8927 sadb_x_kmc_t's KM cookie should be 64-bits
[unleashed.git] / usr / src / uts / common / inet / sadb.h
blob45750fb0c926e8832372f4351461069810952f1b
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved.
25 * Copyright 2017 Joyent, Inc.
28 #ifndef _INET_SADB_H
29 #define _INET_SADB_H
31 #ifdef __cplusplus
32 extern "C" {
33 #endif
35 #include <inet/ipsec_info.h>
36 #include <sys/crypto/common.h>
37 #include <sys/crypto/api.h>
38 #include <sys/note.h>
40 #define IPSA_MAX_ADDRLEN 4 /* Max address len. (in 32-bits) for an SA. */
42 #define MAXSALTSIZE 8
45 * For combined mode ciphers, store the crypto_mechanism_t in the
46 * per-packet ipsec_in_t/ipsec_out_t structures. This is because the PARAMS
47 * and nonce values change for each packet. For non-combined mode
48 * ciphers, these values are constant for the life of the SA.
50 typedef struct ipsa_cm_mech_s {
51 crypto_mechanism_t combined_mech;
52 union {
53 CK_AES_CCM_PARAMS paramu_ccm;
54 CK_AES_GCM_PARAMS paramu_gcm;
55 } paramu;
56 uint8_t nonce[MAXSALTSIZE + sizeof (uint64_t)];
57 #define param_ulMACSize paramu.paramu_ccm.ulMACSize
58 #define param_ulNonceSize paramu.paramu_ccm.ipsa_ulNonceSize
59 #define param_ulAuthDataSize paramu.paramu_ccm.ipsa_ulAuthDataSize
60 #define param_ulDataSize paramu.paramu_ccm.ipsa_ulDataSize
61 #define param_nonce paramu.paramu_ccm.nonce
62 #define param_authData paramu.paramu_ccm.authData
63 #define param_pIv paramu.paramu_gcm.ipsa_pIv
64 #define param_ulIvLen paramu.paramu_gcm.ulIvLen
65 #define param_ulIvBits paramu.paramu_gcm.ulIvBits
66 #define param_pAAD paramu.paramu_gcm.pAAD
67 #define param_ulAADLen paramu.paramu_gcm.ulAADLen
68 #define param_ulTagBits paramu.paramu_gcm.ulTagBits
69 } ipsa_cm_mech_t;
72 * The Initialization Vector (also known as IV or Nonce) used to
73 * initialize the Block Cipher, is made up of a Counter and a Salt.
74 * The Counter is fixed at 64 bits and is incremented for each packet.
75 * The Salt value can be any whole byte value upto 64 bits. This is
76 * algorithm mode specific and can be configured with ipsecalgs(1m).
78 * We only support whole byte salt lengths, this is because the salt is
79 * stored in an array of uint8_t's. This is enforced by ipsecalgs(1m)
80 * which configures the salt length as a number of bytes. Checks are
81 * made to ensure the salt length defined in ipsecalgs(1m) fits in
82 * the ipsec_nonce_t.
84 * The Salt value remains constant for the life of the SA, the Salt is
85 * know to both peers, but NOT transmitted on the network. The Counter
86 * portion of the nonce is transmitted over the network with each packet
87 * and is confusingly described as the Initialization Vector by RFCs
88 * 4309/4106.
90 * The maximum Initialization Vector length is 128 bits, if the actual
91 * size is less, its padded internally by the algorithm.
93 * The nonce structure is defined like this in the SA (ipsa_t)to ensure
94 * the Initilization Vector (counter) is 64 bit aligned, because it will
95 * be incremented as an uint64_t. The nonce as used by the algorithms is
96 * a straight uint8_t array.
98 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
99 * | | | | |x|x|x|x| |
100 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
101 * salt_offset <------>
102 * ipsa_saltlen <------->
103 * ipsa_nonce_buf------^
104 * ipsa_salt-------------~~~~~~^
105 * ipsa_nonce------------~~~~~~^
106 * ipsa_iv-----------------------------^
108 typedef struct ipsec_nonce_s {
109 uint8_t salt[MAXSALTSIZE];
110 uint64_t iv;
111 } ipsec_nonce_t;
114 * IP security association. Synchronization assumes 32-bit loads, so
115 * the 64-bit quantities can't even be be read w/o locking it down!
118 /* keying info */
119 typedef struct ipsa_key_s {
120 uint8_t *sak_key; /* Algorithm key. */
121 uint_t sak_keylen; /* Algorithm key length (in bytes). */
122 uint_t sak_keybits; /* Algorithm key length (in bits) */
123 uint_t sak_algid; /* Algorithm ID number. */
124 } ipsa_key_t;
126 typedef struct ipsa_s {
127 struct ipsa_s *ipsa_next; /* Next in hash bucket */
128 struct ipsa_s **ipsa_ptpn; /* Pointer to previous next pointer. */
129 kmutex_t *ipsa_linklock; /* Pointer to hash-chain lock. */
130 void (*ipsa_freefunc)(struct ipsa_s *); /* freeassoc function */
131 void (*ipsa_noncefunc)(struct ipsa_s *, uchar_t *,
132 uint_t, uchar_t *, ipsa_cm_mech_t *, crypto_data_t *);
134 * NOTE: I may need more pointers, depending on future SA
135 * requirements.
137 ipsa_key_t ipsa_authkeydata;
138 #define ipsa_authkey ipsa_authkeydata.sak_key
139 #define ipsa_authkeylen ipsa_authkeydata.sak_keylen
140 #define ipsa_authkeybits ipsa_authkeydata.sak_keybits
141 #define ipsa_auth_alg ipsa_authkeydata.sak_algid
142 ipsa_key_t ipsa_encrkeydata;
143 #define ipsa_encrkey ipsa_encrkeydata.sak_key
144 #define ipsa_encrkeylen ipsa_encrkeydata.sak_keylen
145 #define ipsa_encrkeybits ipsa_encrkeydata.sak_keybits
146 #define ipsa_encr_alg ipsa_encrkeydata.sak_algid
148 struct ipsid_s *ipsa_src_cid; /* Source certificate identity */
149 struct ipsid_s *ipsa_dst_cid; /* Destination certificate identity */
150 mblk_t *ipsa_lpkt; /* Packet received while larval (CAS me) */
151 mblk_t *ipsa_bpkt_head; /* Packets received while idle */
152 mblk_t *ipsa_bpkt_tail;
153 #define SADB_MAX_IDLEPKTS 100
154 uint8_t ipsa_mblkcnt; /* Number of packets received while idle */
157 * PF_KEYv2 supports a replay window size of 255. Hence there is a
158 * need a bit vector to support a replay window of 255. 256 is a nice
159 * round number, so I support that.
161 * Use an array of uint64_t for best performance on 64-bit
162 * processors. (And hope that 32-bit compilers can handle things
163 * okay.) The " >> 6 " is to get the appropriate number of 64-bit
164 * ints.
166 #define SADB_MAX_REPLAY 256 /* Must be 0 mod 64. */
167 uint64_t ipsa_replay_arr[SADB_MAX_REPLAY >> 6];
169 uint64_t ipsa_unique_id; /* Non-zero for unique SAs */
170 uint64_t ipsa_unique_mask; /* mask value for unique_id */
173 * Reference count semantics:
175 * An SA has a reference count of 1 if something's pointing
176 * to it. This includes being in a hash table. So if an
177 * SA is in a hash table, it has a reference count of at least 1.
179 * When a ptr. to an IPSA is assigned, you MUST REFHOLD after
180 * said assignment. When a ptr. to an IPSA is released
181 * you MUST REFRELE. When the refcount hits 0, REFRELE
182 * will free the IPSA.
184 kmutex_t ipsa_lock; /* Locks non-linkage/refcnt fields. */
185 /* Q: Since I may be doing refcnts differently, will I need cv? */
186 uint_t ipsa_refcnt; /* Reference count. */
189 * The following four time fields are the ones monitored by ah_ager()
190 * and esp_ager() respectively. They are all absolute wall-clock
191 * times. The times of creation (i.e. add time) and first use are
192 * pretty straightforward. The soft and hard expire times are
193 * derived from the times of first use and creation, plus the minimum
194 * expiration times in the fields that follow this.
196 * For example, if I had a hard add time of 30 seconds, and a hard
197 * use time of 15, the ipsa_hardexpiretime would be time of add, plus
198 * 30 seconds. If I USE the SA such that time of first use plus 15
199 * seconds would be earlier than the add time plus 30 seconds, then
200 * ipsa_hardexpiretime would become this earlier time.
202 time_t ipsa_addtime; /* Time I was added. */
203 time_t ipsa_usetime; /* Time of my first use. */
204 time_t ipsa_lastuse; /* Time of my last use. */
205 time_t ipsa_idletime; /* Seconds of idle time */
206 time_t ipsa_last_nat_t_ka; /* Time of my last NAT-T keepalive. */
207 time_t ipsa_softexpiretime; /* Time of my first soft expire. */
208 time_t ipsa_hardexpiretime; /* Time of my first hard expire. */
209 time_t ipsa_idleexpiretime; /* Time of my next idle expire time */
211 struct ipsec_nonce_s *ipsa_nonce_buf;
212 uint8_t *ipsa_nonce;
213 uint_t ipsa_nonce_len;
214 uint8_t *ipsa_salt;
215 uint_t ipsa_saltbits;
216 uint_t ipsa_saltlen;
217 uint64_t *ipsa_iv;
219 uint64_t ipsa_iv_hardexpire;
220 uint64_t ipsa_iv_softexpire;
222 * The following fields are directly reflected in PF_KEYv2 LIFETIME
223 * extensions. The time_ts are in number-of-seconds, and the bytes
224 * are in... bytes.
226 time_t ipsa_softaddlt; /* Seconds of soft lifetime after add. */
227 time_t ipsa_softuselt; /* Seconds of soft lifetime after first use. */
228 time_t ipsa_hardaddlt; /* Seconds of hard lifetime after add. */
229 time_t ipsa_harduselt; /* Seconds of hard lifetime after first use. */
230 time_t ipsa_idleaddlt; /* Seconds of idle time after add */
231 time_t ipsa_idleuselt; /* Seconds of idle time after first use */
232 uint64_t ipsa_softbyteslt; /* Bytes of soft lifetime. */
233 uint64_t ipsa_hardbyteslt; /* Bytes of hard lifetime. */
234 uint64_t ipsa_bytes; /* Bytes encrypted/authed by this SA. */
237 * "Allocations" are a concept mentioned in PF_KEYv2. We do not
238 * support them, except to record them per the PF_KEYv2 spec.
240 uint_t ipsa_softalloc; /* Allocations allowed (soft). */
241 uint_t ipsa_hardalloc; /* Allocations allowed (hard). */
242 uint_t ipsa_alloc; /* Allocations made. */
244 uint_t ipsa_type; /* Type of security association. (AH/etc.) */
245 uint_t ipsa_state; /* State of my association. */
246 uint_t ipsa_replay_wsize; /* Size of replay window */
247 uint32_t ipsa_flags; /* Flags for security association. */
248 uint32_t ipsa_spi; /* Security parameters index. */
249 uint32_t ipsa_replay; /* Highest seen replay value for this SA. */
250 uint32_t ipsa_kmp; /* key management proto */
251 uint64_t ipsa_kmc; /* key management cookie (now 64-bit) */
253 boolean_t ipsa_haspeer; /* Has peer in another table. */
256 * Address storage.
257 * The source address can be INADDR_ANY, IN6ADDR_ANY, etc.
259 * Address families (per sys/socket.h) guide us. We could have just
260 * used sockaddr_storage
262 sa_family_t ipsa_addrfam;
263 sa_family_t ipsa_innerfam; /* Inner AF can be != src/dst AF. */
265 uint32_t ipsa_srcaddr[IPSA_MAX_ADDRLEN];
266 uint32_t ipsa_dstaddr[IPSA_MAX_ADDRLEN];
267 uint32_t ipsa_innersrc[IPSA_MAX_ADDRLEN];
268 uint32_t ipsa_innerdst[IPSA_MAX_ADDRLEN];
270 uint8_t ipsa_innersrcpfx;
271 uint8_t ipsa_innerdstpfx;
273 uint16_t ipsa_inbound_cksum; /* cksum correction for inbound packets */
274 uint16_t ipsa_local_nat_port; /* Local NAT-T port. (0 --> 4500) */
275 uint16_t ipsa_remote_nat_port; /* The other port that isn't 4500 */
277 /* these can only be v4 */
278 uint32_t ipsa_natt_addr_loc;
279 uint32_t ipsa_natt_addr_rem;
282 * icmp type and code. *_end are to specify ranges. if only
283 * a single value, * and *_end are the same value.
285 uint8_t ipsa_icmp_type;
286 uint8_t ipsa_icmp_type_end;
287 uint8_t ipsa_icmp_code;
288 uint8_t ipsa_icmp_code_end;
291 * For the kernel crypto framework.
293 crypto_key_t ipsa_kcfauthkey; /* authentication key */
294 crypto_key_t ipsa_kcfencrkey; /* encryption key */
295 crypto_ctx_template_t ipsa_authtmpl; /* auth context template */
296 crypto_ctx_template_t ipsa_encrtmpl; /* encr context template */
297 crypto_mechanism_t ipsa_amech; /* auth mech type and ICV len */
298 crypto_mechanism_t ipsa_emech; /* encr mech type */
299 size_t ipsa_mac_len; /* auth MAC/ICV length */
300 size_t ipsa_iv_len; /* encr IV length */
301 size_t ipsa_datalen; /* block length in bytes. */
304 * Input and output processing functions called from IP.
305 * The mblk_t is the data; the IPsec information is in the attributes
306 * Returns NULL if the mblk is consumed which it is if there was
307 * a failure or if pending. If failure then
308 * the ipIfInDiscards/OutDiscards counters are increased.
310 mblk_t *(*ipsa_output_func)(mblk_t *, ip_xmit_attr_t *);
311 mblk_t *(*ipsa_input_func)(mblk_t *, void *, ip_recv_attr_t *);
314 * Soft reference to paired SA
316 uint32_t ipsa_otherspi;
317 netstack_t *ipsa_netstack; /* Does not have a netstack_hold */
319 ts_label_t *ipsa_tsl; /* MLS: label attributes */
320 ts_label_t *ipsa_otsl; /* MLS: outer label */
321 uint8_t ipsa_mac_exempt; /* MLS: mac exempt flag */
322 uchar_t ipsa_opt_storage[IP_MAX_OPT_LENGTH];
323 } ipsa_t;
326 * ipsa_t address handling macros. We want these to be inlined, and deal
327 * with 32-bit words to avoid bcmp/bcopy calls.
329 * Assume we only have AF_INET and AF_INET6 addresses for now. Also assume
330 * that we have 32-bit alignment on everything.
332 #define IPSA_IS_ADDR_UNSPEC(addr, fam) ((((uint32_t *)(addr))[0] == 0) && \
333 (((fam) == AF_INET) || (((uint32_t *)(addr))[3] == 0 && \
334 ((uint32_t *)(addr))[2] == 0 && ((uint32_t *)(addr))[1] == 0)))
335 #define IPSA_ARE_ADDR_EQUAL(addr1, addr2, fam) \
336 ((((uint32_t *)(addr1))[0] == ((uint32_t *)(addr2))[0]) && \
337 (((fam) == AF_INET) || \
338 (((uint32_t *)(addr1))[3] == ((uint32_t *)(addr2))[3] && \
339 ((uint32_t *)(addr1))[2] == ((uint32_t *)(addr2))[2] && \
340 ((uint32_t *)(addr1))[1] == ((uint32_t *)(addr2))[1])))
341 #define IPSA_COPY_ADDR(dstaddr, srcaddr, fam) { \
342 ((uint32_t *)(dstaddr))[0] = ((uint32_t *)(srcaddr))[0]; \
343 if ((fam) == AF_INET6) {\
344 ((uint32_t *)(dstaddr))[1] = ((uint32_t *)(srcaddr))[1]; \
345 ((uint32_t *)(dstaddr))[2] = ((uint32_t *)(srcaddr))[2]; \
346 ((uint32_t *)(dstaddr))[3] = ((uint32_t *)(srcaddr))[3]; } }
349 * ipsa_t reference hold/release macros.
351 * If you have a pointer, you REFHOLD. If you are releasing a pointer, you
352 * REFRELE. An ipsa_t that is newly inserted into the table should have
353 * a reference count of 1 (for the table's pointer), plus 1 more for every
354 * pointer that is referencing the ipsa_t.
357 #define IPSA_REFHOLD(ipsa) { \
358 atomic_inc_32(&(ipsa)->ipsa_refcnt); \
359 ASSERT((ipsa)->ipsa_refcnt != 0); \
363 * Decrement the reference count on the SA.
364 * In architectures e.g sun4u, where atomic_add_32_nv is just
365 * a cas, we need to maintain the right memory barrier semantics
366 * as that of mutex_exit i.e all the loads and stores should complete
367 * before the cas is executed. membar_exit() does that here.
370 #define IPSA_REFRELE(ipsa) { \
371 ASSERT((ipsa)->ipsa_refcnt != 0); \
372 membar_exit(); \
373 if (atomic_dec_32_nv(&(ipsa)->ipsa_refcnt) == 0) \
374 ((ipsa)->ipsa_freefunc)(ipsa); \
378 * Security association hash macros and definitions. For now, assume the
379 * IPsec model, and hash outbounds on destination address, and inbounds on
380 * SPI.
383 #define IPSEC_DEFAULT_HASH_SIZE 256
385 #define INBOUND_HASH(sadb, spi) ((spi) % ((sadb)->sdb_hashsize))
386 #define OUTBOUND_HASH_V4(sadb, v4addr) ((v4addr) % ((sadb)->sdb_hashsize))
387 #define OUTBOUND_HASH_V6(sadb, v6addr) OUTBOUND_HASH_V4((sadb), \
388 (*(uint32_t *)&(v6addr)) ^ (*(((uint32_t *)&(v6addr)) + 1)) ^ \
389 (*(((uint32_t *)&(v6addr)) + 2)) ^ (*(((uint32_t *)&(v6addr)) + 3)))
392 * Syntactic sugar to find the appropriate hash bucket directly.
395 #define INBOUND_BUCKET(sadb, spi) &(((sadb)->sdb_if)[INBOUND_HASH(sadb, spi)])
396 #define OUTBOUND_BUCKET_V4(sadb, v4addr) \
397 &(((sadb)->sdb_of)[OUTBOUND_HASH_V4(sadb, v4addr)])
398 #define OUTBOUND_BUCKET_V6(sadb, v6addr) \
399 &(((sadb)->sdb_of)[OUTBOUND_HASH_V6(sadb, v6addr)])
401 #define IPSA_F_PFS SADB_SAFLAGS_PFS /* PFS in use for this SA? */
402 #define IPSA_F_NOREPFLD SADB_SAFLAGS_NOREPLAY /* No replay field, for */
403 /* backward compat. */
404 #define IPSA_F_USED SADB_X_SAFLAGS_USED /* SA has been used. */
405 #define IPSA_F_UNIQUE SADB_X_SAFLAGS_UNIQUE /* SA is unique */
406 #define IPSA_F_AALG1 SADB_X_SAFLAGS_AALG1 /* Auth alg flag 1 */
407 #define IPSA_F_AALG2 SADB_X_SAFLAGS_AALG2 /* Auth alg flag 2 */
408 #define IPSA_F_EALG1 SADB_X_SAFLAGS_EALG1 /* Encrypt alg flag 1 */
409 #define IPSA_F_EALG2 SADB_X_SAFLAGS_EALG2 /* Encrypt alg flag 2 */
411 #define IPSA_F_ASYNC 0x200000 /* Call KCF asynchronously? */
412 #define IPSA_F_NATT_LOC SADB_X_SAFLAGS_NATT_LOC
413 #define IPSA_F_NATT_REM SADB_X_SAFLAGS_NATT_REM
414 #define IPSA_F_BEHIND_NAT SADB_X_SAFLAGS_NATTED
415 #define IPSA_F_NATT (SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM | \
416 SADB_X_SAFLAGS_NATTED)
417 #define IPSA_F_CINVALID 0x40000 /* SA shouldn't be cached */
418 #define IPSA_F_PAIRED SADB_X_SAFLAGS_PAIRED /* SA is one of a pair */
419 #define IPSA_F_OUTBOUND SADB_X_SAFLAGS_OUTBOUND /* SA direction bit */
420 #define IPSA_F_INBOUND SADB_X_SAFLAGS_INBOUND /* SA direction bit */
421 #define IPSA_F_TUNNEL SADB_X_SAFLAGS_TUNNEL
423 * These flags are only defined here to prevent a flag value collision.
425 #define IPSA_F_COMBINED SADB_X_SAFLAGS_EALG1 /* Defined in pfkeyv2.h */
426 #define IPSA_F_COUNTERMODE SADB_X_SAFLAGS_EALG2 /* Defined in pfkeyv2.h */
429 * Sets of flags that are allowed to by set or modified by PF_KEY apps.
431 #define AH_UPDATE_SETTABLE_FLAGS \
432 (SADB_X_SAFLAGS_PAIRED | SADB_SAFLAGS_NOREPLAY | \
433 SADB_X_SAFLAGS_OUTBOUND | SADB_X_SAFLAGS_INBOUND | \
434 SADB_X_SAFLAGS_KM1 | SADB_X_SAFLAGS_KM2 | \
435 SADB_X_SAFLAGS_KM3 | SADB_X_SAFLAGS_KM4)
437 /* AH can't set NAT flags (or even use NAT). Add NAT flags to the ESP set. */
438 #define ESP_UPDATE_SETTABLE_FLAGS (AH_UPDATE_SETTABLE_FLAGS | IPSA_F_NATT)
440 #define AH_ADD_SETTABLE_FLAGS \
441 (AH_UPDATE_SETTABLE_FLAGS | SADB_X_SAFLAGS_AALG1 | \
442 SADB_X_SAFLAGS_AALG2 | SADB_X_SAFLAGS_TUNNEL | \
443 SADB_SAFLAGS_NOREPLAY)
445 /* AH can't set NAT flags (or even use NAT). Add NAT flags to the ESP set. */
446 #define ESP_ADD_SETTABLE_FLAGS (AH_ADD_SETTABLE_FLAGS | IPSA_F_NATT | \
447 SADB_X_SAFLAGS_EALG1 | SADB_X_SAFLAGS_EALG2)
451 /* SA states are important for handling UPDATE PF_KEY messages. */
452 #define IPSA_STATE_LARVAL SADB_SASTATE_LARVAL
453 #define IPSA_STATE_MATURE SADB_SASTATE_MATURE
454 #define IPSA_STATE_DYING SADB_SASTATE_DYING
455 #define IPSA_STATE_DEAD SADB_SASTATE_DEAD
456 #define IPSA_STATE_IDLE SADB_X_SASTATE_IDLE
457 #define IPSA_STATE_ACTIVE_ELSEWHERE SADB_X_SASTATE_ACTIVE_ELSEWHERE
460 * NOTE: If the document authors do things right in defining algorithms, we'll
461 * probably have flags for what all is here w.r.t. replay, ESP w/HMAC,
462 * etc.
465 #define IPSA_T_ACQUIRE SEC_TYPE_NONE /* If this typed returned, sa needed */
466 #define IPSA_T_AH SEC_TYPE_AH /* IPsec AH association */
467 #define IPSA_T_ESP SEC_TYPE_ESP /* IPsec ESP association */
469 #define IPSA_AALG_NONE SADB_AALG_NONE /* No auth. algorithm */
470 #define IPSA_AALG_MD5H SADB_AALG_MD5HMAC /* MD5-HMAC algorithm */
471 #define IPSA_AALG_SHA1H SADB_AALG_SHA1HMAC /* SHA1-HMAC algorithm */
473 #define IPSA_EALG_NONE SADB_EALG_NONE /* No encryption algorithm */
474 #define IPSA_EALG_DES_CBC SADB_EALG_DESCBC
475 #define IPSA_EALG_3DES SADB_EALG_3DESCBC
478 * Protect each ipsa_t bucket (and linkage) with a lock.
481 typedef struct isaf_s {
482 ipsa_t *isaf_ipsa;
483 kmutex_t isaf_lock;
484 uint64_t isaf_gen;
485 } isaf_t;
488 * ACQUIRE record. If AH/ESP/whatever cannot find an association for outbound
489 * traffic, it sends up an SADB_ACQUIRE message and create an ACQUIRE record.
492 #define IPSACQ_MAXPACKETS 4 /* Number of packets that can be queued up */
493 /* waiting for an ACQUIRE to finish. */
495 typedef struct ipsacq_s {
496 struct ipsacq_s *ipsacq_next;
497 struct ipsacq_s **ipsacq_ptpn;
498 kmutex_t *ipsacq_linklock;
499 struct ipsec_policy_s *ipsacq_policy;
500 struct ipsec_action_s *ipsacq_act;
502 sa_family_t ipsacq_addrfam; /* Address family. */
503 sa_family_t ipsacq_inneraddrfam; /* Inner-packet address family. */
504 int ipsacq_numpackets; /* How many packets queued up so far. */
505 uint32_t ipsacq_seq; /* PF_KEY sequence number. */
506 uint64_t ipsacq_unique_id; /* Unique ID for SAs that need it. */
508 kmutex_t ipsacq_lock; /* Protects non-linkage fields. */
509 time_t ipsacq_expire; /* Wall-clock time when this record expires. */
510 mblk_t *ipsacq_mp; /* List of datagrams waiting for an SA. */
512 /* These two point inside the last mblk inserted. */
513 uint32_t *ipsacq_srcaddr;
514 uint32_t *ipsacq_dstaddr;
516 /* Cache these instead of point so we can mask off accordingly */
517 uint32_t ipsacq_innersrc[IPSA_MAX_ADDRLEN];
518 uint32_t ipsacq_innerdst[IPSA_MAX_ADDRLEN];
520 /* These may change per-acquire. */
521 uint16_t ipsacq_srcport;
522 uint16_t ipsacq_dstport;
523 uint8_t ipsacq_proto;
524 uint8_t ipsacq_inner_proto;
525 uint8_t ipsacq_innersrcpfx;
526 uint8_t ipsacq_innerdstpfx;
528 /* icmp type and code of triggering packet (if applicable) */
529 uint8_t ipsacq_icmp_type;
530 uint8_t ipsacq_icmp_code;
532 /* label associated with triggering packet */
533 ts_label_t *ipsacq_tsl;
534 } ipsacq_t;
537 * Kernel-generated sequence numbers will be no less than 0x80000000 to
538 * forestall any cretinous problems with manual keying accidentally updating
539 * an ACQUIRE entry.
541 #define IACQF_LOWEST_SEQ 0x80000000
543 #define SADB_AGE_INTERVAL_DEFAULT 8000
546 * ACQUIRE fanout. Protect each linkage with a lock.
549 typedef struct iacqf_s {
550 ipsacq_t *iacqf_ipsacq;
551 kmutex_t iacqf_lock;
552 } iacqf_t;
555 * A (network protocol, ipsec protocol) specific SADB.
556 * (i.e., one each for {ah, esp} and {v4, v6}.
558 * Keep outbound assocs in a simple hash table for now.
559 * One danger point, multiple SAs for a single dest will clog a bucket.
560 * For the future, consider two-level hashing (2nd hash on IPC?), then probe.
563 typedef struct sadb_s
565 isaf_t *sdb_of;
566 isaf_t *sdb_if;
567 iacqf_t *sdb_acq;
568 int sdb_hashsize;
569 } sadb_t;
572 * A pair of SADB's (one for v4, one for v6), and related state.
575 typedef struct sadbp_s
577 uint32_t s_satype;
578 uint32_t *s_acquire_timeout;
579 sadb_t s_v4;
580 sadb_t s_v6;
581 uint32_t s_addflags;
582 uint32_t s_updateflags;
583 } sadbp_t;
586 * A pair of SA's for a single connection, the structure contains a
587 * pointer to a SA and the SA its paired with (opposite direction) as well
588 * as the SA's respective hash buckets.
590 typedef struct ipsap_s
592 boolean_t in_inbound_table;
593 isaf_t *ipsap_bucket;
594 ipsa_t *ipsap_sa_ptr;
595 isaf_t *ipsap_pbucket;
596 ipsa_t *ipsap_psa_ptr;
597 } ipsap_t;
599 typedef struct templist_s
601 ipsa_t *ipsa;
602 struct templist_s *next;
603 } templist_t;
605 /* Pointer to an all-zeroes IPv6 address. */
606 #define ALL_ZEROES_PTR ((uint32_t *)&ipv6_all_zeros)
609 * Form unique id from ip_xmit_attr_t.
611 #define SA_FORM_UNIQUE_ID(ixa) \
612 SA_UNIQUE_ID((ixa)->ixa_ipsec_src_port, (ixa)->ixa_ipsec_dst_port, \
613 (((ixa)->ixa_flags & IXAF_IPSEC_TUNNEL) ? \
614 ((ixa)->ixa_ipsec_inaf == AF_INET6 ? \
615 IPPROTO_IPV6 : IPPROTO_ENCAP) : \
616 (ixa)->ixa_ipsec_proto), \
617 (((ixa)->ixa_flags & IXAF_IPSEC_TUNNEL) ? \
618 (ixa)->ixa_ipsec_proto : 0))
621 * This macro is used to generate unique ids (along with the addresses, both
622 * inner and outer) for outbound datagrams that require unique SAs.
624 * N.B. casts and unsigned shift amounts discourage unwarranted
625 * sign extension of dstport, proto, and iproto.
627 * Unique ID is 64-bits allocated as follows (pardon my big-endian bias):
629 * 6 4 43 33 11
630 * 3 7 09 21 65 0
631 * +---------------*-------+-------+--------------+---------------+
632 * | MUST-BE-ZERO |<iprot>|<proto>| <src port> | <dest port> |
633 * +---------------*-------+-------+--------------+---------------+
635 * If there are inner addresses (tunnel mode) the ports come from the
636 * inner addresses. If there are no inner addresses, the ports come from
637 * the outer addresses (transport mode). Tunnel mode MUST have <proto>
638 * set to either IPPROTO_ENCAP or IPPPROTO_IPV6.
640 #define SA_UNIQUE_ID(srcport, dstport, proto, iproto) \
641 ((srcport) | ((uint64_t)(dstport) << 16U) | \
642 ((uint64_t)(proto) << 32U) | ((uint64_t)(iproto) << 40U))
645 * SA_UNIQUE_MASK generates a mask value to use when comparing the unique value
646 * from a packet to an SA.
649 #define SA_UNIQUE_MASK(srcport, dstport, proto, iproto) \
650 SA_UNIQUE_ID((srcport != 0) ? 0xffff : 0, \
651 (dstport != 0) ? 0xffff : 0, \
652 (proto != 0) ? 0xff : 0, \
653 (iproto != 0) ? 0xff : 0)
656 * Decompose unique id back into its original fields.
658 #define SA_IPROTO(ipsa) ((ipsa)->ipsa_unique_id>>40)&0xff
659 #define SA_PROTO(ipsa) ((ipsa)->ipsa_unique_id>>32)&0xff
660 #define SA_SRCPORT(ipsa) ((ipsa)->ipsa_unique_id & 0xffff)
661 #define SA_DSTPORT(ipsa) (((ipsa)->ipsa_unique_id >> 16) & 0xffff)
663 typedef struct ipsa_query_s ipsa_query_t;
665 typedef boolean_t (*ipsa_match_fn_t)(ipsa_query_t *, ipsa_t *);
667 #define IPSA_NMATCH 10
670 * SADB query structure.
672 * Provide a generalized mechanism for matching entries in the SADB;
673 * one of these structures is initialized using sadb_form_query(),
674 * and then can be used as a parameter to sadb_match_query() which returns
675 * B_TRUE if the SA matches the query.
677 * Under the covers, sadb_form_query populates the matchers[] array with
678 * functions which are called one at a time until one fails to match.
680 struct ipsa_query_s {
681 uint32_t req, match;
682 sadb_address_t *srcext, *dstext;
683 sadb_ident_t *srcid, *dstid;
684 sadb_x_kmc_t *kmcext;
685 sadb_sa_t *assoc;
686 uint32_t spi;
687 struct sockaddr_in *src;
688 struct sockaddr_in6 *src6;
689 struct sockaddr_in *dst;
690 struct sockaddr_in6 *dst6;
691 sa_family_t af;
692 uint32_t *srcaddr, *dstaddr;
693 uint32_t ifindex;
694 uint32_t kmp;
695 uint64_t kmc;
696 char *didstr, *sidstr;
697 uint16_t didtype, sidtype;
698 sadbp_t *spp;
699 sadb_t *sp;
700 isaf_t *inbound, *outbound;
701 uint32_t outhash;
702 uint32_t inhash;
703 ipsa_match_fn_t matchers[IPSA_NMATCH];
706 #define IPSA_Q_SA 0x00000001
707 #define IPSA_Q_DST 0x00000002
708 #define IPSA_Q_SRC 0x00000004
709 #define IPSA_Q_DSTID 0x00000008
710 #define IPSA_Q_SRCID 0x00000010
711 #define IPSA_Q_KMC 0x00000020
712 #define IPSA_Q_INBOUND 0x00000040 /* fill in inbound isaf_t */
713 #define IPSA_Q_OUTBOUND 0x00000080 /* fill in outbound isaf_t */
715 int sadb_form_query(keysock_in_t *, uint32_t, uint32_t, ipsa_query_t *, int *);
716 boolean_t sadb_match_query(ipsa_query_t *q, ipsa_t *sa);
720 * All functions that return an ipsa_t will return it with IPSA_REFHOLD()
721 * already called.
724 /* SA retrieval (inbound and outbound) */
725 ipsa_t *ipsec_getassocbyspi(isaf_t *, uint32_t, uint32_t *, uint32_t *,
726 sa_family_t);
727 ipsa_t *ipsec_getassocbyconn(isaf_t *, ip_xmit_attr_t *, uint32_t *, uint32_t *,
728 sa_family_t, uint8_t, ts_label_t *);
730 /* SA insertion. */
731 int sadb_insertassoc(ipsa_t *, isaf_t *);
733 /* SA table construction and destruction. */
734 void sadbp_init(const char *name, sadbp_t *, int, int, netstack_t *);
735 void sadbp_flush(sadbp_t *, netstack_t *);
736 void sadbp_destroy(sadbp_t *, netstack_t *);
738 /* SA insertion and deletion. */
739 int sadb_insertassoc(ipsa_t *, isaf_t *);
740 void sadb_unlinkassoc(ipsa_t *);
742 /* Support routines to interface a keysock consumer to PF_KEY. */
743 mblk_t *sadb_keysock_out(minor_t);
744 int sadb_hardsoftchk(sadb_lifetime_t *, sadb_lifetime_t *, sadb_lifetime_t *);
745 int sadb_labelchk(struct keysock_in_s *);
746 void sadb_pfkey_echo(queue_t *, mblk_t *, sadb_msg_t *, struct keysock_in_s *,
747 ipsa_t *);
748 void sadb_pfkey_error(queue_t *, mblk_t *, int, int, uint_t);
749 void sadb_keysock_hello(queue_t **, queue_t *, mblk_t *, void (*)(void *),
750 void *, timeout_id_t *, int);
751 int sadb_addrcheck(queue_t *, mblk_t *, sadb_ext_t *, uint_t, netstack_t *);
752 boolean_t sadb_addrfix(keysock_in_t *, queue_t *, mblk_t *, netstack_t *);
753 int sadb_addrset(ire_t *);
754 int sadb_delget_sa(mblk_t *, keysock_in_t *, sadbp_t *, int *, queue_t *,
755 uint8_t);
757 int sadb_purge_sa(mblk_t *, keysock_in_t *, sadb_t *, int *, queue_t *);
758 int sadb_common_add(queue_t *, mblk_t *, sadb_msg_t *,
759 keysock_in_t *, isaf_t *, isaf_t *, ipsa_t *, boolean_t, boolean_t, int *,
760 netstack_t *, sadbp_t *);
761 void sadb_set_usetime(ipsa_t *);
762 boolean_t sadb_age_bytes(queue_t *, ipsa_t *, uint64_t, boolean_t);
763 int sadb_update_sa(mblk_t *, keysock_in_t *, mblk_t **, sadbp_t *,
764 int *, queue_t *, int (*)(mblk_t *, keysock_in_t *, int *, netstack_t *),
765 netstack_t *, uint8_t);
766 void sadb_acquire(mblk_t *, ip_xmit_attr_t *, boolean_t, boolean_t);
767 void gcm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
768 crypto_data_t *);
769 void ccm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
770 crypto_data_t *);
771 void cbc_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
772 crypto_data_t *);
774 void sadb_destroy_acquire(ipsacq_t *, netstack_t *);
775 struct ipsec_stack;
776 ipsa_t *sadb_getspi(keysock_in_t *, uint32_t, int *, netstack_t *, uint_t);
777 void sadb_in_acquire(sadb_msg_t *, sadbp_t *, queue_t *, netstack_t *);
778 boolean_t sadb_replay_check(ipsa_t *, uint32_t);
779 boolean_t sadb_replay_peek(ipsa_t *, uint32_t);
780 int sadb_dump(queue_t *, mblk_t *, keysock_in_t *, sadb_t *);
781 void sadb_replay_delete(ipsa_t *);
782 void sadb_ager(sadb_t *, queue_t *, int, netstack_t *);
784 timeout_id_t sadb_retimeout(hrtime_t, queue_t *, void (*)(void *), void *,
785 uint_t *, uint_t, short);
786 void sadb_sa_refrele(void *target);
787 mblk_t *sadb_set_lpkt(ipsa_t *, mblk_t *, ip_recv_attr_t *);
788 mblk_t *sadb_clear_lpkt(ipsa_t *);
789 void sadb_buf_pkt(ipsa_t *, mblk_t *, ip_recv_attr_t *);
790 void sadb_clear_buf_pkt(void *ipkt);
792 /* Note that buf_pkt is the product of ip_recv_attr_to_mblk() */
793 #define HANDLE_BUF_PKT(taskq, stack, dropper, buf_pkt) \
795 if (buf_pkt != NULL) { \
796 if (taskq_dispatch(taskq, sadb_clear_buf_pkt, \
797 (void *) buf_pkt, TQ_NOSLEEP) == 0) { \
798 /* Dispatch was unsuccessful drop the packets. */ \
799 mblk_t *tmp; \
800 while (buf_pkt != NULL) { \
801 tmp = buf_pkt->b_next; \
802 buf_pkt->b_next = NULL; \
803 buf_pkt = ip_recv_attr_free_mblk(buf_pkt); \
804 ip_drop_packet(buf_pkt, B_TRUE, NULL, \
805 DROPPER(stack, \
806 ipds_sadb_inidle_timeout), \
807 &dropper); \
808 buf_pkt = tmp; \
815 * Two IPsec rate-limiting routines.
817 /*PRINTFLIKE6*/
818 extern void ipsec_rl_strlog(netstack_t *, short, short, char,
819 ushort_t, char *, ...)
820 __KPRINTFLIKE(6);
821 extern void ipsec_assocfailure(short, short, char, ushort_t, char *, uint32_t,
822 void *, int, netstack_t *);
825 * Algorithm types.
828 #define IPSEC_NALGTYPES 2
830 typedef enum ipsec_algtype {
831 IPSEC_ALG_AUTH = 0,
832 IPSEC_ALG_ENCR = 1,
833 IPSEC_ALG_ALL = 2
834 } ipsec_algtype_t;
837 * Definitions as per IPsec/ISAKMP DOI.
840 #define IPSEC_MAX_ALGS 256
841 #define PROTO_IPSEC_AH 2
842 #define PROTO_IPSEC_ESP 3
845 * Common algorithm info.
847 typedef struct ipsec_alginfo
849 uint8_t alg_id;
850 uint8_t alg_flags;
851 uint16_t *alg_key_sizes;
852 uint16_t *alg_block_sizes;
853 uint16_t *alg_params;
854 uint16_t alg_nkey_sizes;
855 uint16_t alg_ivlen;
856 uint16_t alg_icvlen;
857 uint8_t alg_saltlen;
858 uint16_t alg_nblock_sizes;
859 uint16_t alg_nparams;
860 uint16_t alg_minbits;
861 uint16_t alg_maxbits;
862 uint16_t alg_datalen;
864 * increment: number of bits from keysize to keysize
865 * default: # of increments from min to default key len
867 uint16_t alg_increment;
868 uint16_t alg_default;
869 uint16_t alg_default_bits;
871 * Min, max, and default key sizes effectively supported
872 * by the encryption framework.
874 uint16_t alg_ef_minbits;
875 uint16_t alg_ef_maxbits;
876 uint16_t alg_ef_default;
877 uint16_t alg_ef_default_bits;
879 crypto_mech_type_t alg_mech_type; /* KCF mechanism type */
880 crypto_mech_name_t alg_mech_name; /* KCF mechanism name */
881 } ipsec_alginfo_t;
883 #define alg_datalen alg_block_sizes[0]
884 #define ALG_VALID(_alg) ((_alg)->alg_flags & ALG_FLAG_VALID)
887 * Software crypto execution mode.
889 typedef enum {
890 IPSEC_ALGS_EXEC_SYNC = 0,
891 IPSEC_ALGS_EXEC_ASYNC = 1
892 } ipsec_algs_exec_mode_t;
894 extern void ipsec_alg_reg(ipsec_algtype_t, ipsec_alginfo_t *, netstack_t *);
895 extern void ipsec_alg_unreg(ipsec_algtype_t, uint8_t, netstack_t *);
896 extern void ipsec_alg_fix_min_max(ipsec_alginfo_t *, ipsec_algtype_t,
897 netstack_t *ns);
898 extern void alg_flag_check(ipsec_alginfo_t *);
899 extern void ipsec_alg_free(ipsec_alginfo_t *);
900 extern void ipsec_register_prov_update(void);
901 extern void sadb_alg_update(ipsec_algtype_t, uint8_t, boolean_t, netstack_t *);
903 extern int sadb_sens_len_from_label(ts_label_t *);
904 extern void sadb_sens_from_label(sadb_sens_t *, int, ts_label_t *, int);
907 * Context templates management.
910 #define IPSEC_CTX_TMPL_ALLOC ((crypto_ctx_template_t)-1)
911 #define IPSEC_CTX_TMPL(_sa, _which, _type, _tmpl) { \
912 if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) { \
913 mutex_enter(&assoc->ipsa_lock); \
914 if ((_sa)->_which == IPSEC_CTX_TMPL_ALLOC) { \
915 ipsec_stack_t *ipss; \
917 ipss = assoc->ipsa_netstack->netstack_ipsec; \
918 rw_enter(&ipss->ipsec_alg_lock, RW_READER); \
919 (void) ipsec_create_ctx_tmpl(_sa, _type); \
920 rw_exit(&ipss->ipsec_alg_lock); \
922 mutex_exit(&assoc->ipsa_lock); \
923 if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) \
924 _tmpl = NULL; \
928 extern int ipsec_create_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
929 extern void ipsec_destroy_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
931 /* key checking */
932 extern int ipsec_check_key(crypto_mech_type_t, sadb_key_t *, boolean_t, int *);
934 typedef struct ipsec_kstats_s {
935 kstat_named_t esp_stat_in_requests;
936 kstat_named_t esp_stat_in_discards;
937 kstat_named_t esp_stat_lookup_failure;
938 kstat_named_t ah_stat_in_requests;
939 kstat_named_t ah_stat_in_discards;
940 kstat_named_t ah_stat_lookup_failure;
941 kstat_named_t sadb_acquire_maxpackets;
942 kstat_named_t sadb_acquire_qhiwater;
943 } ipsec_kstats_t;
946 * (ipss)->ipsec_kstats is equal to (ipss)->ipsec_ksp->ks_data if
947 * kstat_create_netstack for (ipss)->ipsec_ksp succeeds, but when it
948 * fails, it will be NULL. Note this is done for all stack instances,
949 * so it *could* fail. hence a non-NULL checking is done for
950 * IP_ESP_BUMP_STAT, IP_AH_BUMP_STAT and IP_ACQUIRE_STAT
952 #define IP_ESP_BUMP_STAT(ipss, x) \
953 do { \
954 if ((ipss)->ipsec_kstats != NULL) \
955 ((ipss)->ipsec_kstats->esp_stat_ ## x).value.ui64++; \
956 _NOTE(CONSTCOND) \
957 } while (0)
959 #define IP_AH_BUMP_STAT(ipss, x) \
960 do { \
961 if ((ipss)->ipsec_kstats != NULL) \
962 ((ipss)->ipsec_kstats->ah_stat_ ## x).value.ui64++; \
963 _NOTE(CONSTCOND) \
964 } while (0)
966 #define IP_ACQUIRE_STAT(ipss, val, new) \
967 do { \
968 if ((ipss)->ipsec_kstats != NULL && \
969 ((uint64_t)(new)) > \
970 ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64) \
971 ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64 = \
972 ((uint64_t)(new)); \
973 _NOTE(CONSTCOND) \
974 } while (0)
977 #ifdef __cplusplus
979 #endif
981 #endif /* _INET_SADB_H */