2034 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2037 if (zone
->present_pages
)
2038 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2039 zone
->name
, zone
->present_pages
, batch
);
2042 static __meminit
void init_currently_empty_zone(struct zone
*zone
,
2043 unsigned long zone_start_pfn
, unsigned long size
)
2045 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2047 zone_wait_table_init(zone
, size
);
2048 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2050 zone
->zone_start_pfn
= zone_start_pfn
;
2052 memmap_init(size
, pgdat
->node_id
, zone_idx(zone
), zone_start_pfn
);
2054 zone_init_free_lists(pgdat
, zone
, zone
->spanned_pages
);
2058 * Set up the zone data structures:
2059 * - mark all pages reserved
2060 * - mark all memory queues empty
2061 * - clear the memory bitmaps
2063 static void __init
free_area_init_core(struct pglist_data
*pgdat
,
2064 unsigned long *zones_size
, unsigned long *zholes_size
)
2067 int nid
= pgdat
->node_id
;
2068 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
2070 pgdat_resize_init(pgdat
);
2071 pgdat
->nr_zones
= 0;
2072 init_waitqueue_head(&pgdat
->kswapd_wait
);
2073 pgdat
->kswapd_max_order
= 0;
2075 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2076 struct zone
*zone
= pgdat
->node_zones
+ j
;
2077 unsigned long size
, realsize
;
2079 realsize
= size
= zones_size
[j
];
2081 realsize
-= zholes_size
[j
];
2083 if (j
< ZONE_HIGHMEM
)
2084 nr_kernel_pages
+= realsize
;
2085 nr_all_pages
+= realsize
;
2087 zone
->spanned_pages
= size
;
2088 zone
->present_pages
= realsize
;
2089 zone
->name
= zone_names
[j
];
2090 spin_lock_init(&zone
->lock
);
2091 spin_lock_init(&zone
->lru_lock
);
2092 zone_seqlock_init(zone
);
2093 zone
->zone_pgdat
= pgdat
;
2094 zone
->free_pages
= 0;
2096 zone
->temp_priority
= zone
->prev_priority
= DEF_PRIORITY
;
2098 zone_pcp_init(zone
);
2099 INIT_LIST_HEAD(&zone
->active_list
);
2100 INIT_LIST_HEAD(&zone
->inactive_list
);
2101 zone
->nr_scan_active
= 0;
2102 zone
->nr_scan_inactive
= 0;
2103 zone
->nr_active
= 0;
2104 zone
->nr_inactive
= 0;
2105 atomic_set(&zone
->reclaim_in_progress
, 0);
2109 zonetable_add(zone
, nid
, j
, zone_start_pfn
, size
);
2110 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
2111 zone_start_pfn
+= size
;
2115 static void __init
alloc_node_mem_map(struct pglist_data
*pgdat
)
2117 /* Skip empty nodes */
2118 if (!pgdat
->node_spanned_pages
)
2121 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2122 /* ia64 gets its own node_mem_map, before this, without bootmem */
2123 if (!pgdat
->node_mem_map
) {
2127 size
= (pgdat
->node_spanned_pages
+ 1) * sizeof(struct page
);
2128 map
= alloc_remap(pgdat
->node_id
, size
);
2130 map
= alloc_bootmem_node(pgdat
, size
);
2131 pgdat
->node_mem_map
= map
;
2133 #ifdef CONFIG_FLATMEM
2135 * With no DISCONTIG, the global mem_map is just set as node 0's
2137 if (pgdat
== NODE_DATA(0))
2138 mem_map
= NODE_DATA(0)->node_mem_map
;
2140 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2143 void __init
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
2144 unsigned long *zones_size
, unsigned long node_start_pfn
,
2145 unsigned long *zholes_size
)
2147 pgdat
->node_id
= nid
;
2148 pgdat
->node_start_pfn
= node_start_pfn
;
2149 calculate_zone_totalpages(pgdat
, zones_size
, zholes_size
);
2151 alloc_node_mem_map(pgdat
);
2153 free_area_init_core(pgdat
, zones_size
, zholes_size
);
2156 #ifndef CONFIG_NEED_MULTIPLE_NODES
2157 static bootmem_data_t contig_bootmem_data
;
2158 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
2160 EXPORT_SYMBOL(contig_page_data
);
2163 void __init
free_area_init(unsigned long *zones_size
)
2165 free_area_init_node(0, NODE_DATA(0), zones_size
,
2166 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
2169 #ifdef CONFIG_PROC_FS
2171 #include <linux/seq_file.h>
2173 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
2177 for (pgdat
= first_online_pgdat();
2179 pgdat
= next_online_pgdat(pgdat
))
2185 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
2187 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
2190 return next_online_pgdat(pgdat
);
2193 static void frag_stop(struct seq_file
*m
, void *arg
)
2198 * This walks the free areas for each zone.
2200 static int frag_show(struct seq_file
*m
, void *arg
)
2202 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
2204 struct zone
*node_zones
= pgdat
->node_zones
;
2205 unsigned long flags
;
2208 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
2209 if (!populated_zone(zone
))
2212 spin_lock_irqsave(&zone
->lock
, flags
);
2213 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
2214 for (order
= 0; order
< MAX_ORDER
; ++order
)
2215 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
2216 spin_unlock_irqrestore(&zone
->lock
, flags
);
2222 struct seq_operations fragmentation_op
= {
2223 .start
= frag_start
,
2230 * Output information about zones in @pgdat.
2232 static int zoneinfo_show(struct seq_file
*m
, void *arg
)
2234 pg_data_t
*pgdat
= arg
;
2236 struct zone
*node_zones
= pgdat
->node_zones
;
2237 unsigned long flags
;
2239 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; zone
++) {
2242 if (!populated_zone(zone
))
2245 spin_lock_irqsave(&zone
->lock
, flags
);
2246 seq_printf(m
, "Node %d, zone %8s", pgdat
->node_id
, zone
->name
);
2254 "\n scanned %lu (a: %lu i: %lu)"
2263 zone
->pages_scanned
,
2264 zone
->nr_scan_active
, zone
->nr_scan_inactive
,
2265 zone
->spanned_pages
,
2266 zone
->present_pages
);
2268 "\n protection: (%lu",
2269 zone
->lowmem_reserve
[0]);
2270 for (i
= 1; i
< ARRAY_SIZE(zone
->lowmem_reserve
); i
++)
2271 seq_printf(m
, ", %lu", zone
->lowmem_reserve
[i
]);
2275 for_each_online_cpu(i
) {
2276 struct per_cpu_pageset
*pageset
;
2279 pageset
= zone_pcp(zone
, i
);
2280 for (j
= 0; j
< ARRAY_SIZE(pageset
->pcp
); j
++) {
2281 if (pageset
->pcp
[j
].count
)
2284 if (j
== ARRAY_SIZE(pageset
->pcp
))
2286 for (j
= 0; j
< ARRAY_SIZE(pageset
->pcp
); j
++) {
2288 "\n cpu: %i pcp: %i"
2293 pageset
->pcp
[j
].count
,
2294 pageset
->pcp
[j
].high
,
2295 pageset
->pcp
[j
].batch
);
2301 "\n numa_foreign: %lu"
2302 "\n interleave_hit: %lu"
2303 "\n local_node: %lu"
2304 "\n other_node: %lu",
2307 pageset
->numa_foreign
,
2308 pageset
->interleave_hit
,
2309 pageset
->local_node
,
2310 pageset
->other_node
);
2314 "\n all_unreclaimable: %u"
2315 "\n prev_priority: %i"
2316 "\n temp_priority: %i"
2317 "\n start_pfn: %lu",
2318 zone
->all_unreclaimable
,
2319 zone
->prev_priority
,
2320 zone
->temp_priority
,
2321 zone
->zone_start_pfn
);
2322 spin_unlock_irqrestore(&zone
->lock
, flags
);
2328 struct seq_operations zoneinfo_op
= {
2329 .start
= frag_start
, /* iterate over all zones. The same as in
2333 .show
= zoneinfo_show
,
2336 static char *vmstat_text
[] = {
2340 "nr_page_table_pages",
2371 "pgscan_kswapd_high",
2372 "pgscan_kswapd_normal",
2373 "pgscan_kswapd_dma32",
2374 "pgscan_kswapd_dma",
2376 "pgscan_direct_high",
2377 "pgscan_direct_normal",
2378 "pgscan_direct_dma32",
2379 "pgscan_direct_dma",
2384 "kswapd_inodesteal",
2392 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
2394 struct page_state
*ps
;
2396 if (*pos
>= ARRAY_SIZE(vmstat_text
))
2399 ps
= kmalloc(sizeof(*ps
), GFP_KERNEL
);
2402 return ERR_PTR(-ENOMEM
);
2403 get_full_page_state(ps
);
2404 ps
->pgpgin
/= 2; /* sectors -> kbytes */
2406 return (unsigned long *)ps
+ *pos
;
2409 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
2412 if (*pos
>= ARRAY_SIZE(vmstat_text
))
2414 return (unsigned long *)m
->private + *pos
;
2417 static int vmstat_show(struct seq_file
*m
, void *arg
)
2419 unsigned long *l
= arg
;
2420 unsigned long off
= l
- (unsigned long *)m
->private;
2422 seq_printf(m
, "%s %lu\n", vmstat_text
[off
], *l
);
2426 static void vmstat_stop(struct seq_file
*m
, void *arg
)
2432 struct seq_operations vmstat_op
= {
2433 .start
= vmstat_start
,
2434 .next
= vmstat_next
,
2435 .stop
= vmstat_stop
,
2436 .show
= vmstat_show
,
2439 #endif /* CONFIG_PROC_FS */
2441 #ifdef CONFIG_HOTPLUG_CPU
2442 static int page_alloc_cpu_notify(struct notifier_block
*self
,
2443 unsigned long action
, void *hcpu
)
2445 int cpu
= (unsigned long)hcpu
;
2447 unsigned long *src
, *dest
;
2449 if (action
== CPU_DEAD
) {
2452 /* Drain local pagecache count. */
2453 count
= &per_cpu(nr_pagecache_local
, cpu
);
2454 atomic_add(*count
, &nr_pagecache
);
2456 local_irq_disable();
2459 /* Add dead cpu's page_states to our own. */
2460 dest
= (unsigned long *)&__get_cpu_var(page_states
);
2461 src
= (unsigned long *)&per_cpu(page_states
, cpu
);
2463 for (i
= 0; i
< sizeof(struct page_state
)/sizeof(unsigned long);
2473 #endif /* CONFIG_HOTPLUG_CPU */
2475 void __init
page_alloc_init(void)
2477 hotcpu_notifier(page_alloc_cpu_notify
, 0);
2481 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2482 * or min_free_kbytes changes.
2484 static void calculate_totalreserve_pages(void)
2486 struct pglist_data
*pgdat
;
2487 unsigned long reserve_pages
= 0;
2490 for_each_online_pgdat(pgdat
) {
2491 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2492 struct zone
*zone
= pgdat
->node_zones
+ i
;
2493 unsigned long max
= 0;
2495 /* Find valid and maximum lowmem_reserve in the zone */
2496 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
2497 if (zone
->lowmem_reserve
[j
] > max
)
2498 max
= zone
->lowmem_reserve
[j
];
2501 /* we treat pages_high as reserved pages. */
2502 max
+= zone
->pages_high
;
2504 if (max
> zone
->present_pages
)
2505 max
= zone
->present_pages
;
2506 reserve_pages
+= max
;
2509 totalreserve_pages
= reserve_pages
;
2513 * setup_per_zone_lowmem_reserve - called whenever
2514 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2515 * has a correct pages reserved value, so an adequate number of
2516 * pages are left in the zone after a successful __alloc_pages().
2518 static void setup_per_zone_lowmem_reserve(void)
2520 struct pglist_data
*pgdat
;
2523 for_each_online_pgdat(pgdat
) {
2524 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2525 struct zone
*zone
= pgdat
->node_zones
+ j
;
2526 unsigned long present_pages
= zone
->present_pages
;
2528 zone
->lowmem_reserve
[j
] = 0;
2530 for (idx
= j
-1; idx
>= 0; idx
--) {
2531 struct zone
*lower_zone
;
2533 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
2534 sysctl_lowmem_reserve_ratio
[idx
] = 1;
2536 lower_zone
= pgdat
->node_zones
+ idx
;
2537 lower_zone
->lowmem_reserve
[j
] = present_pages
/
2538 sysctl_lowmem_reserve_ratio
[idx
];
2539 present_pages
+= lower_zone
->present_pages
;
2544 /* update totalreserve_pages */
2545 calculate_totalreserve_pages();
2549 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2550 * that the pages_{min,low,high} values for each zone are set correctly
2551 * with respect to min_free_kbytes.
2553 void setup_per_zone_pages_min(void)
2555 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
2556 unsigned long lowmem_pages
= 0;
2558 unsigned long flags
;
2560 /* Calculate total number of !ZONE_HIGHMEM pages */
2561 for_each_zone(zone
) {
2562 if (!is_highmem(zone
))
2563 lowmem_pages
+= zone
->present_pages
;
2566 for_each_zone(zone
) {
2568 spin_lock_irqsave(&zone
->lru_lock
, flags
);
2569 tmp
= (pages_min
* zone
->present_pages
) / lowmem_pages
;
2570 if (is_highmem(zone
)) {
2572 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2573 * need highmem pages, so cap pages_min to a small
2576 * The (pages_high-pages_low) and (pages_low-pages_min)
2577 * deltas controls asynch page reclaim, and so should
2578 * not be capped for highmem.
2582 min_pages
= zone
->present_pages
/ 1024;
2583 if (min_pages
< SWAP_CLUSTER_MAX
)
2584 min_pages
= SWAP_CLUSTER_MAX
;
2585 if (min_pages
> 128)
2587 zone
->pages_min
= min_pages
;
2590 * If it's a lowmem zone, reserve a number of pages
2591 * proportionate to the zone's size.
2593 zone
->pages_min
= tmp
;
2596 zone
->pages_low
= zone
->pages_min
+ tmp
/ 4;
2597 zone
->pages_high
= zone
->pages_min
+ tmp
/ 2;
2598 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2601 /* update totalreserve_pages */
2602 calculate_totalreserve_pages();
2606 * Initialise min_free_kbytes.
2608 * For small machines we want it small (128k min). For large machines
2609 * we want it large (64MB max). But it is not linear, because network
2610 * bandwidth does not increase linearly with machine size. We use
2612 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2613 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2629 static int __init
init_per_zone_pages_min(void)
2631 unsigned long lowmem_kbytes
;
2633 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
2635 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
2636 if (min_free_kbytes
< 128)
2637 min_free_kbytes
= 128;
2638 if (min_free_kbytes
> 65536)
2639 min_free_kbytes
= 65536;
2640 setup_per_zone_pages_min();
2641 setup_per_zone_lowmem_reserve();
2644 module_init(init_per_zone_pages_min
)
2647 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2648 * that we can call two helper functions whenever min_free_kbytes
2651 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
2652 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2654 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
2655 setup_per_zone_pages_min();
2660 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2661 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2662 * whenever sysctl_lowmem_reserve_ratio changes.
2664 * The reserve ratio obviously has absolutely no relation with the
2665 * pages_min watermarks. The lowmem reserve ratio can only make sense
2666 * if in function of the boot time zone sizes.
2668 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
2669 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2671 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2672 setup_per_zone_lowmem_reserve();
2677 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2678 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2679 * can have before it gets flushed back to buddy allocator.
2682 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
2683 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2689 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2690 if (!write
|| (ret
== -EINVAL
))
2692 for_each_zone(zone
) {
2693 for_each_online_cpu(cpu
) {
2695 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
2696 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
2702 __initdata
int hashdist
= HASHDIST_DEFAULT
;
2705 static int __init
set_hashdist(char *str
)
2709 hashdist
= simple_strtoul(str
, &str
, 0);
2712 __setup("hashdist=", set_hashdist
);
2716 * allocate a large system hash table from bootmem
2717 * - it is assumed that the hash table must contain an exact power-of-2
2718 * quantity of entries
2719 * - limit is the number of hash buckets, not the total allocation size
2721 void *__init
alloc_large_system_hash(const char *tablename
,
2722 unsigned long bucketsize
,
2723 unsigned long numentries
,
2726 unsigned int *_hash_shift
,
2727 unsigned int *_hash_mask
,
2728 unsigned long limit
)
2730 unsigned long long max
= limit
;
2731 unsigned long log2qty
, size
;
2734 /* allow the kernel cmdline to have a say */
2736 /* round applicable memory size up to nearest megabyte */
2737 numentries
= (flags
& HASH_HIGHMEM
) ? nr_all_pages
: nr_kernel_pages
;
2738 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
2739 numentries
>>= 20 - PAGE_SHIFT
;
2740 numentries
<<= 20 - PAGE_SHIFT
;
2742 /* limit to 1 bucket per 2^scale bytes of low memory */
2743 if (scale
> PAGE_SHIFT
)
2744 numentries
>>= (scale
- PAGE_SHIFT
);
2746 numentries
<<= (PAGE_SHIFT
- scale
);
2748 numentries
= roundup_pow_of_two(numentries
);
2750 /* limit allocation size to 1/16 total memory by default */
2752 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
2753 do_div(max
, bucketsize
);
2756 if (numentries
> max
)
2759 log2qty
= long_log2(numentries
);
2762 size
= bucketsize
<< log2qty
;
2763 if (flags
& HASH_EARLY
)
2764 table
= alloc_bootmem(size
);
2766 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
2768 unsigned long order
;
2769 for (order
= 0; ((1UL << order
) << PAGE_SHIFT
) < size
; order
++)
2771 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
2773 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
2776 panic("Failed to allocate %s hash table\n", tablename
);
2778 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2781 long_log2(size
) - PAGE_SHIFT
,
2785 *_hash_shift
= log2qty
;
2787 *_hash_mask
= (1 << log2qty
) - 1;
2792 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2794 * pfn <-> page translation. out-of-line version.
2795 * (see asm-generic/memory_model.h)
2797 #if defined(CONFIG_FLATMEM)
2798 struct page
*pfn_to_page(unsigned long pfn
)
2800 return mem_map
+ (pfn
- ARCH_PFN_OFFSET
);
2802 unsigned long page_to_pfn(struct page
*page
)
2804 return (page
- mem_map
) + ARCH_PFN_OFFSET
;
2806 #elif defined(CONFIG_DISCONTIGMEM)
2807 struct page
*pfn_to_page(unsigned long pfn
)
2809 int nid
= arch_pfn_to_nid(pfn
);
2810 return NODE_DATA(nid
)->node_mem_map
+ arch_local_page_offset(pfn
,nid
);
2812 unsigned long page_to_pfn(struct page
*page
)
2814 struct pglist_data
*pgdat
= NODE_DATA(page_to_nid(page
));
2815 return (page
- pgdat
->node_mem_map
) + pgdat
->node_start_pfn
;
2817 #elif defined(CONFIG_SPARSEMEM)
2818 struct page
*pfn_to_page(unsigned long pfn
)
2820 return __section_mem_map_addr(__pfn_to_section(pfn
)) + pfn
;
2823 unsigned long page_to_pfn(struct page
*page
)
2825 long section_id
= page_to_section(page
);
2826 return page
- __section_mem_map_addr(__nr_to_section(section_id
));
2828 #endif /* CONFIG_FLATMEM/DISCONTIGMME/SPARSEMEM */
2829 EXPORT_SYMBOL(pfn_to_page
);
2830 EXPORT_SYMBOL(page_to_pfn
);
2831 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */