drm: ioremap return value checks
[usb.git] / sound / soc / soc-core.c
blob92d5d917b73bc64efc4ada4ecbe914748bca4789
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
7 * Author: Liam Girdwood
8 * liam.girdwood@wolfsonmicro.com or linux@wolfsonmicro.com
9 * with code, comments and ideas from :-
10 * Richard Purdie <richard@openedhand.com>
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
17 * Revision history
18 * 12th Aug 2005 Initial version.
19 * 25th Oct 2005 Working Codec, Interface and Platform registration.
21 * TODO:
22 * o Add hw rules to enforce rates, etc.
23 * o More testing with other codecs/machines.
24 * o Add more codecs and platforms to ensure good API coverage.
25 * o Support TDM on PCM and I2S
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/init.h>
31 #include <linux/delay.h>
32 #include <linux/pm.h>
33 #include <linux/bitops.h>
34 #include <linux/platform_device.h>
35 #include <sound/driver.h>
36 #include <sound/core.h>
37 #include <sound/pcm.h>
38 #include <sound/pcm_params.h>
39 #include <sound/soc.h>
40 #include <sound/soc-dapm.h>
41 #include <sound/initval.h>
43 /* debug */
44 #define SOC_DEBUG 0
45 #if SOC_DEBUG
46 #define dbg(format, arg...) printk(format, ## arg)
47 #else
48 #define dbg(format, arg...)
49 #endif
51 static DEFINE_MUTEX(pcm_mutex);
52 static DEFINE_MUTEX(io_mutex);
53 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
56 * This is a timeout to do a DAPM powerdown after a stream is closed().
57 * It can be used to eliminate pops between different playback streams, e.g.
58 * between two audio tracks.
60 static int pmdown_time = 5000;
61 module_param(pmdown_time, int, 0);
62 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
65 * This function forces any delayed work to be queued and run.
67 static int run_delayed_work(struct delayed_work *dwork)
69 int ret;
71 /* cancel any work waiting to be queued. */
72 ret = cancel_delayed_work(dwork);
74 /* if there was any work waiting then we run it now and
75 * wait for it's completion */
76 if (ret) {
77 schedule_delayed_work(dwork, 0);
78 flush_scheduled_work();
80 return ret;
83 #ifdef CONFIG_SND_SOC_AC97_BUS
84 /* unregister ac97 codec */
85 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
87 if (codec->ac97->dev.bus)
88 device_unregister(&codec->ac97->dev);
89 return 0;
92 /* stop no dev release warning */
93 static void soc_ac97_device_release(struct device *dev){}
95 /* register ac97 codec to bus */
96 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
98 int err;
100 codec->ac97->dev.bus = &ac97_bus_type;
101 codec->ac97->dev.parent = NULL;
102 codec->ac97->dev.release = soc_ac97_device_release;
104 snprintf(codec->ac97->dev.bus_id, BUS_ID_SIZE, "%d-%d:%s",
105 codec->card->number, 0, codec->name);
106 err = device_register(&codec->ac97->dev);
107 if (err < 0) {
108 snd_printk(KERN_ERR "Can't register ac97 bus\n");
109 codec->ac97->dev.bus = NULL;
110 return err;
112 return 0;
114 #endif
116 static inline const char* get_dai_name(int type)
118 switch(type) {
119 case SND_SOC_DAI_AC97_BUS:
120 case SND_SOC_DAI_AC97:
121 return "AC97";
122 case SND_SOC_DAI_I2S:
123 return "I2S";
124 case SND_SOC_DAI_PCM:
125 return "PCM";
127 return NULL;
131 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
132 * then initialized and any private data can be allocated. This also calls
133 * startup for the cpu DAI, platform, machine and codec DAI.
135 static int soc_pcm_open(struct snd_pcm_substream *substream)
137 struct snd_soc_pcm_runtime *rtd = substream->private_data;
138 struct snd_soc_device *socdev = rtd->socdev;
139 struct snd_pcm_runtime *runtime = substream->runtime;
140 struct snd_soc_dai_link *machine = rtd->dai;
141 struct snd_soc_platform *platform = socdev->platform;
142 struct snd_soc_cpu_dai *cpu_dai = machine->cpu_dai;
143 struct snd_soc_codec_dai *codec_dai = machine->codec_dai;
144 int ret = 0;
146 mutex_lock(&pcm_mutex);
148 /* startup the audio subsystem */
149 if (cpu_dai->ops.startup) {
150 ret = cpu_dai->ops.startup(substream);
151 if (ret < 0) {
152 printk(KERN_ERR "asoc: can't open interface %s\n",
153 cpu_dai->name);
154 goto out;
158 if (platform->pcm_ops->open) {
159 ret = platform->pcm_ops->open(substream);
160 if (ret < 0) {
161 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
162 goto platform_err;
166 if (codec_dai->ops.startup) {
167 ret = codec_dai->ops.startup(substream);
168 if (ret < 0) {
169 printk(KERN_ERR "asoc: can't open codec %s\n",
170 codec_dai->name);
171 goto codec_dai_err;
175 if (machine->ops && machine->ops->startup) {
176 ret = machine->ops->startup(substream);
177 if (ret < 0) {
178 printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
179 goto machine_err;
183 /* Check that the codec and cpu DAI's are compatible */
184 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
185 runtime->hw.rate_min =
186 max(codec_dai->playback.rate_min, cpu_dai->playback.rate_min);
187 runtime->hw.rate_max =
188 min(codec_dai->playback.rate_max, cpu_dai->playback.rate_max);
189 runtime->hw.channels_min =
190 max(codec_dai->playback.channels_min,
191 cpu_dai->playback.channels_min);
192 runtime->hw.channels_max =
193 min(codec_dai->playback.channels_max,
194 cpu_dai->playback.channels_max);
195 runtime->hw.formats =
196 codec_dai->playback.formats & cpu_dai->playback.formats;
197 runtime->hw.rates =
198 codec_dai->playback.rates & cpu_dai->playback.rates;
199 } else {
200 runtime->hw.rate_min =
201 max(codec_dai->capture.rate_min, cpu_dai->capture.rate_min);
202 runtime->hw.rate_max =
203 min(codec_dai->capture.rate_max, cpu_dai->capture.rate_max);
204 runtime->hw.channels_min =
205 max(codec_dai->capture.channels_min,
206 cpu_dai->capture.channels_min);
207 runtime->hw.channels_max =
208 min(codec_dai->capture.channels_max,
209 cpu_dai->capture.channels_max);
210 runtime->hw.formats =
211 codec_dai->capture.formats & cpu_dai->capture.formats;
212 runtime->hw.rates =
213 codec_dai->capture.rates & cpu_dai->capture.rates;
216 snd_pcm_limit_hw_rates(runtime);
217 if (!runtime->hw.rates) {
218 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
219 codec_dai->name, cpu_dai->name);
220 goto machine_err;
222 if (!runtime->hw.formats) {
223 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
224 codec_dai->name, cpu_dai->name);
225 goto machine_err;
227 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
228 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
229 codec_dai->name, cpu_dai->name);
230 goto machine_err;
233 dbg("asoc: %s <-> %s info:\n",codec_dai->name, cpu_dai->name);
234 dbg("asoc: rate mask 0x%x\n", runtime->hw.rates);
235 dbg("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
236 runtime->hw.channels_max);
237 dbg("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
238 runtime->hw.rate_max);
240 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
241 cpu_dai->playback.active = codec_dai->playback.active = 1;
242 else
243 cpu_dai->capture.active = codec_dai->capture.active = 1;
244 cpu_dai->active = codec_dai->active = 1;
245 cpu_dai->runtime = runtime;
246 socdev->codec->active++;
247 mutex_unlock(&pcm_mutex);
248 return 0;
250 machine_err:
251 if (machine->ops && machine->ops->shutdown)
252 machine->ops->shutdown(substream);
254 codec_dai_err:
255 if (platform->pcm_ops->close)
256 platform->pcm_ops->close(substream);
258 platform_err:
259 if (cpu_dai->ops.shutdown)
260 cpu_dai->ops.shutdown(substream);
261 out:
262 mutex_unlock(&pcm_mutex);
263 return ret;
267 * Power down the audio subsytem pmdown_time msecs after close is called.
268 * This is to ensure there are no pops or clicks in between any music tracks
269 * due to DAPM power cycling.
271 static void close_delayed_work(struct work_struct *work)
273 struct snd_soc_device *socdev =
274 container_of(work, struct snd_soc_device, delayed_work.work);
275 struct snd_soc_codec *codec = socdev->codec;
276 struct snd_soc_codec_dai *codec_dai;
277 int i;
279 mutex_lock(&pcm_mutex);
280 for(i = 0; i < codec->num_dai; i++) {
281 codec_dai = &codec->dai[i];
283 dbg("pop wq checking: %s status: %s waiting: %s\n",
284 codec_dai->playback.stream_name,
285 codec_dai->playback.active ? "active" : "inactive",
286 codec_dai->pop_wait ? "yes" : "no");
288 /* are we waiting on this codec DAI stream */
289 if (codec_dai->pop_wait == 1) {
291 codec_dai->pop_wait = 0;
292 snd_soc_dapm_stream_event(codec, codec_dai->playback.stream_name,
293 SND_SOC_DAPM_STREAM_STOP);
295 /* power down the codec power domain if no longer active */
296 if (codec->active == 0) {
297 dbg("pop wq D3 %s %s\n", codec->name,
298 codec_dai->playback.stream_name);
299 if (codec->dapm_event)
300 codec->dapm_event(codec, SNDRV_CTL_POWER_D3hot);
304 mutex_unlock(&pcm_mutex);
308 * Called by ALSA when a PCM substream is closed. Private data can be
309 * freed here. The cpu DAI, codec DAI, machine and platform are also
310 * shutdown.
312 static int soc_codec_close(struct snd_pcm_substream *substream)
314 struct snd_soc_pcm_runtime *rtd = substream->private_data;
315 struct snd_soc_device *socdev = rtd->socdev;
316 struct snd_soc_dai_link *machine = rtd->dai;
317 struct snd_soc_platform *platform = socdev->platform;
318 struct snd_soc_cpu_dai *cpu_dai = machine->cpu_dai;
319 struct snd_soc_codec_dai *codec_dai = machine->codec_dai;
320 struct snd_soc_codec *codec = socdev->codec;
322 mutex_lock(&pcm_mutex);
324 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
325 cpu_dai->playback.active = codec_dai->playback.active = 0;
326 else
327 cpu_dai->capture.active = codec_dai->capture.active = 0;
329 if (codec_dai->playback.active == 0 &&
330 codec_dai->capture.active == 0) {
331 cpu_dai->active = codec_dai->active = 0;
333 codec->active--;
335 if (cpu_dai->ops.shutdown)
336 cpu_dai->ops.shutdown(substream);
338 if (codec_dai->ops.shutdown)
339 codec_dai->ops.shutdown(substream);
341 if (machine->ops && machine->ops->shutdown)
342 machine->ops->shutdown(substream);
344 if (platform->pcm_ops->close)
345 platform->pcm_ops->close(substream);
346 cpu_dai->runtime = NULL;
348 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
349 /* start delayed pop wq here for playback streams */
350 codec_dai->pop_wait = 1;
351 schedule_delayed_work(&socdev->delayed_work,
352 msecs_to_jiffies(pmdown_time));
353 } else {
354 /* capture streams can be powered down now */
355 snd_soc_dapm_stream_event(codec,
356 codec_dai->capture.stream_name, SND_SOC_DAPM_STREAM_STOP);
358 if (codec->active == 0 && codec_dai->pop_wait == 0){
359 if (codec->dapm_event)
360 codec->dapm_event(codec, SNDRV_CTL_POWER_D3hot);
364 mutex_unlock(&pcm_mutex);
365 return 0;
369 * Called by ALSA when the PCM substream is prepared, can set format, sample
370 * rate, etc. This function is non atomic and can be called multiple times,
371 * it can refer to the runtime info.
373 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
375 struct snd_soc_pcm_runtime *rtd = substream->private_data;
376 struct snd_soc_device *socdev = rtd->socdev;
377 struct snd_soc_dai_link *machine = rtd->dai;
378 struct snd_soc_platform *platform = socdev->platform;
379 struct snd_soc_cpu_dai *cpu_dai = machine->cpu_dai;
380 struct snd_soc_codec_dai *codec_dai = machine->codec_dai;
381 struct snd_soc_codec *codec = socdev->codec;
382 int ret = 0;
384 mutex_lock(&pcm_mutex);
386 if (machine->ops && machine->ops->prepare) {
387 ret = machine->ops->prepare(substream);
388 if (ret < 0) {
389 printk(KERN_ERR "asoc: machine prepare error\n");
390 goto out;
394 if (platform->pcm_ops->prepare) {
395 ret = platform->pcm_ops->prepare(substream);
396 if (ret < 0) {
397 printk(KERN_ERR "asoc: platform prepare error\n");
398 goto out;
402 if (codec_dai->ops.prepare) {
403 ret = codec_dai->ops.prepare(substream);
404 if (ret < 0) {
405 printk(KERN_ERR "asoc: codec DAI prepare error\n");
406 goto out;
410 if (cpu_dai->ops.prepare) {
411 ret = cpu_dai->ops.prepare(substream);
412 if (ret < 0) {
413 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
414 goto out;
418 /* we only want to start a DAPM playback stream if we are not waiting
419 * on an existing one stopping */
420 if (codec_dai->pop_wait) {
421 /* we are waiting for the delayed work to start */
422 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
423 snd_soc_dapm_stream_event(socdev->codec,
424 codec_dai->capture.stream_name,
425 SND_SOC_DAPM_STREAM_START);
426 else {
427 codec_dai->pop_wait = 0;
428 cancel_delayed_work(&socdev->delayed_work);
429 if (codec_dai->dai_ops.digital_mute)
430 codec_dai->dai_ops.digital_mute(codec_dai, 0);
432 } else {
433 /* no delayed work - do we need to power up codec */
434 if (codec->dapm_state != SNDRV_CTL_POWER_D0) {
436 if (codec->dapm_event)
437 codec->dapm_event(codec, SNDRV_CTL_POWER_D1);
439 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
440 snd_soc_dapm_stream_event(codec,
441 codec_dai->playback.stream_name,
442 SND_SOC_DAPM_STREAM_START);
443 else
444 snd_soc_dapm_stream_event(codec,
445 codec_dai->capture.stream_name,
446 SND_SOC_DAPM_STREAM_START);
448 if (codec->dapm_event)
449 codec->dapm_event(codec, SNDRV_CTL_POWER_D0);
450 if (codec_dai->dai_ops.digital_mute)
451 codec_dai->dai_ops.digital_mute(codec_dai, 0);
453 } else {
454 /* codec already powered - power on widgets */
455 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
456 snd_soc_dapm_stream_event(codec,
457 codec_dai->playback.stream_name,
458 SND_SOC_DAPM_STREAM_START);
459 else
460 snd_soc_dapm_stream_event(codec,
461 codec_dai->capture.stream_name,
462 SND_SOC_DAPM_STREAM_START);
463 if (codec_dai->dai_ops.digital_mute)
464 codec_dai->dai_ops.digital_mute(codec_dai, 0);
468 out:
469 mutex_unlock(&pcm_mutex);
470 return ret;
474 * Called by ALSA when the hardware params are set by application. This
475 * function can also be called multiple times and can allocate buffers
476 * (using snd_pcm_lib_* ). It's non-atomic.
478 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
479 struct snd_pcm_hw_params *params)
481 struct snd_soc_pcm_runtime *rtd = substream->private_data;
482 struct snd_soc_device *socdev = rtd->socdev;
483 struct snd_soc_dai_link *machine = rtd->dai;
484 struct snd_soc_platform *platform = socdev->platform;
485 struct snd_soc_cpu_dai *cpu_dai = machine->cpu_dai;
486 struct snd_soc_codec_dai *codec_dai = machine->codec_dai;
487 int ret = 0;
489 mutex_lock(&pcm_mutex);
491 if (machine->ops && machine->ops->hw_params) {
492 ret = machine->ops->hw_params(substream, params);
493 if (ret < 0) {
494 printk(KERN_ERR "asoc: machine hw_params failed\n");
495 goto out;
499 if (codec_dai->ops.hw_params) {
500 ret = codec_dai->ops.hw_params(substream, params);
501 if (ret < 0) {
502 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
503 codec_dai->name);
504 goto codec_err;
508 if (cpu_dai->ops.hw_params) {
509 ret = cpu_dai->ops.hw_params(substream, params);
510 if (ret < 0) {
511 printk(KERN_ERR "asoc: can't set interface %s hw params\n",
512 cpu_dai->name);
513 goto interface_err;
517 if (platform->pcm_ops->hw_params) {
518 ret = platform->pcm_ops->hw_params(substream, params);
519 if (ret < 0) {
520 printk(KERN_ERR "asoc: can't set platform %s hw params\n",
521 platform->name);
522 goto platform_err;
526 out:
527 mutex_unlock(&pcm_mutex);
528 return ret;
530 platform_err:
531 if (cpu_dai->ops.hw_free)
532 cpu_dai->ops.hw_free(substream);
534 interface_err:
535 if (codec_dai->ops.hw_free)
536 codec_dai->ops.hw_free(substream);
538 codec_err:
539 if(machine->ops && machine->ops->hw_free)
540 machine->ops->hw_free(substream);
542 mutex_unlock(&pcm_mutex);
543 return ret;
547 * Free's resources allocated by hw_params, can be called multiple times
549 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
551 struct snd_soc_pcm_runtime *rtd = substream->private_data;
552 struct snd_soc_device *socdev = rtd->socdev;
553 struct snd_soc_dai_link *machine = rtd->dai;
554 struct snd_soc_platform *platform = socdev->platform;
555 struct snd_soc_cpu_dai *cpu_dai = machine->cpu_dai;
556 struct snd_soc_codec_dai *codec_dai = machine->codec_dai;
557 struct snd_soc_codec *codec = socdev->codec;
559 mutex_lock(&pcm_mutex);
561 /* apply codec digital mute */
562 if (!codec->active && codec_dai->dai_ops.digital_mute)
563 codec_dai->dai_ops.digital_mute(codec_dai, 1);
565 /* free any machine hw params */
566 if (machine->ops && machine->ops->hw_free)
567 machine->ops->hw_free(substream);
569 /* free any DMA resources */
570 if (platform->pcm_ops->hw_free)
571 platform->pcm_ops->hw_free(substream);
573 /* now free hw params for the DAI's */
574 if (codec_dai->ops.hw_free)
575 codec_dai->ops.hw_free(substream);
577 if (cpu_dai->ops.hw_free)
578 cpu_dai->ops.hw_free(substream);
580 mutex_unlock(&pcm_mutex);
581 return 0;
584 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
586 struct snd_soc_pcm_runtime *rtd = substream->private_data;
587 struct snd_soc_device *socdev = rtd->socdev;
588 struct snd_soc_dai_link *machine = rtd->dai;
589 struct snd_soc_platform *platform = socdev->platform;
590 struct snd_soc_cpu_dai *cpu_dai = machine->cpu_dai;
591 struct snd_soc_codec_dai *codec_dai = machine->codec_dai;
592 int ret;
594 if (codec_dai->ops.trigger) {
595 ret = codec_dai->ops.trigger(substream, cmd);
596 if (ret < 0)
597 return ret;
600 if (platform->pcm_ops->trigger) {
601 ret = platform->pcm_ops->trigger(substream, cmd);
602 if (ret < 0)
603 return ret;
606 if (cpu_dai->ops.trigger) {
607 ret = cpu_dai->ops.trigger(substream, cmd);
608 if (ret < 0)
609 return ret;
611 return 0;
614 /* ASoC PCM operations */
615 static struct snd_pcm_ops soc_pcm_ops = {
616 .open = soc_pcm_open,
617 .close = soc_codec_close,
618 .hw_params = soc_pcm_hw_params,
619 .hw_free = soc_pcm_hw_free,
620 .prepare = soc_pcm_prepare,
621 .trigger = soc_pcm_trigger,
624 #ifdef CONFIG_PM
625 /* powers down audio subsystem for suspend */
626 static int soc_suspend(struct platform_device *pdev, pm_message_t state)
628 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
629 struct snd_soc_machine *machine = socdev->machine;
630 struct snd_soc_platform *platform = socdev->platform;
631 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
632 struct snd_soc_codec *codec = socdev->codec;
633 int i;
635 /* mute any active DAC's */
636 for(i = 0; i < machine->num_links; i++) {
637 struct snd_soc_codec_dai *dai = machine->dai_link[i].codec_dai;
638 if (dai->dai_ops.digital_mute && dai->playback.active)
639 dai->dai_ops.digital_mute(dai, 1);
642 if (machine->suspend_pre)
643 machine->suspend_pre(pdev, state);
645 for(i = 0; i < machine->num_links; i++) {
646 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
647 if (cpu_dai->suspend && cpu_dai->type != SND_SOC_DAI_AC97)
648 cpu_dai->suspend(pdev, cpu_dai);
649 if (platform->suspend)
650 platform->suspend(pdev, cpu_dai);
653 /* close any waiting streams and save state */
654 run_delayed_work(&socdev->delayed_work);
655 codec->suspend_dapm_state = codec->dapm_state;
657 for(i = 0; i < codec->num_dai; i++) {
658 char *stream = codec->dai[i].playback.stream_name;
659 if (stream != NULL)
660 snd_soc_dapm_stream_event(codec, stream,
661 SND_SOC_DAPM_STREAM_SUSPEND);
662 stream = codec->dai[i].capture.stream_name;
663 if (stream != NULL)
664 snd_soc_dapm_stream_event(codec, stream,
665 SND_SOC_DAPM_STREAM_SUSPEND);
668 if (codec_dev->suspend)
669 codec_dev->suspend(pdev, state);
671 for(i = 0; i < machine->num_links; i++) {
672 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
673 if (cpu_dai->suspend && cpu_dai->type == SND_SOC_DAI_AC97)
674 cpu_dai->suspend(pdev, cpu_dai);
677 if (machine->suspend_post)
678 machine->suspend_post(pdev, state);
680 return 0;
683 /* powers up audio subsystem after a suspend */
684 static int soc_resume(struct platform_device *pdev)
686 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
687 struct snd_soc_machine *machine = socdev->machine;
688 struct snd_soc_platform *platform = socdev->platform;
689 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
690 struct snd_soc_codec *codec = socdev->codec;
691 int i;
693 if (machine->resume_pre)
694 machine->resume_pre(pdev);
696 for(i = 0; i < machine->num_links; i++) {
697 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
698 if (cpu_dai->resume && cpu_dai->type == SND_SOC_DAI_AC97)
699 cpu_dai->resume(pdev, cpu_dai);
702 if (codec_dev->resume)
703 codec_dev->resume(pdev);
705 for(i = 0; i < codec->num_dai; i++) {
706 char* stream = codec->dai[i].playback.stream_name;
707 if (stream != NULL)
708 snd_soc_dapm_stream_event(codec, stream,
709 SND_SOC_DAPM_STREAM_RESUME);
710 stream = codec->dai[i].capture.stream_name;
711 if (stream != NULL)
712 snd_soc_dapm_stream_event(codec, stream,
713 SND_SOC_DAPM_STREAM_RESUME);
716 /* unmute any active DAC's */
717 for(i = 0; i < machine->num_links; i++) {
718 struct snd_soc_codec_dai *dai = machine->dai_link[i].codec_dai;
719 if (dai->dai_ops.digital_mute && dai->playback.active)
720 dai->dai_ops.digital_mute(dai, 0);
723 for(i = 0; i < machine->num_links; i++) {
724 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
725 if (cpu_dai->resume && cpu_dai->type != SND_SOC_DAI_AC97)
726 cpu_dai->resume(pdev, cpu_dai);
727 if (platform->resume)
728 platform->resume(pdev, cpu_dai);
731 if (machine->resume_post)
732 machine->resume_post(pdev);
734 return 0;
737 #else
738 #define soc_suspend NULL
739 #define soc_resume NULL
740 #endif
742 /* probes a new socdev */
743 static int soc_probe(struct platform_device *pdev)
745 int ret = 0, i;
746 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
747 struct snd_soc_machine *machine = socdev->machine;
748 struct snd_soc_platform *platform = socdev->platform;
749 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
751 if (machine->probe) {
752 ret = machine->probe(pdev);
753 if(ret < 0)
754 return ret;
757 for (i = 0; i < machine->num_links; i++) {
758 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
759 if (cpu_dai->probe) {
760 ret = cpu_dai->probe(pdev);
761 if(ret < 0)
762 goto cpu_dai_err;
766 if (codec_dev->probe) {
767 ret = codec_dev->probe(pdev);
768 if(ret < 0)
769 goto cpu_dai_err;
772 if (platform->probe) {
773 ret = platform->probe(pdev);
774 if(ret < 0)
775 goto platform_err;
778 /* DAPM stream work */
779 INIT_DELAYED_WORK(&socdev->delayed_work, close_delayed_work);
780 return 0;
782 platform_err:
783 if (codec_dev->remove)
784 codec_dev->remove(pdev);
786 cpu_dai_err:
787 for (i--; i >= 0; i--) {
788 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
789 if (cpu_dai->remove)
790 cpu_dai->remove(pdev);
793 if (machine->remove)
794 machine->remove(pdev);
796 return ret;
799 /* removes a socdev */
800 static int soc_remove(struct platform_device *pdev)
802 int i;
803 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
804 struct snd_soc_machine *machine = socdev->machine;
805 struct snd_soc_platform *platform = socdev->platform;
806 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
808 run_delayed_work(&socdev->delayed_work);
810 if (platform->remove)
811 platform->remove(pdev);
813 if (codec_dev->remove)
814 codec_dev->remove(pdev);
816 for (i = 0; i < machine->num_links; i++) {
817 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
818 if (cpu_dai->remove)
819 cpu_dai->remove(pdev);
822 if (machine->remove)
823 machine->remove(pdev);
825 return 0;
828 /* ASoC platform driver */
829 static struct platform_driver soc_driver = {
830 .driver = {
831 .name = "soc-audio",
833 .probe = soc_probe,
834 .remove = soc_remove,
835 .suspend = soc_suspend,
836 .resume = soc_resume,
839 /* create a new pcm */
840 static int soc_new_pcm(struct snd_soc_device *socdev,
841 struct snd_soc_dai_link *dai_link, int num)
843 struct snd_soc_codec *codec = socdev->codec;
844 struct snd_soc_codec_dai *codec_dai = dai_link->codec_dai;
845 struct snd_soc_cpu_dai *cpu_dai = dai_link->cpu_dai;
846 struct snd_soc_pcm_runtime *rtd;
847 struct snd_pcm *pcm;
848 char new_name[64];
849 int ret = 0, playback = 0, capture = 0;
851 rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
852 if (rtd == NULL)
853 return -ENOMEM;
855 rtd->dai = dai_link;
856 rtd->socdev = socdev;
857 codec_dai->codec = socdev->codec;
859 /* check client and interface hw capabilities */
860 sprintf(new_name, "%s %s-%s-%d",dai_link->stream_name, codec_dai->name,
861 get_dai_name(cpu_dai->type), num);
863 if (codec_dai->playback.channels_min)
864 playback = 1;
865 if (codec_dai->capture.channels_min)
866 capture = 1;
868 ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
869 capture, &pcm);
870 if (ret < 0) {
871 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
872 kfree(rtd);
873 return ret;
876 pcm->private_data = rtd;
877 soc_pcm_ops.mmap = socdev->platform->pcm_ops->mmap;
878 soc_pcm_ops.pointer = socdev->platform->pcm_ops->pointer;
879 soc_pcm_ops.ioctl = socdev->platform->pcm_ops->ioctl;
880 soc_pcm_ops.copy = socdev->platform->pcm_ops->copy;
881 soc_pcm_ops.silence = socdev->platform->pcm_ops->silence;
882 soc_pcm_ops.ack = socdev->platform->pcm_ops->ack;
883 soc_pcm_ops.page = socdev->platform->pcm_ops->page;
885 if (playback)
886 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
888 if (capture)
889 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
891 ret = socdev->platform->pcm_new(codec->card, codec_dai, pcm);
892 if (ret < 0) {
893 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
894 kfree(rtd);
895 return ret;
898 pcm->private_free = socdev->platform->pcm_free;
899 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
900 cpu_dai->name);
901 return ret;
904 /* codec register dump */
905 static ssize_t codec_reg_show(struct device *dev,
906 struct device_attribute *attr, char *buf)
908 struct snd_soc_device *devdata = dev_get_drvdata(dev);
909 struct snd_soc_codec *codec = devdata->codec;
910 int i, step = 1, count = 0;
912 if (!codec->reg_cache_size)
913 return 0;
915 if (codec->reg_cache_step)
916 step = codec->reg_cache_step;
918 count += sprintf(buf, "%s registers\n", codec->name);
919 for(i = 0; i < codec->reg_cache_size; i += step)
920 count += sprintf(buf + count, "%2x: %4x\n", i, codec->read(codec, i));
922 return count;
924 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
927 * snd_soc_new_ac97_codec - initailise AC97 device
928 * @codec: audio codec
929 * @ops: AC97 bus operations
930 * @num: AC97 codec number
932 * Initialises AC97 codec resources for use by ad-hoc devices only.
934 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
935 struct snd_ac97_bus_ops *ops, int num)
937 mutex_lock(&codec->mutex);
939 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
940 if (codec->ac97 == NULL) {
941 mutex_unlock(&codec->mutex);
942 return -ENOMEM;
945 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
946 if (codec->ac97->bus == NULL) {
947 kfree(codec->ac97);
948 codec->ac97 = NULL;
949 mutex_unlock(&codec->mutex);
950 return -ENOMEM;
953 codec->ac97->bus->ops = ops;
954 codec->ac97->num = num;
955 mutex_unlock(&codec->mutex);
956 return 0;
958 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
961 * snd_soc_free_ac97_codec - free AC97 codec device
962 * @codec: audio codec
964 * Frees AC97 codec device resources.
966 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
968 mutex_lock(&codec->mutex);
969 kfree(codec->ac97->bus);
970 kfree(codec->ac97);
971 codec->ac97 = NULL;
972 mutex_unlock(&codec->mutex);
974 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
977 * snd_soc_update_bits - update codec register bits
978 * @codec: audio codec
979 * @reg: codec register
980 * @mask: register mask
981 * @value: new value
983 * Writes new register value.
985 * Returns 1 for change else 0.
987 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
988 unsigned short mask, unsigned short value)
990 int change;
991 unsigned short old, new;
993 mutex_lock(&io_mutex);
994 old = snd_soc_read(codec, reg);
995 new = (old & ~mask) | value;
996 change = old != new;
997 if (change)
998 snd_soc_write(codec, reg, new);
1000 mutex_unlock(&io_mutex);
1001 return change;
1003 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1006 * snd_soc_test_bits - test register for change
1007 * @codec: audio codec
1008 * @reg: codec register
1009 * @mask: register mask
1010 * @value: new value
1012 * Tests a register with a new value and checks if the new value is
1013 * different from the old value.
1015 * Returns 1 for change else 0.
1017 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1018 unsigned short mask, unsigned short value)
1020 int change;
1021 unsigned short old, new;
1023 mutex_lock(&io_mutex);
1024 old = snd_soc_read(codec, reg);
1025 new = (old & ~mask) | value;
1026 change = old != new;
1027 mutex_unlock(&io_mutex);
1029 return change;
1031 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1034 * snd_soc_new_pcms - create new sound card and pcms
1035 * @socdev: the SoC audio device
1037 * Create a new sound card based upon the codec and interface pcms.
1039 * Returns 0 for success, else error.
1041 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1043 struct snd_soc_codec *codec = socdev->codec;
1044 struct snd_soc_machine *machine = socdev->machine;
1045 int ret = 0, i;
1047 mutex_lock(&codec->mutex);
1049 /* register a sound card */
1050 codec->card = snd_card_new(idx, xid, codec->owner, 0);
1051 if (!codec->card) {
1052 printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1053 codec->name);
1054 mutex_unlock(&codec->mutex);
1055 return -ENODEV;
1058 codec->card->dev = socdev->dev;
1059 codec->card->private_data = codec;
1060 strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1062 /* create the pcms */
1063 for(i = 0; i < machine->num_links; i++) {
1064 ret = soc_new_pcm(socdev, &machine->dai_link[i], i);
1065 if (ret < 0) {
1066 printk(KERN_ERR "asoc: can't create pcm %s\n",
1067 machine->dai_link[i].stream_name);
1068 mutex_unlock(&codec->mutex);
1069 return ret;
1073 mutex_unlock(&codec->mutex);
1074 return ret;
1076 EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1079 * snd_soc_register_card - register sound card
1080 * @socdev: the SoC audio device
1082 * Register a SoC sound card. Also registers an AC97 device if the
1083 * codec is AC97 for ad hoc devices.
1085 * Returns 0 for success, else error.
1087 int snd_soc_register_card(struct snd_soc_device *socdev)
1089 struct snd_soc_codec *codec = socdev->codec;
1090 struct snd_soc_machine *machine = socdev->machine;
1091 int ret = 0, i, ac97 = 0, err = 0;
1093 mutex_lock(&codec->mutex);
1094 for(i = 0; i < machine->num_links; i++) {
1095 if (socdev->machine->dai_link[i].init) {
1096 err = socdev->machine->dai_link[i].init(codec);
1097 if (err < 0) {
1098 printk(KERN_ERR "asoc: failed to init %s\n",
1099 socdev->machine->dai_link[i].stream_name);
1100 continue;
1103 if (socdev->machine->dai_link[i].codec_dai->type ==
1104 SND_SOC_DAI_AC97_BUS)
1105 ac97 = 1;
1107 snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1108 "%s", machine->name);
1109 snprintf(codec->card->longname, sizeof(codec->card->longname),
1110 "%s (%s)", machine->name, codec->name);
1112 ret = snd_card_register(codec->card);
1113 if (ret < 0) {
1114 printk(KERN_ERR "asoc: failed to register soundcard for codec %s\n",
1115 codec->name);
1116 goto out;
1119 #ifdef CONFIG_SND_SOC_AC97_BUS
1120 if (ac97) {
1121 ret = soc_ac97_dev_register(codec);
1122 if (ret < 0) {
1123 printk(KERN_ERR "asoc: AC97 device register failed\n");
1124 snd_card_free(codec->card);
1125 goto out;
1128 #endif
1130 err = snd_soc_dapm_sys_add(socdev->dev);
1131 if (err < 0)
1132 printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1134 err = device_create_file(socdev->dev, &dev_attr_codec_reg);
1135 if (err < 0)
1136 printk(KERN_WARNING "asoc: failed to add codec sysfs entries\n");
1137 out:
1138 mutex_unlock(&codec->mutex);
1139 return ret;
1141 EXPORT_SYMBOL_GPL(snd_soc_register_card);
1144 * snd_soc_free_pcms - free sound card and pcms
1145 * @socdev: the SoC audio device
1147 * Frees sound card and pcms associated with the socdev.
1148 * Also unregister the codec if it is an AC97 device.
1150 void snd_soc_free_pcms(struct snd_soc_device *socdev)
1152 struct snd_soc_codec *codec = socdev->codec;
1153 #ifdef CONFIG_SND_SOC_AC97_BUS
1154 struct snd_soc_codec_dai *codec_dai;
1155 int i;
1156 #endif
1158 mutex_lock(&codec->mutex);
1159 #ifdef CONFIG_SND_SOC_AC97_BUS
1160 for(i = 0; i < codec->num_dai; i++) {
1161 codec_dai = &codec->dai[i];
1162 if (codec_dai->type == SND_SOC_DAI_AC97_BUS && codec->ac97) {
1163 soc_ac97_dev_unregister(codec);
1164 goto free_card;
1167 free_card:
1168 #endif
1170 if (codec->card)
1171 snd_card_free(codec->card);
1172 device_remove_file(socdev->dev, &dev_attr_codec_reg);
1173 mutex_unlock(&codec->mutex);
1175 EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1178 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1179 * @substream: the pcm substream
1180 * @hw: the hardware parameters
1182 * Sets the substream runtime hardware parameters.
1184 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1185 const struct snd_pcm_hardware *hw)
1187 struct snd_pcm_runtime *runtime = substream->runtime;
1188 runtime->hw.info = hw->info;
1189 runtime->hw.formats = hw->formats;
1190 runtime->hw.period_bytes_min = hw->period_bytes_min;
1191 runtime->hw.period_bytes_max = hw->period_bytes_max;
1192 runtime->hw.periods_min = hw->periods_min;
1193 runtime->hw.periods_max = hw->periods_max;
1194 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1195 runtime->hw.fifo_size = hw->fifo_size;
1196 return 0;
1198 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1201 * snd_soc_cnew - create new control
1202 * @_template: control template
1203 * @data: control private data
1204 * @lnng_name: control long name
1206 * Create a new mixer control from a template control.
1208 * Returns 0 for success, else error.
1210 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1211 void *data, char *long_name)
1213 struct snd_kcontrol_new template;
1215 memcpy(&template, _template, sizeof(template));
1216 if (long_name)
1217 template.name = long_name;
1218 template.access = SNDRV_CTL_ELEM_ACCESS_READWRITE;
1219 template.index = 0;
1221 return snd_ctl_new1(&template, data);
1223 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1226 * snd_soc_info_enum_double - enumerated double mixer info callback
1227 * @kcontrol: mixer control
1228 * @uinfo: control element information
1230 * Callback to provide information about a double enumerated
1231 * mixer control.
1233 * Returns 0 for success.
1235 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1236 struct snd_ctl_elem_info *uinfo)
1238 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1240 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1241 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1242 uinfo->value.enumerated.items = e->mask;
1244 if (uinfo->value.enumerated.item > e->mask - 1)
1245 uinfo->value.enumerated.item = e->mask - 1;
1246 strcpy(uinfo->value.enumerated.name,
1247 e->texts[uinfo->value.enumerated.item]);
1248 return 0;
1250 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1253 * snd_soc_get_enum_double - enumerated double mixer get callback
1254 * @kcontrol: mixer control
1255 * @uinfo: control element information
1257 * Callback to get the value of a double enumerated mixer.
1259 * Returns 0 for success.
1261 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1262 struct snd_ctl_elem_value *ucontrol)
1264 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1265 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1266 unsigned short val, bitmask;
1268 for (bitmask = 1; bitmask < e->mask; bitmask <<= 1)
1270 val = snd_soc_read(codec, e->reg);
1271 ucontrol->value.enumerated.item[0] = (val >> e->shift_l) & (bitmask - 1);
1272 if (e->shift_l != e->shift_r)
1273 ucontrol->value.enumerated.item[1] =
1274 (val >> e->shift_r) & (bitmask - 1);
1276 return 0;
1278 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1281 * snd_soc_put_enum_double - enumerated double mixer put callback
1282 * @kcontrol: mixer control
1283 * @uinfo: control element information
1285 * Callback to set the value of a double enumerated mixer.
1287 * Returns 0 for success.
1289 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1290 struct snd_ctl_elem_value *ucontrol)
1292 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1293 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1294 unsigned short val;
1295 unsigned short mask, bitmask;
1297 for (bitmask = 1; bitmask < e->mask; bitmask <<= 1)
1299 if (ucontrol->value.enumerated.item[0] > e->mask - 1)
1300 return -EINVAL;
1301 val = ucontrol->value.enumerated.item[0] << e->shift_l;
1302 mask = (bitmask - 1) << e->shift_l;
1303 if (e->shift_l != e->shift_r) {
1304 if (ucontrol->value.enumerated.item[1] > e->mask - 1)
1305 return -EINVAL;
1306 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1307 mask |= (bitmask - 1) << e->shift_r;
1310 return snd_soc_update_bits(codec, e->reg, mask, val);
1312 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1315 * snd_soc_info_enum_ext - external enumerated single mixer info callback
1316 * @kcontrol: mixer control
1317 * @uinfo: control element information
1319 * Callback to provide information about an external enumerated
1320 * single mixer.
1322 * Returns 0 for success.
1324 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1325 struct snd_ctl_elem_info *uinfo)
1327 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1329 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1330 uinfo->count = 1;
1331 uinfo->value.enumerated.items = e->mask;
1333 if (uinfo->value.enumerated.item > e->mask - 1)
1334 uinfo->value.enumerated.item = e->mask - 1;
1335 strcpy(uinfo->value.enumerated.name,
1336 e->texts[uinfo->value.enumerated.item]);
1337 return 0;
1339 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1342 * snd_soc_info_volsw_ext - external single mixer info callback
1343 * @kcontrol: mixer control
1344 * @uinfo: control element information
1346 * Callback to provide information about a single external mixer control.
1348 * Returns 0 for success.
1350 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1351 struct snd_ctl_elem_info *uinfo)
1353 int mask = kcontrol->private_value;
1355 uinfo->type =
1356 mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1357 uinfo->count = 1;
1358 uinfo->value.integer.min = 0;
1359 uinfo->value.integer.max = mask;
1360 return 0;
1362 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1365 * snd_soc_info_bool_ext - external single boolean mixer info callback
1366 * @kcontrol: mixer control
1367 * @uinfo: control element information
1369 * Callback to provide information about a single boolean external mixer control.
1371 * Returns 0 for success.
1373 int snd_soc_info_bool_ext(struct snd_kcontrol *kcontrol,
1374 struct snd_ctl_elem_info *uinfo)
1376 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1377 uinfo->count = 1;
1378 uinfo->value.integer.min = 0;
1379 uinfo->value.integer.max = 1;
1380 return 0;
1382 EXPORT_SYMBOL_GPL(snd_soc_info_bool_ext);
1385 * snd_soc_info_volsw - single mixer info callback
1386 * @kcontrol: mixer control
1387 * @uinfo: control element information
1389 * Callback to provide information about a single mixer control.
1391 * Returns 0 for success.
1393 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1394 struct snd_ctl_elem_info *uinfo)
1396 int mask = (kcontrol->private_value >> 16) & 0xff;
1397 int shift = (kcontrol->private_value >> 8) & 0x0f;
1398 int rshift = (kcontrol->private_value >> 12) & 0x0f;
1400 uinfo->type =
1401 mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1402 uinfo->count = shift == rshift ? 1 : 2;
1403 uinfo->value.integer.min = 0;
1404 uinfo->value.integer.max = mask;
1405 return 0;
1407 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1410 * snd_soc_get_volsw - single mixer get callback
1411 * @kcontrol: mixer control
1412 * @uinfo: control element information
1414 * Callback to get the value of a single mixer control.
1416 * Returns 0 for success.
1418 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1419 struct snd_ctl_elem_value *ucontrol)
1421 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1422 int reg = kcontrol->private_value & 0xff;
1423 int shift = (kcontrol->private_value >> 8) & 0x0f;
1424 int rshift = (kcontrol->private_value >> 12) & 0x0f;
1425 int mask = (kcontrol->private_value >> 16) & 0xff;
1426 int invert = (kcontrol->private_value >> 24) & 0x01;
1428 ucontrol->value.integer.value[0] =
1429 (snd_soc_read(codec, reg) >> shift) & mask;
1430 if (shift != rshift)
1431 ucontrol->value.integer.value[1] =
1432 (snd_soc_read(codec, reg) >> rshift) & mask;
1433 if (invert) {
1434 ucontrol->value.integer.value[0] =
1435 mask - ucontrol->value.integer.value[0];
1436 if (shift != rshift)
1437 ucontrol->value.integer.value[1] =
1438 mask - ucontrol->value.integer.value[1];
1441 return 0;
1443 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1446 * snd_soc_put_volsw - single mixer put callback
1447 * @kcontrol: mixer control
1448 * @uinfo: control element information
1450 * Callback to set the value of a single mixer control.
1452 * Returns 0 for success.
1454 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1455 struct snd_ctl_elem_value *ucontrol)
1457 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1458 int reg = kcontrol->private_value & 0xff;
1459 int shift = (kcontrol->private_value >> 8) & 0x0f;
1460 int rshift = (kcontrol->private_value >> 12) & 0x0f;
1461 int mask = (kcontrol->private_value >> 16) & 0xff;
1462 int invert = (kcontrol->private_value >> 24) & 0x01;
1463 int err;
1464 unsigned short val, val2, val_mask;
1466 val = (ucontrol->value.integer.value[0] & mask);
1467 if (invert)
1468 val = mask - val;
1469 val_mask = mask << shift;
1470 val = val << shift;
1471 if (shift != rshift) {
1472 val2 = (ucontrol->value.integer.value[1] & mask);
1473 if (invert)
1474 val2 = mask - val2;
1475 val_mask |= mask << rshift;
1476 val |= val2 << rshift;
1478 err = snd_soc_update_bits(codec, reg, val_mask, val);
1479 return err;
1481 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1484 * snd_soc_info_volsw_2r - double mixer info callback
1485 * @kcontrol: mixer control
1486 * @uinfo: control element information
1488 * Callback to provide information about a double mixer control that
1489 * spans 2 codec registers.
1491 * Returns 0 for success.
1493 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
1494 struct snd_ctl_elem_info *uinfo)
1496 int mask = (kcontrol->private_value >> 12) & 0xff;
1498 uinfo->type =
1499 mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1500 uinfo->count = 2;
1501 uinfo->value.integer.min = 0;
1502 uinfo->value.integer.max = mask;
1503 return 0;
1505 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
1508 * snd_soc_get_volsw_2r - double mixer get callback
1509 * @kcontrol: mixer control
1510 * @uinfo: control element information
1512 * Callback to get the value of a double mixer control that spans 2 registers.
1514 * Returns 0 for success.
1516 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
1517 struct snd_ctl_elem_value *ucontrol)
1519 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1520 int reg = kcontrol->private_value & 0xff;
1521 int reg2 = (kcontrol->private_value >> 24) & 0xff;
1522 int shift = (kcontrol->private_value >> 8) & 0x0f;
1523 int mask = (kcontrol->private_value >> 12) & 0xff;
1524 int invert = (kcontrol->private_value >> 20) & 0x01;
1526 ucontrol->value.integer.value[0] =
1527 (snd_soc_read(codec, reg) >> shift) & mask;
1528 ucontrol->value.integer.value[1] =
1529 (snd_soc_read(codec, reg2) >> shift) & mask;
1530 if (invert) {
1531 ucontrol->value.integer.value[0] =
1532 mask - ucontrol->value.integer.value[0];
1533 ucontrol->value.integer.value[1] =
1534 mask - ucontrol->value.integer.value[1];
1537 return 0;
1539 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
1542 * snd_soc_put_volsw_2r - double mixer set callback
1543 * @kcontrol: mixer control
1544 * @uinfo: control element information
1546 * Callback to set the value of a double mixer control that spans 2 registers.
1548 * Returns 0 for success.
1550 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
1551 struct snd_ctl_elem_value *ucontrol)
1553 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1554 int reg = kcontrol->private_value & 0xff;
1555 int reg2 = (kcontrol->private_value >> 24) & 0xff;
1556 int shift = (kcontrol->private_value >> 8) & 0x0f;
1557 int mask = (kcontrol->private_value >> 12) & 0xff;
1558 int invert = (kcontrol->private_value >> 20) & 0x01;
1559 int err;
1560 unsigned short val, val2, val_mask;
1562 val_mask = mask << shift;
1563 val = (ucontrol->value.integer.value[0] & mask);
1564 val2 = (ucontrol->value.integer.value[1] & mask);
1566 if (invert) {
1567 val = mask - val;
1568 val2 = mask - val2;
1571 val = val << shift;
1572 val2 = val2 << shift;
1574 if ((err = snd_soc_update_bits(codec, reg, val_mask, val)) < 0)
1575 return err;
1577 err = snd_soc_update_bits(codec, reg2, val_mask, val2);
1578 return err;
1580 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
1582 static int __devinit snd_soc_init(void)
1584 printk(KERN_INFO "ASoC version %s\n", SND_SOC_VERSION);
1585 return platform_driver_register(&soc_driver);
1588 static void snd_soc_exit(void)
1590 platform_driver_unregister(&soc_driver);
1593 module_init(snd_soc_init);
1594 module_exit(snd_soc_exit);
1596 /* Module information */
1597 MODULE_AUTHOR("Liam Girdwood, liam.girdwood@wolfsonmicro.com, www.wolfsonmicro.com");
1598 MODULE_DESCRIPTION("ALSA SoC Core");
1599 MODULE_LICENSE("GPL");