sched: fix CONFIG_SCHED_DEBUG dependency of lockdep sysctls
[usb.git] / drivers / firewire / fw-ohci.c
blob7e427b4c74b5fe0ea5a8c87e9250a4c0b576fe95
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/delay.h>
27 #include <linux/poll.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/mm.h>
31 #include <asm/uaccess.h>
32 #include <asm/semaphore.h>
34 #include "fw-transaction.h"
35 #include "fw-ohci.h"
37 #define DESCRIPTOR_OUTPUT_MORE 0
38 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
39 #define DESCRIPTOR_INPUT_MORE (2 << 12)
40 #define DESCRIPTOR_INPUT_LAST (3 << 12)
41 #define DESCRIPTOR_STATUS (1 << 11)
42 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
43 #define DESCRIPTOR_PING (1 << 7)
44 #define DESCRIPTOR_YY (1 << 6)
45 #define DESCRIPTOR_NO_IRQ (0 << 4)
46 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
47 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
48 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
49 #define DESCRIPTOR_WAIT (3 << 0)
51 struct descriptor {
52 __le16 req_count;
53 __le16 control;
54 __le32 data_address;
55 __le32 branch_address;
56 __le16 res_count;
57 __le16 transfer_status;
58 } __attribute__((aligned(16)));
60 struct db_descriptor {
61 __le16 first_size;
62 __le16 control;
63 __le16 second_req_count;
64 __le16 first_req_count;
65 __le32 branch_address;
66 __le16 second_res_count;
67 __le16 first_res_count;
68 __le32 reserved0;
69 __le32 first_buffer;
70 __le32 second_buffer;
71 __le32 reserved1;
72 } __attribute__((aligned(16)));
74 #define CONTROL_SET(regs) (regs)
75 #define CONTROL_CLEAR(regs) ((regs) + 4)
76 #define COMMAND_PTR(regs) ((regs) + 12)
77 #define CONTEXT_MATCH(regs) ((regs) + 16)
79 struct ar_buffer {
80 struct descriptor descriptor;
81 struct ar_buffer *next;
82 __le32 data[0];
85 struct ar_context {
86 struct fw_ohci *ohci;
87 struct ar_buffer *current_buffer;
88 struct ar_buffer *last_buffer;
89 void *pointer;
90 u32 regs;
91 struct tasklet_struct tasklet;
94 struct context;
96 typedef int (*descriptor_callback_t)(struct context *ctx,
97 struct descriptor *d,
98 struct descriptor *last);
99 struct context {
100 struct fw_ohci *ohci;
101 u32 regs;
103 struct descriptor *buffer;
104 dma_addr_t buffer_bus;
105 size_t buffer_size;
106 struct descriptor *head_descriptor;
107 struct descriptor *tail_descriptor;
108 struct descriptor *tail_descriptor_last;
109 struct descriptor *prev_descriptor;
111 descriptor_callback_t callback;
113 struct tasklet_struct tasklet;
116 #define IT_HEADER_SY(v) ((v) << 0)
117 #define IT_HEADER_TCODE(v) ((v) << 4)
118 #define IT_HEADER_CHANNEL(v) ((v) << 8)
119 #define IT_HEADER_TAG(v) ((v) << 14)
120 #define IT_HEADER_SPEED(v) ((v) << 16)
121 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
123 struct iso_context {
124 struct fw_iso_context base;
125 struct context context;
126 void *header;
127 size_t header_length;
130 #define CONFIG_ROM_SIZE 1024
132 struct fw_ohci {
133 struct fw_card card;
135 u32 version;
136 __iomem char *registers;
137 dma_addr_t self_id_bus;
138 __le32 *self_id_cpu;
139 struct tasklet_struct bus_reset_tasklet;
140 int node_id;
141 int generation;
142 int request_generation;
143 u32 bus_seconds;
146 * Spinlock for accessing fw_ohci data. Never call out of
147 * this driver with this lock held.
149 spinlock_t lock;
150 u32 self_id_buffer[512];
152 /* Config rom buffers */
153 __be32 *config_rom;
154 dma_addr_t config_rom_bus;
155 __be32 *next_config_rom;
156 dma_addr_t next_config_rom_bus;
157 u32 next_header;
159 struct ar_context ar_request_ctx;
160 struct ar_context ar_response_ctx;
161 struct context at_request_ctx;
162 struct context at_response_ctx;
164 u32 it_context_mask;
165 struct iso_context *it_context_list;
166 u32 ir_context_mask;
167 struct iso_context *ir_context_list;
170 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
172 return container_of(card, struct fw_ohci, card);
175 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
176 #define IR_CONTEXT_BUFFER_FILL 0x80000000
177 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
178 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
179 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
180 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
182 #define CONTEXT_RUN 0x8000
183 #define CONTEXT_WAKE 0x1000
184 #define CONTEXT_DEAD 0x0800
185 #define CONTEXT_ACTIVE 0x0400
187 #define OHCI1394_MAX_AT_REQ_RETRIES 0x2
188 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
189 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
191 #define FW_OHCI_MAJOR 240
192 #define OHCI1394_REGISTER_SIZE 0x800
193 #define OHCI_LOOP_COUNT 500
194 #define OHCI1394_PCI_HCI_Control 0x40
195 #define SELF_ID_BUF_SIZE 0x800
196 #define OHCI_TCODE_PHY_PACKET 0x0e
197 #define OHCI_VERSION_1_1 0x010010
198 #define ISO_BUFFER_SIZE (64 * 1024)
199 #define AT_BUFFER_SIZE 4096
201 static char ohci_driver_name[] = KBUILD_MODNAME;
203 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
205 writel(data, ohci->registers + offset);
208 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
210 return readl(ohci->registers + offset);
213 static inline void flush_writes(const struct fw_ohci *ohci)
215 /* Do a dummy read to flush writes. */
216 reg_read(ohci, OHCI1394_Version);
219 static int
220 ohci_update_phy_reg(struct fw_card *card, int addr,
221 int clear_bits, int set_bits)
223 struct fw_ohci *ohci = fw_ohci(card);
224 u32 val, old;
226 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
227 flush_writes(ohci);
228 msleep(2);
229 val = reg_read(ohci, OHCI1394_PhyControl);
230 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
231 fw_error("failed to set phy reg bits.\n");
232 return -EBUSY;
235 old = OHCI1394_PhyControl_ReadData(val);
236 old = (old & ~clear_bits) | set_bits;
237 reg_write(ohci, OHCI1394_PhyControl,
238 OHCI1394_PhyControl_Write(addr, old));
240 return 0;
243 static int ar_context_add_page(struct ar_context *ctx)
245 struct device *dev = ctx->ohci->card.device;
246 struct ar_buffer *ab;
247 dma_addr_t ab_bus;
248 size_t offset;
250 ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
251 if (ab == NULL)
252 return -ENOMEM;
254 ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
255 if (dma_mapping_error(ab_bus)) {
256 free_page((unsigned long) ab);
257 return -ENOMEM;
260 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
261 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
262 DESCRIPTOR_STATUS |
263 DESCRIPTOR_BRANCH_ALWAYS);
264 offset = offsetof(struct ar_buffer, data);
265 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
266 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
267 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
268 ab->descriptor.branch_address = 0;
270 dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
272 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
273 ctx->last_buffer->next = ab;
274 ctx->last_buffer = ab;
276 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
277 flush_writes(ctx->ohci);
279 return 0;
282 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
284 struct fw_ohci *ohci = ctx->ohci;
285 struct fw_packet p;
286 u32 status, length, tcode;
288 p.header[0] = le32_to_cpu(buffer[0]);
289 p.header[1] = le32_to_cpu(buffer[1]);
290 p.header[2] = le32_to_cpu(buffer[2]);
292 tcode = (p.header[0] >> 4) & 0x0f;
293 switch (tcode) {
294 case TCODE_WRITE_QUADLET_REQUEST:
295 case TCODE_READ_QUADLET_RESPONSE:
296 p.header[3] = (__force __u32) buffer[3];
297 p.header_length = 16;
298 p.payload_length = 0;
299 break;
301 case TCODE_READ_BLOCK_REQUEST :
302 p.header[3] = le32_to_cpu(buffer[3]);
303 p.header_length = 16;
304 p.payload_length = 0;
305 break;
307 case TCODE_WRITE_BLOCK_REQUEST:
308 case TCODE_READ_BLOCK_RESPONSE:
309 case TCODE_LOCK_REQUEST:
310 case TCODE_LOCK_RESPONSE:
311 p.header[3] = le32_to_cpu(buffer[3]);
312 p.header_length = 16;
313 p.payload_length = p.header[3] >> 16;
314 break;
316 case TCODE_WRITE_RESPONSE:
317 case TCODE_READ_QUADLET_REQUEST:
318 case OHCI_TCODE_PHY_PACKET:
319 p.header_length = 12;
320 p.payload_length = 0;
321 break;
324 p.payload = (void *) buffer + p.header_length;
326 /* FIXME: What to do about evt_* errors? */
327 length = (p.header_length + p.payload_length + 3) / 4;
328 status = le32_to_cpu(buffer[length]);
330 p.ack = ((status >> 16) & 0x1f) - 16;
331 p.speed = (status >> 21) & 0x7;
332 p.timestamp = status & 0xffff;
333 p.generation = ohci->request_generation;
336 * The OHCI bus reset handler synthesizes a phy packet with
337 * the new generation number when a bus reset happens (see
338 * section 8.4.2.3). This helps us determine when a request
339 * was received and make sure we send the response in the same
340 * generation. We only need this for requests; for responses
341 * we use the unique tlabel for finding the matching
342 * request.
345 if (p.ack + 16 == 0x09)
346 ohci->request_generation = (buffer[2] >> 16) & 0xff;
347 else if (ctx == &ohci->ar_request_ctx)
348 fw_core_handle_request(&ohci->card, &p);
349 else
350 fw_core_handle_response(&ohci->card, &p);
352 return buffer + length + 1;
355 static void ar_context_tasklet(unsigned long data)
357 struct ar_context *ctx = (struct ar_context *)data;
358 struct fw_ohci *ohci = ctx->ohci;
359 struct ar_buffer *ab;
360 struct descriptor *d;
361 void *buffer, *end;
363 ab = ctx->current_buffer;
364 d = &ab->descriptor;
366 if (d->res_count == 0) {
367 size_t size, rest, offset;
370 * This descriptor is finished and we may have a
371 * packet split across this and the next buffer. We
372 * reuse the page for reassembling the split packet.
375 offset = offsetof(struct ar_buffer, data);
376 dma_unmap_single(ohci->card.device,
377 le32_to_cpu(ab->descriptor.data_address) - offset,
378 PAGE_SIZE, DMA_BIDIRECTIONAL);
380 buffer = ab;
381 ab = ab->next;
382 d = &ab->descriptor;
383 size = buffer + PAGE_SIZE - ctx->pointer;
384 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
385 memmove(buffer, ctx->pointer, size);
386 memcpy(buffer + size, ab->data, rest);
387 ctx->current_buffer = ab;
388 ctx->pointer = (void *) ab->data + rest;
389 end = buffer + size + rest;
391 while (buffer < end)
392 buffer = handle_ar_packet(ctx, buffer);
394 free_page((unsigned long)buffer);
395 ar_context_add_page(ctx);
396 } else {
397 buffer = ctx->pointer;
398 ctx->pointer = end =
399 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
401 while (buffer < end)
402 buffer = handle_ar_packet(ctx, buffer);
406 static int
407 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
409 struct ar_buffer ab;
411 ctx->regs = regs;
412 ctx->ohci = ohci;
413 ctx->last_buffer = &ab;
414 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
416 ar_context_add_page(ctx);
417 ar_context_add_page(ctx);
418 ctx->current_buffer = ab.next;
419 ctx->pointer = ctx->current_buffer->data;
421 return 0;
424 static void ar_context_run(struct ar_context *ctx)
426 struct ar_buffer *ab = ctx->current_buffer;
427 dma_addr_t ab_bus;
428 size_t offset;
430 offset = offsetof(struct ar_buffer, data);
431 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
433 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
434 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
435 flush_writes(ctx->ohci);
438 static void context_tasklet(unsigned long data)
440 struct context *ctx = (struct context *) data;
441 struct fw_ohci *ohci = ctx->ohci;
442 struct descriptor *d, *last;
443 u32 address;
444 int z;
446 dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
447 ctx->buffer_size, DMA_TO_DEVICE);
449 d = ctx->tail_descriptor;
450 last = ctx->tail_descriptor_last;
452 while (last->branch_address != 0) {
453 address = le32_to_cpu(last->branch_address);
454 z = address & 0xf;
455 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof(*d);
456 last = (z == 2) ? d : d + z - 1;
458 if (!ctx->callback(ctx, d, last))
459 break;
461 ctx->tail_descriptor = d;
462 ctx->tail_descriptor_last = last;
466 static int
467 context_init(struct context *ctx, struct fw_ohci *ohci,
468 size_t buffer_size, u32 regs,
469 descriptor_callback_t callback)
471 ctx->ohci = ohci;
472 ctx->regs = regs;
473 ctx->buffer_size = buffer_size;
474 ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
475 if (ctx->buffer == NULL)
476 return -ENOMEM;
478 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
479 ctx->callback = callback;
481 ctx->buffer_bus =
482 dma_map_single(ohci->card.device, ctx->buffer,
483 buffer_size, DMA_TO_DEVICE);
484 if (dma_mapping_error(ctx->buffer_bus)) {
485 kfree(ctx->buffer);
486 return -ENOMEM;
489 ctx->head_descriptor = ctx->buffer;
490 ctx->prev_descriptor = ctx->buffer;
491 ctx->tail_descriptor = ctx->buffer;
492 ctx->tail_descriptor_last = ctx->buffer;
495 * We put a dummy descriptor in the buffer that has a NULL
496 * branch address and looks like it's been sent. That way we
497 * have a descriptor to append DMA programs to. Also, the
498 * ring buffer invariant is that it always has at least one
499 * element so that head == tail means buffer full.
502 memset(ctx->head_descriptor, 0, sizeof(*ctx->head_descriptor));
503 ctx->head_descriptor->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
504 ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
505 ctx->head_descriptor++;
507 return 0;
510 static void
511 context_release(struct context *ctx)
513 struct fw_card *card = &ctx->ohci->card;
515 dma_unmap_single(card->device, ctx->buffer_bus,
516 ctx->buffer_size, DMA_TO_DEVICE);
517 kfree(ctx->buffer);
520 static struct descriptor *
521 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
523 struct descriptor *d, *tail, *end;
525 d = ctx->head_descriptor;
526 tail = ctx->tail_descriptor;
527 end = ctx->buffer + ctx->buffer_size / sizeof(*d);
529 if (d + z <= tail) {
530 goto has_space;
531 } else if (d > tail && d + z <= end) {
532 goto has_space;
533 } else if (d > tail && ctx->buffer + z <= tail) {
534 d = ctx->buffer;
535 goto has_space;
538 return NULL;
540 has_space:
541 memset(d, 0, z * sizeof(*d));
542 *d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
544 return d;
547 static void context_run(struct context *ctx, u32 extra)
549 struct fw_ohci *ohci = ctx->ohci;
551 reg_write(ohci, COMMAND_PTR(ctx->regs),
552 le32_to_cpu(ctx->tail_descriptor_last->branch_address));
553 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
554 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
555 flush_writes(ohci);
558 static void context_append(struct context *ctx,
559 struct descriptor *d, int z, int extra)
561 dma_addr_t d_bus;
563 d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
565 ctx->head_descriptor = d + z + extra;
566 ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
567 ctx->prev_descriptor = z == 2 ? d : d + z - 1;
569 dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
570 ctx->buffer_size, DMA_TO_DEVICE);
572 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
573 flush_writes(ctx->ohci);
576 static void context_stop(struct context *ctx)
578 u32 reg;
579 int i;
581 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
582 flush_writes(ctx->ohci);
584 for (i = 0; i < 10; i++) {
585 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
586 if ((reg & CONTEXT_ACTIVE) == 0)
587 break;
589 fw_notify("context_stop: still active (0x%08x)\n", reg);
590 mdelay(1);
594 struct driver_data {
595 struct fw_packet *packet;
599 * This function apppends a packet to the DMA queue for transmission.
600 * Must always be called with the ochi->lock held to ensure proper
601 * generation handling and locking around packet queue manipulation.
603 static int
604 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
606 struct fw_ohci *ohci = ctx->ohci;
607 dma_addr_t d_bus, payload_bus;
608 struct driver_data *driver_data;
609 struct descriptor *d, *last;
610 __le32 *header;
611 int z, tcode;
612 u32 reg;
614 d = context_get_descriptors(ctx, 4, &d_bus);
615 if (d == NULL) {
616 packet->ack = RCODE_SEND_ERROR;
617 return -1;
620 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
621 d[0].res_count = cpu_to_le16(packet->timestamp);
624 * The DMA format for asyncronous link packets is different
625 * from the IEEE1394 layout, so shift the fields around
626 * accordingly. If header_length is 8, it's a PHY packet, to
627 * which we need to prepend an extra quadlet.
630 header = (__le32 *) &d[1];
631 if (packet->header_length > 8) {
632 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
633 (packet->speed << 16));
634 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
635 (packet->header[0] & 0xffff0000));
636 header[2] = cpu_to_le32(packet->header[2]);
638 tcode = (packet->header[0] >> 4) & 0x0f;
639 if (TCODE_IS_BLOCK_PACKET(tcode))
640 header[3] = cpu_to_le32(packet->header[3]);
641 else
642 header[3] = (__force __le32) packet->header[3];
644 d[0].req_count = cpu_to_le16(packet->header_length);
645 } else {
646 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
647 (packet->speed << 16));
648 header[1] = cpu_to_le32(packet->header[0]);
649 header[2] = cpu_to_le32(packet->header[1]);
650 d[0].req_count = cpu_to_le16(12);
653 driver_data = (struct driver_data *) &d[3];
654 driver_data->packet = packet;
655 packet->driver_data = driver_data;
657 if (packet->payload_length > 0) {
658 payload_bus =
659 dma_map_single(ohci->card.device, packet->payload,
660 packet->payload_length, DMA_TO_DEVICE);
661 if (dma_mapping_error(payload_bus)) {
662 packet->ack = RCODE_SEND_ERROR;
663 return -1;
666 d[2].req_count = cpu_to_le16(packet->payload_length);
667 d[2].data_address = cpu_to_le32(payload_bus);
668 last = &d[2];
669 z = 3;
670 } else {
671 last = &d[0];
672 z = 2;
675 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
676 DESCRIPTOR_IRQ_ALWAYS |
677 DESCRIPTOR_BRANCH_ALWAYS);
679 /* FIXME: Document how the locking works. */
680 if (ohci->generation != packet->generation) {
681 packet->ack = RCODE_GENERATION;
682 return -1;
685 context_append(ctx, d, z, 4 - z);
687 /* If the context isn't already running, start it up. */
688 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
689 if ((reg & CONTEXT_RUN) == 0)
690 context_run(ctx, 0);
692 return 0;
695 static int handle_at_packet(struct context *context,
696 struct descriptor *d,
697 struct descriptor *last)
699 struct driver_data *driver_data;
700 struct fw_packet *packet;
701 struct fw_ohci *ohci = context->ohci;
702 dma_addr_t payload_bus;
703 int evt;
705 if (last->transfer_status == 0)
706 /* This descriptor isn't done yet, stop iteration. */
707 return 0;
709 driver_data = (struct driver_data *) &d[3];
710 packet = driver_data->packet;
711 if (packet == NULL)
712 /* This packet was cancelled, just continue. */
713 return 1;
715 payload_bus = le32_to_cpu(last->data_address);
716 if (payload_bus != 0)
717 dma_unmap_single(ohci->card.device, payload_bus,
718 packet->payload_length, DMA_TO_DEVICE);
720 evt = le16_to_cpu(last->transfer_status) & 0x1f;
721 packet->timestamp = le16_to_cpu(last->res_count);
723 switch (evt) {
724 case OHCI1394_evt_timeout:
725 /* Async response transmit timed out. */
726 packet->ack = RCODE_CANCELLED;
727 break;
729 case OHCI1394_evt_flushed:
731 * The packet was flushed should give same error as
732 * when we try to use a stale generation count.
734 packet->ack = RCODE_GENERATION;
735 break;
737 case OHCI1394_evt_missing_ack:
739 * Using a valid (current) generation count, but the
740 * node is not on the bus or not sending acks.
742 packet->ack = RCODE_NO_ACK;
743 break;
745 case ACK_COMPLETE + 0x10:
746 case ACK_PENDING + 0x10:
747 case ACK_BUSY_X + 0x10:
748 case ACK_BUSY_A + 0x10:
749 case ACK_BUSY_B + 0x10:
750 case ACK_DATA_ERROR + 0x10:
751 case ACK_TYPE_ERROR + 0x10:
752 packet->ack = evt - 0x10;
753 break;
755 default:
756 packet->ack = RCODE_SEND_ERROR;
757 break;
760 packet->callback(packet, &ohci->card, packet->ack);
762 return 1;
765 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
766 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
767 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
768 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
769 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
771 static void
772 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
774 struct fw_packet response;
775 int tcode, length, i;
777 tcode = HEADER_GET_TCODE(packet->header[0]);
778 if (TCODE_IS_BLOCK_PACKET(tcode))
779 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
780 else
781 length = 4;
783 i = csr - CSR_CONFIG_ROM;
784 if (i + length > CONFIG_ROM_SIZE) {
785 fw_fill_response(&response, packet->header,
786 RCODE_ADDRESS_ERROR, NULL, 0);
787 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
788 fw_fill_response(&response, packet->header,
789 RCODE_TYPE_ERROR, NULL, 0);
790 } else {
791 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
792 (void *) ohci->config_rom + i, length);
795 fw_core_handle_response(&ohci->card, &response);
798 static void
799 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
801 struct fw_packet response;
802 int tcode, length, ext_tcode, sel;
803 __be32 *payload, lock_old;
804 u32 lock_arg, lock_data;
806 tcode = HEADER_GET_TCODE(packet->header[0]);
807 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
808 payload = packet->payload;
809 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
811 if (tcode == TCODE_LOCK_REQUEST &&
812 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
813 lock_arg = be32_to_cpu(payload[0]);
814 lock_data = be32_to_cpu(payload[1]);
815 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
816 lock_arg = 0;
817 lock_data = 0;
818 } else {
819 fw_fill_response(&response, packet->header,
820 RCODE_TYPE_ERROR, NULL, 0);
821 goto out;
824 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
825 reg_write(ohci, OHCI1394_CSRData, lock_data);
826 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
827 reg_write(ohci, OHCI1394_CSRControl, sel);
829 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
830 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
831 else
832 fw_notify("swap not done yet\n");
834 fw_fill_response(&response, packet->header,
835 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
836 out:
837 fw_core_handle_response(&ohci->card, &response);
840 static void
841 handle_local_request(struct context *ctx, struct fw_packet *packet)
843 u64 offset;
844 u32 csr;
846 if (ctx == &ctx->ohci->at_request_ctx) {
847 packet->ack = ACK_PENDING;
848 packet->callback(packet, &ctx->ohci->card, packet->ack);
851 offset =
852 ((unsigned long long)
853 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
854 packet->header[2];
855 csr = offset - CSR_REGISTER_BASE;
857 /* Handle config rom reads. */
858 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
859 handle_local_rom(ctx->ohci, packet, csr);
860 else switch (csr) {
861 case CSR_BUS_MANAGER_ID:
862 case CSR_BANDWIDTH_AVAILABLE:
863 case CSR_CHANNELS_AVAILABLE_HI:
864 case CSR_CHANNELS_AVAILABLE_LO:
865 handle_local_lock(ctx->ohci, packet, csr);
866 break;
867 default:
868 if (ctx == &ctx->ohci->at_request_ctx)
869 fw_core_handle_request(&ctx->ohci->card, packet);
870 else
871 fw_core_handle_response(&ctx->ohci->card, packet);
872 break;
875 if (ctx == &ctx->ohci->at_response_ctx) {
876 packet->ack = ACK_COMPLETE;
877 packet->callback(packet, &ctx->ohci->card, packet->ack);
881 static void
882 at_context_transmit(struct context *ctx, struct fw_packet *packet)
884 unsigned long flags;
885 int retval;
887 spin_lock_irqsave(&ctx->ohci->lock, flags);
889 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
890 ctx->ohci->generation == packet->generation) {
891 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
892 handle_local_request(ctx, packet);
893 return;
896 retval = at_context_queue_packet(ctx, packet);
897 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
899 if (retval < 0)
900 packet->callback(packet, &ctx->ohci->card, packet->ack);
904 static void bus_reset_tasklet(unsigned long data)
906 struct fw_ohci *ohci = (struct fw_ohci *)data;
907 int self_id_count, i, j, reg;
908 int generation, new_generation;
909 unsigned long flags;
910 void *free_rom = NULL;
911 dma_addr_t free_rom_bus = 0;
913 reg = reg_read(ohci, OHCI1394_NodeID);
914 if (!(reg & OHCI1394_NodeID_idValid)) {
915 fw_error("node ID not valid, new bus reset in progress\n");
916 return;
918 ohci->node_id = reg & 0xffff;
921 * The count in the SelfIDCount register is the number of
922 * bytes in the self ID receive buffer. Since we also receive
923 * the inverted quadlets and a header quadlet, we shift one
924 * bit extra to get the actual number of self IDs.
927 self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
928 generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
930 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
931 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
932 fw_error("inconsistent self IDs\n");
933 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
937 * Check the consistency of the self IDs we just read. The
938 * problem we face is that a new bus reset can start while we
939 * read out the self IDs from the DMA buffer. If this happens,
940 * the DMA buffer will be overwritten with new self IDs and we
941 * will read out inconsistent data. The OHCI specification
942 * (section 11.2) recommends a technique similar to
943 * linux/seqlock.h, where we remember the generation of the
944 * self IDs in the buffer before reading them out and compare
945 * it to the current generation after reading them out. If
946 * the two generations match we know we have a consistent set
947 * of self IDs.
950 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
951 if (new_generation != generation) {
952 fw_notify("recursive bus reset detected, "
953 "discarding self ids\n");
954 return;
957 /* FIXME: Document how the locking works. */
958 spin_lock_irqsave(&ohci->lock, flags);
960 ohci->generation = generation;
961 context_stop(&ohci->at_request_ctx);
962 context_stop(&ohci->at_response_ctx);
963 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
966 * This next bit is unrelated to the AT context stuff but we
967 * have to do it under the spinlock also. If a new config rom
968 * was set up before this reset, the old one is now no longer
969 * in use and we can free it. Update the config rom pointers
970 * to point to the current config rom and clear the
971 * next_config_rom pointer so a new udpate can take place.
974 if (ohci->next_config_rom != NULL) {
975 free_rom = ohci->config_rom;
976 free_rom_bus = ohci->config_rom_bus;
977 ohci->config_rom = ohci->next_config_rom;
978 ohci->config_rom_bus = ohci->next_config_rom_bus;
979 ohci->next_config_rom = NULL;
982 * Restore config_rom image and manually update
983 * config_rom registers. Writing the header quadlet
984 * will indicate that the config rom is ready, so we
985 * do that last.
987 reg_write(ohci, OHCI1394_BusOptions,
988 be32_to_cpu(ohci->config_rom[2]));
989 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
990 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
993 spin_unlock_irqrestore(&ohci->lock, flags);
995 if (free_rom)
996 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
997 free_rom, free_rom_bus);
999 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1000 self_id_count, ohci->self_id_buffer);
1003 static irqreturn_t irq_handler(int irq, void *data)
1005 struct fw_ohci *ohci = data;
1006 u32 event, iso_event, cycle_time;
1007 int i;
1009 event = reg_read(ohci, OHCI1394_IntEventClear);
1011 if (!event || !~event)
1012 return IRQ_NONE;
1014 reg_write(ohci, OHCI1394_IntEventClear, event);
1016 if (event & OHCI1394_selfIDComplete)
1017 tasklet_schedule(&ohci->bus_reset_tasklet);
1019 if (event & OHCI1394_RQPkt)
1020 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1022 if (event & OHCI1394_RSPkt)
1023 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1025 if (event & OHCI1394_reqTxComplete)
1026 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1028 if (event & OHCI1394_respTxComplete)
1029 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1031 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1032 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1034 while (iso_event) {
1035 i = ffs(iso_event) - 1;
1036 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1037 iso_event &= ~(1 << i);
1040 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1041 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1043 while (iso_event) {
1044 i = ffs(iso_event) - 1;
1045 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1046 iso_event &= ~(1 << i);
1049 if (event & OHCI1394_cycle64Seconds) {
1050 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1051 if ((cycle_time & 0x80000000) == 0)
1052 ohci->bus_seconds++;
1055 return IRQ_HANDLED;
1058 static int software_reset(struct fw_ohci *ohci)
1060 int i;
1062 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1064 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1065 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1066 OHCI1394_HCControl_softReset) == 0)
1067 return 0;
1068 msleep(1);
1071 return -EBUSY;
1074 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1076 struct fw_ohci *ohci = fw_ohci(card);
1077 struct pci_dev *dev = to_pci_dev(card->device);
1079 if (software_reset(ohci)) {
1080 fw_error("Failed to reset ohci card.\n");
1081 return -EBUSY;
1085 * Now enable LPS, which we need in order to start accessing
1086 * most of the registers. In fact, on some cards (ALI M5251),
1087 * accessing registers in the SClk domain without LPS enabled
1088 * will lock up the machine. Wait 50msec to make sure we have
1089 * full link enabled.
1091 reg_write(ohci, OHCI1394_HCControlSet,
1092 OHCI1394_HCControl_LPS |
1093 OHCI1394_HCControl_postedWriteEnable);
1094 flush_writes(ohci);
1095 msleep(50);
1097 reg_write(ohci, OHCI1394_HCControlClear,
1098 OHCI1394_HCControl_noByteSwapData);
1100 reg_write(ohci, OHCI1394_LinkControlSet,
1101 OHCI1394_LinkControl_rcvSelfID |
1102 OHCI1394_LinkControl_cycleTimerEnable |
1103 OHCI1394_LinkControl_cycleMaster);
1105 reg_write(ohci, OHCI1394_ATRetries,
1106 OHCI1394_MAX_AT_REQ_RETRIES |
1107 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1108 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1110 ar_context_run(&ohci->ar_request_ctx);
1111 ar_context_run(&ohci->ar_response_ctx);
1113 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1114 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1115 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1116 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1117 reg_write(ohci, OHCI1394_IntMaskSet,
1118 OHCI1394_selfIDComplete |
1119 OHCI1394_RQPkt | OHCI1394_RSPkt |
1120 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1121 OHCI1394_isochRx | OHCI1394_isochTx |
1122 OHCI1394_masterIntEnable |
1123 OHCI1394_cycle64Seconds);
1125 /* Activate link_on bit and contender bit in our self ID packets.*/
1126 if (ohci_update_phy_reg(card, 4, 0,
1127 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1128 return -EIO;
1131 * When the link is not yet enabled, the atomic config rom
1132 * update mechanism described below in ohci_set_config_rom()
1133 * is not active. We have to update ConfigRomHeader and
1134 * BusOptions manually, and the write to ConfigROMmap takes
1135 * effect immediately. We tie this to the enabling of the
1136 * link, so we have a valid config rom before enabling - the
1137 * OHCI requires that ConfigROMhdr and BusOptions have valid
1138 * values before enabling.
1140 * However, when the ConfigROMmap is written, some controllers
1141 * always read back quadlets 0 and 2 from the config rom to
1142 * the ConfigRomHeader and BusOptions registers on bus reset.
1143 * They shouldn't do that in this initial case where the link
1144 * isn't enabled. This means we have to use the same
1145 * workaround here, setting the bus header to 0 and then write
1146 * the right values in the bus reset tasklet.
1149 ohci->next_config_rom =
1150 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1151 &ohci->next_config_rom_bus, GFP_KERNEL);
1152 if (ohci->next_config_rom == NULL)
1153 return -ENOMEM;
1155 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1156 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1158 ohci->next_header = config_rom[0];
1159 ohci->next_config_rom[0] = 0;
1160 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1161 reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
1162 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1164 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1166 if (request_irq(dev->irq, irq_handler,
1167 IRQF_SHARED, ohci_driver_name, ohci)) {
1168 fw_error("Failed to allocate shared interrupt %d.\n",
1169 dev->irq);
1170 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1171 ohci->config_rom, ohci->config_rom_bus);
1172 return -EIO;
1175 reg_write(ohci, OHCI1394_HCControlSet,
1176 OHCI1394_HCControl_linkEnable |
1177 OHCI1394_HCControl_BIBimageValid);
1178 flush_writes(ohci);
1181 * We are ready to go, initiate bus reset to finish the
1182 * initialization.
1185 fw_core_initiate_bus_reset(&ohci->card, 1);
1187 return 0;
1190 static int
1191 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1193 struct fw_ohci *ohci;
1194 unsigned long flags;
1195 int retval = -EBUSY;
1196 __be32 *next_config_rom;
1197 dma_addr_t next_config_rom_bus;
1199 ohci = fw_ohci(card);
1202 * When the OHCI controller is enabled, the config rom update
1203 * mechanism is a bit tricky, but easy enough to use. See
1204 * section 5.5.6 in the OHCI specification.
1206 * The OHCI controller caches the new config rom address in a
1207 * shadow register (ConfigROMmapNext) and needs a bus reset
1208 * for the changes to take place. When the bus reset is
1209 * detected, the controller loads the new values for the
1210 * ConfigRomHeader and BusOptions registers from the specified
1211 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1212 * shadow register. All automatically and atomically.
1214 * Now, there's a twist to this story. The automatic load of
1215 * ConfigRomHeader and BusOptions doesn't honor the
1216 * noByteSwapData bit, so with a be32 config rom, the
1217 * controller will load be32 values in to these registers
1218 * during the atomic update, even on litte endian
1219 * architectures. The workaround we use is to put a 0 in the
1220 * header quadlet; 0 is endian agnostic and means that the
1221 * config rom isn't ready yet. In the bus reset tasklet we
1222 * then set up the real values for the two registers.
1224 * We use ohci->lock to avoid racing with the code that sets
1225 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1228 next_config_rom =
1229 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1230 &next_config_rom_bus, GFP_KERNEL);
1231 if (next_config_rom == NULL)
1232 return -ENOMEM;
1234 spin_lock_irqsave(&ohci->lock, flags);
1236 if (ohci->next_config_rom == NULL) {
1237 ohci->next_config_rom = next_config_rom;
1238 ohci->next_config_rom_bus = next_config_rom_bus;
1240 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1241 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1242 length * 4);
1244 ohci->next_header = config_rom[0];
1245 ohci->next_config_rom[0] = 0;
1247 reg_write(ohci, OHCI1394_ConfigROMmap,
1248 ohci->next_config_rom_bus);
1249 retval = 0;
1252 spin_unlock_irqrestore(&ohci->lock, flags);
1255 * Now initiate a bus reset to have the changes take
1256 * effect. We clean up the old config rom memory and DMA
1257 * mappings in the bus reset tasklet, since the OHCI
1258 * controller could need to access it before the bus reset
1259 * takes effect.
1261 if (retval == 0)
1262 fw_core_initiate_bus_reset(&ohci->card, 1);
1263 else
1264 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1265 next_config_rom, next_config_rom_bus);
1267 return retval;
1270 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1272 struct fw_ohci *ohci = fw_ohci(card);
1274 at_context_transmit(&ohci->at_request_ctx, packet);
1277 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1279 struct fw_ohci *ohci = fw_ohci(card);
1281 at_context_transmit(&ohci->at_response_ctx, packet);
1284 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1286 struct fw_ohci *ohci = fw_ohci(card);
1287 struct context *ctx = &ohci->at_request_ctx;
1288 struct driver_data *driver_data = packet->driver_data;
1289 int retval = -ENOENT;
1291 tasklet_disable(&ctx->tasklet);
1293 if (packet->ack != 0)
1294 goto out;
1296 driver_data->packet = NULL;
1297 packet->ack = RCODE_CANCELLED;
1298 packet->callback(packet, &ohci->card, packet->ack);
1299 retval = 0;
1301 out:
1302 tasklet_enable(&ctx->tasklet);
1304 return retval;
1307 static int
1308 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1310 struct fw_ohci *ohci = fw_ohci(card);
1311 unsigned long flags;
1312 int n, retval = 0;
1315 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1316 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1319 spin_lock_irqsave(&ohci->lock, flags);
1321 if (ohci->generation != generation) {
1322 retval = -ESTALE;
1323 goto out;
1327 * Note, if the node ID contains a non-local bus ID, physical DMA is
1328 * enabled for _all_ nodes on remote buses.
1331 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1332 if (n < 32)
1333 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1334 else
1335 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1337 flush_writes(ohci);
1338 out:
1339 spin_unlock_irqrestore(&ohci->lock, flags);
1340 return retval;
1343 static u64
1344 ohci_get_bus_time(struct fw_card *card)
1346 struct fw_ohci *ohci = fw_ohci(card);
1347 u32 cycle_time;
1348 u64 bus_time;
1350 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1351 bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1353 return bus_time;
1356 static int handle_ir_dualbuffer_packet(struct context *context,
1357 struct descriptor *d,
1358 struct descriptor *last)
1360 struct iso_context *ctx =
1361 container_of(context, struct iso_context, context);
1362 struct db_descriptor *db = (struct db_descriptor *) d;
1363 __le32 *ir_header;
1364 size_t header_length;
1365 void *p, *end;
1366 int i;
1368 if (db->first_res_count > 0 && db->second_res_count > 0)
1369 /* This descriptor isn't done yet, stop iteration. */
1370 return 0;
1372 header_length = le16_to_cpu(db->first_req_count) -
1373 le16_to_cpu(db->first_res_count);
1375 i = ctx->header_length;
1376 p = db + 1;
1377 end = p + header_length;
1378 while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1380 * The iso header is byteswapped to little endian by
1381 * the controller, but the remaining header quadlets
1382 * are big endian. We want to present all the headers
1383 * as big endian, so we have to swap the first
1384 * quadlet.
1386 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1387 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1388 i += ctx->base.header_size;
1389 p += ctx->base.header_size + 4;
1392 ctx->header_length = i;
1394 if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1395 ir_header = (__le32 *) (db + 1);
1396 ctx->base.callback(&ctx->base,
1397 le32_to_cpu(ir_header[0]) & 0xffff,
1398 ctx->header_length, ctx->header,
1399 ctx->base.callback_data);
1400 ctx->header_length = 0;
1403 return 1;
1406 static int handle_it_packet(struct context *context,
1407 struct descriptor *d,
1408 struct descriptor *last)
1410 struct iso_context *ctx =
1411 container_of(context, struct iso_context, context);
1413 if (last->transfer_status == 0)
1414 /* This descriptor isn't done yet, stop iteration. */
1415 return 0;
1417 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1418 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1419 0, NULL, ctx->base.callback_data);
1421 return 1;
1424 static struct fw_iso_context *
1425 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1427 struct fw_ohci *ohci = fw_ohci(card);
1428 struct iso_context *ctx, *list;
1429 descriptor_callback_t callback;
1430 u32 *mask, regs;
1431 unsigned long flags;
1432 int index, retval = -ENOMEM;
1434 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1435 mask = &ohci->it_context_mask;
1436 list = ohci->it_context_list;
1437 callback = handle_it_packet;
1438 } else {
1439 mask = &ohci->ir_context_mask;
1440 list = ohci->ir_context_list;
1441 callback = handle_ir_dualbuffer_packet;
1444 /* FIXME: We need a fallback for pre 1.1 OHCI. */
1445 if (callback == handle_ir_dualbuffer_packet &&
1446 ohci->version < OHCI_VERSION_1_1)
1447 return ERR_PTR(-EINVAL);
1449 spin_lock_irqsave(&ohci->lock, flags);
1450 index = ffs(*mask) - 1;
1451 if (index >= 0)
1452 *mask &= ~(1 << index);
1453 spin_unlock_irqrestore(&ohci->lock, flags);
1455 if (index < 0)
1456 return ERR_PTR(-EBUSY);
1458 if (type == FW_ISO_CONTEXT_TRANSMIT)
1459 regs = OHCI1394_IsoXmitContextBase(index);
1460 else
1461 regs = OHCI1394_IsoRcvContextBase(index);
1463 ctx = &list[index];
1464 memset(ctx, 0, sizeof(*ctx));
1465 ctx->header_length = 0;
1466 ctx->header = (void *) __get_free_page(GFP_KERNEL);
1467 if (ctx->header == NULL)
1468 goto out;
1470 retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1471 regs, callback);
1472 if (retval < 0)
1473 goto out_with_header;
1475 return &ctx->base;
1477 out_with_header:
1478 free_page((unsigned long)ctx->header);
1479 out:
1480 spin_lock_irqsave(&ohci->lock, flags);
1481 *mask |= 1 << index;
1482 spin_unlock_irqrestore(&ohci->lock, flags);
1484 return ERR_PTR(retval);
1487 static int ohci_start_iso(struct fw_iso_context *base,
1488 s32 cycle, u32 sync, u32 tags)
1490 struct iso_context *ctx = container_of(base, struct iso_context, base);
1491 struct fw_ohci *ohci = ctx->context.ohci;
1492 u32 control, match;
1493 int index;
1495 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1496 index = ctx - ohci->it_context_list;
1497 match = 0;
1498 if (cycle >= 0)
1499 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1500 (cycle & 0x7fff) << 16;
1502 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1503 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1504 context_run(&ctx->context, match);
1505 } else {
1506 index = ctx - ohci->ir_context_list;
1507 control = IR_CONTEXT_DUAL_BUFFER_MODE | IR_CONTEXT_ISOCH_HEADER;
1508 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1509 if (cycle >= 0) {
1510 match |= (cycle & 0x07fff) << 12;
1511 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1514 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1515 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1516 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1517 context_run(&ctx->context, control);
1520 return 0;
1523 static int ohci_stop_iso(struct fw_iso_context *base)
1525 struct fw_ohci *ohci = fw_ohci(base->card);
1526 struct iso_context *ctx = container_of(base, struct iso_context, base);
1527 int index;
1529 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1530 index = ctx - ohci->it_context_list;
1531 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1532 } else {
1533 index = ctx - ohci->ir_context_list;
1534 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1536 flush_writes(ohci);
1537 context_stop(&ctx->context);
1539 return 0;
1542 static void ohci_free_iso_context(struct fw_iso_context *base)
1544 struct fw_ohci *ohci = fw_ohci(base->card);
1545 struct iso_context *ctx = container_of(base, struct iso_context, base);
1546 unsigned long flags;
1547 int index;
1549 ohci_stop_iso(base);
1550 context_release(&ctx->context);
1551 free_page((unsigned long)ctx->header);
1553 spin_lock_irqsave(&ohci->lock, flags);
1555 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1556 index = ctx - ohci->it_context_list;
1557 ohci->it_context_mask |= 1 << index;
1558 } else {
1559 index = ctx - ohci->ir_context_list;
1560 ohci->ir_context_mask |= 1 << index;
1563 spin_unlock_irqrestore(&ohci->lock, flags);
1566 static int
1567 ohci_queue_iso_transmit(struct fw_iso_context *base,
1568 struct fw_iso_packet *packet,
1569 struct fw_iso_buffer *buffer,
1570 unsigned long payload)
1572 struct iso_context *ctx = container_of(base, struct iso_context, base);
1573 struct descriptor *d, *last, *pd;
1574 struct fw_iso_packet *p;
1575 __le32 *header;
1576 dma_addr_t d_bus, page_bus;
1577 u32 z, header_z, payload_z, irq;
1578 u32 payload_index, payload_end_index, next_page_index;
1579 int page, end_page, i, length, offset;
1582 * FIXME: Cycle lost behavior should be configurable: lose
1583 * packet, retransmit or terminate..
1586 p = packet;
1587 payload_index = payload;
1589 if (p->skip)
1590 z = 1;
1591 else
1592 z = 2;
1593 if (p->header_length > 0)
1594 z++;
1596 /* Determine the first page the payload isn't contained in. */
1597 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1598 if (p->payload_length > 0)
1599 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1600 else
1601 payload_z = 0;
1603 z += payload_z;
1605 /* Get header size in number of descriptors. */
1606 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1608 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1609 if (d == NULL)
1610 return -ENOMEM;
1612 if (!p->skip) {
1613 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1614 d[0].req_count = cpu_to_le16(8);
1616 header = (__le32 *) &d[1];
1617 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
1618 IT_HEADER_TAG(p->tag) |
1619 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
1620 IT_HEADER_CHANNEL(ctx->base.channel) |
1621 IT_HEADER_SPEED(ctx->base.speed));
1622 header[1] =
1623 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1624 p->payload_length));
1627 if (p->header_length > 0) {
1628 d[2].req_count = cpu_to_le16(p->header_length);
1629 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1630 memcpy(&d[z], p->header, p->header_length);
1633 pd = d + z - payload_z;
1634 payload_end_index = payload_index + p->payload_length;
1635 for (i = 0; i < payload_z; i++) {
1636 page = payload_index >> PAGE_SHIFT;
1637 offset = payload_index & ~PAGE_MASK;
1638 next_page_index = (page + 1) << PAGE_SHIFT;
1639 length =
1640 min(next_page_index, payload_end_index) - payload_index;
1641 pd[i].req_count = cpu_to_le16(length);
1643 page_bus = page_private(buffer->pages[page]);
1644 pd[i].data_address = cpu_to_le32(page_bus + offset);
1646 payload_index += length;
1649 if (p->interrupt)
1650 irq = DESCRIPTOR_IRQ_ALWAYS;
1651 else
1652 irq = DESCRIPTOR_NO_IRQ;
1654 last = z == 2 ? d : d + z - 1;
1655 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1656 DESCRIPTOR_STATUS |
1657 DESCRIPTOR_BRANCH_ALWAYS |
1658 irq);
1660 context_append(&ctx->context, d, z, header_z);
1662 return 0;
1665 static int
1666 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
1667 struct fw_iso_packet *packet,
1668 struct fw_iso_buffer *buffer,
1669 unsigned long payload)
1671 struct iso_context *ctx = container_of(base, struct iso_context, base);
1672 struct db_descriptor *db = NULL;
1673 struct descriptor *d;
1674 struct fw_iso_packet *p;
1675 dma_addr_t d_bus, page_bus;
1676 u32 z, header_z, length, rest;
1677 int page, offset, packet_count, header_size;
1680 * FIXME: Cycle lost behavior should be configurable: lose
1681 * packet, retransmit or terminate..
1684 if (packet->skip) {
1685 d = context_get_descriptors(&ctx->context, 2, &d_bus);
1686 if (d == NULL)
1687 return -ENOMEM;
1689 db = (struct db_descriptor *) d;
1690 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1691 DESCRIPTOR_BRANCH_ALWAYS |
1692 DESCRIPTOR_WAIT);
1693 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1694 context_append(&ctx->context, d, 2, 0);
1697 p = packet;
1698 z = 2;
1701 * The OHCI controller puts the status word in the header
1702 * buffer too, so we need 4 extra bytes per packet.
1704 packet_count = p->header_length / ctx->base.header_size;
1705 header_size = packet_count * (ctx->base.header_size + 4);
1707 /* Get header size in number of descriptors. */
1708 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1709 page = payload >> PAGE_SHIFT;
1710 offset = payload & ~PAGE_MASK;
1711 rest = p->payload_length;
1713 /* FIXME: OHCI 1.0 doesn't support dual buffer receive */
1714 /* FIXME: make packet-per-buffer/dual-buffer a context option */
1715 while (rest > 0) {
1716 d = context_get_descriptors(&ctx->context,
1717 z + header_z, &d_bus);
1718 if (d == NULL)
1719 return -ENOMEM;
1721 db = (struct db_descriptor *) d;
1722 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1723 DESCRIPTOR_BRANCH_ALWAYS);
1724 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1725 db->first_req_count = cpu_to_le16(header_size);
1726 db->first_res_count = db->first_req_count;
1727 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
1729 if (offset + rest < PAGE_SIZE)
1730 length = rest;
1731 else
1732 length = PAGE_SIZE - offset;
1734 db->second_req_count = cpu_to_le16(length);
1735 db->second_res_count = db->second_req_count;
1736 page_bus = page_private(buffer->pages[page]);
1737 db->second_buffer = cpu_to_le32(page_bus + offset);
1739 if (p->interrupt && length == rest)
1740 db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1742 context_append(&ctx->context, d, z, header_z);
1743 offset = (offset + length) & ~PAGE_MASK;
1744 rest -= length;
1745 page++;
1748 return 0;
1751 static int
1752 ohci_queue_iso(struct fw_iso_context *base,
1753 struct fw_iso_packet *packet,
1754 struct fw_iso_buffer *buffer,
1755 unsigned long payload)
1757 struct iso_context *ctx = container_of(base, struct iso_context, base);
1759 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
1760 return ohci_queue_iso_transmit(base, packet, buffer, payload);
1761 else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
1762 return ohci_queue_iso_receive_dualbuffer(base, packet,
1763 buffer, payload);
1764 else
1765 /* FIXME: Implement fallback for OHCI 1.0 controllers. */
1766 return -EINVAL;
1769 static const struct fw_card_driver ohci_driver = {
1770 .name = ohci_driver_name,
1771 .enable = ohci_enable,
1772 .update_phy_reg = ohci_update_phy_reg,
1773 .set_config_rom = ohci_set_config_rom,
1774 .send_request = ohci_send_request,
1775 .send_response = ohci_send_response,
1776 .cancel_packet = ohci_cancel_packet,
1777 .enable_phys_dma = ohci_enable_phys_dma,
1778 .get_bus_time = ohci_get_bus_time,
1780 .allocate_iso_context = ohci_allocate_iso_context,
1781 .free_iso_context = ohci_free_iso_context,
1782 .queue_iso = ohci_queue_iso,
1783 .start_iso = ohci_start_iso,
1784 .stop_iso = ohci_stop_iso,
1787 static int __devinit
1788 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1790 struct fw_ohci *ohci;
1791 u32 bus_options, max_receive, link_speed;
1792 u64 guid;
1793 int err;
1794 size_t size;
1796 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
1797 if (ohci == NULL) {
1798 fw_error("Could not malloc fw_ohci data.\n");
1799 return -ENOMEM;
1802 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1804 err = pci_enable_device(dev);
1805 if (err) {
1806 fw_error("Failed to enable OHCI hardware.\n");
1807 goto fail_put_card;
1810 pci_set_master(dev);
1811 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1812 pci_set_drvdata(dev, ohci);
1814 spin_lock_init(&ohci->lock);
1816 tasklet_init(&ohci->bus_reset_tasklet,
1817 bus_reset_tasklet, (unsigned long)ohci);
1819 err = pci_request_region(dev, 0, ohci_driver_name);
1820 if (err) {
1821 fw_error("MMIO resource unavailable\n");
1822 goto fail_disable;
1825 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1826 if (ohci->registers == NULL) {
1827 fw_error("Failed to remap registers\n");
1828 err = -ENXIO;
1829 goto fail_iomem;
1832 ar_context_init(&ohci->ar_request_ctx, ohci,
1833 OHCI1394_AsReqRcvContextControlSet);
1835 ar_context_init(&ohci->ar_response_ctx, ohci,
1836 OHCI1394_AsRspRcvContextControlSet);
1838 context_init(&ohci->at_request_ctx, ohci, AT_BUFFER_SIZE,
1839 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
1841 context_init(&ohci->at_response_ctx, ohci, AT_BUFFER_SIZE,
1842 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
1844 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1845 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1846 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1847 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1848 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1850 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1851 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1852 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1853 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1854 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1856 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1857 fw_error("Out of memory for it/ir contexts.\n");
1858 err = -ENOMEM;
1859 goto fail_registers;
1862 /* self-id dma buffer allocation */
1863 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1864 SELF_ID_BUF_SIZE,
1865 &ohci->self_id_bus,
1866 GFP_KERNEL);
1867 if (ohci->self_id_cpu == NULL) {
1868 fw_error("Out of memory for self ID buffer.\n");
1869 err = -ENOMEM;
1870 goto fail_registers;
1873 bus_options = reg_read(ohci, OHCI1394_BusOptions);
1874 max_receive = (bus_options >> 12) & 0xf;
1875 link_speed = bus_options & 0x7;
1876 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1877 reg_read(ohci, OHCI1394_GUIDLo);
1879 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1880 if (err < 0)
1881 goto fail_self_id;
1883 ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1884 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
1885 dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
1887 return 0;
1889 fail_self_id:
1890 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1891 ohci->self_id_cpu, ohci->self_id_bus);
1892 fail_registers:
1893 kfree(ohci->it_context_list);
1894 kfree(ohci->ir_context_list);
1895 pci_iounmap(dev, ohci->registers);
1896 fail_iomem:
1897 pci_release_region(dev, 0);
1898 fail_disable:
1899 pci_disable_device(dev);
1900 fail_put_card:
1901 fw_card_put(&ohci->card);
1903 return err;
1906 static void pci_remove(struct pci_dev *dev)
1908 struct fw_ohci *ohci;
1910 ohci = pci_get_drvdata(dev);
1911 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1912 flush_writes(ohci);
1913 fw_core_remove_card(&ohci->card);
1916 * FIXME: Fail all pending packets here, now that the upper
1917 * layers can't queue any more.
1920 software_reset(ohci);
1921 free_irq(dev->irq, ohci);
1922 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1923 ohci->self_id_cpu, ohci->self_id_bus);
1924 kfree(ohci->it_context_list);
1925 kfree(ohci->ir_context_list);
1926 pci_iounmap(dev, ohci->registers);
1927 pci_release_region(dev, 0);
1928 pci_disable_device(dev);
1929 fw_card_put(&ohci->card);
1931 fw_notify("Removed fw-ohci device.\n");
1934 #ifdef CONFIG_PM
1935 static int pci_suspend(struct pci_dev *pdev, pm_message_t state)
1937 struct fw_ohci *ohci = pci_get_drvdata(pdev);
1938 int err;
1940 software_reset(ohci);
1941 free_irq(pdev->irq, ohci);
1942 err = pci_save_state(pdev);
1943 if (err) {
1944 fw_error("pci_save_state failed\n");
1945 return err;
1947 err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
1948 if (err) {
1949 fw_error("pci_set_power_state failed\n");
1950 return err;
1953 return 0;
1956 static int pci_resume(struct pci_dev *pdev)
1958 struct fw_ohci *ohci = pci_get_drvdata(pdev);
1959 int err;
1961 pci_set_power_state(pdev, PCI_D0);
1962 pci_restore_state(pdev);
1963 err = pci_enable_device(pdev);
1964 if (err) {
1965 fw_error("pci_enable_device failed\n");
1966 return err;
1969 return ohci_enable(&ohci->card, ohci->config_rom, CONFIG_ROM_SIZE);
1971 #endif
1973 static struct pci_device_id pci_table[] = {
1974 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1978 MODULE_DEVICE_TABLE(pci, pci_table);
1980 static struct pci_driver fw_ohci_pci_driver = {
1981 .name = ohci_driver_name,
1982 .id_table = pci_table,
1983 .probe = pci_probe,
1984 .remove = pci_remove,
1985 #ifdef CONFIG_PM
1986 .resume = pci_resume,
1987 .suspend = pci_suspend,
1988 #endif
1991 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1992 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
1993 MODULE_LICENSE("GPL");
1995 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1996 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
1997 MODULE_ALIAS("ohci1394");
1998 #endif
2000 static int __init fw_ohci_init(void)
2002 return pci_register_driver(&fw_ohci_pci_driver);
2005 static void __exit fw_ohci_cleanup(void)
2007 pci_unregister_driver(&fw_ohci_pci_driver);
2010 module_init(fw_ohci_init);
2011 module_exit(fw_ohci_cleanup);