3742 zfs comments need cleaner, more consistent style
[unleashed.git] / usr / src / uts / common / fs / zfs / txg.c
blob50184b2eb0157d862d083f0a587b70722796654d
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Portions Copyright 2011 Martin Matuska
24 * Copyright (c) 2013 by Delphix. All rights reserved.
27 #include <sys/zfs_context.h>
28 #include <sys/txg_impl.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_scan.h>
33 #include <sys/callb.h>
36 * ZFS Transaction Groups
37 * ----------------------
39 * ZFS transaction groups are, as the name implies, groups of transactions
40 * that act on persistent state. ZFS asserts consistency at the granularity of
41 * these transaction groups. Each successive transaction group (txg) is
42 * assigned a 64-bit consecutive identifier. There are three active
43 * transaction group states: open, quiescing, or syncing. At any given time,
44 * there may be an active txg associated with each state; each active txg may
45 * either be processing, or blocked waiting to enter the next state. There may
46 * be up to three active txgs, and there is always a txg in the open state
47 * (though it may be blocked waiting to enter the quiescing state). In broad
48 * strokes, transactions — operations that change in-memory structures — are
49 * accepted into the txg in the open state, and are completed while the txg is
50 * in the open or quiescing states. The accumulated changes are written to
51 * disk in the syncing state.
53 * Open
55 * When a new txg becomes active, it first enters the open state. New
56 * transactions — updates to in-memory structures — are assigned to the
57 * currently open txg. There is always a txg in the open state so that ZFS can
58 * accept new changes (though the txg may refuse new changes if it has hit
59 * some limit). ZFS advances the open txg to the next state for a variety of
60 * reasons such as it hitting a time or size threshold, or the execution of an
61 * administrative action that must be completed in the syncing state.
63 * Quiescing
65 * After a txg exits the open state, it enters the quiescing state. The
66 * quiescing state is intended to provide a buffer between accepting new
67 * transactions in the open state and writing them out to stable storage in
68 * the syncing state. While quiescing, transactions can continue their
69 * operation without delaying either of the other states. Typically, a txg is
70 * in the quiescing state very briefly since the operations are bounded by
71 * software latencies rather than, say, slower I/O latencies. After all
72 * transactions complete, the txg is ready to enter the next state.
74 * Syncing
76 * In the syncing state, the in-memory state built up during the open and (to
77 * a lesser degree) the quiescing states is written to stable storage. The
78 * process of writing out modified data can, in turn modify more data. For
79 * example when we write new blocks, we need to allocate space for them; those
80 * allocations modify metadata (space maps)... which themselves must be
81 * written to stable storage. During the sync state, ZFS iterates, writing out
82 * data until it converges and all in-memory changes have been written out.
83 * The first such pass is the largest as it encompasses all the modified user
84 * data (as opposed to filesystem metadata). Subsequent passes typically have
85 * far less data to write as they consist exclusively of filesystem metadata.
87 * To ensure convergence, after a certain number of passes ZFS begins
88 * overwriting locations on stable storage that had been allocated earlier in
89 * the syncing state (and subsequently freed). ZFS usually allocates new
90 * blocks to optimize for large, continuous, writes. For the syncing state to
91 * converge however it must complete a pass where no new blocks are allocated
92 * since each allocation requires a modification of persistent metadata.
93 * Further, to hasten convergence, after a prescribed number of passes, ZFS
94 * also defers frees, and stops compressing.
96 * In addition to writing out user data, we must also execute synctasks during
97 * the syncing context. A synctask is the mechanism by which some
98 * administrative activities work such as creating and destroying snapshots or
99 * datasets. Note that when a synctask is initiated it enters the open txg,
100 * and ZFS then pushes that txg as quickly as possible to completion of the
101 * syncing state in order to reduce the latency of the administrative
102 * activity. To complete the syncing state, ZFS writes out a new uberblock,
103 * the root of the tree of blocks that comprise all state stored on the ZFS
104 * pool. Finally, if there is a quiesced txg waiting, we signal that it can
105 * now transition to the syncing state.
108 static void txg_sync_thread(dsl_pool_t *dp);
109 static void txg_quiesce_thread(dsl_pool_t *dp);
111 int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */
114 * Prepare the txg subsystem.
116 void
117 txg_init(dsl_pool_t *dp, uint64_t txg)
119 tx_state_t *tx = &dp->dp_tx;
120 int c;
121 bzero(tx, sizeof (tx_state_t));
123 tx->tx_cpu = kmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
125 for (c = 0; c < max_ncpus; c++) {
126 int i;
128 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
129 mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_DEFAULT,
130 NULL);
131 for (i = 0; i < TXG_SIZE; i++) {
132 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
133 NULL);
134 list_create(&tx->tx_cpu[c].tc_callbacks[i],
135 sizeof (dmu_tx_callback_t),
136 offsetof(dmu_tx_callback_t, dcb_node));
140 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
142 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
143 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
144 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
145 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
146 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
148 tx->tx_open_txg = txg;
152 * Close down the txg subsystem.
154 void
155 txg_fini(dsl_pool_t *dp)
157 tx_state_t *tx = &dp->dp_tx;
158 int c;
160 ASSERT(tx->tx_threads == 0);
162 mutex_destroy(&tx->tx_sync_lock);
164 cv_destroy(&tx->tx_sync_more_cv);
165 cv_destroy(&tx->tx_sync_done_cv);
166 cv_destroy(&tx->tx_quiesce_more_cv);
167 cv_destroy(&tx->tx_quiesce_done_cv);
168 cv_destroy(&tx->tx_exit_cv);
170 for (c = 0; c < max_ncpus; c++) {
171 int i;
173 mutex_destroy(&tx->tx_cpu[c].tc_open_lock);
174 mutex_destroy(&tx->tx_cpu[c].tc_lock);
175 for (i = 0; i < TXG_SIZE; i++) {
176 cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
177 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
181 if (tx->tx_commit_cb_taskq != NULL)
182 taskq_destroy(tx->tx_commit_cb_taskq);
184 kmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
186 bzero(tx, sizeof (tx_state_t));
190 * Start syncing transaction groups.
192 void
193 txg_sync_start(dsl_pool_t *dp)
195 tx_state_t *tx = &dp->dp_tx;
197 mutex_enter(&tx->tx_sync_lock);
199 dprintf("pool %p\n", dp);
201 ASSERT(tx->tx_threads == 0);
203 tx->tx_threads = 2;
205 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
206 dp, 0, &p0, TS_RUN, minclsyspri);
209 * The sync thread can need a larger-than-default stack size on
210 * 32-bit x86. This is due in part to nested pools and
211 * scrub_visitbp() recursion.
213 tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread,
214 dp, 0, &p0, TS_RUN, minclsyspri);
216 mutex_exit(&tx->tx_sync_lock);
219 static void
220 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
222 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
223 mutex_enter(&tx->tx_sync_lock);
226 static void
227 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
229 ASSERT(*tpp != NULL);
230 *tpp = NULL;
231 tx->tx_threads--;
232 cv_broadcast(&tx->tx_exit_cv);
233 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */
234 thread_exit();
237 static void
238 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time)
240 CALLB_CPR_SAFE_BEGIN(cpr);
242 if (time)
243 (void) cv_timedwait(cv, &tx->tx_sync_lock,
244 ddi_get_lbolt() + time);
245 else
246 cv_wait(cv, &tx->tx_sync_lock);
248 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
252 * Stop syncing transaction groups.
254 void
255 txg_sync_stop(dsl_pool_t *dp)
257 tx_state_t *tx = &dp->dp_tx;
259 dprintf("pool %p\n", dp);
261 * Finish off any work in progress.
263 ASSERT(tx->tx_threads == 2);
266 * We need to ensure that we've vacated the deferred space_maps.
268 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
271 * Wake all sync threads and wait for them to die.
273 mutex_enter(&tx->tx_sync_lock);
275 ASSERT(tx->tx_threads == 2);
277 tx->tx_exiting = 1;
279 cv_broadcast(&tx->tx_quiesce_more_cv);
280 cv_broadcast(&tx->tx_quiesce_done_cv);
281 cv_broadcast(&tx->tx_sync_more_cv);
283 while (tx->tx_threads != 0)
284 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
286 tx->tx_exiting = 0;
288 mutex_exit(&tx->tx_sync_lock);
291 uint64_t
292 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
294 tx_state_t *tx = &dp->dp_tx;
295 tx_cpu_t *tc = &tx->tx_cpu[CPU_SEQID];
296 uint64_t txg;
298 mutex_enter(&tc->tc_open_lock);
299 txg = tx->tx_open_txg;
301 mutex_enter(&tc->tc_lock);
302 tc->tc_count[txg & TXG_MASK]++;
303 mutex_exit(&tc->tc_lock);
305 th->th_cpu = tc;
306 th->th_txg = txg;
308 return (txg);
311 void
312 txg_rele_to_quiesce(txg_handle_t *th)
314 tx_cpu_t *tc = th->th_cpu;
316 ASSERT(!MUTEX_HELD(&tc->tc_lock));
317 mutex_exit(&tc->tc_open_lock);
320 void
321 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
323 tx_cpu_t *tc = th->th_cpu;
324 int g = th->th_txg & TXG_MASK;
326 mutex_enter(&tc->tc_lock);
327 list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
328 mutex_exit(&tc->tc_lock);
331 void
332 txg_rele_to_sync(txg_handle_t *th)
334 tx_cpu_t *tc = th->th_cpu;
335 int g = th->th_txg & TXG_MASK;
337 mutex_enter(&tc->tc_lock);
338 ASSERT(tc->tc_count[g] != 0);
339 if (--tc->tc_count[g] == 0)
340 cv_broadcast(&tc->tc_cv[g]);
341 mutex_exit(&tc->tc_lock);
343 th->th_cpu = NULL; /* defensive */
347 * Blocks until all transactions in the group are committed.
349 * On return, the transaction group has reached a stable state in which it can
350 * then be passed off to the syncing context.
352 static void
353 txg_quiesce(dsl_pool_t *dp, uint64_t txg)
355 tx_state_t *tx = &dp->dp_tx;
356 int g = txg & TXG_MASK;
357 int c;
360 * Grab all tc_open_locks so nobody else can get into this txg.
362 for (c = 0; c < max_ncpus; c++)
363 mutex_enter(&tx->tx_cpu[c].tc_open_lock);
365 ASSERT(txg == tx->tx_open_txg);
366 tx->tx_open_txg++;
368 DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg);
369 DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg);
372 * Now that we've incremented tx_open_txg, we can let threads
373 * enter the next transaction group.
375 for (c = 0; c < max_ncpus; c++)
376 mutex_exit(&tx->tx_cpu[c].tc_open_lock);
379 * Quiesce the transaction group by waiting for everyone to txg_exit().
381 for (c = 0; c < max_ncpus; c++) {
382 tx_cpu_t *tc = &tx->tx_cpu[c];
383 mutex_enter(&tc->tc_lock);
384 while (tc->tc_count[g] != 0)
385 cv_wait(&tc->tc_cv[g], &tc->tc_lock);
386 mutex_exit(&tc->tc_lock);
390 static void
391 txg_do_callbacks(list_t *cb_list)
393 dmu_tx_do_callbacks(cb_list, 0);
395 list_destroy(cb_list);
397 kmem_free(cb_list, sizeof (list_t));
401 * Dispatch the commit callbacks registered on this txg to worker threads.
403 * If no callbacks are registered for a given TXG, nothing happens.
404 * This function creates a taskq for the associated pool, if needed.
406 static void
407 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
409 int c;
410 tx_state_t *tx = &dp->dp_tx;
411 list_t *cb_list;
413 for (c = 0; c < max_ncpus; c++) {
414 tx_cpu_t *tc = &tx->tx_cpu[c];
416 * No need to lock tx_cpu_t at this point, since this can
417 * only be called once a txg has been synced.
420 int g = txg & TXG_MASK;
422 if (list_is_empty(&tc->tc_callbacks[g]))
423 continue;
425 if (tx->tx_commit_cb_taskq == NULL) {
427 * Commit callback taskq hasn't been created yet.
429 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
430 max_ncpus, minclsyspri, max_ncpus, max_ncpus * 2,
431 TASKQ_PREPOPULATE);
434 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
435 list_create(cb_list, sizeof (dmu_tx_callback_t),
436 offsetof(dmu_tx_callback_t, dcb_node));
438 list_move_tail(&tc->tc_callbacks[g], cb_list);
440 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
441 txg_do_callbacks, cb_list, TQ_SLEEP);
445 static void
446 txg_sync_thread(dsl_pool_t *dp)
448 spa_t *spa = dp->dp_spa;
449 tx_state_t *tx = &dp->dp_tx;
450 callb_cpr_t cpr;
451 uint64_t start, delta;
453 txg_thread_enter(tx, &cpr);
455 start = delta = 0;
456 for (;;) {
457 uint64_t timer, timeout = zfs_txg_timeout * hz;
458 uint64_t txg;
461 * We sync when we're scanning, there's someone waiting
462 * on us, or the quiesce thread has handed off a txg to
463 * us, or we have reached our timeout.
465 timer = (delta >= timeout ? 0 : timeout - delta);
466 while (!dsl_scan_active(dp->dp_scan) &&
467 !tx->tx_exiting && timer > 0 &&
468 tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
469 tx->tx_quiesced_txg == 0) {
470 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
471 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
472 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
473 delta = ddi_get_lbolt() - start;
474 timer = (delta > timeout ? 0 : timeout - delta);
478 * Wait until the quiesce thread hands off a txg to us,
479 * prompting it to do so if necessary.
481 while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) {
482 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
483 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
484 cv_broadcast(&tx->tx_quiesce_more_cv);
485 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
488 if (tx->tx_exiting)
489 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
492 * Consume the quiesced txg which has been handed off to
493 * us. This may cause the quiescing thread to now be
494 * able to quiesce another txg, so we must signal it.
496 txg = tx->tx_quiesced_txg;
497 tx->tx_quiesced_txg = 0;
498 tx->tx_syncing_txg = txg;
499 DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg);
500 cv_broadcast(&tx->tx_quiesce_more_cv);
502 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
503 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
504 mutex_exit(&tx->tx_sync_lock);
506 start = ddi_get_lbolt();
507 spa_sync(spa, txg);
508 delta = ddi_get_lbolt() - start;
510 mutex_enter(&tx->tx_sync_lock);
511 tx->tx_synced_txg = txg;
512 tx->tx_syncing_txg = 0;
513 DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg);
514 cv_broadcast(&tx->tx_sync_done_cv);
517 * Dispatch commit callbacks to worker threads.
519 txg_dispatch_callbacks(dp, txg);
523 static void
524 txg_quiesce_thread(dsl_pool_t *dp)
526 tx_state_t *tx = &dp->dp_tx;
527 callb_cpr_t cpr;
529 txg_thread_enter(tx, &cpr);
531 for (;;) {
532 uint64_t txg;
535 * We quiesce when there's someone waiting on us.
536 * However, we can only have one txg in "quiescing" or
537 * "quiesced, waiting to sync" state. So we wait until
538 * the "quiesced, waiting to sync" txg has been consumed
539 * by the sync thread.
541 while (!tx->tx_exiting &&
542 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
543 tx->tx_quiesced_txg != 0))
544 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
546 if (tx->tx_exiting)
547 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
549 txg = tx->tx_open_txg;
550 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
551 txg, tx->tx_quiesce_txg_waiting,
552 tx->tx_sync_txg_waiting);
553 mutex_exit(&tx->tx_sync_lock);
554 txg_quiesce(dp, txg);
555 mutex_enter(&tx->tx_sync_lock);
558 * Hand this txg off to the sync thread.
560 dprintf("quiesce done, handing off txg %llu\n", txg);
561 tx->tx_quiesced_txg = txg;
562 DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg);
563 cv_broadcast(&tx->tx_sync_more_cv);
564 cv_broadcast(&tx->tx_quiesce_done_cv);
569 * Delay this thread by delay nanoseconds if we are still in the open
570 * transaction group and there is already a waiting txg quiescing or quiesced.
571 * Abort the delay if this txg stalls or enters the quiescing state.
573 void
574 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution)
576 tx_state_t *tx = &dp->dp_tx;
577 hrtime_t start = gethrtime();
579 /* don't delay if this txg could transition to quiescing immediately */
580 if (tx->tx_open_txg > txg ||
581 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
582 return;
584 mutex_enter(&tx->tx_sync_lock);
585 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
586 mutex_exit(&tx->tx_sync_lock);
587 return;
590 while (gethrtime() - start < delay &&
591 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) {
592 (void) cv_timedwait_hires(&tx->tx_quiesce_more_cv,
593 &tx->tx_sync_lock, delay, resolution, 0);
596 mutex_exit(&tx->tx_sync_lock);
599 void
600 txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
602 tx_state_t *tx = &dp->dp_tx;
604 ASSERT(!dsl_pool_config_held(dp));
606 mutex_enter(&tx->tx_sync_lock);
607 ASSERT(tx->tx_threads == 2);
608 if (txg == 0)
609 txg = tx->tx_open_txg + TXG_DEFER_SIZE;
610 if (tx->tx_sync_txg_waiting < txg)
611 tx->tx_sync_txg_waiting = txg;
612 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
613 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
614 while (tx->tx_synced_txg < txg) {
615 dprintf("broadcasting sync more "
616 "tx_synced=%llu waiting=%llu dp=%p\n",
617 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
618 cv_broadcast(&tx->tx_sync_more_cv);
619 cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
621 mutex_exit(&tx->tx_sync_lock);
624 void
625 txg_wait_open(dsl_pool_t *dp, uint64_t txg)
627 tx_state_t *tx = &dp->dp_tx;
629 ASSERT(!dsl_pool_config_held(dp));
631 mutex_enter(&tx->tx_sync_lock);
632 ASSERT(tx->tx_threads == 2);
633 if (txg == 0)
634 txg = tx->tx_open_txg + 1;
635 if (tx->tx_quiesce_txg_waiting < txg)
636 tx->tx_quiesce_txg_waiting = txg;
637 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
638 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
639 while (tx->tx_open_txg < txg) {
640 cv_broadcast(&tx->tx_quiesce_more_cv);
641 cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
643 mutex_exit(&tx->tx_sync_lock);
646 boolean_t
647 txg_stalled(dsl_pool_t *dp)
649 tx_state_t *tx = &dp->dp_tx;
650 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
653 boolean_t
654 txg_sync_waiting(dsl_pool_t *dp)
656 tx_state_t *tx = &dp->dp_tx;
658 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
659 tx->tx_quiesced_txg != 0);
663 * Per-txg object lists.
665 void
666 txg_list_create(txg_list_t *tl, size_t offset)
668 int t;
670 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
672 tl->tl_offset = offset;
674 for (t = 0; t < TXG_SIZE; t++)
675 tl->tl_head[t] = NULL;
678 void
679 txg_list_destroy(txg_list_t *tl)
681 int t;
683 for (t = 0; t < TXG_SIZE; t++)
684 ASSERT(txg_list_empty(tl, t));
686 mutex_destroy(&tl->tl_lock);
689 boolean_t
690 txg_list_empty(txg_list_t *tl, uint64_t txg)
692 return (tl->tl_head[txg & TXG_MASK] == NULL);
696 * Add an entry to the list (unless it's already on the list).
697 * Returns B_TRUE if it was actually added.
699 boolean_t
700 txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
702 int t = txg & TXG_MASK;
703 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
704 boolean_t add;
706 mutex_enter(&tl->tl_lock);
707 add = (tn->tn_member[t] == 0);
708 if (add) {
709 tn->tn_member[t] = 1;
710 tn->tn_next[t] = tl->tl_head[t];
711 tl->tl_head[t] = tn;
713 mutex_exit(&tl->tl_lock);
715 return (add);
719 * Add an entry to the end of the list, unless it's already on the list.
720 * (walks list to find end)
721 * Returns B_TRUE if it was actually added.
723 boolean_t
724 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
726 int t = txg & TXG_MASK;
727 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
728 boolean_t add;
730 mutex_enter(&tl->tl_lock);
731 add = (tn->tn_member[t] == 0);
732 if (add) {
733 txg_node_t **tp;
735 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
736 continue;
738 tn->tn_member[t] = 1;
739 tn->tn_next[t] = NULL;
740 *tp = tn;
742 mutex_exit(&tl->tl_lock);
744 return (add);
748 * Remove the head of the list and return it.
750 void *
751 txg_list_remove(txg_list_t *tl, uint64_t txg)
753 int t = txg & TXG_MASK;
754 txg_node_t *tn;
755 void *p = NULL;
757 mutex_enter(&tl->tl_lock);
758 if ((tn = tl->tl_head[t]) != NULL) {
759 p = (char *)tn - tl->tl_offset;
760 tl->tl_head[t] = tn->tn_next[t];
761 tn->tn_next[t] = NULL;
762 tn->tn_member[t] = 0;
764 mutex_exit(&tl->tl_lock);
766 return (p);
770 * Remove a specific item from the list and return it.
772 void *
773 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
775 int t = txg & TXG_MASK;
776 txg_node_t *tn, **tp;
778 mutex_enter(&tl->tl_lock);
780 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
781 if ((char *)tn - tl->tl_offset == p) {
782 *tp = tn->tn_next[t];
783 tn->tn_next[t] = NULL;
784 tn->tn_member[t] = 0;
785 mutex_exit(&tl->tl_lock);
786 return (p);
790 mutex_exit(&tl->tl_lock);
792 return (NULL);
795 boolean_t
796 txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
798 int t = txg & TXG_MASK;
799 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
801 return (tn->tn_member[t] != 0);
805 * Walk a txg list -- only safe if you know it's not changing.
807 void *
808 txg_list_head(txg_list_t *tl, uint64_t txg)
810 int t = txg & TXG_MASK;
811 txg_node_t *tn = tl->tl_head[t];
813 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
816 void *
817 txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
819 int t = txg & TXG_MASK;
820 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
822 tn = tn->tn_next[t];
824 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);