4 * Copyright (C) 1999 Ingo Molnar
5 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
7 * simple boot-time physical memory area allocator and
8 * free memory collector. It's used to deal with reserved
9 * system memory and memory holes as well.
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/interrupt.h>
16 #include <linux/init.h>
17 #include <linux/bootmem.h>
18 #include <linux/mmzone.h>
19 #include <linux/module.h>
25 * Access to this subsystem has to be serialized externally. (this is
26 * true for the boot process anyway)
28 unsigned long max_low_pfn
;
29 unsigned long min_low_pfn
;
30 unsigned long max_pfn
;
32 EXPORT_SYMBOL(max_pfn
); /* This is exported so
33 * dma_get_required_mask(), which uses
34 * it, can be an inline function */
36 /* return the number of _pages_ that will be allocated for the boot bitmap */
37 unsigned long __init
bootmem_bootmap_pages (unsigned long pages
)
39 unsigned long mapsize
;
41 mapsize
= (pages
+7)/8;
42 mapsize
= (mapsize
+ ~PAGE_MASK
) & PAGE_MASK
;
43 mapsize
>>= PAGE_SHIFT
;
49 * Called once to set up the allocator itself.
51 static unsigned long __init
init_bootmem_core (pg_data_t
*pgdat
,
52 unsigned long mapstart
, unsigned long start
, unsigned long end
)
54 bootmem_data_t
*bdata
= pgdat
->bdata
;
55 unsigned long mapsize
= ((end
- start
)+7)/8;
57 pgdat
->pgdat_next
= pgdat_list
;
60 mapsize
= (mapsize
+ (sizeof(long) - 1UL)) & ~(sizeof(long) - 1UL);
61 bdata
->node_bootmem_map
= phys_to_virt(mapstart
<< PAGE_SHIFT
);
62 bdata
->node_boot_start
= (start
<< PAGE_SHIFT
);
63 bdata
->node_low_pfn
= end
;
66 * Initially all pages are reserved - setup_arch() has to
67 * register free RAM areas explicitly.
69 memset(bdata
->node_bootmem_map
, 0xff, mapsize
);
75 * Marks a particular physical memory range as unallocatable. Usable RAM
76 * might be used for boot-time allocations - or it might get added
77 * to the free page pool later on.
79 static void __init
reserve_bootmem_core(bootmem_data_t
*bdata
, unsigned long addr
, unsigned long size
)
83 * round up, partially reserved pages are considered
86 unsigned long sidx
= (addr
- bdata
->node_boot_start
)/PAGE_SIZE
;
87 unsigned long eidx
= (addr
+ size
- bdata
->node_boot_start
+
88 PAGE_SIZE
-1)/PAGE_SIZE
;
89 unsigned long end
= (addr
+ size
+ PAGE_SIZE
-1)/PAGE_SIZE
;
93 BUG_ON((addr
>> PAGE_SHIFT
) >= bdata
->node_low_pfn
);
94 BUG_ON(end
> bdata
->node_low_pfn
);
96 for (i
= sidx
; i
< eidx
; i
++)
97 if (test_and_set_bit(i
, bdata
->node_bootmem_map
)) {
98 #ifdef CONFIG_DEBUG_BOOTMEM
99 printk("hm, page %08lx reserved twice.\n", i
*PAGE_SIZE
);
104 static void __init
free_bootmem_core(bootmem_data_t
*bdata
, unsigned long addr
, unsigned long size
)
109 * round down end of usable mem, partially free pages are
110 * considered reserved.
113 unsigned long eidx
= (addr
+ size
- bdata
->node_boot_start
)/PAGE_SIZE
;
114 unsigned long end
= (addr
+ size
)/PAGE_SIZE
;
117 BUG_ON(end
> bdata
->node_low_pfn
);
119 if (addr
< bdata
->last_success
)
120 bdata
->last_success
= addr
;
123 * Round up the beginning of the address.
125 start
= (addr
+ PAGE_SIZE
-1) / PAGE_SIZE
;
126 sidx
= start
- (bdata
->node_boot_start
/PAGE_SIZE
);
128 for (i
= sidx
; i
< eidx
; i
++) {
129 if (unlikely(!test_and_clear_bit(i
, bdata
->node_bootmem_map
)))
135 * We 'merge' subsequent allocations to save space. We might 'lose'
136 * some fraction of a page if allocations cannot be satisfied due to
137 * size constraints on boxes where there is physical RAM space
138 * fragmentation - in these cases (mostly large memory boxes) this
141 * On low memory boxes we get it right in 100% of the cases.
143 * alignment has to be a power of 2 value.
145 * NOTE: This function is _not_ reentrant.
148 __alloc_bootmem_core(struct bootmem_data
*bdata
, unsigned long size
,
149 unsigned long align
, unsigned long goal
)
151 unsigned long offset
, remaining_size
, areasize
, preferred
;
152 unsigned long i
, start
= 0, incr
, eidx
;
156 printk("__alloc_bootmem_core(): zero-sized request\n");
159 BUG_ON(align
& (align
-1));
161 eidx
= bdata
->node_low_pfn
- (bdata
->node_boot_start
>> PAGE_SHIFT
);
164 (bdata
->node_boot_start
& (align
- 1UL)) != 0)
165 offset
= (align
- (bdata
->node_boot_start
& (align
- 1UL)));
166 offset
>>= PAGE_SHIFT
;
169 * We try to allocate bootmem pages above 'goal'
170 * first, then we try to allocate lower pages.
172 if (goal
&& (goal
>= bdata
->node_boot_start
) &&
173 ((goal
>> PAGE_SHIFT
) < bdata
->node_low_pfn
)) {
174 preferred
= goal
- bdata
->node_boot_start
;
176 if (bdata
->last_success
>= preferred
)
177 preferred
= bdata
->last_success
;
181 preferred
= ((preferred
+ align
- 1) & ~(align
- 1)) >> PAGE_SHIFT
;
183 areasize
= (size
+PAGE_SIZE
-1)/PAGE_SIZE
;
184 incr
= align
>> PAGE_SHIFT
? : 1;
187 for (i
= preferred
; i
< eidx
; i
+= incr
) {
189 i
= find_next_zero_bit(bdata
->node_bootmem_map
, eidx
, i
);
191 if (test_bit(i
, bdata
->node_bootmem_map
))
193 for (j
= i
+ 1; j
< i
+ areasize
; ++j
) {
196 if (test_bit (j
, bdata
->node_bootmem_map
))
205 if (preferred
> offset
) {
212 bdata
->last_success
= start
<< PAGE_SHIFT
;
213 BUG_ON(start
>= eidx
);
216 * Is the next page of the previous allocation-end the start
217 * of this allocation's buffer? If yes then we can 'merge'
218 * the previous partial page with this allocation.
220 if (align
< PAGE_SIZE
&&
221 bdata
->last_offset
&& bdata
->last_pos
+1 == start
) {
222 offset
= (bdata
->last_offset
+align
-1) & ~(align
-1);
223 BUG_ON(offset
> PAGE_SIZE
);
224 remaining_size
= PAGE_SIZE
-offset
;
225 if (size
< remaining_size
) {
227 /* last_pos unchanged */
228 bdata
->last_offset
= offset
+size
;
229 ret
= phys_to_virt(bdata
->last_pos
*PAGE_SIZE
+ offset
+
230 bdata
->node_boot_start
);
232 remaining_size
= size
- remaining_size
;
233 areasize
= (remaining_size
+PAGE_SIZE
-1)/PAGE_SIZE
;
234 ret
= phys_to_virt(bdata
->last_pos
*PAGE_SIZE
+ offset
+
235 bdata
->node_boot_start
);
236 bdata
->last_pos
= start
+areasize
-1;
237 bdata
->last_offset
= remaining_size
;
239 bdata
->last_offset
&= ~PAGE_MASK
;
241 bdata
->last_pos
= start
+ areasize
- 1;
242 bdata
->last_offset
= size
& ~PAGE_MASK
;
243 ret
= phys_to_virt(start
* PAGE_SIZE
+ bdata
->node_boot_start
);
247 * Reserve the area now:
249 for (i
= start
; i
< start
+areasize
; i
++)
250 if (unlikely(test_and_set_bit(i
, bdata
->node_bootmem_map
)))
252 memset(ret
, 0, size
);
256 static unsigned long __init
free_all_bootmem_core(pg_data_t
*pgdat
)
260 bootmem_data_t
*bdata
= pgdat
->bdata
;
261 unsigned long i
, count
, total
= 0;
266 BUG_ON(!bdata
->node_bootmem_map
);
269 /* first extant page of the node */
270 pfn
= bdata
->node_boot_start
>> PAGE_SHIFT
;
271 idx
= bdata
->node_low_pfn
- (bdata
->node_boot_start
>> PAGE_SHIFT
);
272 map
= bdata
->node_bootmem_map
;
273 /* Check physaddr is O(LOG2(BITS_PER_LONG)) page aligned */
274 if (bdata
->node_boot_start
== 0 ||
275 ffs(bdata
->node_boot_start
) - PAGE_SHIFT
> ffs(BITS_PER_LONG
))
277 for (i
= 0; i
< idx
; ) {
278 unsigned long v
= ~map
[i
/ BITS_PER_LONG
];
280 if (gofast
&& v
== ~0UL) {
283 page
= pfn_to_page(pfn
);
284 count
+= BITS_PER_LONG
;
285 __ClearPageReserved(page
);
286 order
= ffs(BITS_PER_LONG
) - 1;
287 set_page_refs(page
, order
);
288 for (j
= 1; j
< BITS_PER_LONG
; j
++) {
289 if (j
+ 16 < BITS_PER_LONG
)
290 prefetchw(page
+ j
+ 16);
291 __ClearPageReserved(page
+ j
);
293 __free_pages(page
, order
);
295 page
+= BITS_PER_LONG
;
299 page
= pfn_to_page(pfn
);
300 for (m
= 1; m
&& i
< idx
; m
<<=1, page
++, i
++) {
303 __ClearPageReserved(page
);
304 set_page_refs(page
, 0);
311 pfn
+= BITS_PER_LONG
;
316 * Now free the allocator bitmap itself, it's not
319 page
= virt_to_page(bdata
->node_bootmem_map
);
321 for (i
= 0; i
< ((bdata
->node_low_pfn
-(bdata
->node_boot_start
>> PAGE_SHIFT
))/8 + PAGE_SIZE
-1)/PAGE_SIZE
; i
++,page
++) {
323 __ClearPageReserved(page
);
324 set_page_count(page
, 1);
328 bdata
->node_bootmem_map
= NULL
;
333 unsigned long __init
init_bootmem_node (pg_data_t
*pgdat
, unsigned long freepfn
, unsigned long startpfn
, unsigned long endpfn
)
335 return(init_bootmem_core(pgdat
, freepfn
, startpfn
, endpfn
));
338 void __init
reserve_bootmem_node (pg_data_t
*pgdat
, unsigned long physaddr
, unsigned long size
)
340 reserve_bootmem_core(pgdat
->bdata
, physaddr
, size
);
343 void __init
free_bootmem_node (pg_data_t
*pgdat
, unsigned long physaddr
, unsigned long size
)
345 free_bootmem_core(pgdat
->bdata
, physaddr
, size
);
348 unsigned long __init
free_all_bootmem_node (pg_data_t
*pgdat
)
350 return(free_all_bootmem_core(pgdat
));
353 unsigned long __init
init_bootmem (unsigned long start
, unsigned long pages
)
357 return(init_bootmem_core(NODE_DATA(0), start
, 0, pages
));
360 #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE
361 void __init
reserve_bootmem (unsigned long addr
, unsigned long size
)
363 reserve_bootmem_core(NODE_DATA(0)->bdata
, addr
, size
);
365 #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */
367 void __init
free_bootmem (unsigned long addr
, unsigned long size
)
369 free_bootmem_core(NODE_DATA(0)->bdata
, addr
, size
);
372 unsigned long __init
free_all_bootmem (void)
374 return(free_all_bootmem_core(NODE_DATA(0)));
377 void * __init
__alloc_bootmem (unsigned long size
, unsigned long align
, unsigned long goal
)
379 pg_data_t
*pgdat
= pgdat_list
;
382 for_each_pgdat(pgdat
)
383 if ((ptr
= __alloc_bootmem_core(pgdat
->bdata
, size
,
388 * Whoops, we cannot satisfy the allocation request.
390 printk(KERN_ALERT
"bootmem alloc of %lu bytes failed!\n", size
);
391 panic("Out of memory");
395 void * __init
__alloc_bootmem_node (pg_data_t
*pgdat
, unsigned long size
, unsigned long align
, unsigned long goal
)
399 ptr
= __alloc_bootmem_core(pgdat
->bdata
, size
, align
, goal
);
403 return __alloc_bootmem(size
, align
, goal
);