autofs: disable by default
[unleashed.git] / include / inet / sadb.h
blobb497606973f10bdb8ca119371c2871cecd25a50c
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved.
27 #ifndef _INET_SADB_H
28 #define _INET_SADB_H
30 #ifdef __cplusplus
31 extern "C" {
32 #endif
34 #include <inet/ipsec_info.h>
35 #include <sys/crypto/common.h>
36 #include <sys/crypto/api.h>
37 #include <sys/note.h>
39 #define IPSA_MAX_ADDRLEN 4 /* Max address len. (in 32-bits) for an SA. */
41 #define MAXSALTSIZE 8
44 * For combined mode ciphers, store the crypto_mechanism_t in the
45 * per-packet ipsec_in_t/ipsec_out_t structures. This is because the PARAMS
46 * and nonce values change for each packet. For non-combined mode
47 * ciphers, these values are constant for the life of the SA.
49 typedef struct ipsa_cm_mech_s {
50 crypto_mechanism_t combined_mech;
51 union {
52 CK_AES_CCM_PARAMS paramu_ccm;
53 CK_AES_GCM_PARAMS paramu_gcm;
54 } paramu;
55 uint8_t nonce[MAXSALTSIZE + sizeof (uint64_t)];
56 #define param_ulMACSize paramu.paramu_ccm.ulMACSize
57 #define param_ulNonceSize paramu.paramu_ccm.ipsa_ulNonceSize
58 #define param_ulAuthDataSize paramu.paramu_ccm.ipsa_ulAuthDataSize
59 #define param_ulDataSize paramu.paramu_ccm.ipsa_ulDataSize
60 #define param_nonce paramu.paramu_ccm.nonce
61 #define param_authData paramu.paramu_ccm.authData
62 #define param_pIv paramu.paramu_gcm.ipsa_pIv
63 #define param_ulIvLen paramu.paramu_gcm.ulIvLen
64 #define param_ulIvBits paramu.paramu_gcm.ulIvBits
65 #define param_pAAD paramu.paramu_gcm.pAAD
66 #define param_ulAADLen paramu.paramu_gcm.ulAADLen
67 #define param_ulTagBits paramu.paramu_gcm.ulTagBits
68 } ipsa_cm_mech_t;
71 * The Initialization Vector (also known as IV or Nonce) used to
72 * initialize the Block Cipher, is made up of a Counter and a Salt.
73 * The Counter is fixed at 64 bits and is incremented for each packet.
74 * The Salt value can be any whole byte value upto 64 bits. This is
75 * algorithm mode specific and can be configured with ipsecalgs(1m).
77 * We only support whole byte salt lengths, this is because the salt is
78 * stored in an array of uint8_t's. This is enforced by ipsecalgs(1m)
79 * which configures the salt length as a number of bytes. Checks are
80 * made to ensure the salt length defined in ipsecalgs(1m) fits in
81 * the ipsec_nonce_t.
83 * The Salt value remains constant for the life of the SA, the Salt is
84 * know to both peers, but NOT transmitted on the network. The Counter
85 * portion of the nonce is transmitted over the network with each packet
86 * and is confusingly described as the Initialization Vector by RFCs
87 * 4309/4106.
89 * The maximum Initialization Vector length is 128 bits, if the actual
90 * size is less, its padded internally by the algorithm.
92 * The nonce structure is defined like this in the SA (ipsa_t)to ensure
93 * the Initilization Vector (counter) is 64 bit aligned, because it will
94 * be incremented as an uint64_t. The nonce as used by the algorithms is
95 * a straight uint8_t array.
97 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
98 * | | | | |x|x|x|x| |
99 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
100 * salt_offset <------>
101 * ipsa_saltlen <------->
102 * ipsa_nonce_buf------^
103 * ipsa_salt-------------~~~~~~^
104 * ipsa_nonce------------~~~~~~^
105 * ipsa_iv-----------------------------^
107 typedef struct ipsec_nonce_s {
108 uint8_t salt[MAXSALTSIZE];
109 uint64_t iv;
110 } ipsec_nonce_t;
113 * IP security association. Synchronization assumes 32-bit loads, so
114 * the 64-bit quantities can't even be be read w/o locking it down!
117 /* keying info */
118 typedef struct ipsa_key_s {
119 uint8_t *sak_key; /* Algorithm key. */
120 uint_t sak_keylen; /* Algorithm key length (in bytes). */
121 uint_t sak_keybits; /* Algorithm key length (in bits) */
122 uint_t sak_algid; /* Algorithm ID number. */
123 } ipsa_key_t;
125 typedef struct ipsa_s {
126 struct ipsa_s *ipsa_next; /* Next in hash bucket */
127 struct ipsa_s **ipsa_ptpn; /* Pointer to previous next pointer. */
128 kmutex_t *ipsa_linklock; /* Pointer to hash-chain lock. */
129 void (*ipsa_freefunc)(struct ipsa_s *); /* freeassoc function */
130 void (*ipsa_noncefunc)(struct ipsa_s *, uchar_t *,
131 uint_t, uchar_t *, ipsa_cm_mech_t *, crypto_data_t *);
133 * NOTE: I may need more pointers, depending on future SA
134 * requirements.
136 ipsa_key_t ipsa_authkeydata;
137 #define ipsa_authkey ipsa_authkeydata.sak_key
138 #define ipsa_authkeylen ipsa_authkeydata.sak_keylen
139 #define ipsa_authkeybits ipsa_authkeydata.sak_keybits
140 #define ipsa_auth_alg ipsa_authkeydata.sak_algid
141 ipsa_key_t ipsa_encrkeydata;
142 #define ipsa_encrkey ipsa_encrkeydata.sak_key
143 #define ipsa_encrkeylen ipsa_encrkeydata.sak_keylen
144 #define ipsa_encrkeybits ipsa_encrkeydata.sak_keybits
145 #define ipsa_encr_alg ipsa_encrkeydata.sak_algid
147 struct ipsid_s *ipsa_src_cid; /* Source certificate identity */
148 struct ipsid_s *ipsa_dst_cid; /* Destination certificate identity */
149 mblk_t *ipsa_lpkt; /* Packet received while larval (CAS me) */
150 mblk_t *ipsa_bpkt_head; /* Packets received while idle */
151 mblk_t *ipsa_bpkt_tail;
152 #define SADB_MAX_IDLEPKTS 100
153 uint8_t ipsa_mblkcnt; /* Number of packets received while idle */
156 * PF_KEYv2 supports a replay window size of 255. Hence there is a
157 * need a bit vector to support a replay window of 255. 256 is a nice
158 * round number, so I support that.
160 * Use an array of uint64_t for best performance on 64-bit
161 * processors. (And hope that 32-bit compilers can handle things
162 * okay.) The " >> 6 " is to get the appropriate number of 64-bit
163 * ints.
165 #define SADB_MAX_REPLAY 256 /* Must be 0 mod 64. */
166 uint64_t ipsa_replay_arr[SADB_MAX_REPLAY >> 6];
168 uint64_t ipsa_unique_id; /* Non-zero for unique SAs */
169 uint64_t ipsa_unique_mask; /* mask value for unique_id */
172 * Reference count semantics:
174 * An SA has a reference count of 1 if something's pointing
175 * to it. This includes being in a hash table. So if an
176 * SA is in a hash table, it has a reference count of at least 1.
178 * When a ptr. to an IPSA is assigned, you MUST REFHOLD after
179 * said assignment. When a ptr. to an IPSA is released
180 * you MUST REFRELE. When the refcount hits 0, REFRELE
181 * will free the IPSA.
183 kmutex_t ipsa_lock; /* Locks non-linkage/refcnt fields. */
184 /* Q: Since I may be doing refcnts differently, will I need cv? */
185 uint_t ipsa_refcnt; /* Reference count. */
188 * The following four time fields are the ones monitored by ah_ager()
189 * and esp_ager() respectively. They are all absolute wall-clock
190 * times. The times of creation (i.e. add time) and first use are
191 * pretty straightforward. The soft and hard expire times are
192 * derived from the times of first use and creation, plus the minimum
193 * expiration times in the fields that follow this.
195 * For example, if I had a hard add time of 30 seconds, and a hard
196 * use time of 15, the ipsa_hardexpiretime would be time of add, plus
197 * 30 seconds. If I USE the SA such that time of first use plus 15
198 * seconds would be earlier than the add time plus 30 seconds, then
199 * ipsa_hardexpiretime would become this earlier time.
201 time_t ipsa_addtime; /* Time I was added. */
202 time_t ipsa_usetime; /* Time of my first use. */
203 time_t ipsa_lastuse; /* Time of my last use. */
204 time_t ipsa_idletime; /* Seconds of idle time */
205 time_t ipsa_last_nat_t_ka; /* Time of my last NAT-T keepalive. */
206 time_t ipsa_softexpiretime; /* Time of my first soft expire. */
207 time_t ipsa_hardexpiretime; /* Time of my first hard expire. */
208 time_t ipsa_idleexpiretime; /* Time of my next idle expire time */
210 struct ipsec_nonce_s *ipsa_nonce_buf;
211 uint8_t *ipsa_nonce;
212 uint_t ipsa_nonce_len;
213 uint8_t *ipsa_salt;
214 uint_t ipsa_saltbits;
215 uint_t ipsa_saltlen;
216 uint64_t *ipsa_iv;
218 uint64_t ipsa_iv_hardexpire;
219 uint64_t ipsa_iv_softexpire;
221 * The following fields are directly reflected in PF_KEYv2 LIFETIME
222 * extensions. The time_ts are in number-of-seconds, and the bytes
223 * are in... bytes.
225 time_t ipsa_softaddlt; /* Seconds of soft lifetime after add. */
226 time_t ipsa_softuselt; /* Seconds of soft lifetime after first use. */
227 time_t ipsa_hardaddlt; /* Seconds of hard lifetime after add. */
228 time_t ipsa_harduselt; /* Seconds of hard lifetime after first use. */
229 time_t ipsa_idleaddlt; /* Seconds of idle time after add */
230 time_t ipsa_idleuselt; /* Seconds of idle time after first use */
231 uint64_t ipsa_softbyteslt; /* Bytes of soft lifetime. */
232 uint64_t ipsa_hardbyteslt; /* Bytes of hard lifetime. */
233 uint64_t ipsa_bytes; /* Bytes encrypted/authed by this SA. */
236 * "Allocations" are a concept mentioned in PF_KEYv2. We do not
237 * support them, except to record them per the PF_KEYv2 spec.
239 uint_t ipsa_softalloc; /* Allocations allowed (soft). */
240 uint_t ipsa_hardalloc; /* Allocations allowed (hard). */
241 uint_t ipsa_alloc; /* Allocations made. */
243 uint_t ipsa_type; /* Type of security association. (AH/etc.) */
244 uint_t ipsa_state; /* State of my association. */
245 uint_t ipsa_replay_wsize; /* Size of replay window */
246 uint32_t ipsa_flags; /* Flags for security association. */
247 uint32_t ipsa_spi; /* Security parameters index. */
248 uint32_t ipsa_replay; /* Highest seen replay value for this SA. */
249 uint32_t ipsa_kmp; /* key management proto */
250 uint32_t ipsa_kmc; /* key management cookie */
252 boolean_t ipsa_haspeer; /* Has peer in another table. */
255 * Address storage.
256 * The source address can be INADDR_ANY, IN6ADDR_ANY, etc.
258 * Address families (per sys/socket.h) guide us. We could have just
259 * used sockaddr_storage
261 sa_family_t ipsa_addrfam;
262 sa_family_t ipsa_innerfam; /* Inner AF can be != src/dst AF. */
264 uint32_t ipsa_srcaddr[IPSA_MAX_ADDRLEN];
265 uint32_t ipsa_dstaddr[IPSA_MAX_ADDRLEN];
266 uint32_t ipsa_innersrc[IPSA_MAX_ADDRLEN];
267 uint32_t ipsa_innerdst[IPSA_MAX_ADDRLEN];
269 uint8_t ipsa_innersrcpfx;
270 uint8_t ipsa_innerdstpfx;
272 uint16_t ipsa_inbound_cksum; /* cksum correction for inbound packets */
273 uint16_t ipsa_local_nat_port; /* Local NAT-T port. (0 --> 4500) */
274 uint16_t ipsa_remote_nat_port; /* The other port that isn't 4500 */
276 /* these can only be v4 */
277 uint32_t ipsa_natt_addr_loc;
278 uint32_t ipsa_natt_addr_rem;
281 * icmp type and code. *_end are to specify ranges. if only
282 * a single value, * and *_end are the same value.
284 uint8_t ipsa_icmp_type;
285 uint8_t ipsa_icmp_type_end;
286 uint8_t ipsa_icmp_code;
287 uint8_t ipsa_icmp_code_end;
290 * For the kernel crypto framework.
292 crypto_key_t ipsa_kcfauthkey; /* authentication key */
293 crypto_key_t ipsa_kcfencrkey; /* encryption key */
294 crypto_ctx_template_t ipsa_authtmpl; /* auth context template */
295 crypto_ctx_template_t ipsa_encrtmpl; /* encr context template */
296 crypto_mechanism_t ipsa_amech; /* auth mech type and ICV len */
297 crypto_mechanism_t ipsa_emech; /* encr mech type */
298 size_t ipsa_mac_len; /* auth MAC/ICV length */
299 size_t ipsa_iv_len; /* encr IV length */
300 size_t ipsa_datalen; /* block length in bytes. */
303 * Input and output processing functions called from IP.
304 * The mblk_t is the data; the IPsec information is in the attributes
305 * Returns NULL if the mblk is consumed which it is if there was
306 * a failure or if pending. If failure then
307 * the ipIfInDiscards/OutDiscards counters are increased.
309 mblk_t *(*ipsa_output_func)(mblk_t *, ip_xmit_attr_t *);
310 mblk_t *(*ipsa_input_func)(mblk_t *, void *, ip_recv_attr_t *);
313 * Soft reference to paired SA
315 uint32_t ipsa_otherspi;
316 netstack_t *ipsa_netstack; /* Does not have a netstack_hold */
318 uint8_t ipsa_mac_exempt; /* MLS: mac exempt flag */
319 uchar_t ipsa_opt_storage[IP_MAX_OPT_LENGTH];
320 } ipsa_t;
323 * ipsa_t address handling macros. We want these to be inlined, and deal
324 * with 32-bit words to avoid bcmp/bcopy calls.
326 * Assume we only have AF_INET and AF_INET6 addresses for now. Also assume
327 * that we have 32-bit alignment on everything.
329 #define IPSA_IS_ADDR_UNSPEC(addr, fam) ((((uint32_t *)(addr))[0] == 0) && \
330 (((fam) == AF_INET) || (((uint32_t *)(addr))[3] == 0 && \
331 ((uint32_t *)(addr))[2] == 0 && ((uint32_t *)(addr))[1] == 0)))
332 #define IPSA_ARE_ADDR_EQUAL(addr1, addr2, fam) \
333 ((((uint32_t *)(addr1))[0] == ((uint32_t *)(addr2))[0]) && \
334 (((fam) == AF_INET) || \
335 (((uint32_t *)(addr1))[3] == ((uint32_t *)(addr2))[3] && \
336 ((uint32_t *)(addr1))[2] == ((uint32_t *)(addr2))[2] && \
337 ((uint32_t *)(addr1))[1] == ((uint32_t *)(addr2))[1])))
338 #define IPSA_COPY_ADDR(dstaddr, srcaddr, fam) { \
339 ((uint32_t *)(dstaddr))[0] = ((uint32_t *)(srcaddr))[0]; \
340 if ((fam) == AF_INET6) {\
341 ((uint32_t *)(dstaddr))[1] = ((uint32_t *)(srcaddr))[1]; \
342 ((uint32_t *)(dstaddr))[2] = ((uint32_t *)(srcaddr))[2]; \
343 ((uint32_t *)(dstaddr))[3] = ((uint32_t *)(srcaddr))[3]; } }
346 * ipsa_t reference hold/release macros.
348 * If you have a pointer, you REFHOLD. If you are releasing a pointer, you
349 * REFRELE. An ipsa_t that is newly inserted into the table should have
350 * a reference count of 1 (for the table's pointer), plus 1 more for every
351 * pointer that is referencing the ipsa_t.
354 #define IPSA_REFHOLD(ipsa) { \
355 atomic_inc_32(&(ipsa)->ipsa_refcnt); \
356 ASSERT((ipsa)->ipsa_refcnt != 0); \
360 * Decrement the reference count on the SA.
361 * In architectures e.g sun4u, where atomic_add_32_nv is just
362 * a cas, we need to maintain the right memory barrier semantics
363 * as that of mutex_exit i.e all the loads and stores should complete
364 * before the cas is executed. membar_exit() does that here.
367 #define IPSA_REFRELE(ipsa) { \
368 ASSERT((ipsa)->ipsa_refcnt != 0); \
369 membar_exit(); \
370 if (atomic_dec_32_nv(&(ipsa)->ipsa_refcnt) == 0) \
371 ((ipsa)->ipsa_freefunc)(ipsa); \
375 * Security association hash macros and definitions. For now, assume the
376 * IPsec model, and hash outbounds on destination address, and inbounds on
377 * SPI.
380 #define IPSEC_DEFAULT_HASH_SIZE 256
382 #define INBOUND_HASH(sadb, spi) ((spi) % ((sadb)->sdb_hashsize))
383 #define OUTBOUND_HASH_V4(sadb, v4addr) ((v4addr) % ((sadb)->sdb_hashsize))
384 #define OUTBOUND_HASH_V6(sadb, v6addr) OUTBOUND_HASH_V4((sadb), \
385 (*(uint32_t *)&(v6addr)) ^ (*(((uint32_t *)&(v6addr)) + 1)) ^ \
386 (*(((uint32_t *)&(v6addr)) + 2)) ^ (*(((uint32_t *)&(v6addr)) + 3)))
389 * Syntactic sugar to find the appropriate hash bucket directly.
392 #define INBOUND_BUCKET(sadb, spi) &(((sadb)->sdb_if)[INBOUND_HASH(sadb, spi)])
393 #define OUTBOUND_BUCKET_V4(sadb, v4addr) \
394 &(((sadb)->sdb_of)[OUTBOUND_HASH_V4(sadb, v4addr)])
395 #define OUTBOUND_BUCKET_V6(sadb, v6addr) \
396 &(((sadb)->sdb_of)[OUTBOUND_HASH_V6(sadb, v6addr)])
398 #define IPSA_F_PFS SADB_SAFLAGS_PFS /* PFS in use for this SA? */
399 #define IPSA_F_NOREPFLD SADB_SAFLAGS_NOREPLAY /* No replay field, for */
400 /* backward compat. */
401 #define IPSA_F_USED SADB_X_SAFLAGS_USED /* SA has been used. */
402 #define IPSA_F_UNIQUE SADB_X_SAFLAGS_UNIQUE /* SA is unique */
403 #define IPSA_F_AALG1 SADB_X_SAFLAGS_AALG1 /* Auth alg flag 1 */
404 #define IPSA_F_AALG2 SADB_X_SAFLAGS_AALG2 /* Auth alg flag 2 */
405 #define IPSA_F_EALG1 SADB_X_SAFLAGS_EALG1 /* Encrypt alg flag 1 */
406 #define IPSA_F_EALG2 SADB_X_SAFLAGS_EALG2 /* Encrypt alg flag 2 */
408 #define IPSA_F_ASYNC 0x200000 /* Call KCF asynchronously? */
409 #define IPSA_F_NATT_LOC SADB_X_SAFLAGS_NATT_LOC
410 #define IPSA_F_NATT_REM SADB_X_SAFLAGS_NATT_REM
411 #define IPSA_F_BEHIND_NAT SADB_X_SAFLAGS_NATTED
412 #define IPSA_F_NATT (SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM | \
413 SADB_X_SAFLAGS_NATTED)
414 #define IPSA_F_CINVALID 0x40000 /* SA shouldn't be cached */
415 #define IPSA_F_PAIRED SADB_X_SAFLAGS_PAIRED /* SA is one of a pair */
416 #define IPSA_F_OUTBOUND SADB_X_SAFLAGS_OUTBOUND /* SA direction bit */
417 #define IPSA_F_INBOUND SADB_X_SAFLAGS_INBOUND /* SA direction bit */
418 #define IPSA_F_TUNNEL SADB_X_SAFLAGS_TUNNEL
420 * These flags are only defined here to prevent a flag value collision.
422 #define IPSA_F_COMBINED SADB_X_SAFLAGS_EALG1 /* Defined in pfkeyv2.h */
423 #define IPSA_F_COUNTERMODE SADB_X_SAFLAGS_EALG2 /* Defined in pfkeyv2.h */
426 * Sets of flags that are allowed to by set or modified by PF_KEY apps.
428 #define AH_UPDATE_SETTABLE_FLAGS \
429 (SADB_X_SAFLAGS_PAIRED | SADB_SAFLAGS_NOREPLAY | \
430 SADB_X_SAFLAGS_OUTBOUND | SADB_X_SAFLAGS_INBOUND | \
431 SADB_X_SAFLAGS_KM1 | SADB_X_SAFLAGS_KM2 | \
432 SADB_X_SAFLAGS_KM3 | SADB_X_SAFLAGS_KM4)
434 /* AH can't set NAT flags (or even use NAT). Add NAT flags to the ESP set. */
435 #define ESP_UPDATE_SETTABLE_FLAGS (AH_UPDATE_SETTABLE_FLAGS | IPSA_F_NATT)
437 #define AH_ADD_SETTABLE_FLAGS \
438 (AH_UPDATE_SETTABLE_FLAGS | SADB_X_SAFLAGS_AALG1 | \
439 SADB_X_SAFLAGS_AALG2 | SADB_X_SAFLAGS_TUNNEL | \
440 SADB_SAFLAGS_NOREPLAY)
442 /* AH can't set NAT flags (or even use NAT). Add NAT flags to the ESP set. */
443 #define ESP_ADD_SETTABLE_FLAGS (AH_ADD_SETTABLE_FLAGS | IPSA_F_NATT | \
444 SADB_X_SAFLAGS_EALG1 | SADB_X_SAFLAGS_EALG2)
448 /* SA states are important for handling UPDATE PF_KEY messages. */
449 #define IPSA_STATE_LARVAL SADB_SASTATE_LARVAL
450 #define IPSA_STATE_MATURE SADB_SASTATE_MATURE
451 #define IPSA_STATE_DYING SADB_SASTATE_DYING
452 #define IPSA_STATE_DEAD SADB_SASTATE_DEAD
453 #define IPSA_STATE_IDLE SADB_X_SASTATE_IDLE
454 #define IPSA_STATE_ACTIVE_ELSEWHERE SADB_X_SASTATE_ACTIVE_ELSEWHERE
457 * NOTE: If the document authors do things right in defining algorithms, we'll
458 * probably have flags for what all is here w.r.t. replay, ESP w/HMAC,
459 * etc.
462 #define IPSA_T_ACQUIRE SEC_TYPE_NONE /* If this typed returned, sa needed */
463 #define IPSA_T_AH SEC_TYPE_AH /* IPsec AH association */
464 #define IPSA_T_ESP SEC_TYPE_ESP /* IPsec ESP association */
466 #define IPSA_AALG_NONE SADB_AALG_NONE /* No auth. algorithm */
467 #define IPSA_AALG_MD5H SADB_AALG_MD5HMAC /* MD5-HMAC algorithm */
468 #define IPSA_AALG_SHA1H SADB_AALG_SHA1HMAC /* SHA1-HMAC algorithm */
470 #define IPSA_EALG_NONE SADB_EALG_NONE /* No encryption algorithm */
471 #define IPSA_EALG_DES_CBC SADB_EALG_DESCBC
472 #define IPSA_EALG_3DES SADB_EALG_3DESCBC
475 * Protect each ipsa_t bucket (and linkage) with a lock.
478 typedef struct isaf_s {
479 ipsa_t *isaf_ipsa;
480 kmutex_t isaf_lock;
481 uint64_t isaf_gen;
482 } isaf_t;
485 * ACQUIRE record. If AH/ESP/whatever cannot find an association for outbound
486 * traffic, it sends up an SADB_ACQUIRE message and create an ACQUIRE record.
489 #define IPSACQ_MAXPACKETS 4 /* Number of packets that can be queued up */
490 /* waiting for an ACQUIRE to finish. */
492 typedef struct ipsacq_s {
493 struct ipsacq_s *ipsacq_next;
494 struct ipsacq_s **ipsacq_ptpn;
495 kmutex_t *ipsacq_linklock;
496 struct ipsec_policy_s *ipsacq_policy;
497 struct ipsec_action_s *ipsacq_act;
499 sa_family_t ipsacq_addrfam; /* Address family. */
500 sa_family_t ipsacq_inneraddrfam; /* Inner-packet address family. */
501 int ipsacq_numpackets; /* How many packets queued up so far. */
502 uint32_t ipsacq_seq; /* PF_KEY sequence number. */
503 uint64_t ipsacq_unique_id; /* Unique ID for SAs that need it. */
505 kmutex_t ipsacq_lock; /* Protects non-linkage fields. */
506 time_t ipsacq_expire; /* Wall-clock time when this record expires. */
507 mblk_t *ipsacq_mp; /* List of datagrams waiting for an SA. */
509 /* These two point inside the last mblk inserted. */
510 uint32_t *ipsacq_srcaddr;
511 uint32_t *ipsacq_dstaddr;
513 /* Cache these instead of point so we can mask off accordingly */
514 uint32_t ipsacq_innersrc[IPSA_MAX_ADDRLEN];
515 uint32_t ipsacq_innerdst[IPSA_MAX_ADDRLEN];
517 /* These may change per-acquire. */
518 uint16_t ipsacq_srcport;
519 uint16_t ipsacq_dstport;
520 uint8_t ipsacq_proto;
521 uint8_t ipsacq_inner_proto;
522 uint8_t ipsacq_innersrcpfx;
523 uint8_t ipsacq_innerdstpfx;
525 /* icmp type and code of triggering packet (if applicable) */
526 uint8_t ipsacq_icmp_type;
527 uint8_t ipsacq_icmp_code;
529 } ipsacq_t;
532 * Kernel-generated sequence numbers will be no less than 0x80000000 to
533 * forestall any cretinous problems with manual keying accidentally updating
534 * an ACQUIRE entry.
536 #define IACQF_LOWEST_SEQ 0x80000000
538 #define SADB_AGE_INTERVAL_DEFAULT 8000
541 * ACQUIRE fanout. Protect each linkage with a lock.
544 typedef struct iacqf_s {
545 ipsacq_t *iacqf_ipsacq;
546 kmutex_t iacqf_lock;
547 } iacqf_t;
550 * A (network protocol, ipsec protocol) specific SADB.
551 * (i.e., one each for {ah, esp} and {v4, v6}.
553 * Keep outbound assocs in a simple hash table for now.
554 * One danger point, multiple SAs for a single dest will clog a bucket.
555 * For the future, consider two-level hashing (2nd hash on IPC?), then probe.
558 typedef struct sadb_s
560 isaf_t *sdb_of;
561 isaf_t *sdb_if;
562 iacqf_t *sdb_acq;
563 int sdb_hashsize;
564 } sadb_t;
567 * A pair of SADB's (one for v4, one for v6), and related state.
570 typedef struct sadbp_s
572 uint32_t s_satype;
573 uint32_t *s_acquire_timeout;
574 sadb_t s_v4;
575 sadb_t s_v6;
576 uint32_t s_addflags;
577 uint32_t s_updateflags;
578 } sadbp_t;
581 * A pair of SA's for a single connection, the structure contains a
582 * pointer to a SA and the SA its paired with (opposite direction) as well
583 * as the SA's respective hash buckets.
585 typedef struct ipsap_s
587 boolean_t in_inbound_table;
588 isaf_t *ipsap_bucket;
589 ipsa_t *ipsap_sa_ptr;
590 isaf_t *ipsap_pbucket;
591 ipsa_t *ipsap_psa_ptr;
592 } ipsap_t;
594 typedef struct templist_s
596 ipsa_t *ipsa;
597 struct templist_s *next;
598 } templist_t;
600 /* Pointer to an all-zeroes IPv6 address. */
601 #define ALL_ZEROES_PTR ((uint32_t *)&ipv6_all_zeros)
604 * Form unique id from ip_xmit_attr_t.
606 #define SA_FORM_UNIQUE_ID(ixa) \
607 SA_UNIQUE_ID((ixa)->ixa_ipsec_src_port, (ixa)->ixa_ipsec_dst_port, \
608 (((ixa)->ixa_flags & IXAF_IPSEC_TUNNEL) ? \
609 ((ixa)->ixa_ipsec_inaf == AF_INET6 ? \
610 IPPROTO_IPV6 : IPPROTO_ENCAP) : \
611 (ixa)->ixa_ipsec_proto), \
612 (((ixa)->ixa_flags & IXAF_IPSEC_TUNNEL) ? \
613 (ixa)->ixa_ipsec_proto : 0))
616 * This macro is used to generate unique ids (along with the addresses, both
617 * inner and outer) for outbound datagrams that require unique SAs.
619 * N.B. casts and unsigned shift amounts discourage unwarranted
620 * sign extension of dstport, proto, and iproto.
622 * Unique ID is 64-bits allocated as follows (pardon my big-endian bias):
624 * 6 4 43 33 11
625 * 3 7 09 21 65 0
626 * +---------------*-------+-------+--------------+---------------+
627 * | MUST-BE-ZERO |<iprot>|<proto>| <src port> | <dest port> |
628 * +---------------*-------+-------+--------------+---------------+
630 * If there are inner addresses (tunnel mode) the ports come from the
631 * inner addresses. If there are no inner addresses, the ports come from
632 * the outer addresses (transport mode). Tunnel mode MUST have <proto>
633 * set to either IPPROTO_ENCAP or IPPPROTO_IPV6.
635 #define SA_UNIQUE_ID(srcport, dstport, proto, iproto) \
636 ((srcport) | ((uint64_t)(dstport) << 16U) | \
637 ((uint64_t)(proto) << 32U) | ((uint64_t)(iproto) << 40U))
640 * SA_UNIQUE_MASK generates a mask value to use when comparing the unique value
641 * from a packet to an SA.
644 #define SA_UNIQUE_MASK(srcport, dstport, proto, iproto) \
645 SA_UNIQUE_ID((srcport != 0) ? 0xffff : 0, \
646 (dstport != 0) ? 0xffff : 0, \
647 (proto != 0) ? 0xff : 0, \
648 (iproto != 0) ? 0xff : 0)
651 * Decompose unique id back into its original fields.
653 #define SA_IPROTO(ipsa) ((ipsa)->ipsa_unique_id>>40)&0xff
654 #define SA_PROTO(ipsa) ((ipsa)->ipsa_unique_id>>32)&0xff
655 #define SA_SRCPORT(ipsa) ((ipsa)->ipsa_unique_id & 0xffff)
656 #define SA_DSTPORT(ipsa) (((ipsa)->ipsa_unique_id >> 16) & 0xffff)
658 typedef struct ipsa_query_s ipsa_query_t;
660 typedef boolean_t (*ipsa_match_fn_t)(ipsa_query_t *, ipsa_t *);
662 #define IPSA_NMATCH 10
665 * SADB query structure.
667 * Provide a generalized mechanism for matching entries in the SADB;
668 * one of these structures is initialized using sadb_form_query(),
669 * and then can be used as a parameter to sadb_match_query() which returns
670 * B_TRUE if the SA matches the query.
672 * Under the covers, sadb_form_query populates the matchers[] array with
673 * functions which are called one at a time until one fails to match.
675 struct ipsa_query_s {
676 uint32_t req, match;
677 sadb_address_t *srcext, *dstext;
678 sadb_ident_t *srcid, *dstid;
679 sadb_x_kmc_t *kmcext;
680 sadb_sa_t *assoc;
681 uint32_t spi;
682 struct sockaddr_in *src;
683 struct sockaddr_in6 *src6;
684 struct sockaddr_in *dst;
685 struct sockaddr_in6 *dst6;
686 sa_family_t af;
687 uint32_t *srcaddr, *dstaddr;
688 uint32_t ifindex;
689 uint32_t kmc, kmp;
690 char *didstr, *sidstr;
691 uint16_t didtype, sidtype;
692 sadbp_t *spp;
693 sadb_t *sp;
694 isaf_t *inbound, *outbound;
695 uint32_t outhash;
696 uint32_t inhash;
697 ipsa_match_fn_t matchers[IPSA_NMATCH];
700 #define IPSA_Q_SA 0x00000001
701 #define IPSA_Q_DST 0x00000002
702 #define IPSA_Q_SRC 0x00000004
703 #define IPSA_Q_DSTID 0x00000008
704 #define IPSA_Q_SRCID 0x00000010
705 #define IPSA_Q_KMC 0x00000020
706 #define IPSA_Q_INBOUND 0x00000040 /* fill in inbound isaf_t */
707 #define IPSA_Q_OUTBOUND 0x00000080 /* fill in outbound isaf_t */
709 int sadb_form_query(keysock_in_t *, uint32_t, uint32_t, ipsa_query_t *, int *);
710 boolean_t sadb_match_query(ipsa_query_t *q, ipsa_t *sa);
714 * All functions that return an ipsa_t will return it with IPSA_REFHOLD()
715 * already called.
718 /* SA retrieval (inbound and outbound) */
719 ipsa_t *ipsec_getassocbyspi(isaf_t *, uint32_t, uint32_t *, uint32_t *,
720 sa_family_t);
721 ipsa_t *ipsec_getassocbyconn(isaf_t *, ip_xmit_attr_t *, uint32_t *, uint32_t *,
722 sa_family_t, uint8_t);
724 /* SA insertion. */
725 int sadb_insertassoc(ipsa_t *, isaf_t *);
727 /* SA table construction and destruction. */
728 void sadbp_init(const char *name, sadbp_t *, int, int, netstack_t *);
729 void sadbp_flush(sadbp_t *, netstack_t *);
730 void sadbp_destroy(sadbp_t *, netstack_t *);
732 /* SA insertion and deletion. */
733 int sadb_insertassoc(ipsa_t *, isaf_t *);
734 void sadb_unlinkassoc(ipsa_t *);
736 /* Support routines to interface a keysock consumer to PF_KEY. */
737 mblk_t *sadb_keysock_out(minor_t);
738 int sadb_hardsoftchk(sadb_lifetime_t *, sadb_lifetime_t *, sadb_lifetime_t *);
739 void sadb_pfkey_echo(queue_t *, mblk_t *, sadb_msg_t *, struct keysock_in_s *,
740 ipsa_t *);
741 void sadb_pfkey_error(queue_t *, mblk_t *, int, int, uint_t);
742 void sadb_keysock_hello(queue_t **, queue_t *, mblk_t *, void (*)(void *),
743 void *, timeout_id_t *, int);
744 int sadb_addrcheck(queue_t *, mblk_t *, sadb_ext_t *, uint_t, netstack_t *);
745 boolean_t sadb_addrfix(keysock_in_t *, queue_t *, mblk_t *, netstack_t *);
746 int sadb_addrset(ire_t *);
747 int sadb_delget_sa(mblk_t *, keysock_in_t *, sadbp_t *, int *, queue_t *,
748 uint8_t);
750 int sadb_purge_sa(mblk_t *, keysock_in_t *, sadb_t *, int *, queue_t *);
751 int sadb_common_add(queue_t *, mblk_t *, sadb_msg_t *,
752 keysock_in_t *, isaf_t *, isaf_t *, ipsa_t *, boolean_t, boolean_t, int *,
753 netstack_t *, sadbp_t *);
754 void sadb_set_usetime(ipsa_t *);
755 boolean_t sadb_age_bytes(queue_t *, ipsa_t *, uint64_t, boolean_t);
756 int sadb_update_sa(mblk_t *, keysock_in_t *, mblk_t **, sadbp_t *,
757 int *, queue_t *, int (*)(mblk_t *, keysock_in_t *, int *, netstack_t *),
758 netstack_t *, uint8_t);
759 void sadb_acquire(mblk_t *, ip_xmit_attr_t *, boolean_t, boolean_t);
760 void gcm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
761 crypto_data_t *);
762 void ccm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
763 crypto_data_t *);
764 void cbc_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
765 crypto_data_t *);
767 void sadb_destroy_acquire(ipsacq_t *, netstack_t *);
768 struct ipsec_stack;
769 ipsa_t *sadb_getspi(keysock_in_t *, uint32_t, int *, netstack_t *);
770 void sadb_in_acquire(sadb_msg_t *, sadbp_t *, queue_t *, netstack_t *);
771 boolean_t sadb_replay_check(ipsa_t *, uint32_t);
772 boolean_t sadb_replay_peek(ipsa_t *, uint32_t);
773 int sadb_dump(queue_t *, mblk_t *, keysock_in_t *, sadb_t *);
774 void sadb_replay_delete(ipsa_t *);
775 void sadb_ager(sadb_t *, queue_t *, int, netstack_t *);
777 timeout_id_t sadb_retimeout(hrtime_t, queue_t *, void (*)(void *), void *,
778 uint_t *, uint_t, short);
779 void sadb_sa_refrele(void *target);
780 mblk_t *sadb_set_lpkt(ipsa_t *, mblk_t *, ip_recv_attr_t *);
781 mblk_t *sadb_clear_lpkt(ipsa_t *);
782 void sadb_buf_pkt(ipsa_t *, mblk_t *, ip_recv_attr_t *);
783 void sadb_clear_buf_pkt(void *ipkt);
785 /* Note that buf_pkt is the product of ip_recv_attr_to_mblk() */
786 #define HANDLE_BUF_PKT(taskq, stack, dropper, buf_pkt) \
788 if (buf_pkt != NULL) { \
789 if (taskq_dispatch(taskq, sadb_clear_buf_pkt, \
790 (void *) buf_pkt, TQ_NOSLEEP) == 0) { \
791 /* Dispatch was unsuccessful drop the packets. */ \
792 mblk_t *tmp; \
793 while (buf_pkt != NULL) { \
794 tmp = buf_pkt->b_next; \
795 buf_pkt->b_next = NULL; \
796 buf_pkt = ip_recv_attr_free_mblk(buf_pkt); \
797 ip_drop_packet(buf_pkt, B_TRUE, NULL, \
798 DROPPER(stack, \
799 ipds_sadb_inidle_timeout), \
800 &dropper); \
801 buf_pkt = tmp; \
808 * Two IPsec rate-limiting routines.
810 /*PRINTFLIKE6*/
811 extern void ipsec_rl_strlog(netstack_t *, short, short, char,
812 ushort_t, char *, ...)
813 __KPRINTFLIKE(6);
814 extern void ipsec_assocfailure(short, short, char, ushort_t, char *, uint32_t,
815 void *, int, netstack_t *);
818 * Algorithm types.
821 #define IPSEC_NALGTYPES 2
823 typedef enum ipsec_algtype {
824 IPSEC_ALG_AUTH = 0,
825 IPSEC_ALG_ENCR = 1,
826 IPSEC_ALG_ALL = 2
827 } ipsec_algtype_t;
830 * Definitions as per IPsec/ISAKMP DOI.
833 #define IPSEC_MAX_ALGS 256
834 #define PROTO_IPSEC_AH 2
835 #define PROTO_IPSEC_ESP 3
838 * Common algorithm info.
840 typedef struct ipsec_alginfo
842 uint8_t alg_id;
843 uint8_t alg_flags;
844 uint16_t *alg_key_sizes;
845 uint16_t *alg_block_sizes;
846 uint16_t *alg_params;
847 uint16_t alg_nkey_sizes;
848 uint16_t alg_ivlen;
849 uint16_t alg_icvlen;
850 uint8_t alg_saltlen;
851 uint16_t alg_nblock_sizes;
852 uint16_t alg_nparams;
853 uint16_t alg_minbits;
854 uint16_t alg_maxbits;
855 uint16_t alg_datalen;
857 * increment: number of bits from keysize to keysize
858 * default: # of increments from min to default key len
860 uint16_t alg_increment;
861 uint16_t alg_default;
862 uint16_t alg_default_bits;
864 * Min, max, and default key sizes effectively supported
865 * by the encryption framework.
867 uint16_t alg_ef_minbits;
868 uint16_t alg_ef_maxbits;
869 uint16_t alg_ef_default;
870 uint16_t alg_ef_default_bits;
872 crypto_mech_type_t alg_mech_type; /* KCF mechanism type */
873 crypto_mech_name_t alg_mech_name; /* KCF mechanism name */
874 } ipsec_alginfo_t;
876 #define alg_datalen alg_block_sizes[0]
877 #define ALG_VALID(_alg) ((_alg)->alg_flags & ALG_FLAG_VALID)
880 * Software crypto execution mode.
882 typedef enum {
883 IPSEC_ALGS_EXEC_SYNC = 0,
884 IPSEC_ALGS_EXEC_ASYNC = 1
885 } ipsec_algs_exec_mode_t;
887 extern void ipsec_alg_reg(ipsec_algtype_t, ipsec_alginfo_t *, netstack_t *);
888 extern void ipsec_alg_unreg(ipsec_algtype_t, uint8_t, netstack_t *);
889 extern void ipsec_alg_fix_min_max(ipsec_alginfo_t *, ipsec_algtype_t,
890 netstack_t *ns);
891 extern void alg_flag_check(ipsec_alginfo_t *);
892 extern void ipsec_alg_free(ipsec_alginfo_t *);
893 extern void ipsec_register_prov_update(void);
894 extern void sadb_alg_update(ipsec_algtype_t, uint8_t, boolean_t, netstack_t *);
897 * Context templates management.
900 #define IPSEC_CTX_TMPL_ALLOC ((crypto_ctx_template_t)-1)
901 #define IPSEC_CTX_TMPL(_sa, _which, _type, _tmpl) { \
902 if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) { \
903 mutex_enter(&assoc->ipsa_lock); \
904 if ((_sa)->_which == IPSEC_CTX_TMPL_ALLOC) { \
905 ipsec_stack_t *ipss; \
907 ipss = assoc->ipsa_netstack->netstack_ipsec; \
908 rw_enter(&ipss->ipsec_alg_lock, RW_READER); \
909 (void) ipsec_create_ctx_tmpl(_sa, _type); \
910 rw_exit(&ipss->ipsec_alg_lock); \
912 mutex_exit(&assoc->ipsa_lock); \
913 if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) \
914 _tmpl = NULL; \
918 extern int ipsec_create_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
919 extern void ipsec_destroy_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
921 /* key checking */
922 extern int ipsec_check_key(crypto_mech_type_t, sadb_key_t *, boolean_t, int *);
924 typedef struct ipsec_kstats_s {
925 kstat_named_t esp_stat_in_requests;
926 kstat_named_t esp_stat_in_discards;
927 kstat_named_t esp_stat_lookup_failure;
928 kstat_named_t ah_stat_in_requests;
929 kstat_named_t ah_stat_in_discards;
930 kstat_named_t ah_stat_lookup_failure;
931 kstat_named_t sadb_acquire_maxpackets;
932 kstat_named_t sadb_acquire_qhiwater;
933 } ipsec_kstats_t;
936 * (ipss)->ipsec_kstats is equal to (ipss)->ipsec_ksp->ks_data if
937 * kstat_create_netstack for (ipss)->ipsec_ksp succeeds, but when it
938 * fails, it will be NULL. Note this is done for all stack instances,
939 * so it *could* fail. hence a non-NULL checking is done for
940 * IP_ESP_BUMP_STAT, IP_AH_BUMP_STAT and IP_ACQUIRE_STAT
942 #define IP_ESP_BUMP_STAT(ipss, x) \
943 do { \
944 if ((ipss)->ipsec_kstats != NULL) \
945 ((ipss)->ipsec_kstats->esp_stat_ ## x).value.ui64++; \
946 _NOTE(CONSTCOND) \
947 } while (0)
949 #define IP_AH_BUMP_STAT(ipss, x) \
950 do { \
951 if ((ipss)->ipsec_kstats != NULL) \
952 ((ipss)->ipsec_kstats->ah_stat_ ## x).value.ui64++; \
953 _NOTE(CONSTCOND) \
954 } while (0)
956 #define IP_ACQUIRE_STAT(ipss, val, new) \
957 do { \
958 if ((ipss)->ipsec_kstats != NULL && \
959 ((uint64_t)(new)) > \
960 ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64) \
961 ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64 = \
962 ((uint64_t)(new)); \
963 _NOTE(CONSTCOND) \
964 } while (0)
967 #ifdef __cplusplus
969 #endif
971 #endif /* _INET_SADB_H */