Merge commit 'dea58231324dba08972c488dcdedbab5c528ac8a'
[unleashed.git] / kernel / fs / zfs / vdev.c
blob650e33f10147551a40485244c8ad4c6906a5b429
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 #include <sys/zfs_context.h>
31 #include <sys/fm/fs/zfs.h>
32 #include <sys/spa.h>
33 #include <sys/spa_impl.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/metaslab_impl.h>
40 #include <sys/space_map.h>
41 #include <sys/space_reftree.h>
42 #include <sys/zio.h>
43 #include <sys/zap.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/arc.h>
46 #include <sys/zil.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/abd.h>
51 * Virtual device management.
54 static vdev_ops_t *vdev_ops_table[] = {
55 &vdev_root_ops,
56 &vdev_raidz_ops,
57 &vdev_mirror_ops,
58 &vdev_replacing_ops,
59 &vdev_spare_ops,
60 &vdev_disk_ops,
61 &vdev_file_ops,
62 &vdev_missing_ops,
63 &vdev_hole_ops,
64 NULL
67 /* maximum scrub/resilver I/O queue per leaf vdev */
68 int zfs_scrub_limit = 10;
71 * When a vdev is added, it will be divided into approximately (but no
72 * more than) this number of metaslabs.
74 int metaslabs_per_vdev = 200;
77 * Given a vdev type, return the appropriate ops vector.
79 static vdev_ops_t *
80 vdev_getops(const char *type)
82 vdev_ops_t *ops, **opspp;
84 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
85 if (strcmp(ops->vdev_op_type, type) == 0)
86 break;
88 return (ops);
92 * Default asize function: return the MAX of psize with the asize of
93 * all children. This is what's used by anything other than RAID-Z.
95 uint64_t
96 vdev_default_asize(vdev_t *vd, uint64_t psize)
98 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
99 uint64_t csize;
101 for (int c = 0; c < vd->vdev_children; c++) {
102 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
103 asize = MAX(asize, csize);
106 return (asize);
110 * Get the minimum allocatable size. We define the allocatable size as
111 * the vdev's asize rounded to the nearest metaslab. This allows us to
112 * replace or attach devices which don't have the same physical size but
113 * can still satisfy the same number of allocations.
115 uint64_t
116 vdev_get_min_asize(vdev_t *vd)
118 vdev_t *pvd = vd->vdev_parent;
121 * If our parent is NULL (inactive spare or cache) or is the root,
122 * just return our own asize.
124 if (pvd == NULL)
125 return (vd->vdev_asize);
128 * The top-level vdev just returns the allocatable size rounded
129 * to the nearest metaslab.
131 if (vd == vd->vdev_top)
132 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
135 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
136 * so each child must provide at least 1/Nth of its asize.
138 if (pvd->vdev_ops == &vdev_raidz_ops)
139 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
140 pvd->vdev_children);
142 return (pvd->vdev_min_asize);
145 void
146 vdev_set_min_asize(vdev_t *vd)
148 vd->vdev_min_asize = vdev_get_min_asize(vd);
150 for (int c = 0; c < vd->vdev_children; c++)
151 vdev_set_min_asize(vd->vdev_child[c]);
154 vdev_t *
155 vdev_lookup_top(spa_t *spa, uint64_t vdev)
157 vdev_t *rvd = spa->spa_root_vdev;
159 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
161 if (vdev < rvd->vdev_children) {
162 ASSERT(rvd->vdev_child[vdev] != NULL);
163 return (rvd->vdev_child[vdev]);
166 return (NULL);
169 vdev_t *
170 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
172 vdev_t *mvd;
174 if (vd->vdev_guid == guid)
175 return (vd);
177 for (int c = 0; c < vd->vdev_children; c++)
178 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
179 NULL)
180 return (mvd);
182 return (NULL);
185 static int
186 vdev_count_leaves_impl(vdev_t *vd)
188 int n = 0;
190 if (vd->vdev_ops->vdev_op_leaf)
191 return (1);
193 for (int c = 0; c < vd->vdev_children; c++)
194 n += vdev_count_leaves_impl(vd->vdev_child[c]);
196 return (n);
200 vdev_count_leaves(spa_t *spa)
202 return (vdev_count_leaves_impl(spa->spa_root_vdev));
205 void
206 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
208 size_t oldsize, newsize;
209 uint64_t id = cvd->vdev_id;
210 vdev_t **newchild;
211 spa_t *spa = cvd->vdev_spa;
213 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
214 ASSERT(cvd->vdev_parent == NULL);
216 cvd->vdev_parent = pvd;
218 if (pvd == NULL)
219 return;
221 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
223 oldsize = pvd->vdev_children * sizeof (vdev_t *);
224 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
225 newsize = pvd->vdev_children * sizeof (vdev_t *);
227 newchild = kmem_zalloc(newsize, KM_SLEEP);
228 if (pvd->vdev_child != NULL) {
229 bcopy(pvd->vdev_child, newchild, oldsize);
230 kmem_free(pvd->vdev_child, oldsize);
233 pvd->vdev_child = newchild;
234 pvd->vdev_child[id] = cvd;
236 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
237 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
240 * Walk up all ancestors to update guid sum.
242 for (; pvd != NULL; pvd = pvd->vdev_parent)
243 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
246 void
247 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
249 int c;
250 uint_t id = cvd->vdev_id;
252 ASSERT(cvd->vdev_parent == pvd);
254 if (pvd == NULL)
255 return;
257 ASSERT(id < pvd->vdev_children);
258 ASSERT(pvd->vdev_child[id] == cvd);
260 pvd->vdev_child[id] = NULL;
261 cvd->vdev_parent = NULL;
263 for (c = 0; c < pvd->vdev_children; c++)
264 if (pvd->vdev_child[c])
265 break;
267 if (c == pvd->vdev_children) {
268 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
269 pvd->vdev_child = NULL;
270 pvd->vdev_children = 0;
274 * Walk up all ancestors to update guid sum.
276 for (; pvd != NULL; pvd = pvd->vdev_parent)
277 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
281 * Remove any holes in the child array.
283 void
284 vdev_compact_children(vdev_t *pvd)
286 vdev_t **newchild, *cvd;
287 int oldc = pvd->vdev_children;
288 int newc;
290 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
292 for (int c = newc = 0; c < oldc; c++)
293 if (pvd->vdev_child[c])
294 newc++;
296 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
298 for (int c = newc = 0; c < oldc; c++) {
299 if ((cvd = pvd->vdev_child[c]) != NULL) {
300 newchild[newc] = cvd;
301 cvd->vdev_id = newc++;
305 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
306 pvd->vdev_child = newchild;
307 pvd->vdev_children = newc;
311 * Allocate and minimally initialize a vdev_t.
313 vdev_t *
314 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
316 vdev_t *vd;
318 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
320 if (spa->spa_root_vdev == NULL) {
321 ASSERT(ops == &vdev_root_ops);
322 spa->spa_root_vdev = vd;
323 spa->spa_load_guid = spa_generate_guid(NULL);
326 if (guid == 0 && ops != &vdev_hole_ops) {
327 if (spa->spa_root_vdev == vd) {
329 * The root vdev's guid will also be the pool guid,
330 * which must be unique among all pools.
332 guid = spa_generate_guid(NULL);
333 } else {
335 * Any other vdev's guid must be unique within the pool.
337 guid = spa_generate_guid(spa);
339 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
342 vd->vdev_spa = spa;
343 vd->vdev_id = id;
344 vd->vdev_guid = guid;
345 vd->vdev_guid_sum = guid;
346 vd->vdev_ops = ops;
347 vd->vdev_state = VDEV_STATE_CLOSED;
348 vd->vdev_ishole = (ops == &vdev_hole_ops);
350 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
351 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
352 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
353 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
354 for (int t = 0; t < DTL_TYPES; t++) {
355 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
356 &vd->vdev_dtl_lock);
358 txg_list_create(&vd->vdev_ms_list, spa,
359 offsetof(struct metaslab, ms_txg_node));
360 txg_list_create(&vd->vdev_dtl_list, spa,
361 offsetof(struct vdev, vdev_dtl_node));
362 vd->vdev_stat.vs_timestamp = gethrtime();
363 vdev_queue_init(vd);
364 vdev_cache_init(vd);
366 return (vd);
370 * Allocate a new vdev. The 'alloctype' is used to control whether we are
371 * creating a new vdev or loading an existing one - the behavior is slightly
372 * different for each case.
375 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
376 int alloctype)
378 vdev_ops_t *ops;
379 char *type;
380 uint64_t guid = 0, islog, nparity;
381 vdev_t *vd;
383 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
385 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
386 return (SET_ERROR(EINVAL));
388 if ((ops = vdev_getops(type)) == NULL)
389 return (SET_ERROR(EINVAL));
392 * If this is a load, get the vdev guid from the nvlist.
393 * Otherwise, vdev_alloc_common() will generate one for us.
395 if (alloctype == VDEV_ALLOC_LOAD) {
396 uint64_t label_id;
398 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
399 label_id != id)
400 return (SET_ERROR(EINVAL));
402 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
403 return (SET_ERROR(EINVAL));
404 } else if (alloctype == VDEV_ALLOC_SPARE) {
405 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
406 return (SET_ERROR(EINVAL));
407 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
408 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
409 return (SET_ERROR(EINVAL));
410 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
411 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
412 return (SET_ERROR(EINVAL));
416 * The first allocated vdev must be of type 'root'.
418 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
419 return (SET_ERROR(EINVAL));
422 * Determine whether we're a log vdev.
424 islog = 0;
425 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
426 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
427 return (SET_ERROR(ENOTSUP));
429 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
430 return (SET_ERROR(ENOTSUP));
433 * Set the nparity property for RAID-Z vdevs.
435 nparity = -1ULL;
436 if (ops == &vdev_raidz_ops) {
437 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
438 &nparity) == 0) {
439 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
440 return (SET_ERROR(EINVAL));
442 * Previous versions could only support 1 or 2 parity
443 * device.
445 if (nparity > 1 &&
446 spa_version(spa) < SPA_VERSION_RAIDZ2)
447 return (SET_ERROR(ENOTSUP));
448 if (nparity > 2 &&
449 spa_version(spa) < SPA_VERSION_RAIDZ3)
450 return (SET_ERROR(ENOTSUP));
451 } else {
453 * We require the parity to be specified for SPAs that
454 * support multiple parity levels.
456 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
457 return (SET_ERROR(EINVAL));
459 * Otherwise, we default to 1 parity device for RAID-Z.
461 nparity = 1;
463 } else {
464 nparity = 0;
466 ASSERT(nparity != -1ULL);
468 vd = vdev_alloc_common(spa, id, guid, ops);
470 vd->vdev_islog = islog;
471 vd->vdev_nparity = nparity;
473 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
474 vd->vdev_path = spa_strdup(vd->vdev_path);
475 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
476 vd->vdev_devid = spa_strdup(vd->vdev_devid);
477 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
478 &vd->vdev_physpath) == 0)
479 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
480 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
481 vd->vdev_fru = spa_strdup(vd->vdev_fru);
484 * Set the whole_disk property. If it's not specified, leave the value
485 * as -1.
487 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
488 &vd->vdev_wholedisk) != 0)
489 vd->vdev_wholedisk = -1ULL;
492 * Look for the 'not present' flag. This will only be set if the device
493 * was not present at the time of import.
495 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
496 &vd->vdev_not_present);
499 * Get the alignment requirement.
501 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
504 * Retrieve the vdev creation time.
506 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
507 &vd->vdev_crtxg);
510 * If we're a top-level vdev, try to load the allocation parameters.
512 if (parent && !parent->vdev_parent &&
513 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
514 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
515 &vd->vdev_ms_array);
516 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
517 &vd->vdev_ms_shift);
518 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
519 &vd->vdev_asize);
520 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
521 &vd->vdev_removing);
522 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
523 &vd->vdev_top_zap);
524 } else {
525 ASSERT0(vd->vdev_top_zap);
528 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
529 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
530 alloctype == VDEV_ALLOC_ADD ||
531 alloctype == VDEV_ALLOC_SPLIT ||
532 alloctype == VDEV_ALLOC_ROOTPOOL);
533 vd->vdev_mg = metaslab_group_create(islog ?
534 spa_log_class(spa) : spa_normal_class(spa), vd);
537 if (vd->vdev_ops->vdev_op_leaf &&
538 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
539 (void) nvlist_lookup_uint64(nv,
540 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
541 } else {
542 ASSERT0(vd->vdev_leaf_zap);
546 * If we're a leaf vdev, try to load the DTL object and other state.
549 if (vd->vdev_ops->vdev_op_leaf &&
550 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
551 alloctype == VDEV_ALLOC_ROOTPOOL)) {
552 if (alloctype == VDEV_ALLOC_LOAD) {
553 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
554 &vd->vdev_dtl_object);
555 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
556 &vd->vdev_unspare);
559 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
560 uint64_t spare = 0;
562 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
563 &spare) == 0 && spare)
564 spa_spare_add(vd);
567 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
568 &vd->vdev_offline);
570 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
571 &vd->vdev_resilver_txg);
574 * When importing a pool, we want to ignore the persistent fault
575 * state, as the diagnosis made on another system may not be
576 * valid in the current context. Local vdevs will
577 * remain in the faulted state.
579 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
580 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
581 &vd->vdev_faulted);
582 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
583 &vd->vdev_degraded);
584 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
585 &vd->vdev_removed);
587 if (vd->vdev_faulted || vd->vdev_degraded) {
588 char *aux;
590 vd->vdev_label_aux =
591 VDEV_AUX_ERR_EXCEEDED;
592 if (nvlist_lookup_string(nv,
593 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
594 strcmp(aux, "external") == 0)
595 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
601 * Add ourselves to the parent's list of children.
603 vdev_add_child(parent, vd);
605 *vdp = vd;
607 return (0);
610 void
611 vdev_free(vdev_t *vd)
613 spa_t *spa = vd->vdev_spa;
616 * vdev_free() implies closing the vdev first. This is simpler than
617 * trying to ensure complicated semantics for all callers.
619 vdev_close(vd);
621 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
622 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
625 * Free all children.
627 for (int c = 0; c < vd->vdev_children; c++)
628 vdev_free(vd->vdev_child[c]);
630 ASSERT(vd->vdev_child == NULL);
631 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
634 * Discard allocation state.
636 if (vd->vdev_mg != NULL) {
637 vdev_metaslab_fini(vd);
638 metaslab_group_destroy(vd->vdev_mg);
641 ASSERT0(vd->vdev_stat.vs_space);
642 ASSERT0(vd->vdev_stat.vs_dspace);
643 ASSERT0(vd->vdev_stat.vs_alloc);
646 * Remove this vdev from its parent's child list.
648 vdev_remove_child(vd->vdev_parent, vd);
650 ASSERT(vd->vdev_parent == NULL);
653 * Clean up vdev structure.
655 vdev_queue_fini(vd);
656 vdev_cache_fini(vd);
658 if (vd->vdev_path)
659 spa_strfree(vd->vdev_path);
660 if (vd->vdev_devid)
661 spa_strfree(vd->vdev_devid);
662 if (vd->vdev_physpath)
663 spa_strfree(vd->vdev_physpath);
664 if (vd->vdev_fru)
665 spa_strfree(vd->vdev_fru);
667 if (vd->vdev_isspare)
668 spa_spare_remove(vd);
669 if (vd->vdev_isl2cache)
670 spa_l2cache_remove(vd);
672 txg_list_destroy(&vd->vdev_ms_list);
673 txg_list_destroy(&vd->vdev_dtl_list);
675 mutex_enter(&vd->vdev_dtl_lock);
676 space_map_close(vd->vdev_dtl_sm);
677 for (int t = 0; t < DTL_TYPES; t++) {
678 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
679 range_tree_destroy(vd->vdev_dtl[t]);
681 mutex_exit(&vd->vdev_dtl_lock);
683 mutex_destroy(&vd->vdev_queue_lock);
684 mutex_destroy(&vd->vdev_dtl_lock);
685 mutex_destroy(&vd->vdev_stat_lock);
686 mutex_destroy(&vd->vdev_probe_lock);
688 if (vd == spa->spa_root_vdev)
689 spa->spa_root_vdev = NULL;
691 kmem_free(vd, sizeof (vdev_t));
695 * Transfer top-level vdev state from svd to tvd.
697 static void
698 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
700 spa_t *spa = svd->vdev_spa;
701 metaslab_t *msp;
702 vdev_t *vd;
703 int t;
705 ASSERT(tvd == tvd->vdev_top);
707 tvd->vdev_ms_array = svd->vdev_ms_array;
708 tvd->vdev_ms_shift = svd->vdev_ms_shift;
709 tvd->vdev_ms_count = svd->vdev_ms_count;
710 tvd->vdev_top_zap = svd->vdev_top_zap;
712 svd->vdev_ms_array = 0;
713 svd->vdev_ms_shift = 0;
714 svd->vdev_ms_count = 0;
715 svd->vdev_top_zap = 0;
717 if (tvd->vdev_mg)
718 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
719 tvd->vdev_mg = svd->vdev_mg;
720 tvd->vdev_ms = svd->vdev_ms;
722 svd->vdev_mg = NULL;
723 svd->vdev_ms = NULL;
725 if (tvd->vdev_mg != NULL)
726 tvd->vdev_mg->mg_vd = tvd;
728 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
729 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
730 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
732 svd->vdev_stat.vs_alloc = 0;
733 svd->vdev_stat.vs_space = 0;
734 svd->vdev_stat.vs_dspace = 0;
736 for (t = 0; t < TXG_SIZE; t++) {
737 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
738 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
739 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
740 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
741 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
742 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
745 if (list_link_active(&svd->vdev_config_dirty_node)) {
746 vdev_config_clean(svd);
747 vdev_config_dirty(tvd);
750 if (list_link_active(&svd->vdev_state_dirty_node)) {
751 vdev_state_clean(svd);
752 vdev_state_dirty(tvd);
755 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
756 svd->vdev_deflate_ratio = 0;
758 tvd->vdev_islog = svd->vdev_islog;
759 svd->vdev_islog = 0;
762 static void
763 vdev_top_update(vdev_t *tvd, vdev_t *vd)
765 if (vd == NULL)
766 return;
768 vd->vdev_top = tvd;
770 for (int c = 0; c < vd->vdev_children; c++)
771 vdev_top_update(tvd, vd->vdev_child[c]);
775 * Add a mirror/replacing vdev above an existing vdev.
777 vdev_t *
778 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
780 spa_t *spa = cvd->vdev_spa;
781 vdev_t *pvd = cvd->vdev_parent;
782 vdev_t *mvd;
784 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
786 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
788 mvd->vdev_asize = cvd->vdev_asize;
789 mvd->vdev_min_asize = cvd->vdev_min_asize;
790 mvd->vdev_max_asize = cvd->vdev_max_asize;
791 mvd->vdev_ashift = cvd->vdev_ashift;
792 mvd->vdev_state = cvd->vdev_state;
793 mvd->vdev_crtxg = cvd->vdev_crtxg;
795 vdev_remove_child(pvd, cvd);
796 vdev_add_child(pvd, mvd);
797 cvd->vdev_id = mvd->vdev_children;
798 vdev_add_child(mvd, cvd);
799 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
801 if (mvd == mvd->vdev_top)
802 vdev_top_transfer(cvd, mvd);
804 return (mvd);
808 * Remove a 1-way mirror/replacing vdev from the tree.
810 void
811 vdev_remove_parent(vdev_t *cvd)
813 vdev_t *mvd = cvd->vdev_parent;
814 vdev_t *pvd = mvd->vdev_parent;
816 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
818 ASSERT(mvd->vdev_children == 1);
819 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
820 mvd->vdev_ops == &vdev_replacing_ops ||
821 mvd->vdev_ops == &vdev_spare_ops);
822 cvd->vdev_ashift = mvd->vdev_ashift;
824 vdev_remove_child(mvd, cvd);
825 vdev_remove_child(pvd, mvd);
828 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
829 * Otherwise, we could have detached an offline device, and when we
830 * go to import the pool we'll think we have two top-level vdevs,
831 * instead of a different version of the same top-level vdev.
833 if (mvd->vdev_top == mvd) {
834 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
835 cvd->vdev_orig_guid = cvd->vdev_guid;
836 cvd->vdev_guid += guid_delta;
837 cvd->vdev_guid_sum += guid_delta;
839 cvd->vdev_id = mvd->vdev_id;
840 vdev_add_child(pvd, cvd);
841 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
843 if (cvd == cvd->vdev_top)
844 vdev_top_transfer(mvd, cvd);
846 ASSERT(mvd->vdev_children == 0);
847 vdev_free(mvd);
851 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
853 spa_t *spa = vd->vdev_spa;
854 objset_t *mos = spa->spa_meta_objset;
855 uint64_t m;
856 uint64_t oldc = vd->vdev_ms_count;
857 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
858 metaslab_t **mspp;
859 int error;
861 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
864 * This vdev is not being allocated from yet or is a hole.
866 if (vd->vdev_ms_shift == 0)
867 return (0);
869 ASSERT(!vd->vdev_ishole);
872 * Compute the raidz-deflation ratio. Note, we hard-code
873 * in 128k (1 << 17) because it is the "typical" blocksize.
874 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
875 * otherwise it would inconsistently account for existing bp's.
877 vd->vdev_deflate_ratio = (1 << 17) /
878 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
880 ASSERT(oldc <= newc);
882 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
884 if (oldc != 0) {
885 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
886 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
889 vd->vdev_ms = mspp;
890 vd->vdev_ms_count = newc;
892 for (m = oldc; m < newc; m++) {
893 uint64_t object = 0;
895 if (txg == 0) {
896 error = dmu_read(mos, vd->vdev_ms_array,
897 m * sizeof (uint64_t), sizeof (uint64_t), &object,
898 DMU_READ_PREFETCH);
899 if (error)
900 return (error);
903 error = metaslab_init(vd->vdev_mg, m, object, txg,
904 &(vd->vdev_ms[m]));
905 if (error)
906 return (error);
909 if (txg == 0)
910 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
913 * If the vdev is being removed we don't activate
914 * the metaslabs since we want to ensure that no new
915 * allocations are performed on this device.
917 if (oldc == 0 && !vd->vdev_removing)
918 metaslab_group_activate(vd->vdev_mg);
920 if (txg == 0)
921 spa_config_exit(spa, SCL_ALLOC, FTAG);
923 return (0);
926 void
927 vdev_metaslab_fini(vdev_t *vd)
929 uint64_t m;
930 uint64_t count = vd->vdev_ms_count;
932 if (vd->vdev_ms != NULL) {
933 metaslab_group_passivate(vd->vdev_mg);
934 for (m = 0; m < count; m++) {
935 metaslab_t *msp = vd->vdev_ms[m];
937 if (msp != NULL)
938 metaslab_fini(msp);
940 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
941 vd->vdev_ms = NULL;
945 typedef struct vdev_probe_stats {
946 boolean_t vps_readable;
947 boolean_t vps_writeable;
948 int vps_flags;
949 } vdev_probe_stats_t;
951 static void
952 vdev_probe_done(zio_t *zio)
954 spa_t *spa = zio->io_spa;
955 vdev_t *vd = zio->io_vd;
956 vdev_probe_stats_t *vps = zio->io_private;
958 ASSERT(vd->vdev_probe_zio != NULL);
960 if (zio->io_type == ZIO_TYPE_READ) {
961 if (zio->io_error == 0)
962 vps->vps_readable = 1;
963 if (zio->io_error == 0 && spa_writeable(spa)) {
964 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
965 zio->io_offset, zio->io_size, zio->io_abd,
966 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
967 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
968 } else {
969 abd_free(zio->io_abd);
971 } else if (zio->io_type == ZIO_TYPE_WRITE) {
972 if (zio->io_error == 0)
973 vps->vps_writeable = 1;
974 abd_free(zio->io_abd);
975 } else if (zio->io_type == ZIO_TYPE_NULL) {
976 zio_t *pio;
978 vd->vdev_cant_read |= !vps->vps_readable;
979 vd->vdev_cant_write |= !vps->vps_writeable;
981 if (vdev_readable(vd) &&
982 (vdev_writeable(vd) || !spa_writeable(spa))) {
983 zio->io_error = 0;
984 } else {
985 ASSERT(zio->io_error != 0);
986 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
987 spa, vd, NULL, 0, 0);
988 zio->io_error = SET_ERROR(ENXIO);
991 mutex_enter(&vd->vdev_probe_lock);
992 ASSERT(vd->vdev_probe_zio == zio);
993 vd->vdev_probe_zio = NULL;
994 mutex_exit(&vd->vdev_probe_lock);
996 zio_link_t *zl = NULL;
997 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
998 if (!vdev_accessible(vd, pio))
999 pio->io_error = SET_ERROR(ENXIO);
1001 kmem_free(vps, sizeof (*vps));
1006 * Determine whether this device is accessible.
1008 * Read and write to several known locations: the pad regions of each
1009 * vdev label but the first, which we leave alone in case it contains
1010 * a VTOC.
1012 zio_t *
1013 vdev_probe(vdev_t *vd, zio_t *zio)
1015 spa_t *spa = vd->vdev_spa;
1016 vdev_probe_stats_t *vps = NULL;
1017 zio_t *pio;
1019 ASSERT(vd->vdev_ops->vdev_op_leaf);
1022 * Don't probe the probe.
1024 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1025 return (NULL);
1028 * To prevent 'probe storms' when a device fails, we create
1029 * just one probe i/o at a time. All zios that want to probe
1030 * this vdev will become parents of the probe io.
1032 mutex_enter(&vd->vdev_probe_lock);
1034 if ((pio = vd->vdev_probe_zio) == NULL) {
1035 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1037 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1038 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1039 ZIO_FLAG_TRYHARD;
1041 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1043 * vdev_cant_read and vdev_cant_write can only
1044 * transition from TRUE to FALSE when we have the
1045 * SCL_ZIO lock as writer; otherwise they can only
1046 * transition from FALSE to TRUE. This ensures that
1047 * any zio looking at these values can assume that
1048 * failures persist for the life of the I/O. That's
1049 * important because when a device has intermittent
1050 * connectivity problems, we want to ensure that
1051 * they're ascribed to the device (ENXIO) and not
1052 * the zio (EIO).
1054 * Since we hold SCL_ZIO as writer here, clear both
1055 * values so the probe can reevaluate from first
1056 * principles.
1058 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1059 vd->vdev_cant_read = B_FALSE;
1060 vd->vdev_cant_write = B_FALSE;
1063 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1064 vdev_probe_done, vps,
1065 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1068 * We can't change the vdev state in this context, so we
1069 * kick off an async task to do it on our behalf.
1071 if (zio != NULL) {
1072 vd->vdev_probe_wanted = B_TRUE;
1073 spa_async_request(spa, SPA_ASYNC_PROBE);
1077 if (zio != NULL)
1078 zio_add_child(zio, pio);
1080 mutex_exit(&vd->vdev_probe_lock);
1082 if (vps == NULL) {
1083 ASSERT(zio != NULL);
1084 return (NULL);
1087 for (int l = 1; l < VDEV_LABELS; l++) {
1088 zio_nowait(zio_read_phys(pio, vd,
1089 vdev_label_offset(vd->vdev_psize, l,
1090 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1091 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1092 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1093 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1096 if (zio == NULL)
1097 return (pio);
1099 zio_nowait(pio);
1100 return (NULL);
1103 static void
1104 vdev_open_child(void *arg)
1106 vdev_t *vd = arg;
1108 vd->vdev_open_thread = curthread;
1109 vd->vdev_open_error = vdev_open(vd);
1110 vd->vdev_open_thread = NULL;
1113 boolean_t
1114 vdev_uses_zvols(vdev_t *vd)
1116 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1117 strlen(ZVOL_DIR)) == 0)
1118 return (B_TRUE);
1119 for (int c = 0; c < vd->vdev_children; c++)
1120 if (vdev_uses_zvols(vd->vdev_child[c]))
1121 return (B_TRUE);
1122 return (B_FALSE);
1125 void
1126 vdev_open_children(vdev_t *vd)
1128 taskq_t *tq;
1129 int children = vd->vdev_children;
1132 * in order to handle pools on top of zvols, do the opens
1133 * in a single thread so that the same thread holds the
1134 * spa_namespace_lock
1136 if (vdev_uses_zvols(vd)) {
1137 for (int c = 0; c < children; c++)
1138 vd->vdev_child[c]->vdev_open_error =
1139 vdev_open(vd->vdev_child[c]);
1140 return;
1142 tq = taskq_create("vdev_open", children, minclsyspri,
1143 children, children, TASKQ_PREPOPULATE);
1145 for (int c = 0; c < children; c++)
1146 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1147 TQ_SLEEP) != 0);
1149 taskq_destroy(tq);
1153 * Prepare a virtual device for access.
1156 vdev_open(vdev_t *vd)
1158 spa_t *spa = vd->vdev_spa;
1159 int error;
1160 uint64_t osize = 0;
1161 uint64_t max_osize = 0;
1162 uint64_t asize, max_asize, psize;
1163 uint64_t ashift = 0;
1165 ASSERT(vd->vdev_open_thread == curthread ||
1166 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1167 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1168 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1169 vd->vdev_state == VDEV_STATE_OFFLINE);
1171 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1172 vd->vdev_cant_read = B_FALSE;
1173 vd->vdev_cant_write = B_FALSE;
1174 vd->vdev_min_asize = vdev_get_min_asize(vd);
1177 * If this vdev is not removed, check its fault status. If it's
1178 * faulted, bail out of the open.
1180 if (!vd->vdev_removed && vd->vdev_faulted) {
1181 ASSERT(vd->vdev_children == 0);
1182 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1183 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1184 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1185 vd->vdev_label_aux);
1186 return (SET_ERROR(ENXIO));
1187 } else if (vd->vdev_offline) {
1188 ASSERT(vd->vdev_children == 0);
1189 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1190 return (SET_ERROR(ENXIO));
1193 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1196 * Reset the vdev_reopening flag so that we actually close
1197 * the vdev on error.
1199 vd->vdev_reopening = B_FALSE;
1200 if (zio_injection_enabled && error == 0)
1201 error = zio_handle_device_injection(vd, NULL, ENXIO);
1203 if (error) {
1204 if (vd->vdev_removed &&
1205 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1206 vd->vdev_removed = B_FALSE;
1208 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1209 vd->vdev_stat.vs_aux);
1210 return (error);
1213 vd->vdev_removed = B_FALSE;
1216 * Recheck the faulted flag now that we have confirmed that
1217 * the vdev is accessible. If we're faulted, bail.
1219 if (vd->vdev_faulted) {
1220 ASSERT(vd->vdev_children == 0);
1221 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1222 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1223 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1224 vd->vdev_label_aux);
1225 return (SET_ERROR(ENXIO));
1228 if (vd->vdev_degraded) {
1229 ASSERT(vd->vdev_children == 0);
1230 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1231 VDEV_AUX_ERR_EXCEEDED);
1232 } else {
1233 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1237 * For hole or missing vdevs we just return success.
1239 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1240 return (0);
1242 for (int c = 0; c < vd->vdev_children; c++) {
1243 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1244 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1245 VDEV_AUX_NONE);
1246 break;
1250 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1251 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1253 if (vd->vdev_children == 0) {
1254 if (osize < SPA_MINDEVSIZE) {
1255 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1256 VDEV_AUX_TOO_SMALL);
1257 return (SET_ERROR(EOVERFLOW));
1259 psize = osize;
1260 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1261 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1262 VDEV_LABEL_END_SIZE);
1263 } else {
1264 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1265 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1266 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1267 VDEV_AUX_TOO_SMALL);
1268 return (SET_ERROR(EOVERFLOW));
1270 psize = 0;
1271 asize = osize;
1272 max_asize = max_osize;
1275 vd->vdev_psize = psize;
1278 * Make sure the allocatable size hasn't shrunk too much.
1280 if (asize < vd->vdev_min_asize) {
1281 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1282 VDEV_AUX_BAD_LABEL);
1283 return (SET_ERROR(EINVAL));
1286 if (vd->vdev_asize == 0) {
1288 * This is the first-ever open, so use the computed values.
1289 * For testing purposes, a higher ashift can be requested.
1291 vd->vdev_asize = asize;
1292 vd->vdev_max_asize = max_asize;
1293 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1294 } else {
1296 * Detect if the alignment requirement has increased.
1297 * We don't want to make the pool unavailable, just
1298 * issue a warning instead.
1300 if (ashift > vd->vdev_top->vdev_ashift &&
1301 vd->vdev_ops->vdev_op_leaf) {
1302 cmn_err(CE_WARN,
1303 "Disk, '%s', has a block alignment that is "
1304 "larger than the pool's alignment\n",
1305 vd->vdev_path);
1307 vd->vdev_max_asize = max_asize;
1311 * If all children are healthy we update asize if either:
1312 * The asize has increased, due to a device expansion caused by dynamic
1313 * LUN growth or vdev replacement, and automatic expansion is enabled;
1314 * making the additional space available.
1316 * The asize has decreased, due to a device shrink usually caused by a
1317 * vdev replace with a smaller device. This ensures that calculations
1318 * based of max_asize and asize e.g. esize are always valid. It's safe
1319 * to do this as we've already validated that asize is greater than
1320 * vdev_min_asize.
1322 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1323 ((asize > vd->vdev_asize &&
1324 (vd->vdev_expanding || spa->spa_autoexpand)) ||
1325 (asize < vd->vdev_asize)))
1326 vd->vdev_asize = asize;
1328 vdev_set_min_asize(vd);
1331 * Ensure we can issue some IO before declaring the
1332 * vdev open for business.
1334 if (vd->vdev_ops->vdev_op_leaf &&
1335 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1336 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1337 VDEV_AUX_ERR_EXCEEDED);
1338 return (error);
1342 * Track the min and max ashift values for normal data devices.
1344 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1345 !vd->vdev_islog && vd->vdev_aux == NULL) {
1346 if (vd->vdev_ashift > spa->spa_max_ashift)
1347 spa->spa_max_ashift = vd->vdev_ashift;
1348 if (vd->vdev_ashift < spa->spa_min_ashift)
1349 spa->spa_min_ashift = vd->vdev_ashift;
1353 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1354 * resilver. But don't do this if we are doing a reopen for a scrub,
1355 * since this would just restart the scrub we are already doing.
1357 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1358 vdev_resilver_needed(vd, NULL, NULL))
1359 spa_async_request(spa, SPA_ASYNC_RESILVER);
1361 return (0);
1365 * Called once the vdevs are all opened, this routine validates the label
1366 * contents. This needs to be done before vdev_load() so that we don't
1367 * inadvertently do repair I/Os to the wrong device.
1369 * If 'strict' is false ignore the spa guid check. This is necessary because
1370 * if the machine crashed during a re-guid the new guid might have been written
1371 * to all of the vdev labels, but not the cached config. The strict check
1372 * will be performed when the pool is opened again using the mos config.
1374 * This function will only return failure if one of the vdevs indicates that it
1375 * has since been destroyed or exported. This is only possible if
1376 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1377 * will be updated but the function will return 0.
1380 vdev_validate(vdev_t *vd, boolean_t strict)
1382 spa_t *spa = vd->vdev_spa;
1383 nvlist_t *label;
1384 uint64_t guid = 0, top_guid;
1385 uint64_t state;
1387 for (int c = 0; c < vd->vdev_children; c++)
1388 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1389 return (SET_ERROR(EBADF));
1392 * If the device has already failed, or was marked offline, don't do
1393 * any further validation. Otherwise, label I/O will fail and we will
1394 * overwrite the previous state.
1396 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1397 uint64_t aux_guid = 0;
1398 nvlist_t *nvl;
1399 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1400 spa_last_synced_txg(spa) : -1ULL;
1402 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1403 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1404 VDEV_AUX_BAD_LABEL);
1405 return (0);
1409 * Determine if this vdev has been split off into another
1410 * pool. If so, then refuse to open it.
1412 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1413 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1414 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1415 VDEV_AUX_SPLIT_POOL);
1416 nvlist_free(label);
1417 return (0);
1420 if (strict && (nvlist_lookup_uint64(label,
1421 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1422 guid != spa_guid(spa))) {
1423 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1424 VDEV_AUX_CORRUPT_DATA);
1425 nvlist_free(label);
1426 return (0);
1429 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1430 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1431 &aux_guid) != 0)
1432 aux_guid = 0;
1435 * If this vdev just became a top-level vdev because its
1436 * sibling was detached, it will have adopted the parent's
1437 * vdev guid -- but the label may or may not be on disk yet.
1438 * Fortunately, either version of the label will have the
1439 * same top guid, so if we're a top-level vdev, we can
1440 * safely compare to that instead.
1442 * If we split this vdev off instead, then we also check the
1443 * original pool's guid. We don't want to consider the vdev
1444 * corrupt if it is partway through a split operation.
1446 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1447 &guid) != 0 ||
1448 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1449 &top_guid) != 0 ||
1450 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1451 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1452 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1453 VDEV_AUX_CORRUPT_DATA);
1454 nvlist_free(label);
1455 return (0);
1458 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1459 &state) != 0) {
1460 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1461 VDEV_AUX_CORRUPT_DATA);
1462 nvlist_free(label);
1463 return (0);
1466 nvlist_free(label);
1469 * If this is a verbatim import, no need to check the
1470 * state of the pool.
1472 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1473 spa_load_state(spa) == SPA_LOAD_OPEN &&
1474 state != POOL_STATE_ACTIVE)
1475 return (SET_ERROR(EBADF));
1478 * If we were able to open and validate a vdev that was
1479 * previously marked permanently unavailable, clear that state
1480 * now.
1482 if (vd->vdev_not_present)
1483 vd->vdev_not_present = 0;
1486 return (0);
1490 * Close a virtual device.
1492 void
1493 vdev_close(vdev_t *vd)
1495 spa_t *spa = vd->vdev_spa;
1496 vdev_t *pvd = vd->vdev_parent;
1498 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1501 * If our parent is reopening, then we are as well, unless we are
1502 * going offline.
1504 if (pvd != NULL && pvd->vdev_reopening)
1505 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1507 vd->vdev_ops->vdev_op_close(vd);
1509 vdev_cache_purge(vd);
1512 * We record the previous state before we close it, so that if we are
1513 * doing a reopen(), we don't generate FMA ereports if we notice that
1514 * it's still faulted.
1516 vd->vdev_prevstate = vd->vdev_state;
1518 if (vd->vdev_offline)
1519 vd->vdev_state = VDEV_STATE_OFFLINE;
1520 else
1521 vd->vdev_state = VDEV_STATE_CLOSED;
1522 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1525 void
1526 vdev_hold(vdev_t *vd)
1528 spa_t *spa = vd->vdev_spa;
1530 ASSERT(spa_is_root(spa));
1531 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1532 return;
1534 for (int c = 0; c < vd->vdev_children; c++)
1535 vdev_hold(vd->vdev_child[c]);
1537 if (vd->vdev_ops->vdev_op_leaf)
1538 vd->vdev_ops->vdev_op_hold(vd);
1541 void
1542 vdev_rele(vdev_t *vd)
1544 spa_t *spa = vd->vdev_spa;
1546 ASSERT(spa_is_root(spa));
1547 for (int c = 0; c < vd->vdev_children; c++)
1548 vdev_rele(vd->vdev_child[c]);
1550 if (vd->vdev_ops->vdev_op_leaf)
1551 vd->vdev_ops->vdev_op_rele(vd);
1555 * Reopen all interior vdevs and any unopened leaves. We don't actually
1556 * reopen leaf vdevs which had previously been opened as they might deadlock
1557 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1558 * If the leaf has never been opened then open it, as usual.
1560 void
1561 vdev_reopen(vdev_t *vd)
1563 spa_t *spa = vd->vdev_spa;
1565 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1567 /* set the reopening flag unless we're taking the vdev offline */
1568 vd->vdev_reopening = !vd->vdev_offline;
1569 vdev_close(vd);
1570 (void) vdev_open(vd);
1573 * Call vdev_validate() here to make sure we have the same device.
1574 * Otherwise, a device with an invalid label could be successfully
1575 * opened in response to vdev_reopen().
1577 if (vd->vdev_aux) {
1578 (void) vdev_validate_aux(vd);
1579 if (vdev_readable(vd) && vdev_writeable(vd) &&
1580 vd->vdev_aux == &spa->spa_l2cache &&
1581 !l2arc_vdev_present(vd))
1582 l2arc_add_vdev(spa, vd);
1583 } else {
1584 (void) vdev_validate(vd, B_TRUE);
1588 * Reassess parent vdev's health.
1590 vdev_propagate_state(vd);
1594 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1596 int error;
1599 * Normally, partial opens (e.g. of a mirror) are allowed.
1600 * For a create, however, we want to fail the request if
1601 * there are any components we can't open.
1603 error = vdev_open(vd);
1605 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1606 vdev_close(vd);
1607 return (error ? error : ENXIO);
1611 * Recursively load DTLs and initialize all labels.
1613 if ((error = vdev_dtl_load(vd)) != 0 ||
1614 (error = vdev_label_init(vd, txg, isreplacing ?
1615 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1616 vdev_close(vd);
1617 return (error);
1620 return (0);
1623 void
1624 vdev_metaslab_set_size(vdev_t *vd)
1627 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1629 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1630 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1633 void
1634 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1636 ASSERT(vd == vd->vdev_top);
1637 ASSERT(!vd->vdev_ishole);
1638 ASSERT(ISP2(flags));
1639 ASSERT(spa_writeable(vd->vdev_spa));
1641 if (flags & VDD_METASLAB)
1642 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1644 if (flags & VDD_DTL)
1645 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1647 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1650 void
1651 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1653 for (int c = 0; c < vd->vdev_children; c++)
1654 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1656 if (vd->vdev_ops->vdev_op_leaf)
1657 vdev_dirty(vd->vdev_top, flags, vd, txg);
1661 * DTLs.
1663 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1664 * the vdev has less than perfect replication. There are four kinds of DTL:
1666 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1668 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1670 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1671 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1672 * txgs that was scrubbed.
1674 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1675 * persistent errors or just some device being offline.
1676 * Unlike the other three, the DTL_OUTAGE map is not generally
1677 * maintained; it's only computed when needed, typically to
1678 * determine whether a device can be detached.
1680 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1681 * either has the data or it doesn't.
1683 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1684 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1685 * if any child is less than fully replicated, then so is its parent.
1686 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1687 * comprising only those txgs which appear in 'maxfaults' or more children;
1688 * those are the txgs we don't have enough replication to read. For example,
1689 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1690 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1691 * two child DTL_MISSING maps.
1693 * It should be clear from the above that to compute the DTLs and outage maps
1694 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1695 * Therefore, that is all we keep on disk. When loading the pool, or after
1696 * a configuration change, we generate all other DTLs from first principles.
1698 void
1699 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1701 range_tree_t *rt = vd->vdev_dtl[t];
1703 ASSERT(t < DTL_TYPES);
1704 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1705 ASSERT(spa_writeable(vd->vdev_spa));
1707 mutex_enter(rt->rt_lock);
1708 if (!range_tree_contains(rt, txg, size))
1709 range_tree_add(rt, txg, size);
1710 mutex_exit(rt->rt_lock);
1713 boolean_t
1714 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1716 range_tree_t *rt = vd->vdev_dtl[t];
1717 boolean_t dirty = B_FALSE;
1719 ASSERT(t < DTL_TYPES);
1720 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1722 mutex_enter(rt->rt_lock);
1723 if (range_tree_space(rt) != 0)
1724 dirty = range_tree_contains(rt, txg, size);
1725 mutex_exit(rt->rt_lock);
1727 return (dirty);
1730 boolean_t
1731 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1733 range_tree_t *rt = vd->vdev_dtl[t];
1734 boolean_t empty;
1736 mutex_enter(rt->rt_lock);
1737 empty = (range_tree_space(rt) == 0);
1738 mutex_exit(rt->rt_lock);
1740 return (empty);
1744 * Returns the lowest txg in the DTL range.
1746 static uint64_t
1747 vdev_dtl_min(vdev_t *vd)
1749 range_seg_t *rs;
1751 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1752 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1753 ASSERT0(vd->vdev_children);
1755 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1756 return (rs->rs_start - 1);
1760 * Returns the highest txg in the DTL.
1762 static uint64_t
1763 vdev_dtl_max(vdev_t *vd)
1765 range_seg_t *rs;
1767 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1768 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1769 ASSERT0(vd->vdev_children);
1771 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1772 return (rs->rs_end);
1776 * Determine if a resilvering vdev should remove any DTL entries from
1777 * its range. If the vdev was resilvering for the entire duration of the
1778 * scan then it should excise that range from its DTLs. Otherwise, this
1779 * vdev is considered partially resilvered and should leave its DTL
1780 * entries intact. The comment in vdev_dtl_reassess() describes how we
1781 * excise the DTLs.
1783 static boolean_t
1784 vdev_dtl_should_excise(vdev_t *vd)
1786 spa_t *spa = vd->vdev_spa;
1787 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1789 ASSERT0(scn->scn_phys.scn_errors);
1790 ASSERT0(vd->vdev_children);
1792 if (vd->vdev_state < VDEV_STATE_DEGRADED)
1793 return (B_FALSE);
1795 if (vd->vdev_resilver_txg == 0 ||
1796 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1797 return (B_TRUE);
1800 * When a resilver is initiated the scan will assign the scn_max_txg
1801 * value to the highest txg value that exists in all DTLs. If this
1802 * device's max DTL is not part of this scan (i.e. it is not in
1803 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1804 * for excision.
1806 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1807 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1808 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1809 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1810 return (B_TRUE);
1812 return (B_FALSE);
1816 * Reassess DTLs after a config change or scrub completion.
1818 void
1819 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1821 spa_t *spa = vd->vdev_spa;
1822 avl_tree_t reftree;
1823 int minref;
1825 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1827 for (int c = 0; c < vd->vdev_children; c++)
1828 vdev_dtl_reassess(vd->vdev_child[c], txg,
1829 scrub_txg, scrub_done);
1831 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1832 return;
1834 if (vd->vdev_ops->vdev_op_leaf) {
1835 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1837 mutex_enter(&vd->vdev_dtl_lock);
1840 * If we've completed a scan cleanly then determine
1841 * if this vdev should remove any DTLs. We only want to
1842 * excise regions on vdevs that were available during
1843 * the entire duration of this scan.
1845 if (scrub_txg != 0 &&
1846 (spa->spa_scrub_started ||
1847 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1848 vdev_dtl_should_excise(vd)) {
1850 * We completed a scrub up to scrub_txg. If we
1851 * did it without rebooting, then the scrub dtl
1852 * will be valid, so excise the old region and
1853 * fold in the scrub dtl. Otherwise, leave the
1854 * dtl as-is if there was an error.
1856 * There's little trick here: to excise the beginning
1857 * of the DTL_MISSING map, we put it into a reference
1858 * tree and then add a segment with refcnt -1 that
1859 * covers the range [0, scrub_txg). This means
1860 * that each txg in that range has refcnt -1 or 0.
1861 * We then add DTL_SCRUB with a refcnt of 2, so that
1862 * entries in the range [0, scrub_txg) will have a
1863 * positive refcnt -- either 1 or 2. We then convert
1864 * the reference tree into the new DTL_MISSING map.
1866 space_reftree_create(&reftree);
1867 space_reftree_add_map(&reftree,
1868 vd->vdev_dtl[DTL_MISSING], 1);
1869 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1870 space_reftree_add_map(&reftree,
1871 vd->vdev_dtl[DTL_SCRUB], 2);
1872 space_reftree_generate_map(&reftree,
1873 vd->vdev_dtl[DTL_MISSING], 1);
1874 space_reftree_destroy(&reftree);
1876 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1877 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1878 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1879 if (scrub_done)
1880 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1881 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1882 if (!vdev_readable(vd))
1883 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1884 else
1885 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1886 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1889 * If the vdev was resilvering and no longer has any
1890 * DTLs then reset its resilvering flag.
1892 if (vd->vdev_resilver_txg != 0 &&
1893 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1894 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1895 vd->vdev_resilver_txg = 0;
1897 mutex_exit(&vd->vdev_dtl_lock);
1899 if (txg != 0)
1900 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1901 return;
1904 mutex_enter(&vd->vdev_dtl_lock);
1905 for (int t = 0; t < DTL_TYPES; t++) {
1906 /* account for child's outage in parent's missing map */
1907 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1908 if (t == DTL_SCRUB)
1909 continue; /* leaf vdevs only */
1910 if (t == DTL_PARTIAL)
1911 minref = 1; /* i.e. non-zero */
1912 else if (vd->vdev_nparity != 0)
1913 minref = vd->vdev_nparity + 1; /* RAID-Z */
1914 else
1915 minref = vd->vdev_children; /* any kind of mirror */
1916 space_reftree_create(&reftree);
1917 for (int c = 0; c < vd->vdev_children; c++) {
1918 vdev_t *cvd = vd->vdev_child[c];
1919 mutex_enter(&cvd->vdev_dtl_lock);
1920 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1921 mutex_exit(&cvd->vdev_dtl_lock);
1923 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1924 space_reftree_destroy(&reftree);
1926 mutex_exit(&vd->vdev_dtl_lock);
1930 vdev_dtl_load(vdev_t *vd)
1932 spa_t *spa = vd->vdev_spa;
1933 objset_t *mos = spa->spa_meta_objset;
1934 int error = 0;
1936 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1937 ASSERT(!vd->vdev_ishole);
1939 error = space_map_open(&vd->vdev_dtl_sm, mos,
1940 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1941 if (error)
1942 return (error);
1943 ASSERT(vd->vdev_dtl_sm != NULL);
1945 mutex_enter(&vd->vdev_dtl_lock);
1948 * Now that we've opened the space_map we need to update
1949 * the in-core DTL.
1951 space_map_update(vd->vdev_dtl_sm);
1953 error = space_map_load(vd->vdev_dtl_sm,
1954 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1955 mutex_exit(&vd->vdev_dtl_lock);
1957 return (error);
1960 for (int c = 0; c < vd->vdev_children; c++) {
1961 error = vdev_dtl_load(vd->vdev_child[c]);
1962 if (error != 0)
1963 break;
1966 return (error);
1969 void
1970 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
1972 spa_t *spa = vd->vdev_spa;
1974 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
1975 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
1976 zapobj, tx));
1979 uint64_t
1980 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
1982 spa_t *spa = vd->vdev_spa;
1983 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
1984 DMU_OT_NONE, 0, tx);
1986 ASSERT(zap != 0);
1987 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
1988 zap, tx));
1990 return (zap);
1993 void
1994 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
1996 if (vd->vdev_ops != &vdev_hole_ops &&
1997 vd->vdev_ops != &vdev_missing_ops &&
1998 vd->vdev_ops != &vdev_root_ops &&
1999 !vd->vdev_top->vdev_removing) {
2000 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2001 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2003 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2004 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2007 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2008 vdev_construct_zaps(vd->vdev_child[i], tx);
2012 void
2013 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2015 spa_t *spa = vd->vdev_spa;
2016 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2017 objset_t *mos = spa->spa_meta_objset;
2018 range_tree_t *rtsync;
2019 kmutex_t rtlock;
2020 dmu_tx_t *tx;
2021 uint64_t object = space_map_object(vd->vdev_dtl_sm);
2023 ASSERT(!vd->vdev_ishole);
2024 ASSERT(vd->vdev_ops->vdev_op_leaf);
2026 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2028 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2029 mutex_enter(&vd->vdev_dtl_lock);
2030 space_map_free(vd->vdev_dtl_sm, tx);
2031 space_map_close(vd->vdev_dtl_sm);
2032 vd->vdev_dtl_sm = NULL;
2033 mutex_exit(&vd->vdev_dtl_lock);
2036 * We only destroy the leaf ZAP for detached leaves or for
2037 * removed log devices. Removed data devices handle leaf ZAP
2038 * cleanup later, once cancellation is no longer possible.
2040 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2041 vd->vdev_top->vdev_islog)) {
2042 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2043 vd->vdev_leaf_zap = 0;
2046 dmu_tx_commit(tx);
2047 return;
2050 if (vd->vdev_dtl_sm == NULL) {
2051 uint64_t new_object;
2053 new_object = space_map_alloc(mos, tx);
2054 VERIFY3U(new_object, !=, 0);
2056 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2057 0, -1ULL, 0, &vd->vdev_dtl_lock));
2058 ASSERT(vd->vdev_dtl_sm != NULL);
2061 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2063 rtsync = range_tree_create(NULL, NULL, &rtlock);
2065 mutex_enter(&rtlock);
2067 mutex_enter(&vd->vdev_dtl_lock);
2068 range_tree_walk(rt, range_tree_add, rtsync);
2069 mutex_exit(&vd->vdev_dtl_lock);
2071 space_map_truncate(vd->vdev_dtl_sm, tx);
2072 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2073 range_tree_vacate(rtsync, NULL, NULL);
2075 range_tree_destroy(rtsync);
2077 mutex_exit(&rtlock);
2078 mutex_destroy(&rtlock);
2081 * If the object for the space map has changed then dirty
2082 * the top level so that we update the config.
2084 if (object != space_map_object(vd->vdev_dtl_sm)) {
2085 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2086 "new object %llu", txg, spa_name(spa), object,
2087 space_map_object(vd->vdev_dtl_sm));
2088 vdev_config_dirty(vd->vdev_top);
2091 dmu_tx_commit(tx);
2093 mutex_enter(&vd->vdev_dtl_lock);
2094 space_map_update(vd->vdev_dtl_sm);
2095 mutex_exit(&vd->vdev_dtl_lock);
2099 * Determine whether the specified vdev can be offlined/detached/removed
2100 * without losing data.
2102 boolean_t
2103 vdev_dtl_required(vdev_t *vd)
2105 spa_t *spa = vd->vdev_spa;
2106 vdev_t *tvd = vd->vdev_top;
2107 uint8_t cant_read = vd->vdev_cant_read;
2108 boolean_t required;
2110 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2112 if (vd == spa->spa_root_vdev || vd == tvd)
2113 return (B_TRUE);
2116 * Temporarily mark the device as unreadable, and then determine
2117 * whether this results in any DTL outages in the top-level vdev.
2118 * If not, we can safely offline/detach/remove the device.
2120 vd->vdev_cant_read = B_TRUE;
2121 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2122 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2123 vd->vdev_cant_read = cant_read;
2124 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2126 if (!required && zio_injection_enabled)
2127 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2129 return (required);
2133 * Determine if resilver is needed, and if so the txg range.
2135 boolean_t
2136 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2138 boolean_t needed = B_FALSE;
2139 uint64_t thismin = UINT64_MAX;
2140 uint64_t thismax = 0;
2142 if (vd->vdev_children == 0) {
2143 mutex_enter(&vd->vdev_dtl_lock);
2144 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2145 vdev_writeable(vd)) {
2147 thismin = vdev_dtl_min(vd);
2148 thismax = vdev_dtl_max(vd);
2149 needed = B_TRUE;
2151 mutex_exit(&vd->vdev_dtl_lock);
2152 } else {
2153 for (int c = 0; c < vd->vdev_children; c++) {
2154 vdev_t *cvd = vd->vdev_child[c];
2155 uint64_t cmin, cmax;
2157 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2158 thismin = MIN(thismin, cmin);
2159 thismax = MAX(thismax, cmax);
2160 needed = B_TRUE;
2165 if (needed && minp) {
2166 *minp = thismin;
2167 *maxp = thismax;
2169 return (needed);
2172 void
2173 vdev_load(vdev_t *vd)
2176 * Recursively load all children.
2178 for (int c = 0; c < vd->vdev_children; c++)
2179 vdev_load(vd->vdev_child[c]);
2182 * If this is a top-level vdev, initialize its metaslabs.
2184 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2185 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2186 vdev_metaslab_init(vd, 0) != 0))
2187 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2188 VDEV_AUX_CORRUPT_DATA);
2191 * If this is a leaf vdev, load its DTL.
2193 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2194 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2195 VDEV_AUX_CORRUPT_DATA);
2199 * The special vdev case is used for hot spares and l2cache devices. Its
2200 * sole purpose it to set the vdev state for the associated vdev. To do this,
2201 * we make sure that we can open the underlying device, then try to read the
2202 * label, and make sure that the label is sane and that it hasn't been
2203 * repurposed to another pool.
2206 vdev_validate_aux(vdev_t *vd)
2208 nvlist_t *label;
2209 uint64_t guid, version;
2210 uint64_t state;
2212 if (!vdev_readable(vd))
2213 return (0);
2215 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2216 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2217 VDEV_AUX_CORRUPT_DATA);
2218 return (-1);
2221 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2222 !SPA_VERSION_IS_SUPPORTED(version) ||
2223 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2224 guid != vd->vdev_guid ||
2225 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2226 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2227 VDEV_AUX_CORRUPT_DATA);
2228 nvlist_free(label);
2229 return (-1);
2233 * We don't actually check the pool state here. If it's in fact in
2234 * use by another pool, we update this fact on the fly when requested.
2236 nvlist_free(label);
2237 return (0);
2240 void
2241 vdev_remove(vdev_t *vd, uint64_t txg)
2243 spa_t *spa = vd->vdev_spa;
2244 objset_t *mos = spa->spa_meta_objset;
2245 dmu_tx_t *tx;
2247 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2248 ASSERT(vd == vd->vdev_top);
2249 ASSERT3U(txg, ==, spa_syncing_txg(spa));
2251 if (vd->vdev_ms != NULL) {
2252 metaslab_group_t *mg = vd->vdev_mg;
2254 metaslab_group_histogram_verify(mg);
2255 metaslab_class_histogram_verify(mg->mg_class);
2257 for (int m = 0; m < vd->vdev_ms_count; m++) {
2258 metaslab_t *msp = vd->vdev_ms[m];
2260 if (msp == NULL || msp->ms_sm == NULL)
2261 continue;
2263 mutex_enter(&msp->ms_lock);
2265 * If the metaslab was not loaded when the vdev
2266 * was removed then the histogram accounting may
2267 * not be accurate. Update the histogram information
2268 * here so that we ensure that the metaslab group
2269 * and metaslab class are up-to-date.
2271 metaslab_group_histogram_remove(mg, msp);
2273 VERIFY0(space_map_allocated(msp->ms_sm));
2274 space_map_free(msp->ms_sm, tx);
2275 space_map_close(msp->ms_sm);
2276 msp->ms_sm = NULL;
2277 mutex_exit(&msp->ms_lock);
2280 metaslab_group_histogram_verify(mg);
2281 metaslab_class_histogram_verify(mg->mg_class);
2282 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2283 ASSERT0(mg->mg_histogram[i]);
2287 if (vd->vdev_ms_array) {
2288 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2289 vd->vdev_ms_array = 0;
2292 if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2293 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2294 vd->vdev_top_zap = 0;
2296 dmu_tx_commit(tx);
2299 void
2300 vdev_sync_done(vdev_t *vd, uint64_t txg)
2302 metaslab_t *msp;
2303 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2305 ASSERT(!vd->vdev_ishole);
2307 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2308 metaslab_sync_done(msp, txg);
2310 if (reassess)
2311 metaslab_sync_reassess(vd->vdev_mg);
2314 void
2315 vdev_sync(vdev_t *vd, uint64_t txg)
2317 spa_t *spa = vd->vdev_spa;
2318 vdev_t *lvd;
2319 metaslab_t *msp;
2320 dmu_tx_t *tx;
2322 ASSERT(!vd->vdev_ishole);
2324 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2325 ASSERT(vd == vd->vdev_top);
2326 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2327 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2328 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2329 ASSERT(vd->vdev_ms_array != 0);
2330 vdev_config_dirty(vd);
2331 dmu_tx_commit(tx);
2335 * Remove the metadata associated with this vdev once it's empty.
2337 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2338 vdev_remove(vd, txg);
2340 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2341 metaslab_sync(msp, txg);
2342 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2345 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2346 vdev_dtl_sync(lvd, txg);
2348 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2351 uint64_t
2352 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2354 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2358 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2359 * not be opened, and no I/O is attempted.
2362 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2364 vdev_t *vd, *tvd;
2366 spa_vdev_state_enter(spa, SCL_NONE);
2368 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2369 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2371 if (!vd->vdev_ops->vdev_op_leaf)
2372 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2374 tvd = vd->vdev_top;
2377 * We don't directly use the aux state here, but if we do a
2378 * vdev_reopen(), we need this value to be present to remember why we
2379 * were faulted.
2381 vd->vdev_label_aux = aux;
2384 * Faulted state takes precedence over degraded.
2386 vd->vdev_delayed_close = B_FALSE;
2387 vd->vdev_faulted = 1ULL;
2388 vd->vdev_degraded = 0ULL;
2389 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2392 * If this device has the only valid copy of the data, then
2393 * back off and simply mark the vdev as degraded instead.
2395 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2396 vd->vdev_degraded = 1ULL;
2397 vd->vdev_faulted = 0ULL;
2400 * If we reopen the device and it's not dead, only then do we
2401 * mark it degraded.
2403 vdev_reopen(tvd);
2405 if (vdev_readable(vd))
2406 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2409 return (spa_vdev_state_exit(spa, vd, 0));
2413 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2414 * user that something is wrong. The vdev continues to operate as normal as far
2415 * as I/O is concerned.
2418 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2420 vdev_t *vd;
2422 spa_vdev_state_enter(spa, SCL_NONE);
2424 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2425 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2427 if (!vd->vdev_ops->vdev_op_leaf)
2428 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2431 * If the vdev is already faulted, then don't do anything.
2433 if (vd->vdev_faulted || vd->vdev_degraded)
2434 return (spa_vdev_state_exit(spa, NULL, 0));
2436 vd->vdev_degraded = 1ULL;
2437 if (!vdev_is_dead(vd))
2438 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2439 aux);
2441 return (spa_vdev_state_exit(spa, vd, 0));
2445 * Online the given vdev.
2447 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2448 * spare device should be detached when the device finishes resilvering.
2449 * Second, the online should be treated like a 'test' online case, so no FMA
2450 * events are generated if the device fails to open.
2453 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2455 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2456 boolean_t wasoffline;
2457 vdev_state_t oldstate;
2459 spa_vdev_state_enter(spa, SCL_NONE);
2461 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2462 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2464 if (!vd->vdev_ops->vdev_op_leaf)
2465 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2467 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
2468 oldstate = vd->vdev_state;
2470 tvd = vd->vdev_top;
2471 vd->vdev_offline = B_FALSE;
2472 vd->vdev_tmpoffline = B_FALSE;
2473 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2474 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2476 /* XXX - L2ARC 1.0 does not support expansion */
2477 if (!vd->vdev_aux) {
2478 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2479 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2482 vdev_reopen(tvd);
2483 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2485 if (!vd->vdev_aux) {
2486 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2487 pvd->vdev_expanding = B_FALSE;
2490 if (newstate)
2491 *newstate = vd->vdev_state;
2492 if ((flags & ZFS_ONLINE_UNSPARE) &&
2493 !vdev_is_dead(vd) && vd->vdev_parent &&
2494 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2495 vd->vdev_parent->vdev_child[0] == vd)
2496 vd->vdev_unspare = B_TRUE;
2498 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2500 /* XXX - L2ARC 1.0 does not support expansion */
2501 if (vd->vdev_aux)
2502 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2503 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2506 if (wasoffline ||
2507 (oldstate < VDEV_STATE_DEGRADED &&
2508 vd->vdev_state >= VDEV_STATE_DEGRADED))
2509 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2511 return (spa_vdev_state_exit(spa, vd, 0));
2514 static int
2515 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2517 vdev_t *vd, *tvd;
2518 int error = 0;
2519 uint64_t generation;
2520 metaslab_group_t *mg;
2522 top:
2523 spa_vdev_state_enter(spa, SCL_ALLOC);
2525 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2526 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2528 if (!vd->vdev_ops->vdev_op_leaf)
2529 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2531 tvd = vd->vdev_top;
2532 mg = tvd->vdev_mg;
2533 generation = spa->spa_config_generation + 1;
2536 * If the device isn't already offline, try to offline it.
2538 if (!vd->vdev_offline) {
2540 * If this device has the only valid copy of some data,
2541 * don't allow it to be offlined. Log devices are always
2542 * expendable.
2544 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2545 vdev_dtl_required(vd))
2546 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2549 * If the top-level is a slog and it has had allocations
2550 * then proceed. We check that the vdev's metaslab group
2551 * is not NULL since it's possible that we may have just
2552 * added this vdev but not yet initialized its metaslabs.
2554 if (tvd->vdev_islog && mg != NULL) {
2556 * Prevent any future allocations.
2558 metaslab_group_passivate(mg);
2559 (void) spa_vdev_state_exit(spa, vd, 0);
2561 error = spa_offline_log(spa);
2563 spa_vdev_state_enter(spa, SCL_ALLOC);
2566 * Check to see if the config has changed.
2568 if (error || generation != spa->spa_config_generation) {
2569 metaslab_group_activate(mg);
2570 if (error)
2571 return (spa_vdev_state_exit(spa,
2572 vd, error));
2573 (void) spa_vdev_state_exit(spa, vd, 0);
2574 goto top;
2576 ASSERT0(tvd->vdev_stat.vs_alloc);
2580 * Offline this device and reopen its top-level vdev.
2581 * If the top-level vdev is a log device then just offline
2582 * it. Otherwise, if this action results in the top-level
2583 * vdev becoming unusable, undo it and fail the request.
2585 vd->vdev_offline = B_TRUE;
2586 vdev_reopen(tvd);
2588 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2589 vdev_is_dead(tvd)) {
2590 vd->vdev_offline = B_FALSE;
2591 vdev_reopen(tvd);
2592 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2596 * Add the device back into the metaslab rotor so that
2597 * once we online the device it's open for business.
2599 if (tvd->vdev_islog && mg != NULL)
2600 metaslab_group_activate(mg);
2603 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2605 return (spa_vdev_state_exit(spa, vd, 0));
2609 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2611 int error;
2613 mutex_enter(&spa->spa_vdev_top_lock);
2614 error = vdev_offline_locked(spa, guid, flags);
2615 mutex_exit(&spa->spa_vdev_top_lock);
2617 return (error);
2621 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2622 * vdev_offline(), we assume the spa config is locked. We also clear all
2623 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2625 void
2626 vdev_clear(spa_t *spa, vdev_t *vd)
2628 vdev_t *rvd = spa->spa_root_vdev;
2630 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2632 if (vd == NULL)
2633 vd = rvd;
2635 vd->vdev_stat.vs_read_errors = 0;
2636 vd->vdev_stat.vs_write_errors = 0;
2637 vd->vdev_stat.vs_checksum_errors = 0;
2639 for (int c = 0; c < vd->vdev_children; c++)
2640 vdev_clear(spa, vd->vdev_child[c]);
2643 * If we're in the FAULTED state or have experienced failed I/O, then
2644 * clear the persistent state and attempt to reopen the device. We
2645 * also mark the vdev config dirty, so that the new faulted state is
2646 * written out to disk.
2648 if (vd->vdev_faulted || vd->vdev_degraded ||
2649 !vdev_readable(vd) || !vdev_writeable(vd)) {
2652 * When reopening in reponse to a clear event, it may be due to
2653 * a fmadm repair request. In this case, if the device is
2654 * still broken, we want to still post the ereport again.
2656 vd->vdev_forcefault = B_TRUE;
2658 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2659 vd->vdev_cant_read = B_FALSE;
2660 vd->vdev_cant_write = B_FALSE;
2662 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2664 vd->vdev_forcefault = B_FALSE;
2666 if (vd != rvd && vdev_writeable(vd->vdev_top))
2667 vdev_state_dirty(vd->vdev_top);
2669 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2670 spa_async_request(spa, SPA_ASYNC_RESILVER);
2672 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2676 * When clearing a FMA-diagnosed fault, we always want to
2677 * unspare the device, as we assume that the original spare was
2678 * done in response to the FMA fault.
2680 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2681 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2682 vd->vdev_parent->vdev_child[0] == vd)
2683 vd->vdev_unspare = B_TRUE;
2686 boolean_t
2687 vdev_is_dead(vdev_t *vd)
2690 * Holes and missing devices are always considered "dead".
2691 * This simplifies the code since we don't have to check for
2692 * these types of devices in the various code paths.
2693 * Instead we rely on the fact that we skip over dead devices
2694 * before issuing I/O to them.
2696 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2697 vd->vdev_ops == &vdev_missing_ops);
2700 boolean_t
2701 vdev_readable(vdev_t *vd)
2703 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2706 boolean_t
2707 vdev_writeable(vdev_t *vd)
2709 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2712 boolean_t
2713 vdev_allocatable(vdev_t *vd)
2715 uint64_t state = vd->vdev_state;
2718 * We currently allow allocations from vdevs which may be in the
2719 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2720 * fails to reopen then we'll catch it later when we're holding
2721 * the proper locks. Note that we have to get the vdev state
2722 * in a local variable because although it changes atomically,
2723 * we're asking two separate questions about it.
2725 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2726 !vd->vdev_cant_write && !vd->vdev_ishole &&
2727 vd->vdev_mg->mg_initialized);
2730 boolean_t
2731 vdev_accessible(vdev_t *vd, zio_t *zio)
2733 ASSERT(zio->io_vd == vd);
2735 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2736 return (B_FALSE);
2738 if (zio->io_type == ZIO_TYPE_READ)
2739 return (!vd->vdev_cant_read);
2741 if (zio->io_type == ZIO_TYPE_WRITE)
2742 return (!vd->vdev_cant_write);
2744 return (B_TRUE);
2748 * Get statistics for the given vdev.
2750 void
2751 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2753 spa_t *spa = vd->vdev_spa;
2754 vdev_t *rvd = spa->spa_root_vdev;
2755 vdev_t *tvd = vd->vdev_top;
2757 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2759 mutex_enter(&vd->vdev_stat_lock);
2760 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2761 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2762 vs->vs_state = vd->vdev_state;
2763 vs->vs_rsize = vdev_get_min_asize(vd);
2764 if (vd->vdev_ops->vdev_op_leaf)
2765 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2767 * Report expandable space on top-level, non-auxillary devices only.
2768 * The expandable space is reported in terms of metaslab sized units
2769 * since that determines how much space the pool can expand.
2771 if (vd->vdev_aux == NULL && tvd != NULL) {
2772 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
2773 spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
2775 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2776 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2780 * If we're getting stats on the root vdev, aggregate the I/O counts
2781 * over all top-level vdevs (i.e. the direct children of the root).
2783 if (vd == rvd) {
2784 for (int c = 0; c < rvd->vdev_children; c++) {
2785 vdev_t *cvd = rvd->vdev_child[c];
2786 vdev_stat_t *cvs = &cvd->vdev_stat;
2788 for (int t = 0; t < ZIO_TYPES; t++) {
2789 vs->vs_ops[t] += cvs->vs_ops[t];
2790 vs->vs_bytes[t] += cvs->vs_bytes[t];
2792 cvs->vs_scan_removing = cvd->vdev_removing;
2795 mutex_exit(&vd->vdev_stat_lock);
2798 void
2799 vdev_clear_stats(vdev_t *vd)
2801 mutex_enter(&vd->vdev_stat_lock);
2802 vd->vdev_stat.vs_space = 0;
2803 vd->vdev_stat.vs_dspace = 0;
2804 vd->vdev_stat.vs_alloc = 0;
2805 mutex_exit(&vd->vdev_stat_lock);
2808 void
2809 vdev_scan_stat_init(vdev_t *vd)
2811 vdev_stat_t *vs = &vd->vdev_stat;
2813 for (int c = 0; c < vd->vdev_children; c++)
2814 vdev_scan_stat_init(vd->vdev_child[c]);
2816 mutex_enter(&vd->vdev_stat_lock);
2817 vs->vs_scan_processed = 0;
2818 mutex_exit(&vd->vdev_stat_lock);
2821 void
2822 vdev_stat_update(zio_t *zio, uint64_t psize)
2824 spa_t *spa = zio->io_spa;
2825 vdev_t *rvd = spa->spa_root_vdev;
2826 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2827 vdev_t *pvd;
2828 uint64_t txg = zio->io_txg;
2829 vdev_stat_t *vs = &vd->vdev_stat;
2830 zio_type_t type = zio->io_type;
2831 int flags = zio->io_flags;
2834 * If this i/o is a gang leader, it didn't do any actual work.
2836 if (zio->io_gang_tree)
2837 return;
2839 if (zio->io_error == 0) {
2841 * If this is a root i/o, don't count it -- we've already
2842 * counted the top-level vdevs, and vdev_get_stats() will
2843 * aggregate them when asked. This reduces contention on
2844 * the root vdev_stat_lock and implicitly handles blocks
2845 * that compress away to holes, for which there is no i/o.
2846 * (Holes never create vdev children, so all the counters
2847 * remain zero, which is what we want.)
2849 * Note: this only applies to successful i/o (io_error == 0)
2850 * because unlike i/o counts, errors are not additive.
2851 * When reading a ditto block, for example, failure of
2852 * one top-level vdev does not imply a root-level error.
2854 if (vd == rvd)
2855 return;
2857 ASSERT(vd == zio->io_vd);
2859 if (flags & ZIO_FLAG_IO_BYPASS)
2860 return;
2862 mutex_enter(&vd->vdev_stat_lock);
2864 if (flags & ZIO_FLAG_IO_REPAIR) {
2865 if (flags & ZIO_FLAG_SCAN_THREAD) {
2866 dsl_scan_phys_t *scn_phys =
2867 &spa->spa_dsl_pool->dp_scan->scn_phys;
2868 uint64_t *processed = &scn_phys->scn_processed;
2870 /* XXX cleanup? */
2871 if (vd->vdev_ops->vdev_op_leaf)
2872 atomic_add_64(processed, psize);
2873 vs->vs_scan_processed += psize;
2876 if (flags & ZIO_FLAG_SELF_HEAL)
2877 vs->vs_self_healed += psize;
2880 vs->vs_ops[type]++;
2881 vs->vs_bytes[type] += psize;
2883 mutex_exit(&vd->vdev_stat_lock);
2884 return;
2887 if (flags & ZIO_FLAG_SPECULATIVE)
2888 return;
2891 * If this is an I/O error that is going to be retried, then ignore the
2892 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2893 * hard errors, when in reality they can happen for any number of
2894 * innocuous reasons (bus resets, MPxIO link failure, etc).
2896 if (zio->io_error == EIO &&
2897 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2898 return;
2901 * Intent logs writes won't propagate their error to the root
2902 * I/O so don't mark these types of failures as pool-level
2903 * errors.
2905 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2906 return;
2908 mutex_enter(&vd->vdev_stat_lock);
2909 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2910 if (zio->io_error == ECKSUM)
2911 vs->vs_checksum_errors++;
2912 else
2913 vs->vs_read_errors++;
2915 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2916 vs->vs_write_errors++;
2917 mutex_exit(&vd->vdev_stat_lock);
2919 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2920 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2921 (flags & ZIO_FLAG_SCAN_THREAD) ||
2922 spa->spa_claiming)) {
2924 * This is either a normal write (not a repair), or it's
2925 * a repair induced by the scrub thread, or it's a repair
2926 * made by zil_claim() during spa_load() in the first txg.
2927 * In the normal case, we commit the DTL change in the same
2928 * txg as the block was born. In the scrub-induced repair
2929 * case, we know that scrubs run in first-pass syncing context,
2930 * so we commit the DTL change in spa_syncing_txg(spa).
2931 * In the zil_claim() case, we commit in spa_first_txg(spa).
2933 * We currently do not make DTL entries for failed spontaneous
2934 * self-healing writes triggered by normal (non-scrubbing)
2935 * reads, because we have no transactional context in which to
2936 * do so -- and it's not clear that it'd be desirable anyway.
2938 if (vd->vdev_ops->vdev_op_leaf) {
2939 uint64_t commit_txg = txg;
2940 if (flags & ZIO_FLAG_SCAN_THREAD) {
2941 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2942 ASSERT(spa_sync_pass(spa) == 1);
2943 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2944 commit_txg = spa_syncing_txg(spa);
2945 } else if (spa->spa_claiming) {
2946 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2947 commit_txg = spa_first_txg(spa);
2949 ASSERT(commit_txg >= spa_syncing_txg(spa));
2950 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2951 return;
2952 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2953 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2954 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2956 if (vd != rvd)
2957 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2962 * Update the in-core space usage stats for this vdev, its metaslab class,
2963 * and the root vdev.
2965 void
2966 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2967 int64_t space_delta)
2969 int64_t dspace_delta = space_delta;
2970 spa_t *spa = vd->vdev_spa;
2971 vdev_t *rvd = spa->spa_root_vdev;
2972 metaslab_group_t *mg = vd->vdev_mg;
2973 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2975 ASSERT(vd == vd->vdev_top);
2978 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2979 * factor. We must calculate this here and not at the root vdev
2980 * because the root vdev's psize-to-asize is simply the max of its
2981 * childrens', thus not accurate enough for us.
2983 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2984 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2985 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2986 vd->vdev_deflate_ratio;
2988 mutex_enter(&vd->vdev_stat_lock);
2989 vd->vdev_stat.vs_alloc += alloc_delta;
2990 vd->vdev_stat.vs_space += space_delta;
2991 vd->vdev_stat.vs_dspace += dspace_delta;
2992 mutex_exit(&vd->vdev_stat_lock);
2994 if (mc == spa_normal_class(spa)) {
2995 mutex_enter(&rvd->vdev_stat_lock);
2996 rvd->vdev_stat.vs_alloc += alloc_delta;
2997 rvd->vdev_stat.vs_space += space_delta;
2998 rvd->vdev_stat.vs_dspace += dspace_delta;
2999 mutex_exit(&rvd->vdev_stat_lock);
3002 if (mc != NULL) {
3003 ASSERT(rvd == vd->vdev_parent);
3004 ASSERT(vd->vdev_ms_count != 0);
3006 metaslab_class_space_update(mc,
3007 alloc_delta, defer_delta, space_delta, dspace_delta);
3012 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3013 * so that it will be written out next time the vdev configuration is synced.
3014 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3016 void
3017 vdev_config_dirty(vdev_t *vd)
3019 spa_t *spa = vd->vdev_spa;
3020 vdev_t *rvd = spa->spa_root_vdev;
3021 int c;
3023 ASSERT(spa_writeable(spa));
3026 * If this is an aux vdev (as with l2cache and spare devices), then we
3027 * update the vdev config manually and set the sync flag.
3029 if (vd->vdev_aux != NULL) {
3030 spa_aux_vdev_t *sav = vd->vdev_aux;
3031 nvlist_t **aux;
3032 uint_t naux;
3034 for (c = 0; c < sav->sav_count; c++) {
3035 if (sav->sav_vdevs[c] == vd)
3036 break;
3039 if (c == sav->sav_count) {
3041 * We're being removed. There's nothing more to do.
3043 ASSERT(sav->sav_sync == B_TRUE);
3044 return;
3047 sav->sav_sync = B_TRUE;
3049 if (nvlist_lookup_nvlist_array(sav->sav_config,
3050 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3051 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3052 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3055 ASSERT(c < naux);
3058 * Setting the nvlist in the middle if the array is a little
3059 * sketchy, but it will work.
3061 nvlist_free(aux[c]);
3062 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3064 return;
3068 * The dirty list is protected by the SCL_CONFIG lock. The caller
3069 * must either hold SCL_CONFIG as writer, or must be the sync thread
3070 * (which holds SCL_CONFIG as reader). There's only one sync thread,
3071 * so this is sufficient to ensure mutual exclusion.
3073 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3074 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3075 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3077 if (vd == rvd) {
3078 for (c = 0; c < rvd->vdev_children; c++)
3079 vdev_config_dirty(rvd->vdev_child[c]);
3080 } else {
3081 ASSERT(vd == vd->vdev_top);
3083 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3084 !vd->vdev_ishole)
3085 list_insert_head(&spa->spa_config_dirty_list, vd);
3089 void
3090 vdev_config_clean(vdev_t *vd)
3092 spa_t *spa = vd->vdev_spa;
3094 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3095 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3096 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3098 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3099 list_remove(&spa->spa_config_dirty_list, vd);
3103 * Mark a top-level vdev's state as dirty, so that the next pass of
3104 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3105 * the state changes from larger config changes because they require
3106 * much less locking, and are often needed for administrative actions.
3108 void
3109 vdev_state_dirty(vdev_t *vd)
3111 spa_t *spa = vd->vdev_spa;
3113 ASSERT(spa_writeable(spa));
3114 ASSERT(vd == vd->vdev_top);
3117 * The state list is protected by the SCL_STATE lock. The caller
3118 * must either hold SCL_STATE as writer, or must be the sync thread
3119 * (which holds SCL_STATE as reader). There's only one sync thread,
3120 * so this is sufficient to ensure mutual exclusion.
3122 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3123 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3124 spa_config_held(spa, SCL_STATE, RW_READER)));
3126 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3127 list_insert_head(&spa->spa_state_dirty_list, vd);
3130 void
3131 vdev_state_clean(vdev_t *vd)
3133 spa_t *spa = vd->vdev_spa;
3135 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3136 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3137 spa_config_held(spa, SCL_STATE, RW_READER)));
3139 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3140 list_remove(&spa->spa_state_dirty_list, vd);
3144 * Propagate vdev state up from children to parent.
3146 void
3147 vdev_propagate_state(vdev_t *vd)
3149 spa_t *spa = vd->vdev_spa;
3150 vdev_t *rvd = spa->spa_root_vdev;
3151 int degraded = 0, faulted = 0;
3152 int corrupted = 0;
3153 vdev_t *child;
3155 if (vd->vdev_children > 0) {
3156 for (int c = 0; c < vd->vdev_children; c++) {
3157 child = vd->vdev_child[c];
3160 * Don't factor holes into the decision.
3162 if (child->vdev_ishole)
3163 continue;
3165 if (!vdev_readable(child) ||
3166 (!vdev_writeable(child) && spa_writeable(spa))) {
3168 * Root special: if there is a top-level log
3169 * device, treat the root vdev as if it were
3170 * degraded.
3172 if (child->vdev_islog && vd == rvd)
3173 degraded++;
3174 else
3175 faulted++;
3176 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3177 degraded++;
3180 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3181 corrupted++;
3184 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3187 * Root special: if there is a top-level vdev that cannot be
3188 * opened due to corrupted metadata, then propagate the root
3189 * vdev's aux state as 'corrupt' rather than 'insufficient
3190 * replicas'.
3192 if (corrupted && vd == rvd &&
3193 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3194 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3195 VDEV_AUX_CORRUPT_DATA);
3198 if (vd->vdev_parent)
3199 vdev_propagate_state(vd->vdev_parent);
3203 * Set a vdev's state. If this is during an open, we don't update the parent
3204 * state, because we're in the process of opening children depth-first.
3205 * Otherwise, we propagate the change to the parent.
3207 * If this routine places a device in a faulted state, an appropriate ereport is
3208 * generated.
3210 void
3211 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3213 uint64_t save_state;
3214 spa_t *spa = vd->vdev_spa;
3216 if (state == vd->vdev_state) {
3217 vd->vdev_stat.vs_aux = aux;
3218 return;
3221 save_state = vd->vdev_state;
3223 vd->vdev_state = state;
3224 vd->vdev_stat.vs_aux = aux;
3227 * If we are setting the vdev state to anything but an open state, then
3228 * always close the underlying device unless the device has requested
3229 * a delayed close (i.e. we're about to remove or fault the device).
3230 * Otherwise, we keep accessible but invalid devices open forever.
3231 * We don't call vdev_close() itself, because that implies some extra
3232 * checks (offline, etc) that we don't want here. This is limited to
3233 * leaf devices, because otherwise closing the device will affect other
3234 * children.
3236 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3237 vd->vdev_ops->vdev_op_leaf)
3238 vd->vdev_ops->vdev_op_close(vd);
3241 * If we have brought this vdev back into service, we need
3242 * to notify fmd so that it can gracefully repair any outstanding
3243 * cases due to a missing device. We do this in all cases, even those
3244 * that probably don't correlate to a repaired fault. This is sure to
3245 * catch all cases, and we let the zfs-retire agent sort it out. If
3246 * this is a transient state it's OK, as the retire agent will
3247 * double-check the state of the vdev before repairing it.
3249 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3250 vd->vdev_prevstate != state)
3251 zfs_post_state_change(spa, vd);
3253 if (vd->vdev_removed &&
3254 state == VDEV_STATE_CANT_OPEN &&
3255 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3257 * If the previous state is set to VDEV_STATE_REMOVED, then this
3258 * device was previously marked removed and someone attempted to
3259 * reopen it. If this failed due to a nonexistent device, then
3260 * keep the device in the REMOVED state. We also let this be if
3261 * it is one of our special test online cases, which is only
3262 * attempting to online the device and shouldn't generate an FMA
3263 * fault.
3265 vd->vdev_state = VDEV_STATE_REMOVED;
3266 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3267 } else if (state == VDEV_STATE_REMOVED) {
3268 vd->vdev_removed = B_TRUE;
3269 } else if (state == VDEV_STATE_CANT_OPEN) {
3271 * If we fail to open a vdev during an import or recovery, we
3272 * mark it as "not available", which signifies that it was
3273 * never there to begin with. Failure to open such a device
3274 * is not considered an error.
3276 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3277 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3278 vd->vdev_ops->vdev_op_leaf)
3279 vd->vdev_not_present = 1;
3282 * Post the appropriate ereport. If the 'prevstate' field is
3283 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3284 * that this is part of a vdev_reopen(). In this case, we don't
3285 * want to post the ereport if the device was already in the
3286 * CANT_OPEN state beforehand.
3288 * If the 'checkremove' flag is set, then this is an attempt to
3289 * online the device in response to an insertion event. If we
3290 * hit this case, then we have detected an insertion event for a
3291 * faulted or offline device that wasn't in the removed state.
3292 * In this scenario, we don't post an ereport because we are
3293 * about to replace the device, or attempt an online with
3294 * vdev_forcefault, which will generate the fault for us.
3296 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3297 !vd->vdev_not_present && !vd->vdev_checkremove &&
3298 vd != spa->spa_root_vdev) {
3299 const char *class;
3301 switch (aux) {
3302 case VDEV_AUX_OPEN_FAILED:
3303 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3304 break;
3305 case VDEV_AUX_CORRUPT_DATA:
3306 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3307 break;
3308 case VDEV_AUX_NO_REPLICAS:
3309 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3310 break;
3311 case VDEV_AUX_BAD_GUID_SUM:
3312 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3313 break;
3314 case VDEV_AUX_TOO_SMALL:
3315 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3316 break;
3317 case VDEV_AUX_BAD_LABEL:
3318 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3319 break;
3320 default:
3321 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3324 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3327 /* Erase any notion of persistent removed state */
3328 vd->vdev_removed = B_FALSE;
3329 } else {
3330 vd->vdev_removed = B_FALSE;
3333 if (!isopen && vd->vdev_parent)
3334 vdev_propagate_state(vd->vdev_parent);
3338 * Check the vdev configuration to ensure that it's capable of supporting
3339 * a root pool. We do not support partial configuration.
3340 * In addition, only a single top-level vdev is allowed.
3342 boolean_t
3343 vdev_is_bootable(vdev_t *vd)
3345 if (!vd->vdev_ops->vdev_op_leaf) {
3346 char *vdev_type = vd->vdev_ops->vdev_op_type;
3348 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3349 vd->vdev_children > 1) {
3350 return (B_FALSE);
3351 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3352 return (B_FALSE);
3356 for (int c = 0; c < vd->vdev_children; c++) {
3357 if (!vdev_is_bootable(vd->vdev_child[c]))
3358 return (B_FALSE);
3360 return (B_TRUE);
3364 * Load the state from the original vdev tree (ovd) which
3365 * we've retrieved from the MOS config object. If the original
3366 * vdev was offline or faulted then we transfer that state to the
3367 * device in the current vdev tree (nvd).
3369 void
3370 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3372 spa_t *spa = nvd->vdev_spa;
3374 ASSERT(nvd->vdev_top->vdev_islog);
3375 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3376 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3378 for (int c = 0; c < nvd->vdev_children; c++)
3379 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3381 if (nvd->vdev_ops->vdev_op_leaf) {
3383 * Restore the persistent vdev state
3385 nvd->vdev_offline = ovd->vdev_offline;
3386 nvd->vdev_faulted = ovd->vdev_faulted;
3387 nvd->vdev_degraded = ovd->vdev_degraded;
3388 nvd->vdev_removed = ovd->vdev_removed;
3393 * Determine if a log device has valid content. If the vdev was
3394 * removed or faulted in the MOS config then we know that
3395 * the content on the log device has already been written to the pool.
3397 boolean_t
3398 vdev_log_state_valid(vdev_t *vd)
3400 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3401 !vd->vdev_removed)
3402 return (B_TRUE);
3404 for (int c = 0; c < vd->vdev_children; c++)
3405 if (vdev_log_state_valid(vd->vdev_child[c]))
3406 return (B_TRUE);
3408 return (B_FALSE);
3412 * Expand a vdev if possible.
3414 void
3415 vdev_expand(vdev_t *vd, uint64_t txg)
3417 ASSERT(vd->vdev_top == vd);
3418 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3420 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3421 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3422 vdev_config_dirty(vd);
3427 * Split a vdev.
3429 void
3430 vdev_split(vdev_t *vd)
3432 vdev_t *cvd, *pvd = vd->vdev_parent;
3434 vdev_remove_child(pvd, vd);
3435 vdev_compact_children(pvd);
3437 cvd = pvd->vdev_child[0];
3438 if (pvd->vdev_children == 1) {
3439 vdev_remove_parent(cvd);
3440 cvd->vdev_splitting = B_TRUE;
3442 vdev_propagate_state(cvd);
3445 void
3446 vdev_deadman(vdev_t *vd)
3448 for (int c = 0; c < vd->vdev_children; c++) {
3449 vdev_t *cvd = vd->vdev_child[c];
3451 vdev_deadman(cvd);
3454 if (vd->vdev_ops->vdev_op_leaf) {
3455 vdev_queue_t *vq = &vd->vdev_queue;
3457 mutex_enter(&vq->vq_lock);
3458 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3459 spa_t *spa = vd->vdev_spa;
3460 zio_t *fio;
3461 uint64_t delta;
3464 * Look at the head of all the pending queues,
3465 * if any I/O has been outstanding for longer than
3466 * the spa_deadman_synctime we panic the system.
3468 fio = avl_first(&vq->vq_active_tree);
3469 delta = gethrtime() - fio->io_timestamp;
3470 if (delta > spa_deadman_synctime(spa)) {
3471 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3472 "delta %lluns, last io %lluns",
3473 fio->io_timestamp, delta,
3474 vq->vq_io_complete_ts);
3475 fm_panic("I/O to pool '%s' appears to be "
3476 "hung.", spa_name(spa));
3479 mutex_exit(&vq->vq_lock);