4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
26 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
27 * Copyright 2017 Joyent, Inc.
28 * Copyright 2017 RackTop Systems.
29 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
33 * Routines to manage ZFS mounts. We separate all the nasty routines that have
34 * to deal with the OS. The following functions are the main entry points --
35 * they are used by mount and unmount and when changing a filesystem's
43 * This file also contains the functions used to manage sharing filesystems via
56 * zfs_unshareall_nfs()
57 * zfs_unshareall_smb()
59 * zfs_unshareall_bypath()
61 * The following functions are available for pool consumers, and will
62 * mount/unmount and share/unshare all datasets within pool:
64 * zpool_enable_datasets()
65 * zpool_disable_datasets()
79 #include <sys/mntent.h>
80 #include <sys/mount.h>
82 #include <sys/statvfs.h>
86 #include "libzfs_impl.h"
87 #include "libzfs_taskq.h"
90 #include <sys/systeminfo.h>
91 #define MAXISALEN 257 /* based on sysinfo(2) man page */
93 static int mount_tq_nthr
= 512; /* taskq threads for multi-threaded mounting */
95 static void zfs_mount_task(void *);
96 static int zfs_share_proto(zfs_handle_t
*, zfs_share_proto_t
*);
97 zfs_share_type_t
zfs_is_shared_proto(zfs_handle_t
*, char **,
101 * The share protocols table must be in the same order as the zfs_share_proto_t
102 * enum in libzfs_impl.h
111 proto_table_t proto_table
[PROTO_END
] = {
112 {ZFS_PROP_SHARENFS
, "nfs", EZFS_SHARENFSFAILED
, EZFS_UNSHARENFSFAILED
},
113 {ZFS_PROP_SHARESMB
, "smb", EZFS_SHARESMBFAILED
, EZFS_UNSHARESMBFAILED
},
116 zfs_share_proto_t nfs_only
[] = {
121 zfs_share_proto_t smb_only
[] = {
125 zfs_share_proto_t share_all_proto
[] = {
132 * Search the sharetab for the given mountpoint and protocol, returning
133 * a zfs_share_type_t value.
135 static zfs_share_type_t
136 is_shared(libzfs_handle_t
*hdl
, const char *mountpoint
, zfs_share_proto_t proto
)
138 char buf
[MAXPATHLEN
], *tab
;
141 if (hdl
->libzfs_sharetab
== NULL
)
142 return (SHARED_NOT_SHARED
);
144 (void) fseek(hdl
->libzfs_sharetab
, 0, SEEK_SET
);
146 while (fgets(buf
, sizeof (buf
), hdl
->libzfs_sharetab
) != NULL
) {
148 /* the mountpoint is the first entry on each line */
149 if ((tab
= strchr(buf
, '\t')) == NULL
)
153 if (strcmp(buf
, mountpoint
) == 0) {
155 * the protocol field is the third field
156 * skip over second field
159 if ((tab
= strchr(ptr
, '\t')) == NULL
)
162 if ((tab
= strchr(ptr
, '\t')) == NULL
)
166 proto_table
[proto
].p_name
) == 0) {
179 return (SHARED_NOT_SHARED
);
183 dir_is_empty_stat(const char *dirname
)
188 * We only want to return false if the given path is a non empty
189 * directory, all other errors are handled elsewhere.
191 if (stat(dirname
, &st
) < 0 || !S_ISDIR(st
.st_mode
)) {
196 * An empty directory will still have two entries in it, one
197 * entry for each of "." and "..".
199 if (st
.st_size
> 2) {
207 dir_is_empty_readdir(const char *dirname
)
213 if ((dirfd
= openat(AT_FDCWD
, dirname
,
214 O_RDONLY
| O_NDELAY
| O_LARGEFILE
| O_CLOEXEC
, 0)) < 0) {
218 if ((dirp
= fdopendir(dirfd
)) == NULL
) {
223 while ((dp
= readdir64(dirp
)) != NULL
) {
225 if (strcmp(dp
->d_name
, ".") == 0 ||
226 strcmp(dp
->d_name
, "..") == 0)
229 (void) closedir(dirp
);
233 (void) closedir(dirp
);
238 * Returns true if the specified directory is empty. If we can't open the
239 * directory at all, return true so that the mount can fail with a more
240 * informative error message.
243 dir_is_empty(const char *dirname
)
248 * If the statvfs call fails or the filesystem is not a ZFS
249 * filesystem, fall back to the slow path which uses readdir.
251 if ((statvfs64(dirname
, &st
) != 0) ||
252 (strcmp(st
.f_basetype
, "zfs") != 0)) {
253 return (dir_is_empty_readdir(dirname
));
257 * At this point, we know the provided path is on a ZFS
258 * filesystem, so we can use stat instead of readdir to
259 * determine if the directory is empty or not. We try to avoid
260 * using readdir because that requires opening "dirname"; this
261 * open file descriptor can potentially end up in a child
262 * process if there's a concurrent fork, thus preventing the
263 * zfs_mount() from otherwise succeeding (the open file
264 * descriptor inherited by the child process will cause the
265 * parent's mount to fail with EBUSY). The performance
266 * implications of replacing the open, read, and close with a
267 * single stat is nice; but is not the main motivation for the
270 return (dir_is_empty_stat(dirname
));
274 * Checks to see if the mount is active. If the filesystem is mounted, we fill
275 * in 'where' with the current mountpoint, and return 1. Otherwise, we return
279 is_mounted(libzfs_handle_t
*zfs_hdl
, const char *special
, char **where
)
283 if (libzfs_mnttab_find(zfs_hdl
, special
, &entry
) != 0)
287 *where
= zfs_strdup(zfs_hdl
, entry
.mnt_mountp
);
293 zfs_is_mounted(zfs_handle_t
*zhp
, char **where
)
295 return (is_mounted(zhp
->zfs_hdl
, zfs_get_name(zhp
), where
));
299 * Returns true if the given dataset is mountable, false otherwise. Returns the
300 * mountpoint in 'buf'.
303 zfs_is_mountable(zfs_handle_t
*zhp
, char *buf
, size_t buflen
,
304 zprop_source_t
*source
)
306 char sourceloc
[MAXNAMELEN
];
307 zprop_source_t sourcetype
;
309 if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT
, zhp
->zfs_type
))
312 verify(zfs_prop_get(zhp
, ZFS_PROP_MOUNTPOINT
, buf
, buflen
,
313 &sourcetype
, sourceloc
, sizeof (sourceloc
), B_FALSE
) == 0);
315 if (strcmp(buf
, ZFS_MOUNTPOINT_NONE
) == 0 ||
316 strcmp(buf
, ZFS_MOUNTPOINT_LEGACY
) == 0)
319 if (zfs_prop_get_int(zhp
, ZFS_PROP_CANMOUNT
) == ZFS_CANMOUNT_OFF
)
322 if (zfs_prop_get_int(zhp
, ZFS_PROP_ZONED
) &&
323 getzoneid() == GLOBAL_ZONEID
)
327 *source
= sourcetype
;
333 * Mount the given filesystem.
336 zfs_mount(zfs_handle_t
*zhp
, const char *options
, int flags
)
339 char mountpoint
[ZFS_MAXPROPLEN
];
340 char mntopts
[MNT_LINE_MAX
];
341 libzfs_handle_t
*hdl
= zhp
->zfs_hdl
;
346 (void) strlcpy(mntopts
, options
, sizeof (mntopts
));
349 * If the pool is imported read-only then all mounts must be read-only
351 if (zpool_get_prop_int(zhp
->zpool_hdl
, ZPOOL_PROP_READONLY
, NULL
))
354 if (!zfs_is_mountable(zhp
, mountpoint
, sizeof (mountpoint
), NULL
))
357 /* Create the directory if it doesn't already exist */
358 if (lstat(mountpoint
, &buf
) != 0) {
359 if (mkdirp(mountpoint
, 0755) != 0) {
360 zfs_error_aux(hdl
, dgettext(TEXT_DOMAIN
,
361 "failed to create mountpoint"));
362 return (zfs_error_fmt(hdl
, EZFS_MOUNTFAILED
,
363 dgettext(TEXT_DOMAIN
, "cannot mount '%s'"),
369 * Determine if the mountpoint is empty. If so, refuse to perform the
370 * mount. We don't perform this check if MS_OVERLAY is specified, which
371 * would defeat the point. We also avoid this check if 'remount' is
374 if ((flags
& MS_OVERLAY
) == 0 &&
375 strstr(mntopts
, MNTOPT_REMOUNT
) == NULL
&&
376 !dir_is_empty(mountpoint
)) {
377 zfs_error_aux(hdl
, dgettext(TEXT_DOMAIN
,
378 "directory is not empty"));
379 return (zfs_error_fmt(hdl
, EZFS_MOUNTFAILED
,
380 dgettext(TEXT_DOMAIN
, "cannot mount '%s'"), mountpoint
));
383 /* perform the mount */
384 if (mount(zfs_get_name(zhp
), mountpoint
, MS_OPTIONSTR
| flags
,
385 MNTTYPE_ZFS
, NULL
, 0, mntopts
, sizeof (mntopts
)) != 0) {
387 * Generic errors are nasty, but there are just way too many
388 * from mount(), and they're well-understood. We pick a few
389 * common ones to improve upon.
391 if (errno
== EBUSY
) {
392 zfs_error_aux(hdl
, dgettext(TEXT_DOMAIN
,
393 "mountpoint or dataset is busy"));
394 } else if (errno
== EPERM
) {
395 zfs_error_aux(hdl
, dgettext(TEXT_DOMAIN
,
396 "Insufficient privileges"));
397 } else if (errno
== ENOTSUP
) {
401 VERIFY(zfs_spa_version(zhp
, &spa_version
) == 0);
402 (void) snprintf(buf
, sizeof (buf
),
403 dgettext(TEXT_DOMAIN
, "Can't mount a version %lld "
404 "file system on a version %d pool. Pool must be"
405 " upgraded to mount this file system."),
406 (u_longlong_t
)zfs_prop_get_int(zhp
,
407 ZFS_PROP_VERSION
), spa_version
);
408 zfs_error_aux(hdl
, dgettext(TEXT_DOMAIN
, buf
));
410 zfs_error_aux(hdl
, strerror(errno
));
412 return (zfs_error_fmt(hdl
, EZFS_MOUNTFAILED
,
413 dgettext(TEXT_DOMAIN
, "cannot mount '%s'"),
417 /* add the mounted entry into our cache */
418 libzfs_mnttab_add(hdl
, zfs_get_name(zhp
), mountpoint
,
424 * Unmount a single filesystem.
427 unmount_one(libzfs_handle_t
*hdl
, const char *mountpoint
, int flags
)
429 if (umount2(mountpoint
, flags
) != 0) {
430 zfs_error_aux(hdl
, strerror(errno
));
431 return (zfs_error_fmt(hdl
, EZFS_UMOUNTFAILED
,
432 dgettext(TEXT_DOMAIN
, "cannot unmount '%s'"),
440 * Unmount the given filesystem.
443 zfs_unmount(zfs_handle_t
*zhp
, const char *mountpoint
, int flags
)
445 libzfs_handle_t
*hdl
= zhp
->zfs_hdl
;
449 /* check to see if we need to unmount the filesystem */
450 if (mountpoint
!= NULL
|| ((zfs_get_type(zhp
) == ZFS_TYPE_FILESYSTEM
) &&
451 libzfs_mnttab_find(hdl
, zhp
->zfs_name
, &entry
) == 0)) {
453 * mountpoint may have come from a call to
454 * getmnt/getmntany if it isn't NULL. If it is NULL,
455 * we know it comes from libzfs_mnttab_find which can
456 * then get freed later. We strdup it to play it safe.
458 if (mountpoint
== NULL
)
459 mntpt
= zfs_strdup(hdl
, entry
.mnt_mountp
);
461 mntpt
= zfs_strdup(hdl
, mountpoint
);
464 * Unshare and unmount the filesystem
466 if (zfs_unshare_proto(zhp
, mntpt
, share_all_proto
) != 0)
469 if (unmount_one(hdl
, mntpt
, flags
) != 0) {
471 (void) zfs_shareall(zhp
);
474 libzfs_mnttab_remove(hdl
, zhp
->zfs_name
);
482 * Unmount this filesystem and any children inheriting the mountpoint property.
483 * To do this, just act like we're changing the mountpoint property, but don't
484 * remount the filesystems afterwards.
487 zfs_unmountall(zfs_handle_t
*zhp
, int flags
)
489 prop_changelist_t
*clp
;
492 clp
= changelist_gather(zhp
, ZFS_PROP_MOUNTPOINT
, 0, flags
);
496 ret
= changelist_prefix(clp
);
497 changelist_free(clp
);
503 zfs_is_shared(zfs_handle_t
*zhp
)
505 zfs_share_type_t rc
= 0;
506 zfs_share_proto_t
*curr_proto
;
508 if (ZFS_IS_VOLUME(zhp
))
511 for (curr_proto
= share_all_proto
; *curr_proto
!= PROTO_END
;
513 rc
|= zfs_is_shared_proto(zhp
, NULL
, *curr_proto
);
515 return (rc
? B_TRUE
: B_FALSE
);
519 zfs_share(zfs_handle_t
*zhp
)
521 assert(!ZFS_IS_VOLUME(zhp
));
522 return (zfs_share_proto(zhp
, share_all_proto
));
526 zfs_unshare(zfs_handle_t
*zhp
)
528 assert(!ZFS_IS_VOLUME(zhp
));
529 return (zfs_unshareall(zhp
));
533 * Check to see if the filesystem is currently shared.
536 zfs_is_shared_proto(zfs_handle_t
*zhp
, char **where
, zfs_share_proto_t proto
)
541 if (!zfs_is_mounted(zhp
, &mountpoint
))
542 return (SHARED_NOT_SHARED
);
544 if ((rc
= is_shared(zhp
->zfs_hdl
, mountpoint
, proto
))
545 != SHARED_NOT_SHARED
) {
553 return (SHARED_NOT_SHARED
);
558 zfs_is_shared_nfs(zfs_handle_t
*zhp
, char **where
)
560 return (zfs_is_shared_proto(zhp
, where
,
561 PROTO_NFS
) != SHARED_NOT_SHARED
);
565 zfs_is_shared_smb(zfs_handle_t
*zhp
, char **where
)
567 return (zfs_is_shared_proto(zhp
, where
,
568 PROTO_SMB
) != SHARED_NOT_SHARED
);
572 * Make sure things will work if libshare isn't installed by using
573 * wrapper functions that check to see that the pointers to functions
574 * initialized in _zfs_init_libshare() are actually present.
577 static sa_handle_t (*_sa_init
)(int);
578 static sa_handle_t (*_sa_init_arg
)(int, void *);
579 static void (*_sa_fini
)(sa_handle_t
);
580 static sa_share_t (*_sa_find_share
)(sa_handle_t
, char *);
581 static int (*_sa_enable_share
)(sa_share_t
, char *);
582 static int (*_sa_disable_share
)(sa_share_t
, char *);
583 static char *(*_sa_errorstr
)(int);
584 static int (*_sa_parse_legacy_options
)(sa_group_t
, char *, char *);
585 static boolean_t (*_sa_needs_refresh
)(sa_handle_t
*);
586 static libzfs_handle_t
*(*_sa_get_zfs_handle
)(sa_handle_t
);
587 static int (*_sa_zfs_process_share
)(sa_handle_t
, sa_group_t
, sa_share_t
,
588 char *, char *, zprop_source_t
, char *, char *, char *);
589 static void (*_sa_update_sharetab_ts
)(sa_handle_t
);
592 * _zfs_init_libshare()
594 * Find the libshare.so.1 entry points that we use here and save the
595 * values to be used later. This is triggered by the runtime loader.
596 * Make sure the correct ISA version is loaded.
599 #pragma init(_zfs_init_libshare)
601 _zfs_init_libshare(void)
604 char path
[MAXPATHLEN
];
608 if (sysinfo(SI_ARCHITECTURE_64
, isa
, MAXISALEN
) == -1)
613 (void) snprintf(path
, MAXPATHLEN
,
614 "/usr/lib/%s/libshare.so.1", isa
);
616 if ((libshare
= dlopen(path
, RTLD_LAZY
| RTLD_GLOBAL
)) != NULL
) {
617 _sa_init
= (sa_handle_t (*)(int))dlsym(libshare
, "sa_init");
618 _sa_init_arg
= (sa_handle_t (*)(int, void *))dlsym(libshare
,
620 _sa_fini
= (void (*)(sa_handle_t
))dlsym(libshare
, "sa_fini");
621 _sa_find_share
= (sa_share_t (*)(sa_handle_t
, char *))
622 dlsym(libshare
, "sa_find_share");
623 _sa_enable_share
= (int (*)(sa_share_t
, char *))dlsym(libshare
,
625 _sa_disable_share
= (int (*)(sa_share_t
, char *))dlsym(libshare
,
627 _sa_errorstr
= (char *(*)(int))dlsym(libshare
, "sa_errorstr");
628 _sa_parse_legacy_options
= (int (*)(sa_group_t
, char *, char *))
629 dlsym(libshare
, "sa_parse_legacy_options");
630 _sa_needs_refresh
= (boolean_t (*)(sa_handle_t
*))
631 dlsym(libshare
, "sa_needs_refresh");
632 _sa_get_zfs_handle
= (libzfs_handle_t
*(*)(sa_handle_t
))
633 dlsym(libshare
, "sa_get_zfs_handle");
634 _sa_zfs_process_share
= (int (*)(sa_handle_t
, sa_group_t
,
635 sa_share_t
, char *, char *, zprop_source_t
, char *,
636 char *, char *))dlsym(libshare
, "sa_zfs_process_share");
637 _sa_update_sharetab_ts
= (void (*)(sa_handle_t
))
638 dlsym(libshare
, "sa_update_sharetab_ts");
639 if (_sa_init
== NULL
|| _sa_init_arg
== NULL
||
640 _sa_fini
== NULL
|| _sa_find_share
== NULL
||
641 _sa_enable_share
== NULL
|| _sa_disable_share
== NULL
||
642 _sa_errorstr
== NULL
|| _sa_parse_legacy_options
== NULL
||
643 _sa_needs_refresh
== NULL
|| _sa_get_zfs_handle
== NULL
||
644 _sa_zfs_process_share
== NULL
||
645 _sa_update_sharetab_ts
== NULL
) {
649 _sa_disable_share
= NULL
;
650 _sa_enable_share
= NULL
;
652 _sa_parse_legacy_options
= NULL
;
653 (void) dlclose(libshare
);
654 _sa_needs_refresh
= NULL
;
655 _sa_get_zfs_handle
= NULL
;
656 _sa_zfs_process_share
= NULL
;
657 _sa_update_sharetab_ts
= NULL
;
663 * zfs_init_libshare(zhandle, service)
665 * Initialize the libshare API if it hasn't already been initialized.
666 * In all cases it returns 0 if it succeeded and an error if not. The
667 * service value is which part(s) of the API to initialize and is a
668 * direct map to the libshare sa_init(service) interface.
671 zfs_init_libshare_impl(libzfs_handle_t
*zhandle
, int service
, void *arg
)
674 * libshare is either not installed or we're in a branded zone. The
675 * rest of the wrapper functions around the libshare calls already
676 * handle NULL function pointers, but we don't want the callers of
677 * zfs_init_libshare() to fail prematurely if libshare is not available.
679 if (_sa_init
== NULL
)
683 * Attempt to refresh libshare. This is necessary if there was a cache
684 * miss for a new ZFS dataset that was just created, or if state of the
685 * sharetab file has changed since libshare was last initialized. We
686 * want to make sure so check timestamps to see if a different process
687 * has updated any of the configuration. If there was some non-ZFS
688 * change, we need to re-initialize the internal cache.
690 if (_sa_needs_refresh
!= NULL
&&
691 _sa_needs_refresh(zhandle
->libzfs_sharehdl
)) {
692 zfs_uninit_libshare(zhandle
);
693 zhandle
->libzfs_sharehdl
= _sa_init_arg(service
, arg
);
696 if (zhandle
&& zhandle
->libzfs_sharehdl
== NULL
)
697 zhandle
->libzfs_sharehdl
= _sa_init_arg(service
, arg
);
699 if (zhandle
->libzfs_sharehdl
== NULL
)
700 return (SA_NO_MEMORY
);
705 zfs_init_libshare(libzfs_handle_t
*zhandle
, int service
)
707 return (zfs_init_libshare_impl(zhandle
, service
, NULL
));
711 zfs_init_libshare_arg(libzfs_handle_t
*zhandle
, int service
, void *arg
)
713 return (zfs_init_libshare_impl(zhandle
, service
, arg
));
718 * zfs_uninit_libshare(zhandle)
720 * Uninitialize the libshare API if it hasn't already been
721 * uninitialized. It is OK to call multiple times.
724 zfs_uninit_libshare(libzfs_handle_t
*zhandle
)
726 if (zhandle
!= NULL
&& zhandle
->libzfs_sharehdl
!= NULL
) {
727 if (_sa_fini
!= NULL
)
728 _sa_fini(zhandle
->libzfs_sharehdl
);
729 zhandle
->libzfs_sharehdl
= NULL
;
734 * zfs_parse_options(options, proto)
736 * Call the legacy parse interface to get the protocol specific
737 * options using the NULL arg to indicate that this is a "parse" only.
740 zfs_parse_options(char *options
, zfs_share_proto_t proto
)
742 if (_sa_parse_legacy_options
!= NULL
) {
743 return (_sa_parse_legacy_options(NULL
, options
,
744 proto_table
[proto
].p_name
));
746 return (SA_CONFIG_ERR
);
750 * zfs_sa_find_share(handle, path)
752 * wrapper around sa_find_share to find a share path in the
756 zfs_sa_find_share(sa_handle_t handle
, char *path
)
758 if (_sa_find_share
!= NULL
)
759 return (_sa_find_share(handle
, path
));
764 * zfs_sa_enable_share(share, proto)
766 * Wrapper for sa_enable_share which enables a share for a specified
770 zfs_sa_enable_share(sa_share_t share
, char *proto
)
772 if (_sa_enable_share
!= NULL
)
773 return (_sa_enable_share(share
, proto
));
774 return (SA_CONFIG_ERR
);
778 * zfs_sa_disable_share(share, proto)
780 * Wrapper for sa_enable_share which disables a share for a specified
784 zfs_sa_disable_share(sa_share_t share
, char *proto
)
786 if (_sa_disable_share
!= NULL
)
787 return (_sa_disable_share(share
, proto
));
788 return (SA_CONFIG_ERR
);
792 * Share the given filesystem according to the options in the specified
793 * protocol specific properties (sharenfs, sharesmb). We rely
794 * on "libshare" to the dirty work for us.
797 zfs_share_proto(zfs_handle_t
*zhp
, zfs_share_proto_t
*proto
)
799 char mountpoint
[ZFS_MAXPROPLEN
];
800 char shareopts
[ZFS_MAXPROPLEN
];
801 char sourcestr
[ZFS_MAXPROPLEN
];
802 libzfs_handle_t
*hdl
= zhp
->zfs_hdl
;
804 zfs_share_proto_t
*curr_proto
;
805 zprop_source_t sourcetype
;
808 if (!zfs_is_mountable(zhp
, mountpoint
, sizeof (mountpoint
), NULL
))
811 for (curr_proto
= proto
; *curr_proto
!= PROTO_END
; curr_proto
++) {
813 * Return success if there are no share options.
815 if (zfs_prop_get(zhp
, proto_table
[*curr_proto
].p_prop
,
816 shareopts
, sizeof (shareopts
), &sourcetype
, sourcestr
,
817 ZFS_MAXPROPLEN
, B_FALSE
) != 0 ||
818 strcmp(shareopts
, "off") == 0)
820 ret
= zfs_init_libshare_arg(hdl
, SA_INIT_ONE_SHARE_FROM_HANDLE
,
823 (void) zfs_error_fmt(hdl
, EZFS_SHARENFSFAILED
,
824 dgettext(TEXT_DOMAIN
, "cannot share '%s': %s"),
825 zfs_get_name(zhp
), _sa_errorstr
!= NULL
?
826 _sa_errorstr(ret
) : "");
831 * If the 'zoned' property is set, then zfs_is_mountable()
832 * will have already bailed out if we are in the global zone.
833 * But local zones cannot be NFS servers, so we ignore it for
834 * local zones as well.
836 if (zfs_prop_get_int(zhp
, ZFS_PROP_ZONED
))
839 share
= zfs_sa_find_share(hdl
->libzfs_sharehdl
, mountpoint
);
842 * This may be a new file system that was just
843 * created so isn't in the internal cache
844 * (second time through). Rather than
845 * reloading the entire configuration, we can
846 * assume ZFS has done the checking and it is
847 * safe to add this to the internal
850 if (_sa_zfs_process_share(hdl
->libzfs_sharehdl
,
851 NULL
, NULL
, mountpoint
,
852 proto_table
[*curr_proto
].p_name
, sourcetype
,
853 shareopts
, sourcestr
, zhp
->zfs_name
) != SA_OK
) {
854 (void) zfs_error_fmt(hdl
,
855 proto_table
[*curr_proto
].p_share_err
,
856 dgettext(TEXT_DOMAIN
, "cannot share '%s'"),
860 share
= zfs_sa_find_share(hdl
->libzfs_sharehdl
,
865 err
= zfs_sa_enable_share(share
,
866 proto_table
[*curr_proto
].p_name
);
868 (void) zfs_error_fmt(hdl
,
869 proto_table
[*curr_proto
].p_share_err
,
870 dgettext(TEXT_DOMAIN
, "cannot share '%s'"),
875 (void) zfs_error_fmt(hdl
,
876 proto_table
[*curr_proto
].p_share_err
,
877 dgettext(TEXT_DOMAIN
, "cannot share '%s'"),
888 zfs_share_nfs(zfs_handle_t
*zhp
)
890 return (zfs_share_proto(zhp
, nfs_only
));
894 zfs_share_smb(zfs_handle_t
*zhp
)
896 return (zfs_share_proto(zhp
, smb_only
));
900 zfs_shareall(zfs_handle_t
*zhp
)
902 return (zfs_share_proto(zhp
, share_all_proto
));
906 * Unshare a filesystem by mountpoint.
909 unshare_one(libzfs_handle_t
*hdl
, const char *name
, const char *mountpoint
,
910 zfs_share_proto_t proto
)
917 * Mountpoint could get trashed if libshare calls getmntany
918 * which it does during API initialization, so strdup the
921 mntpt
= zfs_strdup(hdl
, mountpoint
);
924 * make sure libshare initialized, initialize everything because we
925 * don't know what other unsharing may happen later. Functions up the
926 * stack are allowed to initialize instead a subset of shares at the
927 * time the set is known.
929 if ((err
= zfs_init_libshare_arg(hdl
, SA_INIT_ONE_SHARE_FROM_NAME
,
930 (void *)name
)) != SA_OK
) {
931 free(mntpt
); /* don't need the copy anymore */
932 return (zfs_error_fmt(hdl
, proto_table
[proto
].p_unshare_err
,
933 dgettext(TEXT_DOMAIN
, "cannot unshare '%s': %s"),
934 name
, _sa_errorstr(err
)));
937 share
= zfs_sa_find_share(hdl
->libzfs_sharehdl
, mntpt
);
938 free(mntpt
); /* don't need the copy anymore */
941 err
= zfs_sa_disable_share(share
, proto_table
[proto
].p_name
);
943 return (zfs_error_fmt(hdl
,
944 proto_table
[proto
].p_unshare_err
,
945 dgettext(TEXT_DOMAIN
, "cannot unshare '%s': %s"),
946 name
, _sa_errorstr(err
)));
949 return (zfs_error_fmt(hdl
, proto_table
[proto
].p_unshare_err
,
950 dgettext(TEXT_DOMAIN
, "cannot unshare '%s': not found"),
957 * Unshare the given filesystem.
960 zfs_unshare_proto(zfs_handle_t
*zhp
, const char *mountpoint
,
961 zfs_share_proto_t
*proto
)
963 libzfs_handle_t
*hdl
= zhp
->zfs_hdl
;
967 /* check to see if need to unmount the filesystem */
968 rewind(zhp
->zfs_hdl
->libzfs_mnttab
);
969 if (mountpoint
!= NULL
)
970 mountpoint
= mntpt
= zfs_strdup(hdl
, mountpoint
);
972 if (mountpoint
!= NULL
|| ((zfs_get_type(zhp
) == ZFS_TYPE_FILESYSTEM
) &&
973 libzfs_mnttab_find(hdl
, zfs_get_name(zhp
), &entry
) == 0)) {
974 zfs_share_proto_t
*curr_proto
;
976 if (mountpoint
== NULL
)
977 mntpt
= zfs_strdup(zhp
->zfs_hdl
, entry
.mnt_mountp
);
979 for (curr_proto
= proto
; *curr_proto
!= PROTO_END
;
982 if (is_shared(hdl
, mntpt
, *curr_proto
) &&
983 unshare_one(hdl
, zhp
->zfs_name
,
984 mntpt
, *curr_proto
) != 0) {
996 zfs_unshare_nfs(zfs_handle_t
*zhp
, const char *mountpoint
)
998 return (zfs_unshare_proto(zhp
, mountpoint
, nfs_only
));
1002 zfs_unshare_smb(zfs_handle_t
*zhp
, const char *mountpoint
)
1004 return (zfs_unshare_proto(zhp
, mountpoint
, smb_only
));
1008 * Same as zfs_unmountall(), but for NFS and SMB unshares.
1011 zfs_unshareall_proto(zfs_handle_t
*zhp
, zfs_share_proto_t
*proto
)
1013 prop_changelist_t
*clp
;
1016 clp
= changelist_gather(zhp
, ZFS_PROP_SHARENFS
, 0, 0);
1020 ret
= changelist_unshare(clp
, proto
);
1021 changelist_free(clp
);
1027 zfs_unshareall_nfs(zfs_handle_t
*zhp
)
1029 return (zfs_unshareall_proto(zhp
, nfs_only
));
1033 zfs_unshareall_smb(zfs_handle_t
*zhp
)
1035 return (zfs_unshareall_proto(zhp
, smb_only
));
1039 zfs_unshareall(zfs_handle_t
*zhp
)
1041 return (zfs_unshareall_proto(zhp
, share_all_proto
));
1045 zfs_unshareall_bypath(zfs_handle_t
*zhp
, const char *mountpoint
)
1047 return (zfs_unshare_proto(zhp
, mountpoint
, share_all_proto
));
1051 * Remove the mountpoint associated with the current dataset, if necessary.
1052 * We only remove the underlying directory if:
1054 * - The mountpoint is not 'none' or 'legacy'
1055 * - The mountpoint is non-empty
1056 * - The mountpoint is the default or inherited
1057 * - The 'zoned' property is set, or we're in a local zone
1059 * Any other directories we leave alone.
1062 remove_mountpoint(zfs_handle_t
*zhp
)
1064 char mountpoint
[ZFS_MAXPROPLEN
];
1065 zprop_source_t source
;
1067 if (!zfs_is_mountable(zhp
, mountpoint
, sizeof (mountpoint
),
1071 if (source
== ZPROP_SRC_DEFAULT
||
1072 source
== ZPROP_SRC_INHERITED
) {
1074 * Try to remove the directory, silently ignoring any errors.
1075 * The filesystem may have since been removed or moved around,
1076 * and this error isn't really useful to the administrator in
1079 (void) rmdir(mountpoint
);
1084 * Add the given zfs handle to the cb_handles array, dynamically reallocating
1085 * the array if it is out of space.
1088 libzfs_add_handle(get_all_cb_t
*cbp
, zfs_handle_t
*zhp
)
1090 if (cbp
->cb_alloc
== cbp
->cb_used
) {
1092 zfs_handle_t
**newhandles
;
1094 newsz
= cbp
->cb_alloc
!= 0 ? cbp
->cb_alloc
* 2 : 64;
1095 newhandles
= zfs_realloc(zhp
->zfs_hdl
,
1096 cbp
->cb_handles
, cbp
->cb_alloc
* sizeof (zfs_handle_t
*),
1097 newsz
* sizeof (zfs_handle_t
*));
1098 cbp
->cb_handles
= newhandles
;
1099 cbp
->cb_alloc
= newsz
;
1101 cbp
->cb_handles
[cbp
->cb_used
++] = zhp
;
1105 * Recursive helper function used during file system enumeration
1108 zfs_iter_cb(zfs_handle_t
*zhp
, void *data
)
1110 get_all_cb_t
*cbp
= data
;
1112 if (!(zfs_get_type(zhp
) & ZFS_TYPE_FILESYSTEM
)) {
1117 if (zfs_prop_get_int(zhp
, ZFS_PROP_CANMOUNT
) == ZFS_CANMOUNT_NOAUTO
) {
1123 * If this filesystem is inconsistent and has a receive resume
1124 * token, we can not mount it.
1126 if (zfs_prop_get_int(zhp
, ZFS_PROP_INCONSISTENT
) &&
1127 zfs_prop_get(zhp
, ZFS_PROP_RECEIVE_RESUME_TOKEN
,
1128 NULL
, 0, NULL
, NULL
, 0, B_TRUE
) == 0) {
1133 libzfs_add_handle(cbp
, zhp
);
1134 if (zfs_iter_filesystems(zhp
, zfs_iter_cb
, cbp
) != 0) {
1142 * Sort comparator that compares two mountpoint paths. We sort these paths so
1143 * that subdirectories immediately follow their parents. This means that we
1144 * effectively treat the '/' character as the lowest value non-nul char.
1145 * Since filesystems from non-global zones can have the same mountpoint
1146 * as other filesystems, the comparator sorts global zone filesystems to
1147 * the top of the list. This means that the global zone will traverse the
1148 * filesystem list in the correct order and can stop when it sees the
1149 * first zoned filesystem. In a non-global zone, only the delegated
1150 * filesystems are seen.
1152 * An example sorted list using this comparator would look like:
1162 * The mounting code depends on this ordering to deterministically iterate
1163 * over filesystems in order to spawn parallel mount tasks.
1166 mountpoint_cmp(const void *arga
, const void *argb
)
1168 zfs_handle_t
*const *zap
= arga
;
1169 zfs_handle_t
*za
= *zap
;
1170 zfs_handle_t
*const *zbp
= argb
;
1171 zfs_handle_t
*zb
= *zbp
;
1172 char mounta
[MAXPATHLEN
];
1173 char mountb
[MAXPATHLEN
];
1174 const char *a
= mounta
;
1175 const char *b
= mountb
;
1176 boolean_t gota
, gotb
;
1177 uint64_t zoneda
, zonedb
;
1179 zoneda
= zfs_prop_get_int(za
, ZFS_PROP_ZONED
);
1180 zonedb
= zfs_prop_get_int(zb
, ZFS_PROP_ZONED
);
1181 if (zoneda
&& !zonedb
)
1183 if (!zoneda
&& zonedb
)
1186 gota
= (zfs_get_type(za
) == ZFS_TYPE_FILESYSTEM
);
1188 verify(zfs_prop_get(za
, ZFS_PROP_MOUNTPOINT
, mounta
,
1189 sizeof (mounta
), NULL
, NULL
, 0, B_FALSE
) == 0);
1191 gotb
= (zfs_get_type(zb
) == ZFS_TYPE_FILESYSTEM
);
1193 verify(zfs_prop_get(zb
, ZFS_PROP_MOUNTPOINT
, mountb
,
1194 sizeof (mountb
), NULL
, NULL
, 0, B_FALSE
) == 0);
1198 while (*a
!= '\0' && (*a
== *b
)) {
1212 return (*a
< *b
? -1 : *a
> *b
);
1221 * If neither filesystem has a mountpoint, revert to sorting by
1224 return (strcmp(zfs_get_name(za
), zfs_get_name(zb
)));
1228 * Return true if path2 is a child of path1.
1231 libzfs_path_contains(const char *path1
, const char *path2
)
1233 return (strstr(path2
, path1
) == path2
&& path2
[strlen(path1
)] == '/');
1237 * Given a mountpoint specified by idx in the handles array, find the first
1238 * non-descendent of that mountpoint and return its index. Descendant paths
1239 * start with the parent's path. This function relies on the ordering
1240 * enforced by mountpoint_cmp().
1243 non_descendant_idx(zfs_handle_t
**handles
, size_t num_handles
, int idx
)
1245 char parent
[ZFS_MAXPROPLEN
];
1246 char child
[ZFS_MAXPROPLEN
];
1249 verify(zfs_prop_get(handles
[idx
], ZFS_PROP_MOUNTPOINT
, parent
,
1250 sizeof (parent
), NULL
, NULL
, 0, B_FALSE
) == 0);
1252 for (i
= idx
+ 1; i
< num_handles
; i
++) {
1253 verify(zfs_prop_get(handles
[i
], ZFS_PROP_MOUNTPOINT
, child
,
1254 sizeof (child
), NULL
, NULL
, 0, B_FALSE
) == 0);
1255 if (!libzfs_path_contains(parent
, child
))
1261 typedef struct mnt_param
{
1262 libzfs_handle_t
*mnt_hdl
;
1263 zfs_taskq_t
*mnt_tq
;
1264 zfs_handle_t
**mnt_zhps
; /* filesystems to mount */
1265 size_t mnt_num_handles
;
1266 int mnt_idx
; /* Index of selected entry to mount */
1267 zfs_iter_f mnt_func
;
1272 * Allocate and populate the parameter struct for mount function, and
1273 * schedule mounting of the entry selected by idx.
1276 zfs_dispatch_mount(libzfs_handle_t
*hdl
, zfs_handle_t
**handles
,
1277 size_t num_handles
, int idx
, zfs_iter_f func
, void *data
, zfs_taskq_t
*tq
)
1279 mnt_param_t
*mnt_param
= zfs_alloc(hdl
, sizeof (mnt_param_t
));
1281 mnt_param
->mnt_hdl
= hdl
;
1282 mnt_param
->mnt_tq
= tq
;
1283 mnt_param
->mnt_zhps
= handles
;
1284 mnt_param
->mnt_num_handles
= num_handles
;
1285 mnt_param
->mnt_idx
= idx
;
1286 mnt_param
->mnt_func
= func
;
1287 mnt_param
->mnt_data
= data
;
1289 (void) zfs_taskq_dispatch(tq
, zfs_mount_task
, (void*)mnt_param
,
1294 * This is the structure used to keep state of mounting or sharing operations
1295 * during a call to zpool_enable_datasets().
1297 typedef struct mount_state
{
1299 * ms_mntstatus is set to -1 if any mount fails. While multiple threads
1300 * could update this variable concurrently, no synchronization is
1301 * needed as it's only ever set to -1.
1305 const char *ms_mntopts
;
1309 zfs_mount_one(zfs_handle_t
*zhp
, void *arg
)
1311 mount_state_t
*ms
= arg
;
1314 if (zfs_mount(zhp
, ms
->ms_mntopts
, ms
->ms_mntflags
) != 0)
1315 ret
= ms
->ms_mntstatus
= -1;
1320 zfs_share_one(zfs_handle_t
*zhp
, void *arg
)
1322 mount_state_t
*ms
= arg
;
1325 if (zfs_share(zhp
) != 0)
1326 ret
= ms
->ms_mntstatus
= -1;
1331 * Task queue function to mount one file system. On completion, it finds and
1332 * schedules its children to be mounted. This depends on the sorting done in
1333 * zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries
1334 * each descending from the previous) will have no parallelism since we always
1335 * have to wait for the parent to finish mounting before we can schedule
1339 zfs_mount_task(void *arg
)
1341 mnt_param_t
*mp
= arg
;
1342 int idx
= mp
->mnt_idx
;
1343 zfs_handle_t
**handles
= mp
->mnt_zhps
;
1344 size_t num_handles
= mp
->mnt_num_handles
;
1345 char mountpoint
[ZFS_MAXPROPLEN
];
1347 verify(zfs_prop_get(handles
[idx
], ZFS_PROP_MOUNTPOINT
, mountpoint
,
1348 sizeof (mountpoint
), NULL
, NULL
, 0, B_FALSE
) == 0);
1350 if (mp
->mnt_func(handles
[idx
], mp
->mnt_data
) != 0)
1354 * We dispatch tasks to mount filesystems with mountpoints underneath
1355 * this one. We do this by dispatching the next filesystem with a
1356 * descendant mountpoint of the one we just mounted, then skip all of
1357 * its descendants, dispatch the next descendant mountpoint, and so on.
1358 * The non_descendant_idx() function skips over filesystems that are
1359 * descendants of the filesystem we just dispatched.
1361 for (int i
= idx
+ 1; i
< num_handles
;
1362 i
= non_descendant_idx(handles
, num_handles
, i
)) {
1363 char child
[ZFS_MAXPROPLEN
];
1364 verify(zfs_prop_get(handles
[i
], ZFS_PROP_MOUNTPOINT
,
1365 child
, sizeof (child
), NULL
, NULL
, 0, B_FALSE
) == 0);
1367 if (!libzfs_path_contains(mountpoint
, child
))
1368 break; /* not a descendant, return */
1369 zfs_dispatch_mount(mp
->mnt_hdl
, handles
, num_handles
, i
,
1370 mp
->mnt_func
, mp
->mnt_data
, mp
->mnt_tq
);
1376 * Issue the func callback for each ZFS handle contained in the handles
1377 * array. This function is used to mount all datasets, and so this function
1378 * guarantees that filesystems for parent mountpoints are called before their
1379 * children. As such, before issuing any callbacks, we first sort the array
1380 * of handles by mountpoint.
1382 * Callbacks are issued in one of two ways:
1384 * 1. Sequentially: If the parallel argument is B_FALSE or the ZFS_SERIAL_MOUNT
1385 * environment variable is set, then we issue callbacks sequentially.
1387 * 2. In parallel: If the parallel argument is B_TRUE and the ZFS_SERIAL_MOUNT
1388 * environment variable is not set, then we use a taskq to dispatch threads
1389 * to mount filesystems is parallel. This function dispatches tasks to mount
1390 * the filesystems at the top-level mountpoints, and these tasks in turn
1391 * are responsible for recursively mounting filesystems in their children
1395 zfs_foreach_mountpoint(libzfs_handle_t
*hdl
, zfs_handle_t
**handles
,
1396 size_t num_handles
, zfs_iter_f func
, void *data
, boolean_t parallel
)
1398 zoneid_t zoneid
= getzoneid();
1401 * The ZFS_SERIAL_MOUNT environment variable is an undocumented
1402 * variable that can be used as a convenience to do a/b comparison
1403 * of serial vs. parallel mounting.
1405 boolean_t serial_mount
= !parallel
||
1406 (getenv("ZFS_SERIAL_MOUNT") != NULL
);
1409 * Sort the datasets by mountpoint. See mountpoint_cmp for details
1410 * of how these are sorted.
1412 qsort(handles
, num_handles
, sizeof (zfs_handle_t
*), mountpoint_cmp
);
1415 for (int i
= 0; i
< num_handles
; i
++) {
1416 func(handles
[i
], data
);
1422 * Issue the callback function for each dataset using a parallel
1423 * algorithm that uses a taskq to manage threads.
1425 zfs_taskq_t
*tq
= zfs_taskq_create("mount_taskq", mount_tq_nthr
, 0,
1426 mount_tq_nthr
, mount_tq_nthr
, ZFS_TASKQ_PREPOPULATE
);
1429 * There may be multiple "top level" mountpoints outside of the pool's
1430 * root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of
1433 for (int i
= 0; i
< num_handles
;
1434 i
= non_descendant_idx(handles
, num_handles
, i
)) {
1436 * Since the mountpoints have been sorted so that the zoned
1437 * filesystems are at the end, a zoned filesystem seen from
1438 * the global zone means that we're done.
1440 if (zoneid
== GLOBAL_ZONEID
&&
1441 zfs_prop_get_int(handles
[i
], ZFS_PROP_ZONED
))
1443 zfs_dispatch_mount(hdl
, handles
, num_handles
, i
, func
, data
,
1447 zfs_taskq_wait(tq
); /* wait for all scheduled mounts to complete */
1448 zfs_taskq_destroy(tq
);
1452 * Mount and share all datasets within the given pool. This assumes that no
1453 * datasets within the pool are currently mounted.
1455 #pragma weak zpool_mount_datasets = zpool_enable_datasets
1457 zpool_enable_datasets(zpool_handle_t
*zhp
, const char *mntopts
, int flags
)
1459 get_all_cb_t cb
= { 0 };
1460 mount_state_t ms
= { 0 };
1462 sa_init_selective_arg_t sharearg
;
1465 if ((zfsp
= zfs_open(zhp
->zpool_hdl
, zhp
->zpool_name
,
1466 ZFS_TYPE_DATASET
)) == NULL
)
1471 * Gather all non-snapshot datasets within the pool. Start by adding
1472 * the root filesystem for this pool to the list, and then iterate
1473 * over all child filesystems.
1475 libzfs_add_handle(&cb
, zfsp
);
1476 if (zfs_iter_filesystems(zfsp
, zfs_iter_cb
, &cb
) != 0)
1479 ms
.ms_mntopts
= mntopts
;
1480 ms
.ms_mntflags
= flags
;
1481 zfs_foreach_mountpoint(zhp
->zpool_hdl
, cb
.cb_handles
, cb
.cb_used
,
1482 zfs_mount_one
, &ms
, B_TRUE
);
1483 if (ms
.ms_mntstatus
!= 0)
1484 ret
= ms
.ms_mntstatus
;
1487 * Share all filesystems that need to be shared. This needs to be
1488 * a separate pass because libshare is not mt-safe, and so we need
1489 * to share serially.
1491 sharearg
.zhandle_arr
= cb
.cb_handles
;
1492 sharearg
.zhandle_len
= cb
.cb_used
;
1493 if ((ret
= zfs_init_libshare_arg(zhp
->zpool_hdl
,
1494 SA_INIT_SHARE_API_SELECTIVE
, &sharearg
)) != 0)
1497 ms
.ms_mntstatus
= 0;
1498 zfs_foreach_mountpoint(zhp
->zpool_hdl
, cb
.cb_handles
, cb
.cb_used
,
1499 zfs_share_one
, &ms
, B_FALSE
);
1500 if (ms
.ms_mntstatus
!= 0)
1501 ret
= ms
.ms_mntstatus
;
1504 for (int i
= 0; i
< cb
.cb_used
; i
++)
1505 zfs_close(cb
.cb_handles
[i
]);
1506 free(cb
.cb_handles
);
1512 mountpoint_compare(const void *a
, const void *b
)
1514 const char *mounta
= *((char **)a
);
1515 const char *mountb
= *((char **)b
);
1517 return (strcmp(mountb
, mounta
));
1520 /* alias for 2002/240 */
1521 #pragma weak zpool_unmount_datasets = zpool_disable_datasets
1523 * Unshare and unmount all datasets within the given pool. We don't want to
1524 * rely on traversing the DSL to discover the filesystems within the pool,
1525 * because this may be expensive (if not all of them are mounted), and can fail
1526 * arbitrarily (on I/O error, for example). Instead, we walk /etc/mnttab and
1527 * gather all the filesystems that are currently mounted.
1530 zpool_disable_datasets(zpool_handle_t
*zhp
, boolean_t force
)
1533 struct mnttab entry
;
1535 char **mountpoints
= NULL
;
1536 zfs_handle_t
**datasets
= NULL
;
1537 libzfs_handle_t
*hdl
= zhp
->zpool_hdl
;
1540 int flags
= (force
? MS_FORCE
: 0);
1541 sa_init_selective_arg_t sharearg
;
1543 namelen
= strlen(zhp
->zpool_name
);
1545 rewind(hdl
->libzfs_mnttab
);
1547 while (getmntent(hdl
->libzfs_mnttab
, &entry
) == 0) {
1549 * Ignore non-ZFS entries.
1551 if (entry
.mnt_fstype
== NULL
||
1552 strcmp(entry
.mnt_fstype
, MNTTYPE_ZFS
) != 0)
1556 * Ignore filesystems not within this pool.
1558 if (entry
.mnt_mountp
== NULL
||
1559 strncmp(entry
.mnt_special
, zhp
->zpool_name
, namelen
) != 0 ||
1560 (entry
.mnt_special
[namelen
] != '/' &&
1561 entry
.mnt_special
[namelen
] != '\0'))
1565 * At this point we've found a filesystem within our pool. Add
1566 * it to our growing list.
1568 if (used
== alloc
) {
1570 if ((mountpoints
= zfs_alloc(hdl
,
1571 8 * sizeof (void *))) == NULL
)
1574 if ((datasets
= zfs_alloc(hdl
,
1575 8 * sizeof (void *))) == NULL
)
1582 if ((ptr
= zfs_realloc(hdl
, mountpoints
,
1583 alloc
* sizeof (void *),
1584 alloc
* 2 * sizeof (void *))) == NULL
)
1588 if ((ptr
= zfs_realloc(hdl
, datasets
,
1589 alloc
* sizeof (void *),
1590 alloc
* 2 * sizeof (void *))) == NULL
)
1598 if ((mountpoints
[used
] = zfs_strdup(hdl
,
1599 entry
.mnt_mountp
)) == NULL
)
1603 * This is allowed to fail, in case there is some I/O error. It
1604 * is only used to determine if we need to remove the underlying
1605 * mountpoint, so failure is not fatal.
1607 datasets
[used
] = make_dataset_handle(hdl
, entry
.mnt_special
);
1613 * At this point, we have the entire list of filesystems, so sort it by
1616 sharearg
.zhandle_arr
= datasets
;
1617 sharearg
.zhandle_len
= used
;
1618 ret
= zfs_init_libshare_arg(hdl
, SA_INIT_SHARE_API_SELECTIVE
,
1622 qsort(mountpoints
, used
, sizeof (char *), mountpoint_compare
);
1625 * Walk through and first unshare everything.
1627 for (i
= 0; i
< used
; i
++) {
1628 zfs_share_proto_t
*curr_proto
;
1629 for (curr_proto
= share_all_proto
; *curr_proto
!= PROTO_END
;
1631 if (is_shared(hdl
, mountpoints
[i
], *curr_proto
) &&
1632 unshare_one(hdl
, mountpoints
[i
],
1633 mountpoints
[i
], *curr_proto
) != 0)
1639 * Now unmount everything, removing the underlying directories as
1642 for (i
= 0; i
< used
; i
++) {
1643 if (unmount_one(hdl
, mountpoints
[i
], flags
) != 0)
1647 for (i
= 0; i
< used
; i
++) {
1649 remove_mountpoint(datasets
[i
]);
1654 for (i
= 0; i
< used
; i
++) {
1656 zfs_close(datasets
[i
]);
1657 free(mountpoints
[i
]);