Merge illumos-gate
[unleashed/lotheac.git] / usr / src / uts / i86pc / io / mp_platform_misc.c
blobb99f8489c57c8b69f26acabdd596395fd0157488
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2017 Joyent, Inc.
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
31 * Copyright (c) 2018, Joyent, Inc.
35 * PSMI 1.1 extensions are supported only in 2.6 and later versions.
36 * PSMI 1.2 extensions are supported only in 2.7 and later versions.
37 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
38 * PSMI 1.5 extensions are supported in Solaris Nevada.
39 * PSMI 1.6 extensions are supported in Solaris Nevada.
40 * PSMI 1.7 extensions are supported in Solaris Nevada.
42 #define PSMI_1_7
44 #include <sys/processor.h>
45 #include <sys/time.h>
46 #include <sys/psm.h>
47 #include <sys/smp_impldefs.h>
48 #include <sys/inttypes.h>
49 #include <sys/cram.h>
50 #include <sys/acpi/acpi.h>
51 #include <sys/acpica.h>
52 #include <sys/psm_common.h>
53 #include <sys/apic.h>
54 #include <sys/apic_common.h>
55 #include <sys/pit.h>
56 #include <sys/ddi.h>
57 #include <sys/sunddi.h>
58 #include <sys/ddi_impldefs.h>
59 #include <sys/pci.h>
60 #include <sys/promif.h>
61 #include <sys/x86_archext.h>
62 #include <sys/cpc_impl.h>
63 #include <sys/uadmin.h>
64 #include <sys/panic.h>
65 #include <sys/debug.h>
66 #include <sys/archsystm.h>
67 #include <sys/trap.h>
68 #include <sys/machsystm.h>
69 #include <sys/cpuvar.h>
70 #include <sys/rm_platter.h>
71 #include <sys/privregs.h>
72 #include <sys/cyclic.h>
73 #include <sys/note.h>
74 #include <sys/pci_intr_lib.h>
75 #include <sys/sunndi.h>
76 #include <sys/hpet.h>
77 #include <sys/clock.h>
80 * Part of mp_platfrom_common.c that's used only by pcplusmp & xpv_psm
81 * but not apix.
82 * These functions may be moved to xpv_psm later when apix and pcplusmp
83 * are merged together
87 * Local Function Prototypes
89 static void apic_mark_vector(uchar_t oldvector, uchar_t newvector);
90 static void apic_xlate_vector_free_timeout_handler(void *arg);
91 static int apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu,
92 int new_bind_cpu, int apicindex, int intin_no, int which_irq,
93 struct ioapic_reprogram_data *drep);
94 static int apic_setup_irq_table(dev_info_t *dip, int irqno,
95 struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *intr_flagp,
96 int type);
97 static void apic_try_deferred_reprogram(int ipl, int vect);
98 static void delete_defer_repro_ent(int which_irq);
99 static void apic_ioapic_wait_pending_clear(int ioapicindex,
100 int intin_no);
102 extern int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
103 int ipin, int *pci_irqp, iflag_t *intr_flagp);
104 extern int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno,
105 int child_ipin, struct apic_io_intr **intrp);
106 extern uchar_t acpi_find_ioapic(int irq);
107 extern struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid);
108 extern int apic_find_bus_id(int bustype);
109 extern int apic_find_intin(uchar_t ioapic, uchar_t intin);
110 extern void apic_record_rdt_entry(apic_irq_t *irqptr, int irq);
112 extern int apic_sci_vect;
113 extern iflag_t apic_sci_flags;
114 /* ACPI HPET interrupt configuration; -1 if HPET not used */
115 extern int apic_hpet_vect;
116 extern iflag_t apic_hpet_flags;
117 extern int apic_intr_policy;
118 extern char *psm_name;
121 * number of bits per byte, from <sys/param.h>
123 #define UCHAR_MAX UINT8_MAX
125 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */
126 extern int apic_max_reps_clear_pending;
128 /* The irq # is implicit in the array index: */
129 struct ioapic_reprogram_data apic_reprogram_info[APIC_MAX_VECTOR+1];
131 * APIC_MAX_VECTOR + 1 is the maximum # of IRQs as well. ioapic_reprogram_info
132 * is indexed by IRQ number, NOT by vector number.
135 extern int apic_int_busy_mark;
136 extern int apic_int_free_mark;
137 extern int apic_diff_for_redistribution;
138 extern int apic_sample_factor_redistribution;
139 extern int apic_redist_cpu_skip;
140 extern int apic_num_imbalance;
141 extern int apic_num_rebind;
143 /* timeout for xlate_vector, mark_vector */
144 int apic_revector_timeout = 16 * 10000; /* 160 millisec */
146 extern int apic_defconf;
147 extern int apic_irq_translate;
149 extern int apic_use_acpi_madt_only; /* 1=ONLY use MADT from ACPI */
151 extern uchar_t apic_io_vectbase[MAX_IO_APIC];
153 extern boolean_t ioapic_mask_workaround[MAX_IO_APIC];
156 * First available slot to be used as IRQ index into the apic_irq_table
157 * for those interrupts (like MSI/X) that don't have a physical IRQ.
159 extern int apic_first_avail_irq;
162 * apic_defer_reprogram_lock ensures that only one processor is handling
163 * deferred interrupt programming at *_intr_exit time.
165 static lock_t apic_defer_reprogram_lock;
168 * The current number of deferred reprogrammings outstanding
170 uint_t apic_reprogram_outstanding = 0;
172 #ifdef DEBUG
174 * Counters that keep track of deferred reprogramming stats
176 uint_t apic_intr_deferrals = 0;
177 uint_t apic_intr_deliver_timeouts = 0;
178 uint_t apic_last_ditch_reprogram_failures = 0;
179 uint_t apic_deferred_setup_failures = 0;
180 uint_t apic_defer_repro_total_retries = 0;
181 uint_t apic_defer_repro_successes = 0;
182 uint_t apic_deferred_spurious_enters = 0;
183 #endif
185 extern int apic_io_max;
186 extern struct apic_io_intr *apic_io_intrp;
188 uchar_t apic_vector_to_irq[APIC_MAX_VECTOR+1];
190 extern uint32_t eisa_level_intr_mask;
191 /* At least MSB will be set if EISA bus */
193 extern int apic_pci_bus_total;
194 extern uchar_t apic_single_pci_busid;
197 * Following declarations are for revectoring; used when ISRs at different
198 * IPLs share an irq.
200 static lock_t apic_revector_lock;
201 int apic_revector_pending = 0;
202 static uchar_t *apic_oldvec_to_newvec;
203 static uchar_t *apic_newvec_to_oldvec;
205 /* ACPI Interrupt Source Override Structure ptr */
206 extern ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop;
207 extern int acpi_iso_cnt;
210 * Auto-configuration routines
214 * Initialise vector->ipl and ipl->pri arrays. level_intr and irqtable
215 * are also set to NULL. vector->irq is set to a value which cannot map
216 * to a real irq to show that it is free.
218 void
219 apic_init_common(void)
221 int i, j, indx;
222 int *iptr;
225 * Initialize apic_ipls from apic_vectortoipl. This array is
226 * used in apic_intr_enter to determine the IPL to use for the
227 * corresponding vector. On some systems, due to hardware errata
228 * and interrupt sharing, the IPL may not correspond to the IPL listed
229 * in apic_vectortoipl (see apic_addspl and apic_delspl).
231 for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
232 indx = i * APIC_VECTOR_PER_IPL;
234 for (j = 0; j < APIC_VECTOR_PER_IPL; j++, indx++)
235 apic_ipls[indx] = apic_vectortoipl[i];
238 /* cpu 0 is always up (for now) */
239 apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE;
241 iptr = (int *)&apic_irq_table[0];
242 for (i = 0; i <= APIC_MAX_VECTOR; i++) {
243 apic_level_intr[i] = 0;
244 *iptr++ = 0;
245 apic_vector_to_irq[i] = APIC_RESV_IRQ;
247 /* These *must* be initted to B_TRUE! */
248 apic_reprogram_info[i].done = B_TRUE;
249 apic_reprogram_info[i].irqp = NULL;
250 apic_reprogram_info[i].tries = 0;
251 apic_reprogram_info[i].bindcpu = 0;
255 * Allocate a dummy irq table entry for the reserved entry.
256 * This takes care of the race between removing an irq and
257 * clock detecting a CPU in that irq during interrupt load
258 * sampling.
260 apic_irq_table[APIC_RESV_IRQ] =
261 kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
263 mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL);
266 void
267 ioapic_init_intr(int mask_apic)
269 int ioapic_ix;
270 struct intrspec ispec;
271 apic_irq_t *irqptr;
272 int i, j;
273 ulong_t iflag;
275 LOCK_INIT_CLEAR(&apic_revector_lock);
276 LOCK_INIT_CLEAR(&apic_defer_reprogram_lock);
278 /* mask interrupt vectors */
279 for (j = 0; j < apic_io_max && mask_apic; j++) {
280 int intin_max;
282 ioapic_ix = j;
283 /* Bits 23-16 define the maximum redirection entries */
284 intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16)
285 & 0xff;
286 for (i = 0; i <= intin_max; i++)
287 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * i, AV_MASK);
291 * Hack alert: deal with ACPI SCI interrupt chicken/egg here
293 if (apic_sci_vect > 0) {
295 * acpica has already done add_avintr(); we just
296 * to finish the job by mimicing translate_irq()
298 * Fake up an intrspec and setup the tables
300 ispec.intrspec_vec = apic_sci_vect;
301 ispec.intrspec_pri = SCI_IPL;
303 if (apic_setup_irq_table(NULL, apic_sci_vect, NULL,
304 &ispec, &apic_sci_flags, DDI_INTR_TYPE_FIXED) < 0) {
305 cmn_err(CE_WARN, "!apic: SCI setup failed");
306 return;
308 irqptr = apic_irq_table[apic_sci_vect];
310 iflag = intr_clear();
311 lock_set(&apic_ioapic_lock);
313 /* Program I/O APIC */
314 (void) apic_setup_io_intr(irqptr, apic_sci_vect, B_FALSE);
316 lock_clear(&apic_ioapic_lock);
317 intr_restore(iflag);
319 irqptr->airq_share++;
323 * Hack alert: deal with ACPI HPET interrupt chicken/egg here.
325 if (apic_hpet_vect > 0) {
327 * hpet has already done add_avintr(); we just need
328 * to finish the job by mimicing translate_irq()
330 * Fake up an intrspec and setup the tables
332 ispec.intrspec_vec = apic_hpet_vect;
333 ispec.intrspec_pri = CBE_HIGH_PIL;
335 if (apic_setup_irq_table(NULL, apic_hpet_vect, NULL,
336 &ispec, &apic_hpet_flags, DDI_INTR_TYPE_FIXED) < 0) {
337 cmn_err(CE_WARN, "!apic: HPET setup failed");
338 return;
340 irqptr = apic_irq_table[apic_hpet_vect];
342 iflag = intr_clear();
343 lock_set(&apic_ioapic_lock);
345 /* Program I/O APIC */
346 (void) apic_setup_io_intr(irqptr, apic_hpet_vect, B_FALSE);
348 lock_clear(&apic_ioapic_lock);
349 intr_restore(iflag);
351 irqptr->airq_share++;
356 * Add mask bits to disable interrupt vector from happening
357 * at or above IPL. In addition, it should remove mask bits
358 * to enable interrupt vectors below the given IPL.
360 * Both add and delspl are complicated by the fact that different interrupts
361 * may share IRQs. This can happen in two ways.
362 * 1. The same H/W line is shared by more than 1 device
363 * 1a. with interrupts at different IPLs
364 * 1b. with interrupts at same IPL
365 * 2. We ran out of vectors at a given IPL and started sharing vectors.
366 * 1b and 2 should be handled gracefully, except for the fact some ISRs
367 * will get called often when no interrupt is pending for the device.
368 * For 1a, we handle it at the higher IPL.
370 /*ARGSUSED*/
372 apic_addspl_common(int irqno, int ipl, int min_ipl, int max_ipl)
374 uchar_t vector;
375 ulong_t iflag;
376 apic_irq_t *irqptr, *irqheadptr;
377 int irqindex;
379 ASSERT(max_ipl <= UCHAR_MAX);
380 irqindex = IRQINDEX(irqno);
382 if ((irqindex == -1) || (!apic_irq_table[irqindex]))
383 return (PSM_FAILURE);
385 mutex_enter(&airq_mutex);
386 irqptr = irqheadptr = apic_irq_table[irqindex];
388 DDI_INTR_IMPLDBG((CE_CONT, "apic_addspl: dip=0x%p type=%d irqno=0x%x "
389 "vector=0x%x\n", (void *)irqptr->airq_dip,
390 irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector));
392 while (irqptr) {
393 if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno)
394 break;
395 irqptr = irqptr->airq_next;
397 irqptr->airq_share++;
399 mutex_exit(&airq_mutex);
401 /* return if it is not hardware interrupt */
402 if (irqptr->airq_mps_intr_index == RESERVE_INDEX)
403 return (PSM_SUCCESS);
405 /* Or if there are more interupts at a higher IPL */
406 if (ipl != max_ipl)
407 return (PSM_SUCCESS);
410 * if apic_picinit() has not been called yet, just return.
411 * At the end of apic_picinit(), we will call setup_io_intr().
414 if (!apic_picinit_called)
415 return (PSM_SUCCESS);
418 * Upgrade vector if max_ipl is not earlier ipl. If we cannot allocate,
419 * return failure.
421 if (irqptr->airq_ipl != max_ipl &&
422 !ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
424 vector = apic_allocate_vector(max_ipl, irqindex, 1);
425 if (vector == 0) {
426 irqptr->airq_share--;
427 return (PSM_FAILURE);
429 irqptr = irqheadptr;
430 apic_mark_vector(irqptr->airq_vector, vector);
431 while (irqptr) {
432 irqptr->airq_vector = vector;
433 irqptr->airq_ipl = (uchar_t)max_ipl;
435 * reprogram irq being added and every one else
436 * who is not in the UNINIT state
438 if ((VIRTIRQ(irqindex, irqptr->airq_share_id) ==
439 irqno) || (irqptr->airq_temp_cpu != IRQ_UNINIT)) {
440 apic_record_rdt_entry(irqptr, irqindex);
442 iflag = intr_clear();
443 lock_set(&apic_ioapic_lock);
445 (void) apic_setup_io_intr(irqptr, irqindex,
446 B_FALSE);
448 lock_clear(&apic_ioapic_lock);
449 intr_restore(iflag);
451 irqptr = irqptr->airq_next;
453 return (PSM_SUCCESS);
455 } else if (irqptr->airq_ipl != max_ipl &&
456 ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
458 * We cannot upgrade the vector, but we can change
459 * the IPL that this vector induces.
461 * Note that we subtract APIC_BASE_VECT from the vector
462 * here because this array is used in apic_intr_enter
463 * (no need to add APIC_BASE_VECT in that hot code
464 * path since we can do it in the rarely-executed path
465 * here).
467 apic_ipls[irqptr->airq_vector - APIC_BASE_VECT] =
468 (uchar_t)max_ipl;
470 irqptr = irqheadptr;
471 while (irqptr) {
472 irqptr->airq_ipl = (uchar_t)max_ipl;
473 irqptr = irqptr->airq_next;
476 return (PSM_SUCCESS);
479 ASSERT(irqptr);
481 iflag = intr_clear();
482 lock_set(&apic_ioapic_lock);
484 (void) apic_setup_io_intr(irqptr, irqindex, B_FALSE);
486 lock_clear(&apic_ioapic_lock);
487 intr_restore(iflag);
489 return (PSM_SUCCESS);
493 * Recompute mask bits for the given interrupt vector.
494 * If there is no interrupt servicing routine for this
495 * vector, this function should disable interrupt vector
496 * from happening at all IPLs. If there are still
497 * handlers using the given vector, this function should
498 * disable the given vector from happening below the lowest
499 * IPL of the remaining hadlers.
501 /*ARGSUSED*/
503 apic_delspl_common(int irqno, int ipl, int min_ipl, int max_ipl)
505 uchar_t vector;
506 uint32_t bind_cpu;
507 int intin, irqindex;
508 int ioapic_ix;
509 apic_irq_t *irqptr, *preirqptr, *irqheadptr, *irqp;
510 ulong_t iflag;
512 mutex_enter(&airq_mutex);
513 irqindex = IRQINDEX(irqno);
514 irqptr = preirqptr = irqheadptr = apic_irq_table[irqindex];
516 DDI_INTR_IMPLDBG((CE_CONT, "apic_delspl: dip=0x%p type=%d irqno=0x%x "
517 "vector=0x%x\n", (void *)irqptr->airq_dip,
518 irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector));
520 while (irqptr) {
521 if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno)
522 break;
523 preirqptr = irqptr;
524 irqptr = irqptr->airq_next;
526 ASSERT(irqptr);
528 irqptr->airq_share--;
530 mutex_exit(&airq_mutex);
533 * If there are more interrupts at a higher IPL, we don't need
534 * to disable anything.
536 if (ipl < max_ipl)
537 return (PSM_SUCCESS);
539 /* return if it is not hardware interrupt */
540 if (irqptr->airq_mps_intr_index == RESERVE_INDEX)
541 return (PSM_SUCCESS);
543 if (!apic_picinit_called) {
545 * Clear irq_struct. If two devices shared an intpt
546 * line & 1 unloaded before picinit, we are hosed. But, then
547 * we hope the machine survive.
549 irqptr->airq_mps_intr_index = FREE_INDEX;
550 irqptr->airq_temp_cpu = IRQ_UNINIT;
551 apic_free_vector(irqptr->airq_vector);
552 return (PSM_SUCCESS);
555 * Downgrade vector to new max_ipl if needed. If we cannot allocate,
556 * use old IPL. Not very elegant, but it should work.
558 if ((irqptr->airq_ipl != max_ipl) && (max_ipl != PSM_INVALID_IPL) &&
559 !ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
560 apic_irq_t *irqp;
561 if ((vector = apic_allocate_vector(max_ipl, irqno, 1))) {
562 apic_mark_vector(irqheadptr->airq_vector, vector);
563 irqp = irqheadptr;
564 while (irqp) {
565 irqp->airq_vector = vector;
566 irqp->airq_ipl = (uchar_t)max_ipl;
567 if (irqp->airq_temp_cpu != IRQ_UNINIT) {
568 apic_record_rdt_entry(irqp, irqindex);
570 iflag = intr_clear();
571 lock_set(&apic_ioapic_lock);
573 (void) apic_setup_io_intr(irqp,
574 irqindex, B_FALSE);
576 lock_clear(&apic_ioapic_lock);
577 intr_restore(iflag);
579 irqp = irqp->airq_next;
583 } else if (irqptr->airq_ipl != max_ipl &&
584 max_ipl != PSM_INVALID_IPL &&
585 ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
588 * We cannot downgrade the IPL of the vector below the vector's
589 * hardware priority. If we did, it would be possible for a
590 * higher-priority hardware vector to interrupt a CPU running at an IPL
591 * lower than the hardware priority of the interrupting vector (but
592 * higher than the soft IPL of this IRQ). When this happens, we would
593 * then try to drop the IPL BELOW what it was (effectively dropping
594 * below base_spl) which would be potentially catastrophic.
596 * (e.g. Suppose the hardware vector associated with this IRQ is 0x40
597 * (hardware IPL of 4). Further assume that the old IPL of this IRQ
598 * was 4, but the new IPL is 1. If we forced vector 0x40 to result in
599 * an IPL of 1, it would be possible for the processor to be executing
600 * at IPL 3 and for an interrupt to come in on vector 0x40, interrupting
601 * the currently-executing ISR. When apic_intr_enter consults
602 * apic_irqs[], it will return 1, bringing the IPL of the CPU down to 1
603 * so even though the processor was running at IPL 4, an IPL 1
604 * interrupt will have interrupted it, which must not happen)).
606 * Effectively, this means that the hardware priority corresponding to
607 * the IRQ's IPL (in apic_ipls[]) cannot be lower than the vector's
608 * hardware priority.
610 * (In the above example, then, after removal of the IPL 4 device's
611 * interrupt handler, the new IPL will continue to be 4 because the
612 * hardware priority that IPL 1 implies is lower than the hardware
613 * priority of the vector used.)
615 /* apic_ipls is indexed by vector, starting at APIC_BASE_VECT */
616 const int apic_ipls_index = irqptr->airq_vector -
617 APIC_BASE_VECT;
618 const int vect_inherent_hwpri = irqptr->airq_vector >>
619 APIC_IPL_SHIFT;
622 * If there are still devices using this IRQ, determine the
623 * new ipl to use.
625 if (irqptr->airq_share) {
626 int vect_desired_hwpri, hwpri;
628 ASSERT(max_ipl < MAXIPL);
629 vect_desired_hwpri = apic_ipltopri[max_ipl] >>
630 APIC_IPL_SHIFT;
633 * If the desired IPL's hardware priority is lower
634 * than that of the vector, use the hardware priority
635 * of the vector to determine the new IPL.
637 hwpri = (vect_desired_hwpri < vect_inherent_hwpri) ?
638 vect_inherent_hwpri : vect_desired_hwpri;
641 * Now, to get the right index for apic_vectortoipl,
642 * we need to subtract APIC_BASE_VECT from the
643 * hardware-vector-equivalent (in hwpri). Since hwpri
644 * is already shifted, we shift APIC_BASE_VECT before
645 * doing the subtraction.
647 hwpri -= (APIC_BASE_VECT >> APIC_IPL_SHIFT);
649 ASSERT(hwpri >= 0);
650 ASSERT(hwpri < MAXIPL);
651 max_ipl = apic_vectortoipl[hwpri];
652 apic_ipls[apic_ipls_index] = (uchar_t)max_ipl;
654 irqp = irqheadptr;
655 while (irqp) {
656 irqp->airq_ipl = (uchar_t)max_ipl;
657 irqp = irqp->airq_next;
659 } else {
661 * No more devices on this IRQ, so reset this vector's
662 * element in apic_ipls to the original IPL for this
663 * vector
665 apic_ipls[apic_ipls_index] =
666 apic_vectortoipl[vect_inherent_hwpri];
671 * If there are still active interrupts, we are done.
673 if (irqptr->airq_share)
674 return (PSM_SUCCESS);
676 iflag = intr_clear();
677 lock_set(&apic_ioapic_lock);
679 if (irqptr->airq_mps_intr_index == MSI_INDEX) {
681 * Disable the MSI vector
682 * Make sure we only disable on the last
683 * of the multi-MSI support
685 if (i_ddi_intr_get_current_nenables(irqptr->airq_dip) == 1) {
686 apic_pci_msi_disable_mode(irqptr->airq_dip,
687 DDI_INTR_TYPE_MSI);
689 } else if (irqptr->airq_mps_intr_index == MSIX_INDEX) {
691 * Disable the MSI-X vector
692 * needs to clear its mask and addr/data for each MSI-X
694 apic_pci_msi_unconfigure(irqptr->airq_dip, DDI_INTR_TYPE_MSIX,
695 irqptr->airq_origirq);
697 * Make sure we only disable on the last MSI-X
699 if (i_ddi_intr_get_current_nenables(irqptr->airq_dip) == 1) {
700 apic_pci_msi_disable_mode(irqptr->airq_dip,
701 DDI_INTR_TYPE_MSIX);
703 } else {
705 * The assumption here is that this is safe, even for
706 * systems with IOAPICs that suffer from the hardware
707 * erratum because all devices have been quiesced before
708 * they unregister their interrupt handlers. If that
709 * assumption turns out to be false, this mask operation
710 * can induce the same erratum result we're trying to
711 * avoid.
713 ioapic_ix = irqptr->airq_ioapicindex;
714 intin = irqptr->airq_intin_no;
715 ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin, AV_MASK);
718 apic_vt_ops->apic_intrmap_free_entry(&irqptr->airq_intrmap_private);
721 * This irq entry is the only one in the chain.
723 if (irqheadptr->airq_next == NULL) {
724 ASSERT(irqheadptr == irqptr);
725 bind_cpu = irqptr->airq_temp_cpu;
726 if (((uint32_t)bind_cpu != IRQ_UNBOUND) &&
727 ((uint32_t)bind_cpu != IRQ_UNINIT)) {
728 ASSERT(apic_cpu_in_range(bind_cpu));
729 if (bind_cpu & IRQ_USER_BOUND) {
730 /* If hardbound, temp_cpu == cpu */
731 bind_cpu &= ~IRQ_USER_BOUND;
732 apic_cpus[bind_cpu].aci_bound--;
733 } else
734 apic_cpus[bind_cpu].aci_temp_bound--;
736 irqptr->airq_temp_cpu = IRQ_UNINIT;
737 irqptr->airq_mps_intr_index = FREE_INDEX;
738 lock_clear(&apic_ioapic_lock);
739 intr_restore(iflag);
740 apic_free_vector(irqptr->airq_vector);
741 return (PSM_SUCCESS);
745 * If we get here, we are sharing the vector and there are more than
746 * one active irq entries in the chain.
748 lock_clear(&apic_ioapic_lock);
749 intr_restore(iflag);
751 mutex_enter(&airq_mutex);
752 /* Remove the irq entry from the chain */
753 if (irqptr == irqheadptr) { /* The irq entry is at the head */
754 apic_irq_table[irqindex] = irqptr->airq_next;
755 } else {
756 preirqptr->airq_next = irqptr->airq_next;
758 /* Free the irq entry */
759 kmem_free(irqptr, sizeof (apic_irq_t));
760 mutex_exit(&airq_mutex);
762 return (PSM_SUCCESS);
766 * apic_introp_xlate() replaces apic_translate_irq() and is
767 * called only from apic_intr_ops(). With the new ADII framework,
768 * the priority can no longer be retrieved through i_ddi_get_intrspec().
769 * It has to be passed in from the caller.
771 * Return value:
772 * Success: irqno for the given device
773 * Failure: -1
776 apic_introp_xlate(dev_info_t *dip, struct intrspec *ispec, int type)
778 char dev_type[16];
779 int dev_len, pci_irq, newirq, bustype, devid, busid, i;
780 int irqno = ispec->intrspec_vec;
781 ddi_acc_handle_t cfg_handle;
782 uchar_t ipin;
783 struct apic_io_intr *intrp;
784 iflag_t intr_flag;
785 ACPI_SUBTABLE_HEADER *hp;
786 ACPI_MADT_INTERRUPT_OVERRIDE *isop;
787 apic_irq_t *airqp;
788 int parent_is_pci_or_pciex = 0;
789 int child_is_pciex = 0;
791 DDI_INTR_IMPLDBG((CE_CONT, "apic_introp_xlate: dip=0x%p name=%s "
792 "type=%d irqno=0x%x\n", (void *)dip, ddi_get_name(dip), type,
793 irqno));
795 dev_len = sizeof (dev_type);
796 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip),
797 DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type,
798 &dev_len) == DDI_PROP_SUCCESS) {
799 if ((strcmp(dev_type, "pci") == 0) ||
800 (strcmp(dev_type, "pciex") == 0))
801 parent_is_pci_or_pciex = 1;
804 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip,
805 DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type,
806 &dev_len) == DDI_PROP_SUCCESS) {
807 if (strstr(dev_type, "pciex"))
808 child_is_pciex = 1;
811 if (DDI_INTR_IS_MSI_OR_MSIX(type)) {
812 if ((airqp = apic_find_irq(dip, ispec, type)) != NULL) {
813 airqp->airq_iflag.bustype =
814 child_is_pciex ? BUS_PCIE : BUS_PCI;
815 return (apic_vector_to_irq[airqp->airq_vector]);
817 return (apic_setup_irq_table(dip, irqno, NULL, ispec,
818 NULL, type));
821 bustype = 0;
823 /* check if we have already translated this irq */
824 mutex_enter(&airq_mutex);
825 newirq = apic_min_device_irq;
826 for (; newirq <= apic_max_device_irq; newirq++) {
827 airqp = apic_irq_table[newirq];
828 while (airqp) {
829 if ((airqp->airq_dip == dip) &&
830 (airqp->airq_origirq == irqno) &&
831 (airqp->airq_mps_intr_index != FREE_INDEX)) {
833 mutex_exit(&airq_mutex);
834 return (VIRTIRQ(newirq, airqp->airq_share_id));
836 airqp = airqp->airq_next;
839 mutex_exit(&airq_mutex);
841 if (apic_defconf)
842 goto defconf;
844 if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi))
845 goto nonpci;
847 if (parent_is_pci_or_pciex) {
848 /* pci device */
849 if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0)
850 goto nonpci;
851 if (busid == 0 && apic_pci_bus_total == 1)
852 busid = (int)apic_single_pci_busid;
854 if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS)
855 return (-1);
856 ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA;
857 pci_config_teardown(&cfg_handle);
858 if (apic_enable_acpi && !apic_use_acpi_madt_only) {
859 if (apic_acpi_translate_pci_irq(dip, busid, devid,
860 ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS)
861 return (-1);
863 intr_flag.bustype = child_is_pciex ? BUS_PCIE : BUS_PCI;
864 return (apic_setup_irq_table(dip, pci_irq, NULL, ispec,
865 &intr_flag, type));
866 } else {
867 pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3);
868 if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid))
869 == NULL) {
870 if ((pci_irq = apic_handle_pci_pci_bridge(dip,
871 devid, ipin, &intrp)) == -1)
872 return (-1);
874 return (apic_setup_irq_table(dip, pci_irq, intrp, ispec,
875 NULL, type));
877 } else if (strcmp(dev_type, "isa") == 0)
878 bustype = BUS_ISA;
879 else if (strcmp(dev_type, "eisa") == 0)
880 bustype = BUS_EISA;
882 nonpci:
883 if (apic_enable_acpi && !apic_use_acpi_madt_only) {
884 /* search iso entries first */
885 if (acpi_iso_cnt != 0) {
886 hp = (ACPI_SUBTABLE_HEADER *)acpi_isop;
887 i = 0;
888 while (i < acpi_iso_cnt) {
889 if (hp->Type ==
890 ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) {
891 isop =
892 (ACPI_MADT_INTERRUPT_OVERRIDE *) hp;
893 if (isop->Bus == 0 &&
894 isop->SourceIrq == irqno) {
895 newirq = isop->GlobalIrq;
896 intr_flag.intr_po =
897 isop->IntiFlags &
898 ACPI_MADT_POLARITY_MASK;
899 intr_flag.intr_el =
900 (isop->IntiFlags &
901 ACPI_MADT_TRIGGER_MASK)
902 >> 2;
903 intr_flag.bustype = BUS_ISA;
905 return (apic_setup_irq_table(
906 dip, newirq, NULL, ispec,
907 &intr_flag, type));
910 i++;
912 hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) +
913 hp->Length);
916 intr_flag.intr_po = INTR_PO_ACTIVE_HIGH;
917 intr_flag.intr_el = INTR_EL_EDGE;
918 intr_flag.bustype = BUS_ISA;
919 return (apic_setup_irq_table(dip, irqno, NULL, ispec,
920 &intr_flag, type));
921 } else {
922 if (bustype == 0) /* not initialized */
923 bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA;
924 for (i = 0; i < 2; i++) {
925 if (((busid = apic_find_bus_id(bustype)) != -1) &&
926 ((intrp = apic_find_io_intr_w_busid(irqno, busid))
927 != NULL)) {
928 if ((newirq = apic_setup_irq_table(dip, irqno,
929 intrp, ispec, NULL, type)) != -1) {
930 return (newirq);
932 goto defconf;
934 bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA;
938 /* MPS default configuration */
939 defconf:
940 newirq = apic_setup_irq_table(dip, irqno, NULL, ispec, NULL, type);
941 if (newirq == -1)
942 return (-1);
943 ASSERT(IRQINDEX(newirq) == irqno);
944 ASSERT(apic_irq_table[irqno]);
945 return (newirq);
949 * Attempt to share vector with someone else
951 static int
952 apic_share_vector(int irqno, iflag_t *intr_flagp, short intr_index, int ipl,
953 uchar_t ioapicindex, uchar_t ipin, apic_irq_t **irqptrp)
955 #ifdef DEBUG
956 apic_irq_t *tmpirqp = NULL;
957 #endif /* DEBUG */
958 apic_irq_t *irqptr, dummyirq;
959 int newirq, chosen_irq = -1, share = 127;
960 int lowest, highest, i;
961 uchar_t share_id;
963 DDI_INTR_IMPLDBG((CE_CONT, "apic_share_vector: irqno=0x%x "
964 "intr_index=0x%x ipl=0x%x\n", irqno, intr_index, ipl));
966 highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
967 lowest = apic_ipltopri[ipl-1] + APIC_VECTOR_PER_IPL;
969 if (highest < lowest) /* Both ipl and ipl-1 map to same pri */
970 lowest -= APIC_VECTOR_PER_IPL;
971 dummyirq.airq_mps_intr_index = intr_index;
972 dummyirq.airq_ioapicindex = ioapicindex;
973 dummyirq.airq_intin_no = ipin;
974 if (intr_flagp)
975 dummyirq.airq_iflag = *intr_flagp;
976 apic_record_rdt_entry(&dummyirq, irqno);
977 for (i = lowest; i <= highest; i++) {
978 newirq = apic_vector_to_irq[i];
979 if (newirq == APIC_RESV_IRQ)
980 continue;
981 irqptr = apic_irq_table[newirq];
983 if ((dummyirq.airq_rdt_entry & 0xFF00) !=
984 (irqptr->airq_rdt_entry & 0xFF00))
985 /* not compatible */
986 continue;
988 if (irqptr->airq_share < share) {
989 share = irqptr->airq_share;
990 chosen_irq = newirq;
993 if (chosen_irq != -1) {
995 * Assign a share id which is free or which is larger
996 * than the largest one.
998 share_id = 1;
999 mutex_enter(&airq_mutex);
1000 irqptr = apic_irq_table[chosen_irq];
1001 while (irqptr) {
1002 if (irqptr->airq_mps_intr_index == FREE_INDEX) {
1003 share_id = irqptr->airq_share_id;
1004 break;
1006 if (share_id <= irqptr->airq_share_id)
1007 share_id = irqptr->airq_share_id + 1;
1008 #ifdef DEBUG
1009 tmpirqp = irqptr;
1010 #endif /* DEBUG */
1011 irqptr = irqptr->airq_next;
1013 if (!irqptr) {
1014 irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
1015 irqptr->airq_temp_cpu = IRQ_UNINIT;
1016 irqptr->airq_next =
1017 apic_irq_table[chosen_irq]->airq_next;
1018 apic_irq_table[chosen_irq]->airq_next = irqptr;
1019 #ifdef DEBUG
1020 tmpirqp = apic_irq_table[chosen_irq];
1021 #endif /* DEBUG */
1023 irqptr->airq_mps_intr_index = intr_index;
1024 irqptr->airq_ioapicindex = ioapicindex;
1025 irqptr->airq_intin_no = ipin;
1026 if (intr_flagp)
1027 irqptr->airq_iflag = *intr_flagp;
1028 irqptr->airq_vector = apic_irq_table[chosen_irq]->airq_vector;
1029 irqptr->airq_share_id = share_id;
1030 apic_record_rdt_entry(irqptr, irqno);
1031 *irqptrp = irqptr;
1032 #ifdef DEBUG
1033 /* shuffle the pointers to test apic_delspl path */
1034 if (tmpirqp) {
1035 tmpirqp->airq_next = irqptr->airq_next;
1036 irqptr->airq_next = apic_irq_table[chosen_irq];
1037 apic_irq_table[chosen_irq] = irqptr;
1039 #endif /* DEBUG */
1040 mutex_exit(&airq_mutex);
1041 return (VIRTIRQ(chosen_irq, share_id));
1043 return (-1);
1047 * Allocate/Initialize the apic_irq_table[] entry for given irqno. If the entry
1048 * is used already, we will try to allocate a new irqno.
1050 * Return value:
1051 * Success: irqno
1052 * Failure: -1
1054 static int
1055 apic_setup_irq_table(dev_info_t *dip, int irqno, struct apic_io_intr *intrp,
1056 struct intrspec *ispec, iflag_t *intr_flagp, int type)
1058 int origirq;
1059 uchar_t ipl;
1060 int newirq, intr_index;
1061 uchar_t ipin, ioapic, ioapicindex, vector;
1062 apic_irq_t *irqptr;
1063 major_t major;
1064 dev_info_t *sdip;
1066 ASSERT(ispec != NULL);
1068 origirq = ispec->intrspec_vec;
1069 ipl = ispec->intrspec_pri;
1071 DDI_INTR_IMPLDBG((CE_CONT, "apic_setup_irq_table: dip=0x%p type=%d "
1072 "irqno=0x%x origirq=0x%x\n", (void *)dip, type, irqno, origirq));
1074 major = (dip != NULL) ? ddi_driver_major(dip) : 0;
1076 if (DDI_INTR_IS_MSI_OR_MSIX(type)) {
1077 /* MSI/X doesn't need to setup ioapic stuffs */
1078 ioapicindex = 0xff;
1079 ioapic = 0xff;
1080 ipin = (uchar_t)0xff;
1081 intr_index = (type == DDI_INTR_TYPE_MSI) ? MSI_INDEX :
1082 MSIX_INDEX;
1083 mutex_enter(&airq_mutex);
1084 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == -1) {
1085 mutex_exit(&airq_mutex);
1086 /* need an irq for MSI/X to index into autovect[] */
1087 cmn_err(CE_WARN, "No interrupt irq: %s instance %d",
1088 ddi_get_name(dip), ddi_get_instance(dip));
1089 return (-1);
1091 mutex_exit(&airq_mutex);
1093 } else if (intrp != NULL) {
1094 intr_index = (int)(intrp - apic_io_intrp);
1095 ioapic = intrp->intr_destid;
1096 ipin = intrp->intr_destintin;
1097 /* Find ioapicindex. If destid was ALL, we will exit with 0. */
1098 for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--)
1099 if (apic_io_id[ioapicindex] == ioapic)
1100 break;
1101 ASSERT((ioapic == apic_io_id[ioapicindex]) ||
1102 (ioapic == INTR_ALL_APIC));
1104 /* check whether this intin# has been used by another irqno */
1105 if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1) {
1106 return (newirq);
1109 } else if (intr_flagp != NULL) {
1110 /* ACPI case */
1111 intr_index = ACPI_INDEX;
1112 ioapicindex = acpi_find_ioapic(irqno);
1113 ASSERT(ioapicindex != 0xFF);
1114 ioapic = apic_io_id[ioapicindex];
1115 ipin = irqno - apic_io_vectbase[ioapicindex];
1116 if (apic_irq_table[irqno] &&
1117 apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) {
1118 ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin &&
1119 apic_irq_table[irqno]->airq_ioapicindex ==
1120 ioapicindex);
1121 return (irqno);
1124 } else {
1125 /* default configuration */
1126 ioapicindex = 0;
1127 ioapic = apic_io_id[ioapicindex];
1128 ipin = (uchar_t)irqno;
1129 intr_index = DEFAULT_INDEX;
1132 if ((vector = apic_allocate_vector(ipl, irqno, 0)) == 0) {
1133 if ((newirq = apic_share_vector(irqno, intr_flagp, intr_index,
1134 ipl, ioapicindex, ipin, &irqptr)) != -1) {
1135 irqptr->airq_ipl = ipl;
1136 irqptr->airq_origirq = (uchar_t)origirq;
1137 irqptr->airq_dip = dip;
1138 irqptr->airq_major = major;
1139 sdip = apic_irq_table[IRQINDEX(newirq)]->airq_dip;
1140 /* This is OK to do really */
1141 if (sdip == NULL) {
1142 cmn_err(CE_WARN, "Sharing vectors: %s"
1143 " instance %d and SCI",
1144 ddi_get_name(dip), ddi_get_instance(dip));
1145 } else {
1146 cmn_err(CE_WARN, "Sharing vectors: %s"
1147 " instance %d and %s instance %d",
1148 ddi_get_name(sdip), ddi_get_instance(sdip),
1149 ddi_get_name(dip), ddi_get_instance(dip));
1151 return (newirq);
1153 /* try high priority allocation now that share has failed */
1154 if ((vector = apic_allocate_vector(ipl, irqno, 1)) == 0) {
1155 cmn_err(CE_WARN, "No interrupt vector: %s instance %d",
1156 ddi_get_name(dip), ddi_get_instance(dip));
1157 return (-1);
1161 mutex_enter(&airq_mutex);
1162 if (apic_irq_table[irqno] == NULL) {
1163 irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
1164 irqptr->airq_temp_cpu = IRQ_UNINIT;
1165 apic_irq_table[irqno] = irqptr;
1166 } else {
1167 irqptr = apic_irq_table[irqno];
1168 if (irqptr->airq_mps_intr_index != FREE_INDEX) {
1170 * The slot is used by another irqno, so allocate
1171 * a free irqno for this interrupt
1173 newirq = apic_allocate_irq(apic_first_avail_irq);
1174 if (newirq == -1) {
1175 mutex_exit(&airq_mutex);
1176 return (-1);
1178 irqno = newirq;
1179 irqptr = apic_irq_table[irqno];
1180 if (irqptr == NULL) {
1181 irqptr = kmem_zalloc(sizeof (apic_irq_t),
1182 KM_SLEEP);
1183 irqptr->airq_temp_cpu = IRQ_UNINIT;
1184 apic_irq_table[irqno] = irqptr;
1186 vector = apic_modify_vector(vector, newirq);
1189 apic_max_device_irq = max(irqno, apic_max_device_irq);
1190 apic_min_device_irq = min(irqno, apic_min_device_irq);
1191 mutex_exit(&airq_mutex);
1192 irqptr->airq_ioapicindex = ioapicindex;
1193 irqptr->airq_intin_no = ipin;
1194 irqptr->airq_ipl = ipl;
1195 irqptr->airq_vector = vector;
1196 irqptr->airq_origirq = (uchar_t)origirq;
1197 irqptr->airq_share_id = 0;
1198 irqptr->airq_mps_intr_index = (short)intr_index;
1199 irqptr->airq_dip = dip;
1200 irqptr->airq_major = major;
1201 irqptr->airq_cpu = apic_bind_intr(dip, irqno, ioapic, ipin);
1202 if (intr_flagp)
1203 irqptr->airq_iflag = *intr_flagp;
1205 if (!DDI_INTR_IS_MSI_OR_MSIX(type)) {
1206 /* setup I/O APIC entry for non-MSI/X interrupts */
1207 apic_record_rdt_entry(irqptr, irqno);
1209 return (irqno);
1213 * return the cpu to which this intr should be bound.
1214 * Check properties or any other mechanism to see if user wants it
1215 * bound to a specific CPU. If so, return the cpu id with high bit set.
1216 * If not, use the policy to choose a cpu and return the id.
1218 uint32_t
1219 apic_bind_intr(dev_info_t *dip, int irq, uchar_t ioapicid, uchar_t intin)
1221 int instance, instno, prop_len, bind_cpu, count;
1222 uint_t i, rc;
1223 uint32_t cpu;
1224 major_t major;
1225 char *name, *drv_name, *prop_val, *cptr;
1226 char prop_name[32];
1227 ulong_t iflag;
1230 if (apic_intr_policy == INTR_LOWEST_PRIORITY)
1231 return (IRQ_UNBOUND);
1233 if (apic_nproc == 1)
1234 return (0);
1237 * dip may be NULL for interrupts not associated with a device driver,
1238 * such as the ACPI SCI or HPET interrupts. In that case just use the
1239 * next CPU and return.
1241 if (dip == NULL) {
1242 iflag = intr_clear();
1243 lock_set(&apic_ioapic_lock);
1244 bind_cpu = apic_get_next_bind_cpu();
1245 lock_clear(&apic_ioapic_lock);
1246 intr_restore(iflag);
1248 cmn_err(CE_CONT, "!%s: irq 0x%x "
1249 "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n",
1250 psm_name, irq, apic_irq_table[irq]->airq_vector, ioapicid,
1251 intin, bind_cpu & ~IRQ_USER_BOUND);
1253 return ((uint32_t)bind_cpu);
1256 name = ddi_get_name(dip);
1257 major = ddi_name_to_major(name);
1258 drv_name = ddi_major_to_name(major);
1259 instance = ddi_get_instance(dip);
1260 if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) {
1261 i = apic_min_device_irq;
1262 for (; i <= apic_max_device_irq; i++) {
1263 if ((i == irq) || (apic_irq_table[i] == NULL) ||
1264 (apic_irq_table[i]->airq_mps_intr_index
1265 == FREE_INDEX))
1266 continue;
1268 if ((apic_irq_table[i]->airq_major == major) &&
1269 (!(apic_irq_table[i]->airq_cpu & IRQ_USER_BOUND))) {
1270 cpu = apic_irq_table[i]->airq_cpu;
1272 cmn_err(CE_CONT,
1273 "!%s: %s (%s) instance #%d "
1274 "irq 0x%x vector 0x%x ioapic 0x%x "
1275 "intin 0x%x is bound to cpu %d\n",
1276 psm_name,
1277 name, drv_name, instance, irq,
1278 apic_irq_table[irq]->airq_vector,
1279 ioapicid, intin, cpu);
1280 return (cpu);
1285 * search for "drvname"_intpt_bind_cpus property first, the
1286 * syntax of the property should be "a[,b,c,...]" where
1287 * instance 0 binds to cpu a, instance 1 binds to cpu b,
1288 * instance 3 binds to cpu c...
1289 * ddi_getlongprop() will search /option first, then /
1290 * if "drvname"_intpt_bind_cpus doesn't exist, then find
1291 * intpt_bind_cpus property. The syntax is the same, and
1292 * it applies to all the devices if its "drvname" specific
1293 * property doesn't exist
1295 (void) strcpy(prop_name, drv_name);
1296 (void) strcat(prop_name, "_intpt_bind_cpus");
1297 rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0, prop_name,
1298 (caddr_t)&prop_val, &prop_len);
1299 if (rc != DDI_PROP_SUCCESS) {
1300 rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0,
1301 "intpt_bind_cpus", (caddr_t)&prop_val, &prop_len);
1303 if (rc == DDI_PROP_SUCCESS) {
1304 for (i = count = 0; i < (prop_len - 1); i++)
1305 if (prop_val[i] == ',')
1306 count++;
1307 if (prop_val[i-1] != ',')
1308 count++;
1310 * if somehow the binding instances defined in the
1311 * property are not enough for this instno., then
1312 * reuse the pattern for the next instance until
1313 * it reaches the requested instno
1315 instno = instance % count;
1316 i = 0;
1317 cptr = prop_val;
1318 while (i < instno)
1319 if (*cptr++ == ',')
1320 i++;
1321 bind_cpu = stoi(&cptr);
1322 kmem_free(prop_val, prop_len);
1323 /* if specific CPU is bogus, then default to next cpu */
1324 if (!apic_cpu_in_range(bind_cpu)) {
1325 cmn_err(CE_WARN, "%s: %s=%s: CPU %d not present",
1326 psm_name, prop_name, prop_val, bind_cpu);
1327 rc = DDI_PROP_NOT_FOUND;
1328 } else {
1329 /* indicate that we are bound at user request */
1330 bind_cpu |= IRQ_USER_BOUND;
1333 * no need to check apic_cpus[].aci_status, if specific CPU is
1334 * not up, then post_cpu_start will handle it.
1338 if (rc != DDI_PROP_SUCCESS) {
1339 iflag = intr_clear();
1340 lock_set(&apic_ioapic_lock);
1341 bind_cpu = apic_get_next_bind_cpu();
1342 lock_clear(&apic_ioapic_lock);
1343 intr_restore(iflag);
1346 cmn_err(CE_CONT, "!%s: %s (%s) instance %d irq 0x%x "
1347 "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n",
1348 psm_name, name, drv_name, instance, irq,
1349 apic_irq_table[irq]->airq_vector, ioapicid, intin,
1350 bind_cpu & ~IRQ_USER_BOUND);
1352 return ((uint32_t)bind_cpu);
1356 * Mark vector as being in the process of being deleted. Interrupts
1357 * may still come in on some CPU. The moment an interrupt comes with
1358 * the new vector, we know we can free the old one. Called only from
1359 * addspl and delspl with interrupts disabled. Because an interrupt
1360 * can be shared, but no interrupt from either device may come in,
1361 * we also use a timeout mechanism, which we arbitrarily set to
1362 * apic_revector_timeout microseconds.
1364 static void
1365 apic_mark_vector(uchar_t oldvector, uchar_t newvector)
1367 ulong_t iflag;
1369 iflag = intr_clear();
1370 lock_set(&apic_revector_lock);
1371 if (!apic_oldvec_to_newvec) {
1372 apic_oldvec_to_newvec =
1373 kmem_zalloc(sizeof (newvector) * APIC_MAX_VECTOR * 2,
1374 KM_NOSLEEP);
1376 if (!apic_oldvec_to_newvec) {
1378 * This failure is not catastrophic.
1379 * But, the oldvec will never be freed.
1381 apic_error |= APIC_ERR_MARK_VECTOR_FAIL;
1382 lock_clear(&apic_revector_lock);
1383 intr_restore(iflag);
1384 return;
1386 apic_newvec_to_oldvec = &apic_oldvec_to_newvec[APIC_MAX_VECTOR];
1389 /* See if we already did this for drivers which do double addintrs */
1390 if (apic_oldvec_to_newvec[oldvector] != newvector) {
1391 apic_oldvec_to_newvec[oldvector] = newvector;
1392 apic_newvec_to_oldvec[newvector] = oldvector;
1393 apic_revector_pending++;
1395 lock_clear(&apic_revector_lock);
1396 intr_restore(iflag);
1397 (void) timeout(apic_xlate_vector_free_timeout_handler,
1398 (void *)(uintptr_t)oldvector, drv_usectohz(apic_revector_timeout));
1402 * xlate_vector is called from intr_enter if revector_pending is set.
1403 * It will xlate it if needed and mark the old vector as free.
1405 uchar_t
1406 apic_xlate_vector(uchar_t vector)
1408 uchar_t newvector, oldvector = 0;
1410 lock_set(&apic_revector_lock);
1411 /* Do we really need to do this ? */
1412 if (!apic_revector_pending) {
1413 lock_clear(&apic_revector_lock);
1414 return (vector);
1416 if ((newvector = apic_oldvec_to_newvec[vector]) != 0)
1417 oldvector = vector;
1418 else {
1420 * The incoming vector is new . See if a stale entry is
1421 * remaining
1423 if ((oldvector = apic_newvec_to_oldvec[vector]) != 0)
1424 newvector = vector;
1427 if (oldvector) {
1428 apic_revector_pending--;
1429 apic_oldvec_to_newvec[oldvector] = 0;
1430 apic_newvec_to_oldvec[newvector] = 0;
1431 apic_free_vector(oldvector);
1432 lock_clear(&apic_revector_lock);
1433 /* There could have been more than one reprogramming! */
1434 return (apic_xlate_vector(newvector));
1436 lock_clear(&apic_revector_lock);
1437 return (vector);
1440 void
1441 apic_xlate_vector_free_timeout_handler(void *arg)
1443 ulong_t iflag;
1444 uchar_t oldvector, newvector;
1446 oldvector = (uchar_t)(uintptr_t)arg;
1447 iflag = intr_clear();
1448 lock_set(&apic_revector_lock);
1449 if ((newvector = apic_oldvec_to_newvec[oldvector]) != 0) {
1450 apic_free_vector(oldvector);
1451 apic_oldvec_to_newvec[oldvector] = 0;
1452 apic_newvec_to_oldvec[newvector] = 0;
1453 apic_revector_pending--;
1456 lock_clear(&apic_revector_lock);
1457 intr_restore(iflag);
1461 * Bind interrupt corresponding to irq_ptr to bind_cpu.
1462 * Must be called with interrupts disabled and apic_ioapic_lock held
1465 apic_rebind(apic_irq_t *irq_ptr, int bind_cpu,
1466 struct ioapic_reprogram_data *drep)
1468 int ioapicindex, intin_no;
1469 uint32_t airq_temp_cpu;
1470 apic_cpus_info_t *cpu_infop;
1471 uint32_t rdt_entry;
1472 int which_irq;
1473 ioapic_rdt_t irdt;
1475 which_irq = apic_vector_to_irq[irq_ptr->airq_vector];
1477 intin_no = irq_ptr->airq_intin_no;
1478 ioapicindex = irq_ptr->airq_ioapicindex;
1479 airq_temp_cpu = irq_ptr->airq_temp_cpu;
1480 if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu != IRQ_UNBOUND) {
1481 if (airq_temp_cpu & IRQ_USER_BOUND)
1482 /* Mask off high bit so it can be used as array index */
1483 airq_temp_cpu &= ~IRQ_USER_BOUND;
1485 ASSERT(apic_cpu_in_range(airq_temp_cpu));
1489 * Can't bind to a CPU that's not accepting interrupts:
1491 cpu_infop = &apic_cpus[bind_cpu & ~IRQ_USER_BOUND];
1492 if (!(cpu_infop->aci_status & APIC_CPU_INTR_ENABLE))
1493 return (1);
1496 * If we are about to change the interrupt vector for this interrupt,
1497 * and this interrupt is level-triggered, attached to an IOAPIC,
1498 * has been delivered to a CPU and that CPU has not handled it
1499 * yet, we cannot reprogram the IOAPIC now.
1501 if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) {
1503 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex,
1504 intin_no);
1506 if ((irq_ptr->airq_vector != RDT_VECTOR(rdt_entry)) &&
1507 apic_check_stuck_interrupt(irq_ptr, airq_temp_cpu,
1508 bind_cpu, ioapicindex, intin_no, which_irq, drep) != 0) {
1510 return (0);
1514 * NOTE: We do not unmask the RDT here, as an interrupt MAY
1515 * still come in before we have a chance to reprogram it below.
1516 * The reprogramming below will simultaneously change and
1517 * unmask the RDT entry.
1520 if ((uint32_t)bind_cpu == IRQ_UNBOUND) {
1521 irdt.ir_lo = AV_LDEST | AV_LOPRI |
1522 irq_ptr->airq_rdt_entry;
1524 irdt.ir_hi = AV_TOALL >> APIC_ID_BIT_OFFSET;
1526 apic_vt_ops->apic_intrmap_alloc_entry(
1527 &irq_ptr->airq_intrmap_private, NULL,
1528 DDI_INTR_TYPE_FIXED, 1, ioapicindex);
1529 apic_vt_ops->apic_intrmap_map_entry(
1530 irq_ptr->airq_intrmap_private, (void *)&irdt,
1531 DDI_INTR_TYPE_FIXED, 1);
1532 apic_vt_ops->apic_intrmap_record_rdt(
1533 irq_ptr->airq_intrmap_private, &irdt);
1535 /* Write the RDT entry -- no specific CPU binding */
1536 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no,
1537 irdt.ir_hi | AV_TOALL);
1539 if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu !=
1540 IRQ_UNBOUND)
1541 apic_cpus[airq_temp_cpu].aci_temp_bound--;
1544 * Write the vector, trigger, and polarity portion of
1545 * the RDT
1547 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no,
1548 irdt.ir_lo);
1550 irq_ptr->airq_temp_cpu = IRQ_UNBOUND;
1551 return (0);
1555 if (bind_cpu & IRQ_USER_BOUND) {
1556 cpu_infop->aci_bound++;
1557 } else {
1558 cpu_infop->aci_temp_bound++;
1560 ASSERT(apic_cpu_in_range(bind_cpu));
1562 if ((airq_temp_cpu != IRQ_UNBOUND) && (airq_temp_cpu != IRQ_UNINIT)) {
1563 apic_cpus[airq_temp_cpu].aci_temp_bound--;
1565 if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) {
1567 irdt.ir_lo = AV_PDEST | AV_FIXED | irq_ptr->airq_rdt_entry;
1568 irdt.ir_hi = cpu_infop->aci_local_id;
1570 apic_vt_ops->apic_intrmap_alloc_entry(
1571 &irq_ptr->airq_intrmap_private, NULL, DDI_INTR_TYPE_FIXED,
1572 1, ioapicindex);
1573 apic_vt_ops->apic_intrmap_map_entry(
1574 irq_ptr->airq_intrmap_private,
1575 (void *)&irdt, DDI_INTR_TYPE_FIXED, 1);
1576 apic_vt_ops->apic_intrmap_record_rdt(
1577 irq_ptr->airq_intrmap_private, &irdt);
1579 /* Write the RDT entry -- bind to a specific CPU: */
1580 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no,
1581 irdt.ir_hi);
1583 /* Write the vector, trigger, and polarity portion of the RDT */
1584 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no,
1585 irdt.ir_lo);
1587 } else {
1588 int type = (irq_ptr->airq_mps_intr_index == MSI_INDEX) ?
1589 DDI_INTR_TYPE_MSI : DDI_INTR_TYPE_MSIX;
1590 if (type == DDI_INTR_TYPE_MSI) {
1591 if (irq_ptr->airq_ioapicindex ==
1592 irq_ptr->airq_origirq) {
1593 /* first one */
1594 DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call "
1595 "apic_pci_msi_enable_vector\n"));
1596 apic_pci_msi_enable_vector(irq_ptr,
1597 type, which_irq, irq_ptr->airq_vector,
1598 irq_ptr->airq_intin_no,
1599 cpu_infop->aci_local_id);
1601 if ((irq_ptr->airq_ioapicindex +
1602 irq_ptr->airq_intin_no - 1) ==
1603 irq_ptr->airq_origirq) { /* last one */
1604 DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call "
1605 "apic_pci_msi_enable_mode\n"));
1606 apic_pci_msi_enable_mode(irq_ptr->airq_dip,
1607 type, which_irq);
1609 } else { /* MSI-X */
1610 apic_pci_msi_enable_vector(irq_ptr, type,
1611 irq_ptr->airq_origirq, irq_ptr->airq_vector, 1,
1612 cpu_infop->aci_local_id);
1613 apic_pci_msi_enable_mode(irq_ptr->airq_dip, type,
1614 irq_ptr->airq_origirq);
1617 irq_ptr->airq_temp_cpu = (uint32_t)bind_cpu;
1618 apic_redist_cpu_skip &= ~(1 << (bind_cpu & ~IRQ_USER_BOUND));
1619 return (0);
1622 static void
1623 apic_last_ditch_clear_remote_irr(int ioapic_ix, int intin_no)
1625 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no)
1626 & AV_REMOTE_IRR) != 0) {
1628 * Trying to clear the bit through normal
1629 * channels has failed. So as a last-ditch
1630 * effort, try to set the trigger mode to
1631 * edge, then to level. This has been
1632 * observed to work on many systems.
1634 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1635 intin_no,
1636 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1637 intin_no) & ~AV_LEVEL);
1639 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1640 intin_no,
1641 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1642 intin_no) | AV_LEVEL);
1645 * If the bit's STILL set, this interrupt may
1646 * be hosed.
1648 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1649 intin_no) & AV_REMOTE_IRR) != 0) {
1651 prom_printf("%s: Remote IRR still "
1652 "not clear for IOAPIC %d intin %d.\n"
1653 "\tInterrupts to this pin may cease "
1654 "functioning.\n", psm_name, ioapic_ix,
1655 intin_no);
1656 #ifdef DEBUG
1657 apic_last_ditch_reprogram_failures++;
1658 #endif
1664 * This function is protected by apic_ioapic_lock coupled with the
1665 * fact that interrupts are disabled.
1667 static void
1668 delete_defer_repro_ent(int which_irq)
1670 ASSERT(which_irq >= 0);
1671 ASSERT(which_irq <= 255);
1672 ASSERT(LOCK_HELD(&apic_ioapic_lock));
1674 if (apic_reprogram_info[which_irq].done)
1675 return;
1677 apic_reprogram_info[which_irq].done = B_TRUE;
1679 #ifdef DEBUG
1680 apic_defer_repro_total_retries +=
1681 apic_reprogram_info[which_irq].tries;
1683 apic_defer_repro_successes++;
1684 #endif
1686 if (--apic_reprogram_outstanding == 0) {
1688 setlvlx = psm_intr_exit_fn();
1694 * Interrupts must be disabled during this function to prevent
1695 * self-deadlock. Interrupts are disabled because this function
1696 * is called from apic_check_stuck_interrupt(), which is called
1697 * from apic_rebind(), which requires its caller to disable interrupts.
1699 static void
1700 add_defer_repro_ent(apic_irq_t *irq_ptr, int which_irq, int new_bind_cpu)
1702 ASSERT(which_irq >= 0);
1703 ASSERT(which_irq <= 255);
1704 ASSERT(!interrupts_enabled());
1707 * On the off-chance that there's already a deferred
1708 * reprogramming on this irq, check, and if so, just update the
1709 * CPU and irq pointer to which the interrupt is targeted, then return.
1711 if (!apic_reprogram_info[which_irq].done) {
1712 apic_reprogram_info[which_irq].bindcpu = new_bind_cpu;
1713 apic_reprogram_info[which_irq].irqp = irq_ptr;
1714 return;
1717 apic_reprogram_info[which_irq].irqp = irq_ptr;
1718 apic_reprogram_info[which_irq].bindcpu = new_bind_cpu;
1719 apic_reprogram_info[which_irq].tries = 0;
1721 * This must be the last thing set, since we're not
1722 * grabbing any locks, apic_try_deferred_reprogram() will
1723 * make its decision about using this entry iff done
1724 * is false.
1726 apic_reprogram_info[which_irq].done = B_FALSE;
1729 * If there were previously no deferred reprogrammings, change
1730 * setlvlx to call apic_try_deferred_reprogram()
1732 if (++apic_reprogram_outstanding == 1) {
1734 setlvlx = apic_try_deferred_reprogram;
1738 static void
1739 apic_try_deferred_reprogram(int prev_ipl, int irq)
1741 int reproirq;
1742 ulong_t iflag;
1743 struct ioapic_reprogram_data *drep;
1745 (*psm_intr_exit_fn())(prev_ipl, irq);
1747 if (!lock_try(&apic_defer_reprogram_lock)) {
1748 return;
1752 * Acquire the apic_ioapic_lock so that any other operations that
1753 * may affect the apic_reprogram_info state are serialized.
1754 * It's still possible for the last deferred reprogramming to clear
1755 * between the time we entered this function and the time we get to
1756 * the for loop below. In that case, *setlvlx will have been set
1757 * back to *_intr_exit and drep will be NULL. (There's no way to
1758 * stop that from happening -- we would need to grab a lock before
1759 * calling *setlvlx, which is neither realistic nor prudent).
1761 iflag = intr_clear();
1762 lock_set(&apic_ioapic_lock);
1765 * For each deferred RDT entry, try to reprogram it now. Note that
1766 * there is no lock acquisition to read apic_reprogram_info because
1767 * '.done' is set only after the other fields in the structure are set.
1770 drep = NULL;
1771 for (reproirq = 0; reproirq <= APIC_MAX_VECTOR; reproirq++) {
1772 if (apic_reprogram_info[reproirq].done == B_FALSE) {
1773 drep = &apic_reprogram_info[reproirq];
1774 break;
1779 * Either we found a deferred action to perform, or
1780 * we entered this function spuriously, after *setlvlx
1781 * was restored to point to *_intr_exit. Any other
1782 * permutation is invalid.
1784 ASSERT(drep != NULL || *setlvlx == psm_intr_exit_fn());
1787 * Though we can't really do anything about errors
1788 * at this point, keep track of them for reporting.
1789 * Note that it is very possible for apic_setup_io_intr
1790 * to re-register this very timeout if the Remote IRR bit
1791 * has not yet cleared.
1794 #ifdef DEBUG
1795 if (drep != NULL) {
1796 if (apic_setup_io_intr(drep, reproirq, B_TRUE) != 0) {
1797 apic_deferred_setup_failures++;
1799 } else {
1800 apic_deferred_spurious_enters++;
1802 #else
1803 if (drep != NULL)
1804 (void) apic_setup_io_intr(drep, reproirq, B_TRUE);
1805 #endif
1807 lock_clear(&apic_ioapic_lock);
1808 intr_restore(iflag);
1810 lock_clear(&apic_defer_reprogram_lock);
1813 static void
1814 apic_ioapic_wait_pending_clear(int ioapic_ix, int intin_no)
1816 int waited;
1819 * Wait for the delivery pending bit to clear.
1821 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) &
1822 (AV_LEVEL|AV_PENDING)) == (AV_LEVEL|AV_PENDING)) {
1825 * If we're still waiting on the delivery of this interrupt,
1826 * continue to wait here until it is delivered (this should be
1827 * a very small amount of time, but include a timeout just in
1828 * case).
1830 for (waited = 0; waited < apic_max_reps_clear_pending;
1831 waited++) {
1832 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1833 intin_no) & AV_PENDING) == 0) {
1834 break;
1842 * Checks to see if the IOAPIC interrupt entry specified has its Remote IRR
1843 * bit set. Calls functions that modify the function that setlvlx points to,
1844 * so that the reprogramming can be retried very shortly.
1846 * This function will mask the RDT entry if the interrupt is level-triggered.
1847 * (The caller is responsible for unmasking the RDT entry.)
1849 * Returns non-zero if the caller should defer IOAPIC reprogramming.
1851 static int
1852 apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu,
1853 int new_bind_cpu, int ioapic_ix, int intin_no, int which_irq,
1854 struct ioapic_reprogram_data *drep)
1856 int32_t rdt_entry;
1857 int waited;
1858 int reps = 0;
1861 * Wait for the delivery pending bit to clear.
1863 do {
1864 ++reps;
1866 apic_ioapic_wait_pending_clear(ioapic_ix, intin_no);
1869 * Mask the RDT entry, but only if it's a level-triggered
1870 * interrupt
1872 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1873 intin_no);
1874 if ((rdt_entry & (AV_LEVEL|AV_MASK)) == AV_LEVEL) {
1876 /* Mask it */
1877 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no,
1878 AV_MASK | rdt_entry);
1881 if ((rdt_entry & AV_LEVEL) == AV_LEVEL) {
1883 * If there was a race and an interrupt was injected
1884 * just before we masked, check for that case here.
1885 * Then, unmask the RDT entry and try again. If we're
1886 * on our last try, don't unmask (because we want the
1887 * RDT entry to remain masked for the rest of the
1888 * function).
1890 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1891 intin_no);
1892 if ((rdt_entry & AV_PENDING) &&
1893 (reps < apic_max_reps_clear_pending)) {
1894 /* Unmask it */
1895 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1896 intin_no, rdt_entry & ~AV_MASK);
1900 } while ((rdt_entry & AV_PENDING) &&
1901 (reps < apic_max_reps_clear_pending));
1903 #ifdef DEBUG
1904 if (rdt_entry & AV_PENDING)
1905 apic_intr_deliver_timeouts++;
1906 #endif
1909 * If the remote IRR bit is set, then the interrupt has been sent
1910 * to a CPU for processing. We have no choice but to wait for
1911 * that CPU to process the interrupt, at which point the remote IRR
1912 * bit will be cleared.
1914 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) &
1915 (AV_LEVEL|AV_REMOTE_IRR)) == (AV_LEVEL|AV_REMOTE_IRR)) {
1918 * If the CPU that this RDT is bound to is NOT the current
1919 * CPU, wait until that CPU handles the interrupt and ACKs
1920 * it. If this interrupt is not bound to any CPU (that is,
1921 * if it's bound to the logical destination of "anyone"), it
1922 * may have been delivered to the current CPU so handle that
1923 * case by deferring the reprogramming (below).
1925 if ((old_bind_cpu != IRQ_UNBOUND) &&
1926 (old_bind_cpu != IRQ_UNINIT) &&
1927 (old_bind_cpu != psm_get_cpu_id())) {
1928 for (waited = 0; waited < apic_max_reps_clear_pending;
1929 waited++) {
1930 if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1931 intin_no) & AV_REMOTE_IRR) == 0) {
1933 delete_defer_repro_ent(which_irq);
1935 /* Remote IRR has cleared! */
1936 return (0);
1942 * If we waited and the Remote IRR bit is still not cleared,
1943 * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS
1944 * times for this interrupt, try the last-ditch workaround:
1946 if (drep && drep->tries >= APIC_REPROGRAM_MAX_TRIES) {
1948 apic_last_ditch_clear_remote_irr(ioapic_ix, intin_no);
1950 /* Mark this one as reprogrammed: */
1951 delete_defer_repro_ent(which_irq);
1953 return (0);
1954 } else {
1955 #ifdef DEBUG
1956 apic_intr_deferrals++;
1957 #endif
1960 * If waiting for the Remote IRR bit (above) didn't
1961 * allow it to clear, defer the reprogramming.
1962 * Add a new deferred-programming entry if the
1963 * caller passed a NULL one (and update the existing one
1964 * in case anything changed).
1966 add_defer_repro_ent(irq_ptr, which_irq, new_bind_cpu);
1967 if (drep)
1968 drep->tries++;
1970 /* Inform caller to defer IOAPIC programming: */
1971 return (1);
1976 /* Remote IRR is clear */
1977 delete_defer_repro_ent(which_irq);
1979 return (0);
1983 * Called to migrate all interrupts at an irq to another cpu.
1984 * Must be called with interrupts disabled and apic_ioapic_lock held
1987 apic_rebind_all(apic_irq_t *irq_ptr, int bind_cpu)
1989 apic_irq_t *irqptr = irq_ptr;
1990 int retval = 0;
1992 while (irqptr) {
1993 if (irqptr->airq_temp_cpu != IRQ_UNINIT)
1994 retval |= apic_rebind(irqptr, bind_cpu, NULL);
1995 irqptr = irqptr->airq_next;
1998 return (retval);
2002 * apic_intr_redistribute does all the messy computations for identifying
2003 * which interrupt to move to which CPU. Currently we do just one interrupt
2004 * at a time. This reduces the time we spent doing all this within clock
2005 * interrupt. When it is done in idle, we could do more than 1.
2006 * First we find the most busy and the most free CPU (time in ISR only)
2007 * skipping those CPUs that has been identified as being ineligible (cpu_skip)
2008 * Then we look for IRQs which are closest to the difference between the
2009 * most busy CPU and the average ISR load. We try to find one whose load
2010 * is less than difference.If none exists, then we chose one larger than the
2011 * difference, provided it does not make the most idle CPU worse than the
2012 * most busy one. In the end, we clear all the busy fields for CPUs. For
2013 * IRQs, they are cleared as they are scanned.
2015 void
2016 apic_intr_redistribute(void)
2018 int busiest_cpu, most_free_cpu;
2019 int cpu_free, cpu_busy, max_busy, min_busy;
2020 int min_free, diff;
2021 int average_busy, cpus_online;
2022 int i, busy;
2023 ulong_t iflag;
2024 apic_cpus_info_t *cpu_infop;
2025 apic_irq_t *min_busy_irq = NULL;
2026 apic_irq_t *max_busy_irq = NULL;
2028 busiest_cpu = most_free_cpu = -1;
2029 cpu_free = cpu_busy = max_busy = average_busy = 0;
2030 min_free = apic_sample_factor_redistribution;
2031 cpus_online = 0;
2033 * Below we will check for CPU_INTR_ENABLE, bound, temp_bound, temp_cpu
2034 * without ioapic_lock. That is OK as we are just doing statistical
2035 * sampling anyway and any inaccuracy now will get corrected next time
2036 * The call to rebind which actually changes things will make sure
2037 * we are consistent.
2039 for (i = 0; i < apic_nproc; i++) {
2040 if (apic_cpu_in_range(i) &&
2041 !(apic_redist_cpu_skip & (1 << i)) &&
2042 (apic_cpus[i].aci_status & APIC_CPU_INTR_ENABLE)) {
2044 cpu_infop = &apic_cpus[i];
2046 * If no unbound interrupts or only 1 total on this
2047 * CPU, skip
2049 if (!cpu_infop->aci_temp_bound ||
2050 (cpu_infop->aci_bound + cpu_infop->aci_temp_bound)
2051 == 1) {
2052 apic_redist_cpu_skip |= 1 << i;
2053 continue;
2056 busy = cpu_infop->aci_busy;
2057 average_busy += busy;
2058 cpus_online++;
2059 if (max_busy < busy) {
2060 max_busy = busy;
2061 busiest_cpu = i;
2063 if (min_free > busy) {
2064 min_free = busy;
2065 most_free_cpu = i;
2067 if (busy > apic_int_busy_mark) {
2068 cpu_busy |= 1 << i;
2069 } else {
2070 if (busy < apic_int_free_mark)
2071 cpu_free |= 1 << i;
2075 if ((cpu_busy && cpu_free) ||
2076 (max_busy >= (min_free + apic_diff_for_redistribution))) {
2078 apic_num_imbalance++;
2079 #ifdef DEBUG
2080 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
2081 prom_printf(
2082 "redistribute busy=%x free=%x max=%x min=%x",
2083 cpu_busy, cpu_free, max_busy, min_free);
2085 #endif /* DEBUG */
2088 average_busy /= cpus_online;
2090 diff = max_busy - average_busy;
2091 min_busy = max_busy; /* start with the max possible value */
2092 max_busy = 0;
2093 min_busy_irq = max_busy_irq = NULL;
2094 i = apic_min_device_irq;
2095 for (; i <= apic_max_device_irq; i++) {
2096 apic_irq_t *irq_ptr;
2097 /* Change to linked list per CPU ? */
2098 if ((irq_ptr = apic_irq_table[i]) == NULL)
2099 continue;
2100 /* Check for irq_busy & decide which one to move */
2101 /* Also zero them for next round */
2102 if ((irq_ptr->airq_temp_cpu == busiest_cpu) &&
2103 irq_ptr->airq_busy) {
2104 if (irq_ptr->airq_busy < diff) {
2106 * Check for least busy CPU,
2107 * best fit or what ?
2109 if (max_busy < irq_ptr->airq_busy) {
2111 * Most busy within the
2112 * required differential
2114 max_busy = irq_ptr->airq_busy;
2115 max_busy_irq = irq_ptr;
2117 } else {
2118 if (min_busy > irq_ptr->airq_busy) {
2120 * least busy, but more than
2121 * the reqd diff
2123 if (min_busy <
2124 (diff + average_busy -
2125 min_free)) {
2127 * Making sure new cpu
2128 * will not end up
2129 * worse
2131 min_busy =
2132 irq_ptr->airq_busy;
2134 min_busy_irq = irq_ptr;
2139 irq_ptr->airq_busy = 0;
2142 if (max_busy_irq != NULL) {
2143 #ifdef DEBUG
2144 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
2145 prom_printf("rebinding %x to %x",
2146 max_busy_irq->airq_vector, most_free_cpu);
2148 #endif /* DEBUG */
2149 iflag = intr_clear();
2150 if (lock_try(&apic_ioapic_lock)) {
2151 if (apic_rebind_all(max_busy_irq,
2152 most_free_cpu) == 0) {
2153 /* Make change permenant */
2154 max_busy_irq->airq_cpu =
2155 (uint32_t)most_free_cpu;
2157 lock_clear(&apic_ioapic_lock);
2159 intr_restore(iflag);
2161 } else if (min_busy_irq != NULL) {
2162 #ifdef DEBUG
2163 if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
2164 prom_printf("rebinding %x to %x",
2165 min_busy_irq->airq_vector, most_free_cpu);
2167 #endif /* DEBUG */
2169 iflag = intr_clear();
2170 if (lock_try(&apic_ioapic_lock)) {
2171 if (apic_rebind_all(min_busy_irq,
2172 most_free_cpu) == 0) {
2173 /* Make change permenant */
2174 min_busy_irq->airq_cpu =
2175 (uint32_t)most_free_cpu;
2177 lock_clear(&apic_ioapic_lock);
2179 intr_restore(iflag);
2181 } else {
2182 if (cpu_busy != (1 << busiest_cpu)) {
2183 apic_redist_cpu_skip |= 1 << busiest_cpu;
2185 * We leave cpu_skip set so that next time we
2186 * can choose another cpu
2190 apic_num_rebind++;
2191 } else {
2193 * found nothing. Could be that we skipped over valid CPUs
2194 * or we have balanced everything. If we had a variable
2195 * ticks_for_redistribution, it could be increased here.
2196 * apic_int_busy, int_free etc would also need to be
2197 * changed.
2199 if (apic_redist_cpu_skip)
2200 apic_redist_cpu_skip = 0;
2202 for (i = 0; i < apic_nproc; i++) {
2203 if (apic_cpu_in_range(i)) {
2204 apic_cpus[i].aci_busy = 0;
2209 void
2210 apic_cleanup_busy(void)
2212 int i;
2213 apic_irq_t *irq_ptr;
2215 for (i = 0; i < apic_nproc; i++) {
2216 if (apic_cpu_in_range(i)) {
2217 apic_cpus[i].aci_busy = 0;
2221 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
2222 if ((irq_ptr = apic_irq_table[i]) != NULL)
2223 irq_ptr->airq_busy = 0;