4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
30 #include <sys/dmu_tx.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/metaslab.h>
34 #include <sys/metaslab_impl.h>
35 #include <sys/uberblock_impl.h>
38 #include <sys/bpobj.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_dir.h>
43 #include <sys/zfeature.h>
44 #include <sys/vdev_indirect_births.h>
45 #include <sys/vdev_indirect_mapping.h>
49 * This file contains the necessary logic to remove vdevs from a
50 * storage pool. Currently, the only devices that can be removed
51 * are log, cache, and spare devices; and top level vdevs from a pool
52 * w/o raidz. (Note that members of a mirror can also be removed
53 * by the detach operation.)
55 * Log vdevs are removed by evacuating them and then turning the vdev
56 * into a hole vdev while holding spa config locks.
58 * Top level vdevs are removed and converted into an indirect vdev via
59 * a multi-step process:
61 * - Disable allocations from this device (spa_vdev_remove_top).
63 * - From a new thread (spa_vdev_remove_thread), copy data from
64 * the removing vdev to a different vdev. The copy happens in open
65 * context (spa_vdev_copy_impl) and issues a sync task
66 * (vdev_mapping_sync) so the sync thread can update the partial
67 * indirect mappings in core and on disk.
69 * - If a free happens during a removal, it is freed from the
70 * removing vdev, and if it has already been copied, from the new
71 * location as well (free_from_removing_vdev).
73 * - After the removal is completed, the copy thread converts the vdev
74 * into an indirect vdev (vdev_remove_complete) before instructing
75 * the sync thread to destroy the space maps and finish the removal
76 * (spa_finish_removal).
79 typedef struct vdev_copy_arg
{
81 uint64_t vca_outstanding_bytes
;
86 typedef struct vdev_copy_seg_arg
{
87 vdev_copy_arg_t
*vcsa_copy_arg
;
90 blkptr_t
*vcsa_dest_bp
;
91 } vdev_copy_seg_arg_t
;
94 * The maximum amount of allowed data we're allowed to copy from a device
95 * at a time when removing it.
97 int zfs_remove_max_copy_bytes
= 8 * 1024 * 1024;
100 * The largest contiguous segment that we will attempt to allocate when
101 * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If
102 * there is a performance problem with attempting to allocate large blocks,
103 * consider decreasing this.
105 * Note: we will issue I/Os of up to this size. The mpt driver does not
106 * respond well to I/Os larger than 1MB, so we set this to 1MB. (When
107 * mpt processes an I/O larger than 1MB, it needs to do an allocation of
108 * 2 physically contiguous pages; if this allocation fails, mpt will drop
109 * the I/O and hang the device.)
111 int zfs_remove_max_segment
= 1024 * 1024;
114 * This is used by the test suite so that it can ensure that certain
115 * actions happen while in the middle of a removal.
117 uint64_t zfs_remove_max_bytes_pause
= UINT64_MAX
;
119 #define VDEV_REMOVAL_ZAP_OBJS "lzap"
121 static void spa_vdev_remove_thread(void *arg
);
124 spa_sync_removing_state(spa_t
*spa
, dmu_tx_t
*tx
)
126 VERIFY0(zap_update(spa
->spa_dsl_pool
->dp_meta_objset
,
127 DMU_POOL_DIRECTORY_OBJECT
,
128 DMU_POOL_REMOVING
, sizeof (uint64_t),
129 sizeof (spa
->spa_removing_phys
) / sizeof (uint64_t),
130 &spa
->spa_removing_phys
, tx
));
134 spa_nvlist_lookup_by_guid(nvlist_t
**nvpp
, int count
, uint64_t target_guid
)
136 for (int i
= 0; i
< count
; i
++) {
138 fnvlist_lookup_uint64(nvpp
[i
], ZPOOL_CONFIG_GUID
);
140 if (guid
== target_guid
)
148 spa_vdev_remove_aux(nvlist_t
*config
, char *name
, nvlist_t
**dev
, int count
,
149 nvlist_t
*dev_to_remove
)
151 nvlist_t
**newdev
= NULL
;
154 newdev
= kmem_alloc((count
- 1) * sizeof (void *), KM_SLEEP
);
156 for (int i
= 0, j
= 0; i
< count
; i
++) {
157 if (dev
[i
] == dev_to_remove
)
159 VERIFY(nvlist_dup(dev
[i
], &newdev
[j
++], KM_SLEEP
) == 0);
162 VERIFY(nvlist_remove(config
, name
, DATA_TYPE_NVLIST_ARRAY
) == 0);
163 VERIFY(nvlist_add_nvlist_array(config
, name
, newdev
, count
- 1) == 0);
165 for (int i
= 0; i
< count
- 1; i
++)
166 nvlist_free(newdev
[i
]);
169 kmem_free(newdev
, (count
- 1) * sizeof (void *));
172 static spa_vdev_removal_t
*
173 spa_vdev_removal_create(vdev_t
*vd
)
175 spa_vdev_removal_t
*svr
= kmem_zalloc(sizeof (*svr
), KM_SLEEP
);
176 mutex_init(&svr
->svr_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
177 cv_init(&svr
->svr_cv
, NULL
, CV_DEFAULT
, NULL
);
178 svr
->svr_allocd_segs
= range_tree_create(NULL
, NULL
);
181 for (int i
= 0; i
< TXG_SIZE
; i
++) {
182 svr
->svr_frees
[i
] = range_tree_create(NULL
, NULL
);
183 list_create(&svr
->svr_new_segments
[i
],
184 sizeof (vdev_indirect_mapping_entry_t
),
185 offsetof(vdev_indirect_mapping_entry_t
, vime_node
));
192 spa_vdev_removal_destroy(spa_vdev_removal_t
*svr
)
194 for (int i
= 0; i
< TXG_SIZE
; i
++) {
195 ASSERT0(svr
->svr_bytes_done
[i
]);
196 ASSERT0(svr
->svr_max_offset_to_sync
[i
]);
197 range_tree_destroy(svr
->svr_frees
[i
]);
198 list_destroy(&svr
->svr_new_segments
[i
]);
201 range_tree_destroy(svr
->svr_allocd_segs
);
202 mutex_destroy(&svr
->svr_lock
);
203 cv_destroy(&svr
->svr_cv
);
204 kmem_free(svr
, sizeof (*svr
));
208 * This is called as a synctask in the txg in which we will mark this vdev
209 * as removing (in the config stored in the MOS).
211 * It begins the evacuation of a toplevel vdev by:
212 * - initializing the spa_removing_phys which tracks this removal
213 * - computing the amount of space to remove for accounting purposes
214 * - dirtying all dbufs in the spa_config_object
215 * - creating the spa_vdev_removal
216 * - starting the spa_vdev_remove_thread
219 vdev_remove_initiate_sync(void *arg
, dmu_tx_t
*tx
)
222 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
223 spa_t
*spa
= vd
->vdev_spa
;
224 objset_t
*mos
= spa
->spa_dsl_pool
->dp_meta_objset
;
225 spa_vdev_removal_t
*svr
= NULL
;
226 uint64_t txg
= dmu_tx_get_txg(tx
);
228 ASSERT3P(vd
->vdev_ops
, !=, &vdev_raidz_ops
);
229 svr
= spa_vdev_removal_create(vd
);
231 ASSERT(vd
->vdev_removing
);
232 ASSERT3P(vd
->vdev_indirect_mapping
, ==, NULL
);
234 spa_feature_incr(spa
, SPA_FEATURE_DEVICE_REMOVAL
, tx
);
235 if (spa_feature_is_enabled(spa
, SPA_FEATURE_OBSOLETE_COUNTS
)) {
237 * By activating the OBSOLETE_COUNTS feature, we prevent
238 * the pool from being downgraded and ensure that the
239 * refcounts are precise.
241 spa_feature_incr(spa
, SPA_FEATURE_OBSOLETE_COUNTS
, tx
);
243 VERIFY0(zap_add(spa
->spa_meta_objset
, vd
->vdev_top_zap
,
244 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE
, sizeof (one
), 1,
246 ASSERT3U(vdev_obsolete_counts_are_precise(vd
), !=, 0);
249 vic
->vic_mapping_object
= vdev_indirect_mapping_alloc(mos
, tx
);
250 vd
->vdev_indirect_mapping
=
251 vdev_indirect_mapping_open(mos
, vic
->vic_mapping_object
);
252 vic
->vic_births_object
= vdev_indirect_births_alloc(mos
, tx
);
253 vd
->vdev_indirect_births
=
254 vdev_indirect_births_open(mos
, vic
->vic_births_object
);
255 spa
->spa_removing_phys
.sr_removing_vdev
= vd
->vdev_id
;
256 spa
->spa_removing_phys
.sr_start_time
= gethrestime_sec();
257 spa
->spa_removing_phys
.sr_end_time
= 0;
258 spa
->spa_removing_phys
.sr_state
= DSS_SCANNING
;
259 spa
->spa_removing_phys
.sr_to_copy
= 0;
260 spa
->spa_removing_phys
.sr_copied
= 0;
263 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
264 * there may be space in the defer tree, which is free, but still
265 * counted in vs_alloc.
267 for (uint64_t i
= 0; i
< vd
->vdev_ms_count
; i
++) {
268 metaslab_t
*ms
= vd
->vdev_ms
[i
];
269 if (ms
->ms_sm
== NULL
)
273 * Sync tasks happen before metaslab_sync(), therefore
274 * smp_alloc and sm_alloc must be the same.
276 ASSERT3U(space_map_allocated(ms
->ms_sm
), ==,
277 ms
->ms_sm
->sm_phys
->smp_alloc
);
279 spa
->spa_removing_phys
.sr_to_copy
+=
280 space_map_allocated(ms
->ms_sm
);
283 * Space which we are freeing this txg does not need to
286 spa
->spa_removing_phys
.sr_to_copy
-=
287 range_tree_space(ms
->ms_freeing
);
289 ASSERT0(range_tree_space(ms
->ms_freed
));
290 for (int t
= 0; t
< TXG_SIZE
; t
++)
291 ASSERT0(range_tree_space(ms
->ms_allocating
[t
]));
295 * Sync tasks are called before metaslab_sync(), so there should
296 * be no already-synced metaslabs in the TXG_CLEAN list.
298 ASSERT3P(txg_list_head(&vd
->vdev_ms_list
, TXG_CLEAN(txg
)), ==, NULL
);
300 spa_sync_removing_state(spa
, tx
);
303 * All blocks that we need to read the most recent mapping must be
304 * stored on concrete vdevs. Therefore, we must dirty anything that
305 * is read before spa_remove_init(). Specifically, the
306 * spa_config_object. (Note that although we already modified the
307 * spa_config_object in spa_sync_removing_state, that may not have
308 * modified all blocks of the object.)
310 dmu_object_info_t doi
;
311 VERIFY0(dmu_object_info(mos
, DMU_POOL_DIRECTORY_OBJECT
, &doi
));
312 for (uint64_t offset
= 0; offset
< doi
.doi_max_offset
; ) {
314 VERIFY0(dmu_buf_hold(mos
, DMU_POOL_DIRECTORY_OBJECT
,
315 offset
, FTAG
, &dbuf
, 0));
316 dmu_buf_will_dirty(dbuf
, tx
);
317 offset
+= dbuf
->db_size
;
318 dmu_buf_rele(dbuf
, FTAG
);
322 * Now that we've allocated the im_object, dirty the vdev to ensure
323 * that the object gets written to the config on disk.
325 vdev_config_dirty(vd
);
327 zfs_dbgmsg("starting removal thread for vdev %llu (%p) in txg %llu "
328 "im_obj=%llu", vd
->vdev_id
, vd
, dmu_tx_get_txg(tx
),
329 vic
->vic_mapping_object
);
331 spa_history_log_internal(spa
, "vdev remove started", tx
,
332 "%s vdev %llu %s", spa_name(spa
), vd
->vdev_id
,
333 (vd
->vdev_path
!= NULL
) ? vd
->vdev_path
: "-");
335 * Setting spa_vdev_removal causes subsequent frees to call
336 * free_from_removing_vdev(). Note that we don't need any locking
337 * because we are the sync thread, and metaslab_free_impl() is only
338 * called from syncing context (potentially from a zio taskq thread,
339 * but in any case only when there are outstanding free i/os, which
342 ASSERT3P(spa
->spa_vdev_removal
, ==, NULL
);
343 spa
->spa_vdev_removal
= svr
;
344 svr
->svr_thread
= thread_create(NULL
, 0,
345 spa_vdev_remove_thread
, vd
, 0, &p0
, TS_RUN
, minclsyspri
);
349 * When we are opening a pool, we must read the mapping for each
350 * indirect vdev in order from most recently removed to least
351 * recently removed. We do this because the blocks for the mapping
352 * of older indirect vdevs may be stored on more recently removed vdevs.
353 * In order to read each indirect mapping object, we must have
354 * initialized all more recently removed vdevs.
357 spa_remove_init(spa_t
*spa
)
361 error
= zap_lookup(spa
->spa_dsl_pool
->dp_meta_objset
,
362 DMU_POOL_DIRECTORY_OBJECT
,
363 DMU_POOL_REMOVING
, sizeof (uint64_t),
364 sizeof (spa
->spa_removing_phys
) / sizeof (uint64_t),
365 &spa
->spa_removing_phys
);
367 if (error
== ENOENT
) {
368 spa
->spa_removing_phys
.sr_state
= DSS_NONE
;
369 spa
->spa_removing_phys
.sr_removing_vdev
= -1;
370 spa
->spa_removing_phys
.sr_prev_indirect_vdev
= -1;
372 } else if (error
!= 0) {
376 if (spa
->spa_removing_phys
.sr_state
== DSS_SCANNING
) {
378 * We are currently removing a vdev. Create and
379 * initialize a spa_vdev_removal_t from the bonus
380 * buffer of the removing vdevs vdev_im_object, and
381 * initialize its partial mapping.
383 spa_config_enter(spa
, SCL_STATE
, FTAG
, RW_READER
);
384 vdev_t
*vd
= vdev_lookup_top(spa
,
385 spa
->spa_removing_phys
.sr_removing_vdev
);
386 spa_config_exit(spa
, SCL_STATE
, FTAG
);
391 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
393 ASSERT(vdev_is_concrete(vd
));
394 spa_vdev_removal_t
*svr
= spa_vdev_removal_create(vd
);
395 ASSERT(svr
->svr_vdev
->vdev_removing
);
397 vd
->vdev_indirect_mapping
= vdev_indirect_mapping_open(
398 spa
->spa_meta_objset
, vic
->vic_mapping_object
);
399 vd
->vdev_indirect_births
= vdev_indirect_births_open(
400 spa
->spa_meta_objset
, vic
->vic_births_object
);
402 spa
->spa_vdev_removal
= svr
;
405 spa_config_enter(spa
, SCL_STATE
, FTAG
, RW_READER
);
406 uint64_t indirect_vdev_id
=
407 spa
->spa_removing_phys
.sr_prev_indirect_vdev
;
408 while (indirect_vdev_id
!= UINT64_MAX
) {
409 vdev_t
*vd
= vdev_lookup_top(spa
, indirect_vdev_id
);
410 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
412 ASSERT3P(vd
->vdev_ops
, ==, &vdev_indirect_ops
);
413 vd
->vdev_indirect_mapping
= vdev_indirect_mapping_open(
414 spa
->spa_meta_objset
, vic
->vic_mapping_object
);
415 vd
->vdev_indirect_births
= vdev_indirect_births_open(
416 spa
->spa_meta_objset
, vic
->vic_births_object
);
418 indirect_vdev_id
= vic
->vic_prev_indirect_vdev
;
420 spa_config_exit(spa
, SCL_STATE
, FTAG
);
423 * Now that we've loaded all the indirect mappings, we can allow
424 * reads from other blocks (e.g. via predictive prefetch).
426 spa
->spa_indirect_vdevs_loaded
= B_TRUE
;
431 spa_restart_removal(spa_t
*spa
)
433 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
439 * In general when this function is called there is no
440 * removal thread running. The only scenario where this
441 * is not true is during spa_import() where this function
442 * is called twice [once from spa_import_impl() and
443 * spa_async_resume()]. Thus, in the scenario where we
444 * import a pool that has an ongoing removal we don't
445 * want to spawn a second thread.
447 if (svr
->svr_thread
!= NULL
)
450 if (!spa_writeable(spa
))
453 vdev_t
*vd
= svr
->svr_vdev
;
454 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
456 ASSERT3P(vd
, !=, NULL
);
457 ASSERT(vd
->vdev_removing
);
459 zfs_dbgmsg("restarting removal of %llu at count=%llu",
460 vd
->vdev_id
, vdev_indirect_mapping_num_entries(vim
));
461 svr
->svr_thread
= thread_create(NULL
, 0, spa_vdev_remove_thread
, vd
,
462 0, &p0
, TS_RUN
, minclsyspri
);
466 * Process freeing from a device which is in the middle of being removed.
467 * We must handle this carefully so that we attempt to copy freed data,
468 * and we correctly free already-copied data.
471 free_from_removing_vdev(vdev_t
*vd
, uint64_t offset
, uint64_t size
)
473 spa_t
*spa
= vd
->vdev_spa
;
474 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
475 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
476 uint64_t txg
= spa_syncing_txg(spa
);
477 uint64_t max_offset_yet
= 0;
479 ASSERT(vd
->vdev_indirect_config
.vic_mapping_object
!= 0);
480 ASSERT3U(vd
->vdev_indirect_config
.vic_mapping_object
, ==,
481 vdev_indirect_mapping_object(vim
));
482 ASSERT3P(vd
, ==, svr
->svr_vdev
);
484 mutex_enter(&svr
->svr_lock
);
487 * Remove the segment from the removing vdev's spacemap. This
488 * ensures that we will not attempt to copy this space (if the
489 * removal thread has not yet visited it), and also ensures
490 * that we know what is actually allocated on the new vdevs
491 * (needed if we cancel the removal).
493 * Note: we must do the metaslab_free_concrete() with the svr_lock
494 * held, so that the remove_thread can not load this metaslab and then
495 * visit this offset between the time that we metaslab_free_concrete()
496 * and when we check to see if it has been visited.
498 * Note: The checkpoint flag is set to false as having/taking
499 * a checkpoint and removing a device can't happen at the same
502 ASSERT(!spa_has_checkpoint(spa
));
503 metaslab_free_concrete(vd
, offset
, size
, B_FALSE
);
505 uint64_t synced_size
= 0;
506 uint64_t synced_offset
= 0;
507 uint64_t max_offset_synced
= vdev_indirect_mapping_max_offset(vim
);
508 if (offset
< max_offset_synced
) {
510 * The mapping for this offset is already on disk.
511 * Free from the new location.
513 * Note that we use svr_max_synced_offset because it is
514 * updated atomically with respect to the in-core mapping.
515 * By contrast, vim_max_offset is not.
517 * This block may be split between a synced entry and an
518 * in-flight or unvisited entry. Only process the synced
519 * portion of it here.
521 synced_size
= MIN(size
, max_offset_synced
- offset
);
522 synced_offset
= offset
;
524 ASSERT3U(max_offset_yet
, <=, max_offset_synced
);
525 max_offset_yet
= max_offset_synced
;
527 DTRACE_PROBE3(remove__free__synced
,
530 uint64_t, synced_size
);
533 offset
+= synced_size
;
537 * Look at all in-flight txgs starting from the currently syncing one
538 * and see if a section of this free is being copied. By starting from
539 * this txg and iterating forward, we might find that this region
540 * was copied in two different txgs and handle it appropriately.
542 for (int i
= 0; i
< TXG_CONCURRENT_STATES
; i
++) {
543 int txgoff
= (txg
+ i
) & TXG_MASK
;
544 if (size
> 0 && offset
< svr
->svr_max_offset_to_sync
[txgoff
]) {
546 * The mapping for this offset is in flight, and
547 * will be synced in txg+i.
549 uint64_t inflight_size
= MIN(size
,
550 svr
->svr_max_offset_to_sync
[txgoff
] - offset
);
552 DTRACE_PROBE4(remove__free__inflight
,
555 uint64_t, inflight_size
,
559 * We copy data in order of increasing offset.
560 * Therefore the max_offset_to_sync[] must increase
561 * (or be zero, indicating that nothing is being
562 * copied in that txg).
564 if (svr
->svr_max_offset_to_sync
[txgoff
] != 0) {
565 ASSERT3U(svr
->svr_max_offset_to_sync
[txgoff
],
568 svr
->svr_max_offset_to_sync
[txgoff
];
572 * We've already committed to copying this segment:
573 * we have allocated space elsewhere in the pool for
574 * it and have an IO outstanding to copy the data. We
575 * cannot free the space before the copy has
576 * completed, or else the copy IO might overwrite any
577 * new data. To free that space, we record the
578 * segment in the appropriate svr_frees tree and free
579 * the mapped space later, in the txg where we have
580 * completed the copy and synced the mapping (see
581 * vdev_mapping_sync).
583 range_tree_add(svr
->svr_frees
[txgoff
],
584 offset
, inflight_size
);
585 size
-= inflight_size
;
586 offset
+= inflight_size
;
589 * This space is already accounted for as being
590 * done, because it is being copied in txg+i.
591 * However, if i!=0, then it is being copied in
592 * a future txg. If we crash after this txg
593 * syncs but before txg+i syncs, then the space
594 * will be free. Therefore we must account
595 * for the space being done in *this* txg
596 * (when it is freed) rather than the future txg
597 * (when it will be copied).
599 ASSERT3U(svr
->svr_bytes_done
[txgoff
], >=,
601 svr
->svr_bytes_done
[txgoff
] -= inflight_size
;
602 svr
->svr_bytes_done
[txg
& TXG_MASK
] += inflight_size
;
605 ASSERT0(svr
->svr_max_offset_to_sync
[TXG_CLEAN(txg
) & TXG_MASK
]);
609 * The copy thread has not yet visited this offset. Ensure
613 DTRACE_PROBE3(remove__free__unvisited
,
618 if (svr
->svr_allocd_segs
!= NULL
)
619 range_tree_clear(svr
->svr_allocd_segs
, offset
, size
);
622 * Since we now do not need to copy this data, for
623 * accounting purposes we have done our job and can count
626 svr
->svr_bytes_done
[txg
& TXG_MASK
] += size
;
628 mutex_exit(&svr
->svr_lock
);
631 * Now that we have dropped svr_lock, process the synced portion
634 if (synced_size
> 0) {
635 vdev_indirect_mark_obsolete(vd
, synced_offset
, synced_size
);
638 * Note: this can only be called from syncing context,
639 * and the vdev_indirect_mapping is only changed from the
640 * sync thread, so we don't need svr_lock while doing
641 * metaslab_free_impl_cb.
643 boolean_t checkpoint
= B_FALSE
;
644 vdev_indirect_ops
.vdev_op_remap(vd
, synced_offset
, synced_size
,
645 metaslab_free_impl_cb
, &checkpoint
);
650 * Stop an active removal and update the spa_removing phys.
653 spa_finish_removal(spa_t
*spa
, dsl_scan_state_t state
, dmu_tx_t
*tx
)
655 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
656 ASSERT3U(dmu_tx_get_txg(tx
), ==, spa_syncing_txg(spa
));
658 /* Ensure the removal thread has completed before we free the svr. */
659 spa_vdev_remove_suspend(spa
);
661 ASSERT(state
== DSS_FINISHED
|| state
== DSS_CANCELED
);
663 if (state
== DSS_FINISHED
) {
664 spa_removing_phys_t
*srp
= &spa
->spa_removing_phys
;
665 vdev_t
*vd
= svr
->svr_vdev
;
666 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
668 if (srp
->sr_prev_indirect_vdev
!= UINT64_MAX
) {
669 vdev_t
*pvd
= vdev_lookup_top(spa
,
670 srp
->sr_prev_indirect_vdev
);
671 ASSERT3P(pvd
->vdev_ops
, ==, &vdev_indirect_ops
);
674 vic
->vic_prev_indirect_vdev
= srp
->sr_prev_indirect_vdev
;
675 srp
->sr_prev_indirect_vdev
= vd
->vdev_id
;
677 spa
->spa_removing_phys
.sr_state
= state
;
678 spa
->spa_removing_phys
.sr_end_time
= gethrestime_sec();
680 spa
->spa_vdev_removal
= NULL
;
681 spa_vdev_removal_destroy(svr
);
683 spa_sync_removing_state(spa
, tx
);
685 vdev_config_dirty(spa
->spa_root_vdev
);
689 free_mapped_segment_cb(void *arg
, uint64_t offset
, uint64_t size
)
692 vdev_indirect_mark_obsolete(vd
, offset
, size
);
693 boolean_t checkpoint
= B_FALSE
;
694 vdev_indirect_ops
.vdev_op_remap(vd
, offset
, size
,
695 metaslab_free_impl_cb
, &checkpoint
);
699 * On behalf of the removal thread, syncs an incremental bit more of
700 * the indirect mapping to disk and updates the in-memory mapping.
701 * Called as a sync task in every txg that the removal thread makes progress.
704 vdev_mapping_sync(void *arg
, dmu_tx_t
*tx
)
706 spa_vdev_removal_t
*svr
= arg
;
707 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
708 vdev_t
*vd
= svr
->svr_vdev
;
709 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
710 uint64_t txg
= dmu_tx_get_txg(tx
);
711 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
713 ASSERT(vic
->vic_mapping_object
!= 0);
714 ASSERT3U(txg
, ==, spa_syncing_txg(spa
));
716 vdev_indirect_mapping_add_entries(vim
,
717 &svr
->svr_new_segments
[txg
& TXG_MASK
], tx
);
718 vdev_indirect_births_add_entry(vd
->vdev_indirect_births
,
719 vdev_indirect_mapping_max_offset(vim
), dmu_tx_get_txg(tx
), tx
);
722 * Free the copied data for anything that was freed while the
723 * mapping entries were in flight.
725 mutex_enter(&svr
->svr_lock
);
726 range_tree_vacate(svr
->svr_frees
[txg
& TXG_MASK
],
727 free_mapped_segment_cb
, vd
);
728 ASSERT3U(svr
->svr_max_offset_to_sync
[txg
& TXG_MASK
], >=,
729 vdev_indirect_mapping_max_offset(vim
));
730 svr
->svr_max_offset_to_sync
[txg
& TXG_MASK
] = 0;
731 mutex_exit(&svr
->svr_lock
);
733 spa_sync_removing_state(spa
, tx
);
737 spa_vdev_copy_segment_write_done(zio_t
*zio
)
739 vdev_copy_seg_arg_t
*vcsa
= zio
->io_private
;
740 vdev_copy_arg_t
*vca
= vcsa
->vcsa_copy_arg
;
741 spa_config_exit(zio
->io_spa
, SCL_STATE
, FTAG
);
742 abd_free(zio
->io_abd
);
744 mutex_enter(&vca
->vca_lock
);
745 vca
->vca_outstanding_bytes
-= zio
->io_size
;
746 cv_signal(&vca
->vca_cv
);
747 mutex_exit(&vca
->vca_lock
);
749 ASSERT0(zio
->io_error
);
750 kmem_free(vcsa
->vcsa_dest_bp
, sizeof (blkptr_t
));
751 kmem_free(vcsa
, sizeof (vdev_copy_seg_arg_t
));
755 spa_vdev_copy_segment_read_done(zio_t
*zio
)
757 vdev_copy_seg_arg_t
*vcsa
= zio
->io_private
;
758 dva_t
*dest_dva
= vcsa
->vcsa_dest_dva
;
759 uint64_t txg
= vcsa
->vcsa_txg
;
760 spa_t
*spa
= zio
->io_spa
;
761 vdev_t
*dest_vd
= vdev_lookup_top(spa
, DVA_GET_VDEV(dest_dva
));
764 uint64_t size
= zio
->io_size
;
766 ASSERT3P(dest_vd
, !=, NULL
);
767 ASSERT0(zio
->io_error
);
769 vcsa
->vcsa_dest_bp
= kmem_alloc(sizeof (blkptr_t
), KM_SLEEP
);
770 bp
= vcsa
->vcsa_dest_bp
;
775 /* initialize with dest_dva */
776 bcopy(dest_dva
, dva
, sizeof (dva_t
));
777 BP_SET_BIRTH(bp
, TXG_INITIAL
, TXG_INITIAL
);
779 BP_SET_LSIZE(bp
, size
);
780 BP_SET_PSIZE(bp
, size
);
781 BP_SET_COMPRESS(bp
, ZIO_COMPRESS_OFF
);
782 BP_SET_CHECKSUM(bp
, ZIO_CHECKSUM_OFF
);
783 BP_SET_TYPE(bp
, DMU_OT_NONE
);
786 BP_SET_BYTEORDER(bp
, ZFS_HOST_BYTEORDER
);
788 zio_nowait(zio_rewrite(spa
->spa_txg_zio
[txg
& TXG_MASK
], spa
,
789 txg
, bp
, zio
->io_abd
, size
,
790 spa_vdev_copy_segment_write_done
, vcsa
,
791 ZIO_PRIORITY_REMOVAL
, 0, NULL
));
795 spa_vdev_copy_segment(vdev_t
*vd
, uint64_t start
, uint64_t size
, uint64_t txg
,
796 vdev_copy_arg_t
*vca
, zio_alloc_list_t
*zal
)
798 metaslab_group_t
*mg
= vd
->vdev_mg
;
799 spa_t
*spa
= vd
->vdev_spa
;
800 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
801 vdev_indirect_mapping_entry_t
*entry
;
802 vdev_copy_seg_arg_t
*private;
804 blkptr_t blk
, *bp
= &blk
;
805 dva_t
*dva
= bp
->blk_dva
;
807 ASSERT3U(size
, <=, SPA_MAXBLOCKSIZE
);
810 * We use allocator 0 for this I/O because we don't expect device remap
811 * to be the steady state of the system, so parallelizing is not as
812 * critical as it is for other allocation types. We also want to ensure
813 * that the IOs are allocated together as much as possible, to reduce
816 int error
= metaslab_alloc_dva(spa
, mg
->mg_class
, size
,
817 &dst
, 0, NULL
, txg
, 0, zal
, 0);
822 * We can't have any padding of the allocated size, otherwise we will
823 * misunderstand what's allocated, and the size of the mapping.
824 * The caller ensures this will be true by passing in a size that is
825 * aligned to the worst (highest) ashift in the pool.
827 ASSERT3U(DVA_GET_ASIZE(&dst
), ==, size
);
829 mutex_enter(&vca
->vca_lock
);
830 vca
->vca_outstanding_bytes
+= size
;
831 mutex_exit(&vca
->vca_lock
);
833 entry
= kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t
), KM_SLEEP
);
834 DVA_MAPPING_SET_SRC_OFFSET(&entry
->vime_mapping
, start
);
835 entry
->vime_mapping
.vimep_dst
= dst
;
837 private = kmem_alloc(sizeof (vdev_copy_seg_arg_t
), KM_SLEEP
);
838 private->vcsa_dest_dva
= &entry
->vime_mapping
.vimep_dst
;
839 private->vcsa_txg
= txg
;
840 private->vcsa_copy_arg
= vca
;
843 * This lock is eventually released by the donefunc for the
844 * zio_write_phys that finishes copying the data.
846 spa_config_enter(spa
, SCL_STATE
, FTAG
, RW_READER
);
849 * Do logical I/O, letting the redundancy vdevs (like mirror)
850 * handle their own I/O instead of duplicating that code here.
854 DVA_SET_VDEV(&dva
[0], vd
->vdev_id
);
855 DVA_SET_OFFSET(&dva
[0], start
);
856 DVA_SET_GANG(&dva
[0], 0);
857 DVA_SET_ASIZE(&dva
[0], vdev_psize_to_asize(vd
, size
));
859 BP_SET_BIRTH(bp
, TXG_INITIAL
, TXG_INITIAL
);
861 BP_SET_LSIZE(bp
, size
);
862 BP_SET_PSIZE(bp
, size
);
863 BP_SET_COMPRESS(bp
, ZIO_COMPRESS_OFF
);
864 BP_SET_CHECKSUM(bp
, ZIO_CHECKSUM_OFF
);
865 BP_SET_TYPE(bp
, DMU_OT_NONE
);
868 BP_SET_BYTEORDER(bp
, ZFS_HOST_BYTEORDER
);
870 zio_nowait(zio_read(spa
->spa_txg_zio
[txg
& TXG_MASK
], spa
,
871 bp
, abd_alloc_for_io(size
, B_FALSE
), size
,
872 spa_vdev_copy_segment_read_done
, private,
873 ZIO_PRIORITY_REMOVAL
, 0, NULL
));
875 list_insert_tail(&svr
->svr_new_segments
[txg
& TXG_MASK
], entry
);
876 ASSERT3U(start
+ size
, <=, vd
->vdev_ms_count
<< vd
->vdev_ms_shift
);
877 vdev_dirty(vd
, 0, NULL
, txg
);
883 * Complete the removal of a toplevel vdev. This is called as a
884 * synctask in the same txg that we will sync out the new config (to the
885 * MOS object) which indicates that this vdev is indirect.
888 vdev_remove_complete_sync(void *arg
, dmu_tx_t
*tx
)
890 spa_vdev_removal_t
*svr
= arg
;
891 vdev_t
*vd
= svr
->svr_vdev
;
892 spa_t
*spa
= vd
->vdev_spa
;
894 ASSERT3P(vd
->vdev_ops
, ==, &vdev_indirect_ops
);
896 for (int i
= 0; i
< TXG_SIZE
; i
++) {
897 ASSERT0(svr
->svr_bytes_done
[i
]);
900 ASSERT3U(spa
->spa_removing_phys
.sr_copied
, ==,
901 spa
->spa_removing_phys
.sr_to_copy
);
903 vdev_destroy_spacemaps(vd
, tx
);
905 /* destroy leaf zaps, if any */
906 ASSERT3P(svr
->svr_zaplist
, !=, NULL
);
907 for (nvpair_t
*pair
= nvlist_next_nvpair(svr
->svr_zaplist
, NULL
);
909 pair
= nvlist_next_nvpair(svr
->svr_zaplist
, pair
)) {
910 vdev_destroy_unlink_zap(vd
, fnvpair_value_uint64(pair
), tx
);
912 fnvlist_free(svr
->svr_zaplist
);
914 spa_finish_removal(dmu_tx_pool(tx
)->dp_spa
, DSS_FINISHED
, tx
);
915 /* vd->vdev_path is not available here */
916 spa_history_log_internal(spa
, "vdev remove completed", tx
,
917 "%s vdev %llu", spa_name(spa
), vd
->vdev_id
);
921 vdev_indirect_state_transfer(vdev_t
*ivd
, vdev_t
*vd
)
923 ivd
->vdev_indirect_config
= vd
->vdev_indirect_config
;
925 ASSERT3P(ivd
->vdev_indirect_mapping
, ==, NULL
);
926 ASSERT(vd
->vdev_indirect_mapping
!= NULL
);
927 ivd
->vdev_indirect_mapping
= vd
->vdev_indirect_mapping
;
928 vd
->vdev_indirect_mapping
= NULL
;
930 ASSERT3P(ivd
->vdev_indirect_births
, ==, NULL
);
931 ASSERT(vd
->vdev_indirect_births
!= NULL
);
932 ivd
->vdev_indirect_births
= vd
->vdev_indirect_births
;
933 vd
->vdev_indirect_births
= NULL
;
935 ASSERT0(range_tree_space(vd
->vdev_obsolete_segments
));
936 ASSERT0(range_tree_space(ivd
->vdev_obsolete_segments
));
938 if (vd
->vdev_obsolete_sm
!= NULL
) {
939 ASSERT3U(ivd
->vdev_asize
, ==, vd
->vdev_asize
);
942 * We cannot use space_map_{open,close} because we hold all
943 * the config locks as writer.
945 ASSERT3P(ivd
->vdev_obsolete_sm
, ==, NULL
);
946 ivd
->vdev_obsolete_sm
= vd
->vdev_obsolete_sm
;
947 vd
->vdev_obsolete_sm
= NULL
;
952 vdev_remove_enlist_zaps(vdev_t
*vd
, nvlist_t
*zlist
)
954 ASSERT3P(zlist
, !=, NULL
);
955 ASSERT3P(vd
->vdev_ops
, !=, &vdev_raidz_ops
);
957 if (vd
->vdev_leaf_zap
!= 0) {
959 (void) snprintf(zkey
, sizeof (zkey
), "%s-%"PRIu64
,
960 VDEV_REMOVAL_ZAP_OBJS
, vd
->vdev_leaf_zap
);
961 fnvlist_add_uint64(zlist
, zkey
, vd
->vdev_leaf_zap
);
964 for (uint64_t id
= 0; id
< vd
->vdev_children
; id
++) {
965 vdev_remove_enlist_zaps(vd
->vdev_child
[id
], zlist
);
970 vdev_remove_replace_with_indirect(vdev_t
*vd
, uint64_t txg
)
974 spa_t
*spa
= vd
->vdev_spa
;
975 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
978 * First, build a list of leaf zaps to be destroyed.
979 * This is passed to the sync context thread,
980 * which does the actual unlinking.
982 svr
->svr_zaplist
= fnvlist_alloc();
983 vdev_remove_enlist_zaps(vd
, svr
->svr_zaplist
);
985 ivd
= vdev_add_parent(vd
, &vdev_indirect_ops
);
987 vd
->vdev_leaf_zap
= 0;
989 vdev_remove_child(ivd
, vd
);
990 vdev_compact_children(ivd
);
992 vdev_indirect_state_transfer(ivd
, vd
);
996 ASSERT(!ivd
->vdev_removing
);
997 ASSERT(!list_link_active(&vd
->vdev_state_dirty_node
));
999 tx
= dmu_tx_create_assigned(spa
->spa_dsl_pool
, txg
);
1000 dsl_sync_task_nowait(spa
->spa_dsl_pool
, vdev_remove_complete_sync
, svr
,
1001 0, ZFS_SPACE_CHECK_NONE
, tx
);
1005 * Indicate that this thread has exited.
1006 * After this, we can not use svr.
1008 mutex_enter(&svr
->svr_lock
);
1009 svr
->svr_thread
= NULL
;
1010 cv_broadcast(&svr
->svr_cv
);
1011 mutex_exit(&svr
->svr_lock
);
1015 * Complete the removal of a toplevel vdev. This is called in open
1016 * context by the removal thread after we have copied all vdev's data.
1019 vdev_remove_complete(vdev_t
*vd
)
1021 spa_t
*spa
= vd
->vdev_spa
;
1025 * Wait for any deferred frees to be synced before we call
1026 * vdev_metaslab_fini()
1028 txg_wait_synced(spa
->spa_dsl_pool
, 0);
1030 txg
= spa_vdev_enter(spa
);
1031 zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1035 * Discard allocation state.
1037 if (vd
->vdev_mg
!= NULL
) {
1038 vdev_metaslab_fini(vd
);
1039 metaslab_group_destroy(vd
->vdev_mg
);
1042 ASSERT0(vd
->vdev_stat
.vs_space
);
1043 ASSERT0(vd
->vdev_stat
.vs_dspace
);
1045 vdev_remove_replace_with_indirect(vd
, txg
);
1048 * We now release the locks, allowing spa_sync to run and finish the
1049 * removal via vdev_remove_complete_sync in syncing context.
1051 (void) spa_vdev_exit(spa
, NULL
, txg
, 0);
1054 * Top ZAP should have been transferred to the indirect vdev in
1055 * vdev_remove_replace_with_indirect.
1057 ASSERT0(vd
->vdev_top_zap
);
1060 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1062 ASSERT0(vd
->vdev_leaf_zap
);
1064 txg
= spa_vdev_enter(spa
);
1065 (void) vdev_label_init(vd
, 0, VDEV_LABEL_REMOVE
);
1067 * Request to update the config and the config cachefile.
1069 vdev_config_dirty(spa
->spa_root_vdev
);
1070 (void) spa_vdev_exit(spa
, vd
, txg
, 0);
1074 * Evacuates a segment of size at most max_alloc from the vdev
1075 * via repeated calls to spa_vdev_copy_segment. If an allocation
1076 * fails, the pool is probably too fragmented to handle such a
1077 * large size, so decrease max_alloc so that the caller will not try
1078 * this size again this txg.
1081 spa_vdev_copy_impl(spa_vdev_removal_t
*svr
, vdev_copy_arg_t
*vca
,
1082 uint64_t *max_alloc
, dmu_tx_t
*tx
)
1084 uint64_t txg
= dmu_tx_get_txg(tx
);
1085 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
1087 mutex_enter(&svr
->svr_lock
);
1089 range_seg_t
*rs
= avl_first(&svr
->svr_allocd_segs
->rt_root
);
1091 mutex_exit(&svr
->svr_lock
);
1094 uint64_t offset
= rs
->rs_start
;
1095 uint64_t length
= MIN(rs
->rs_end
- rs
->rs_start
, *max_alloc
);
1097 range_tree_remove(svr
->svr_allocd_segs
, offset
, length
);
1099 if (svr
->svr_max_offset_to_sync
[txg
& TXG_MASK
] == 0) {
1100 dsl_sync_task_nowait(dmu_tx_pool(tx
), vdev_mapping_sync
,
1101 svr
, 0, ZFS_SPACE_CHECK_NONE
, tx
);
1104 svr
->svr_max_offset_to_sync
[txg
& TXG_MASK
] = offset
+ length
;
1107 * Note: this is the amount of *allocated* space
1108 * that we are taking care of each txg.
1110 svr
->svr_bytes_done
[txg
& TXG_MASK
] += length
;
1112 mutex_exit(&svr
->svr_lock
);
1114 zio_alloc_list_t zal
;
1115 metaslab_trace_init(&zal
);
1116 uint64_t thismax
= *max_alloc
;
1117 while (length
> 0) {
1118 uint64_t mylen
= MIN(length
, thismax
);
1120 int error
= spa_vdev_copy_segment(svr
->svr_vdev
,
1121 offset
, mylen
, txg
, vca
, &zal
);
1123 if (error
== ENOSPC
) {
1125 * Cut our segment in half, and don't try this
1126 * segment size again this txg. Note that the
1127 * allocation size must be aligned to the highest
1128 * ashift in the pool, so that the allocation will
1129 * not be padded out to a multiple of the ashift,
1130 * which could cause us to think that this mapping
1131 * is larger than we intended.
1133 ASSERT3U(spa
->spa_max_ashift
, >=, SPA_MINBLOCKSHIFT
);
1134 ASSERT3U(spa
->spa_max_ashift
, ==, spa
->spa_min_ashift
);
1135 thismax
= P2ROUNDUP(mylen
/ 2,
1136 1 << spa
->spa_max_ashift
);
1137 ASSERT3U(thismax
, <, mylen
);
1139 * The minimum-size allocation can not fail.
1141 ASSERT3U(mylen
, >, 1 << spa
->spa_max_ashift
);
1142 *max_alloc
= mylen
- (1 << spa
->spa_max_ashift
);
1149 * We've performed an allocation, so reset the
1152 metaslab_trace_fini(&zal
);
1153 metaslab_trace_init(&zal
);
1156 metaslab_trace_fini(&zal
);
1160 * The removal thread operates in open context. It iterates over all
1161 * allocated space in the vdev, by loading each metaslab's spacemap.
1162 * For each contiguous segment of allocated space (capping the segment
1163 * size at SPA_MAXBLOCKSIZE), we:
1164 * - Allocate space for it on another vdev.
1165 * - Create a new mapping from the old location to the new location
1166 * (as a record in svr_new_segments).
1167 * - Initiate a logical read zio to get the data off the removing disk.
1168 * - In the read zio's done callback, initiate a logical write zio to
1169 * write it to the new vdev.
1170 * Note that all of this will take effect when a particular TXG syncs.
1171 * The sync thread ensures that all the phys reads and writes for the syncing
1172 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1173 * (see vdev_mapping_sync()).
1176 spa_vdev_remove_thread(void *arg
)
1179 spa_t
*spa
= vd
->vdev_spa
;
1180 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
1181 vdev_copy_arg_t vca
;
1182 uint64_t max_alloc
= zfs_remove_max_segment
;
1183 uint64_t last_txg
= 0;
1184 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
1185 uint64_t start_offset
= vdev_indirect_mapping_max_offset(vim
);
1187 ASSERT3P(vd
->vdev_ops
, !=, &vdev_indirect_ops
);
1188 ASSERT(vdev_is_concrete(vd
));
1189 ASSERT(vd
->vdev_removing
);
1190 ASSERT(vd
->vdev_indirect_config
.vic_mapping_object
!= 0);
1191 ASSERT3P(svr
->svr_vdev
, ==, vd
);
1192 ASSERT(vim
!= NULL
);
1194 mutex_init(&vca
.vca_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1195 cv_init(&vca
.vca_cv
, NULL
, CV_DEFAULT
, NULL
);
1196 vca
.vca_outstanding_bytes
= 0;
1198 mutex_enter(&svr
->svr_lock
);
1201 * Start from vim_max_offset so we pick up where we left off
1202 * if we are restarting the removal after opening the pool.
1205 for (msi
= start_offset
>> vd
->vdev_ms_shift
;
1206 msi
< vd
->vdev_ms_count
&& !svr
->svr_thread_exit
; msi
++) {
1207 metaslab_t
*msp
= vd
->vdev_ms
[msi
];
1208 ASSERT3U(msi
, <=, vd
->vdev_ms_count
);
1210 ASSERT0(range_tree_space(svr
->svr_allocd_segs
));
1212 mutex_enter(&msp
->ms_sync_lock
);
1213 mutex_enter(&msp
->ms_lock
);
1216 * Assert nothing in flight -- ms_*tree is empty.
1218 for (int i
= 0; i
< TXG_SIZE
; i
++) {
1219 ASSERT0(range_tree_space(msp
->ms_allocating
[i
]));
1223 * If the metaslab has ever been allocated from (ms_sm!=NULL),
1224 * read the allocated segments from the space map object
1225 * into svr_allocd_segs. Since we do this while holding
1226 * svr_lock and ms_sync_lock, concurrent frees (which
1227 * would have modified the space map) will wait for us
1228 * to finish loading the spacemap, and then take the
1229 * appropriate action (see free_from_removing_vdev()).
1231 if (msp
->ms_sm
!= NULL
) {
1232 space_map_t
*sm
= NULL
;
1235 * We have to open a new space map here, because
1236 * ms_sm's sm_length and sm_alloc may not reflect
1237 * what's in the object contents, if we are in between
1238 * metaslab_sync() and metaslab_sync_done().
1240 VERIFY0(space_map_open(&sm
,
1241 spa
->spa_dsl_pool
->dp_meta_objset
,
1242 msp
->ms_sm
->sm_object
, msp
->ms_sm
->sm_start
,
1243 msp
->ms_sm
->sm_size
, msp
->ms_sm
->sm_shift
));
1244 space_map_update(sm
);
1245 VERIFY0(space_map_load(sm
, svr
->svr_allocd_segs
,
1247 space_map_close(sm
);
1249 range_tree_walk(msp
->ms_freeing
,
1250 range_tree_remove
, svr
->svr_allocd_segs
);
1253 * When we are resuming from a paused removal (i.e.
1254 * when importing a pool with a removal in progress),
1255 * discard any state that we have already processed.
1257 range_tree_clear(svr
->svr_allocd_segs
, 0, start_offset
);
1259 mutex_exit(&msp
->ms_lock
);
1260 mutex_exit(&msp
->ms_sync_lock
);
1263 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1264 avl_numnodes(&svr
->svr_allocd_segs
->rt_root
),
1267 while (!svr
->svr_thread_exit
&&
1268 !range_tree_is_empty(svr
->svr_allocd_segs
)) {
1270 mutex_exit(&svr
->svr_lock
);
1273 * This delay will pause the removal around the point
1274 * specified by zfs_remove_max_bytes_pause. We do this
1275 * solely from the test suite or during debugging.
1277 uint64_t bytes_copied
=
1278 spa
->spa_removing_phys
.sr_copied
;
1279 for (int i
= 0; i
< TXG_SIZE
; i
++)
1280 bytes_copied
+= svr
->svr_bytes_done
[i
];
1281 while (zfs_remove_max_bytes_pause
<= bytes_copied
&&
1282 !svr
->svr_thread_exit
)
1285 mutex_enter(&vca
.vca_lock
);
1286 while (vca
.vca_outstanding_bytes
>
1287 zfs_remove_max_copy_bytes
) {
1288 cv_wait(&vca
.vca_cv
, &vca
.vca_lock
);
1290 mutex_exit(&vca
.vca_lock
);
1293 dmu_tx_create_dd(spa_get_dsl(spa
)->dp_mos_dir
);
1295 VERIFY0(dmu_tx_assign(tx
, TXG_WAIT
));
1296 uint64_t txg
= dmu_tx_get_txg(tx
);
1298 if (txg
!= last_txg
)
1299 max_alloc
= zfs_remove_max_segment
;
1302 spa_vdev_copy_impl(svr
, &vca
, &max_alloc
, tx
);
1305 mutex_enter(&svr
->svr_lock
);
1309 mutex_exit(&svr
->svr_lock
);
1311 * Wait for all copies to finish before cleaning up the vca.
1313 txg_wait_synced(spa
->spa_dsl_pool
, 0);
1314 ASSERT0(vca
.vca_outstanding_bytes
);
1316 mutex_destroy(&vca
.vca_lock
);
1317 cv_destroy(&vca
.vca_cv
);
1319 if (svr
->svr_thread_exit
) {
1320 mutex_enter(&svr
->svr_lock
);
1321 range_tree_vacate(svr
->svr_allocd_segs
, NULL
, NULL
);
1322 svr
->svr_thread
= NULL
;
1323 cv_broadcast(&svr
->svr_cv
);
1324 mutex_exit(&svr
->svr_lock
);
1326 ASSERT0(range_tree_space(svr
->svr_allocd_segs
));
1327 vdev_remove_complete(vd
);
1332 spa_vdev_remove_suspend(spa_t
*spa
)
1334 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
1339 mutex_enter(&svr
->svr_lock
);
1340 svr
->svr_thread_exit
= B_TRUE
;
1341 while (svr
->svr_thread
!= NULL
)
1342 cv_wait(&svr
->svr_cv
, &svr
->svr_lock
);
1343 svr
->svr_thread_exit
= B_FALSE
;
1344 mutex_exit(&svr
->svr_lock
);
1349 spa_vdev_remove_cancel_check(void *arg
, dmu_tx_t
*tx
)
1351 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
1353 if (spa
->spa_vdev_removal
== NULL
)
1354 return (ENOTACTIVE
);
1359 * Cancel a removal by freeing all entries from the partial mapping
1360 * and marking the vdev as no longer being removing.
1364 spa_vdev_remove_cancel_sync(void *arg
, dmu_tx_t
*tx
)
1366 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
1367 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
1368 vdev_t
*vd
= svr
->svr_vdev
;
1369 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
1370 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
1371 objset_t
*mos
= spa
->spa_meta_objset
;
1373 ASSERT3P(svr
->svr_thread
, ==, NULL
);
1375 spa_feature_decr(spa
, SPA_FEATURE_DEVICE_REMOVAL
, tx
);
1376 if (vdev_obsolete_counts_are_precise(vd
)) {
1377 spa_feature_decr(spa
, SPA_FEATURE_OBSOLETE_COUNTS
, tx
);
1378 VERIFY0(zap_remove(spa
->spa_meta_objset
, vd
->vdev_top_zap
,
1379 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE
, tx
));
1382 if (vdev_obsolete_sm_object(vd
) != 0) {
1383 ASSERT(vd
->vdev_obsolete_sm
!= NULL
);
1384 ASSERT3U(vdev_obsolete_sm_object(vd
), ==,
1385 space_map_object(vd
->vdev_obsolete_sm
));
1387 space_map_free(vd
->vdev_obsolete_sm
, tx
);
1388 VERIFY0(zap_remove(spa
->spa_meta_objset
, vd
->vdev_top_zap
,
1389 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM
, tx
));
1390 space_map_close(vd
->vdev_obsolete_sm
);
1391 vd
->vdev_obsolete_sm
= NULL
;
1392 spa_feature_decr(spa
, SPA_FEATURE_OBSOLETE_COUNTS
, tx
);
1394 for (int i
= 0; i
< TXG_SIZE
; i
++) {
1395 ASSERT(list_is_empty(&svr
->svr_new_segments
[i
]));
1396 ASSERT3U(svr
->svr_max_offset_to_sync
[i
], <=,
1397 vdev_indirect_mapping_max_offset(vim
));
1400 for (uint64_t msi
= 0; msi
< vd
->vdev_ms_count
; msi
++) {
1401 metaslab_t
*msp
= vd
->vdev_ms
[msi
];
1403 if (msp
->ms_start
>= vdev_indirect_mapping_max_offset(vim
))
1406 ASSERT0(range_tree_space(svr
->svr_allocd_segs
));
1408 mutex_enter(&msp
->ms_lock
);
1411 * Assert nothing in flight -- ms_*tree is empty.
1413 for (int i
= 0; i
< TXG_SIZE
; i
++)
1414 ASSERT0(range_tree_space(msp
->ms_allocating
[i
]));
1415 for (int i
= 0; i
< TXG_DEFER_SIZE
; i
++)
1416 ASSERT0(range_tree_space(msp
->ms_defer
[i
]));
1417 ASSERT0(range_tree_space(msp
->ms_freed
));
1419 if (msp
->ms_sm
!= NULL
) {
1421 * Assert that the in-core spacemap has the same
1422 * length as the on-disk one, so we can use the
1423 * existing in-core spacemap to load it from disk.
1425 ASSERT3U(msp
->ms_sm
->sm_alloc
, ==,
1426 msp
->ms_sm
->sm_phys
->smp_alloc
);
1427 ASSERT3U(msp
->ms_sm
->sm_length
, ==,
1428 msp
->ms_sm
->sm_phys
->smp_objsize
);
1430 mutex_enter(&svr
->svr_lock
);
1431 VERIFY0(space_map_load(msp
->ms_sm
,
1432 svr
->svr_allocd_segs
, SM_ALLOC
));
1433 range_tree_walk(msp
->ms_freeing
,
1434 range_tree_remove
, svr
->svr_allocd_segs
);
1437 * Clear everything past what has been synced,
1438 * because we have not allocated mappings for it yet.
1440 uint64_t syncd
= vdev_indirect_mapping_max_offset(vim
);
1441 range_tree_clear(svr
->svr_allocd_segs
, syncd
,
1442 msp
->ms_sm
->sm_start
+ msp
->ms_sm
->sm_size
- syncd
);
1444 mutex_exit(&svr
->svr_lock
);
1446 mutex_exit(&msp
->ms_lock
);
1448 mutex_enter(&svr
->svr_lock
);
1449 range_tree_vacate(svr
->svr_allocd_segs
,
1450 free_mapped_segment_cb
, vd
);
1451 mutex_exit(&svr
->svr_lock
);
1455 * Note: this must happen after we invoke free_mapped_segment_cb,
1456 * because it adds to the obsolete_segments.
1458 range_tree_vacate(vd
->vdev_obsolete_segments
, NULL
, NULL
);
1460 ASSERT3U(vic
->vic_mapping_object
, ==,
1461 vdev_indirect_mapping_object(vd
->vdev_indirect_mapping
));
1462 vdev_indirect_mapping_close(vd
->vdev_indirect_mapping
);
1463 vd
->vdev_indirect_mapping
= NULL
;
1464 vdev_indirect_mapping_free(mos
, vic
->vic_mapping_object
, tx
);
1465 vic
->vic_mapping_object
= 0;
1467 ASSERT3U(vic
->vic_births_object
, ==,
1468 vdev_indirect_births_object(vd
->vdev_indirect_births
));
1469 vdev_indirect_births_close(vd
->vdev_indirect_births
);
1470 vd
->vdev_indirect_births
= NULL
;
1471 vdev_indirect_births_free(mos
, vic
->vic_births_object
, tx
);
1472 vic
->vic_births_object
= 0;
1475 * We may have processed some frees from the removing vdev in this
1476 * txg, thus increasing svr_bytes_done; discard that here to
1477 * satisfy the assertions in spa_vdev_removal_destroy().
1478 * Note that future txg's can not have any bytes_done, because
1479 * future TXG's are only modified from open context, and we have
1480 * already shut down the copying thread.
1482 svr
->svr_bytes_done
[dmu_tx_get_txg(tx
) & TXG_MASK
] = 0;
1483 spa_finish_removal(spa
, DSS_CANCELED
, tx
);
1485 vd
->vdev_removing
= B_FALSE
;
1486 vdev_config_dirty(vd
);
1488 zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1489 vd
->vdev_id
, dmu_tx_get_txg(tx
));
1490 spa_history_log_internal(spa
, "vdev remove canceled", tx
,
1491 "%s vdev %llu %s", spa_name(spa
),
1492 vd
->vdev_id
, (vd
->vdev_path
!= NULL
) ? vd
->vdev_path
: "-");
1496 spa_vdev_remove_cancel(spa_t
*spa
)
1498 spa_vdev_remove_suspend(spa
);
1500 if (spa
->spa_vdev_removal
== NULL
)
1501 return (ENOTACTIVE
);
1503 uint64_t vdid
= spa
->spa_vdev_removal
->svr_vdev
->vdev_id
;
1505 int error
= dsl_sync_task(spa
->spa_name
, spa_vdev_remove_cancel_check
,
1506 spa_vdev_remove_cancel_sync
, NULL
, 0,
1507 ZFS_SPACE_CHECK_EXTRA_RESERVED
);
1510 spa_config_enter(spa
, SCL_ALLOC
| SCL_VDEV
, FTAG
, RW_WRITER
);
1511 vdev_t
*vd
= vdev_lookup_top(spa
, vdid
);
1512 metaslab_group_activate(vd
->vdev_mg
);
1513 spa_config_exit(spa
, SCL_ALLOC
| SCL_VDEV
, FTAG
);
1520 * Called every sync pass of every txg if there's a svr.
1523 svr_sync(spa_t
*spa
, dmu_tx_t
*tx
)
1525 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
1526 int txgoff
= dmu_tx_get_txg(tx
) & TXG_MASK
;
1529 * This check is necessary so that we do not dirty the
1530 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1531 * is nothing to do. Dirtying it every time would prevent us
1532 * from syncing-to-convergence.
1534 if (svr
->svr_bytes_done
[txgoff
] == 0)
1538 * Update progress accounting.
1540 spa
->spa_removing_phys
.sr_copied
+= svr
->svr_bytes_done
[txgoff
];
1541 svr
->svr_bytes_done
[txgoff
] = 0;
1543 spa_sync_removing_state(spa
, tx
);
1547 vdev_remove_make_hole_and_free(vdev_t
*vd
)
1549 uint64_t id
= vd
->vdev_id
;
1550 spa_t
*spa
= vd
->vdev_spa
;
1551 vdev_t
*rvd
= spa
->spa_root_vdev
;
1552 boolean_t last_vdev
= (id
== (rvd
->vdev_children
- 1));
1554 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
1555 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
1560 vdev_compact_children(rvd
);
1562 vd
= vdev_alloc_common(spa
, id
, 0, &vdev_hole_ops
);
1563 vdev_add_child(rvd
, vd
);
1565 vdev_config_dirty(rvd
);
1568 * Reassess the health of our root vdev.
1574 * Remove a log device. The config lock is held for the specified TXG.
1577 spa_vdev_remove_log(vdev_t
*vd
, uint64_t *txg
)
1579 metaslab_group_t
*mg
= vd
->vdev_mg
;
1580 spa_t
*spa
= vd
->vdev_spa
;
1583 ASSERT(vd
->vdev_islog
);
1584 ASSERT(vd
== vd
->vdev_top
);
1587 * Stop allocating from this vdev.
1589 metaslab_group_passivate(mg
);
1592 * Wait for the youngest allocations and frees to sync,
1593 * and then wait for the deferral of those frees to finish.
1595 spa_vdev_config_exit(spa
, NULL
,
1596 *txg
+ TXG_CONCURRENT_STATES
+ TXG_DEFER_SIZE
, 0, FTAG
);
1599 * Evacuate the device. We don't hold the config lock as writer
1600 * since we need to do I/O but we do keep the
1601 * spa_namespace_lock held. Once this completes the device
1602 * should no longer have any blocks allocated on it.
1604 if (vd
->vdev_islog
) {
1605 if (vd
->vdev_stat
.vs_alloc
!= 0)
1606 error
= spa_reset_logs(spa
);
1609 *txg
= spa_vdev_config_enter(spa
);
1612 metaslab_group_activate(mg
);
1615 ASSERT0(vd
->vdev_stat
.vs_alloc
);
1618 * The evacuation succeeded. Remove any remaining MOS metadata
1619 * associated with this vdev, and wait for these changes to sync.
1621 vd
->vdev_removing
= B_TRUE
;
1623 vdev_dirty_leaves(vd
, VDD_DTL
, *txg
);
1624 vdev_config_dirty(vd
);
1626 spa_history_log_internal(spa
, "vdev remove", NULL
,
1627 "%s vdev %llu (log) %s", spa_name(spa
), vd
->vdev_id
,
1628 (vd
->vdev_path
!= NULL
) ? vd
->vdev_path
: "-");
1630 /* Make sure these changes are sync'ed */
1631 spa_vdev_config_exit(spa
, NULL
, *txg
, 0, FTAG
);
1633 *txg
= spa_vdev_config_enter(spa
);
1635 sysevent_t
*ev
= spa_event_create(spa
, vd
, NULL
,
1636 ESC_ZFS_VDEV_REMOVE_DEV
);
1637 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
1638 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
1640 /* The top ZAP should have been destroyed by vdev_remove_empty. */
1641 ASSERT0(vd
->vdev_top_zap
);
1642 /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1643 ASSERT0(vd
->vdev_leaf_zap
);
1645 (void) vdev_label_init(vd
, 0, VDEV_LABEL_REMOVE
);
1647 if (list_link_active(&vd
->vdev_state_dirty_node
))
1648 vdev_state_clean(vd
);
1649 if (list_link_active(&vd
->vdev_config_dirty_node
))
1650 vdev_config_clean(vd
);
1653 * Clean up the vdev namespace.
1655 vdev_remove_make_hole_and_free(vd
);
1664 spa_vdev_remove_top_check(vdev_t
*vd
)
1666 spa_t
*spa
= vd
->vdev_spa
;
1668 if (vd
!= vd
->vdev_top
)
1669 return (SET_ERROR(ENOTSUP
));
1671 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_DEVICE_REMOVAL
))
1672 return (SET_ERROR(ENOTSUP
));
1675 * There has to be enough free space to remove the
1676 * device and leave double the "slop" space (i.e. we
1677 * must leave at least 3% of the pool free, in addition to
1678 * the normal slop space).
1680 if (dsl_dir_space_available(spa
->spa_dsl_pool
->dp_root_dir
,
1682 vd
->vdev_stat
.vs_dspace
+ spa_get_slop_space(spa
)) {
1683 return (SET_ERROR(ENOSPC
));
1687 * There can not be a removal in progress.
1689 if (spa
->spa_removing_phys
.sr_state
== DSS_SCANNING
)
1690 return (SET_ERROR(EBUSY
));
1693 * The device must have all its data.
1695 if (!vdev_dtl_empty(vd
, DTL_MISSING
) ||
1696 !vdev_dtl_empty(vd
, DTL_OUTAGE
))
1697 return (SET_ERROR(EBUSY
));
1700 * The device must be healthy.
1702 if (!vdev_readable(vd
))
1703 return (SET_ERROR(EIO
));
1706 * All vdevs in normal class must have the same ashift.
1708 if (spa
->spa_max_ashift
!= spa
->spa_min_ashift
) {
1709 return (SET_ERROR(EINVAL
));
1713 * All vdevs in normal class must have the same ashift
1716 vdev_t
*rvd
= spa
->spa_root_vdev
;
1717 int num_indirect
= 0;
1718 for (uint64_t id
= 0; id
< rvd
->vdev_children
; id
++) {
1719 vdev_t
*cvd
= rvd
->vdev_child
[id
];
1720 if (cvd
->vdev_ashift
!= 0 && !cvd
->vdev_islog
)
1721 ASSERT3U(cvd
->vdev_ashift
, ==, spa
->spa_max_ashift
);
1722 if (cvd
->vdev_ops
== &vdev_indirect_ops
)
1724 if (!vdev_is_concrete(cvd
))
1726 if (cvd
->vdev_ops
== &vdev_raidz_ops
)
1727 return (SET_ERROR(EINVAL
));
1729 * Need the mirror to be mirror of leaf vdevs only
1731 if (cvd
->vdev_ops
== &vdev_mirror_ops
) {
1732 for (uint64_t cid
= 0;
1733 cid
< cvd
->vdev_children
; cid
++) {
1734 vdev_t
*tmp
= cvd
->vdev_child
[cid
];
1735 if (!tmp
->vdev_ops
->vdev_op_leaf
)
1736 return (SET_ERROR(EINVAL
));
1745 * Initiate removal of a top-level vdev, reducing the total space in the pool.
1746 * The config lock is held for the specified TXG. Once initiated,
1747 * evacuation of all allocated space (copying it to other vdevs) happens
1748 * in the background (see spa_vdev_remove_thread()), and can be canceled
1749 * (see spa_vdev_remove_cancel()). If successful, the vdev will
1750 * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
1753 spa_vdev_remove_top(vdev_t
*vd
, uint64_t *txg
)
1755 spa_t
*spa
= vd
->vdev_spa
;
1759 * Check for errors up-front, so that we don't waste time
1760 * passivating the metaslab group and clearing the ZIL if there
1763 error
= spa_vdev_remove_top_check(vd
);
1768 * Stop allocating from this vdev. Note that we must check
1769 * that this is not the only device in the pool before
1770 * passivating, otherwise we will not be able to make
1771 * progress because we can't allocate from any vdevs.
1772 * The above check for sufficient free space serves this
1775 metaslab_group_t
*mg
= vd
->vdev_mg
;
1776 metaslab_group_passivate(mg
);
1779 * Wait for the youngest allocations and frees to sync,
1780 * and then wait for the deferral of those frees to finish.
1782 spa_vdev_config_exit(spa
, NULL
,
1783 *txg
+ TXG_CONCURRENT_STATES
+ TXG_DEFER_SIZE
, 0, FTAG
);
1786 * We must ensure that no "stubby" log blocks are allocated
1787 * on the device to be removed. These blocks could be
1788 * written at any time, including while we are in the middle
1791 error
= spa_reset_logs(spa
);
1793 *txg
= spa_vdev_config_enter(spa
);
1796 * Things might have changed while the config lock was dropped
1797 * (e.g. space usage). Check for errors again.
1800 error
= spa_vdev_remove_top_check(vd
);
1803 metaslab_group_activate(mg
);
1807 vd
->vdev_removing
= B_TRUE
;
1809 vdev_dirty_leaves(vd
, VDD_DTL
, *txg
);
1810 vdev_config_dirty(vd
);
1811 dmu_tx_t
*tx
= dmu_tx_create_assigned(spa
->spa_dsl_pool
, *txg
);
1812 dsl_sync_task_nowait(spa
->spa_dsl_pool
,
1813 vdev_remove_initiate_sync
,
1814 vd
, 0, ZFS_SPACE_CHECK_NONE
, tx
);
1821 * Remove a device from the pool.
1823 * Removing a device from the vdev namespace requires several steps
1824 * and can take a significant amount of time. As a result we use
1825 * the spa_vdev_config_[enter/exit] functions which allow us to
1826 * grab and release the spa_config_lock while still holding the namespace
1827 * lock. During each step the configuration is synced out.
1830 spa_vdev_remove(spa_t
*spa
, uint64_t guid
, boolean_t unspare
)
1833 nvlist_t
**spares
, **l2cache
, *nv
;
1835 uint_t nspares
, nl2cache
;
1837 boolean_t locked
= MUTEX_HELD(&spa_namespace_lock
);
1838 sysevent_t
*ev
= NULL
;
1840 ASSERT(spa_writeable(spa
));
1843 txg
= spa_vdev_enter(spa
);
1845 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
1846 if (spa_feature_is_active(spa
, SPA_FEATURE_POOL_CHECKPOINT
)) {
1847 error
= (spa_has_checkpoint(spa
)) ?
1848 ZFS_ERR_CHECKPOINT_EXISTS
: ZFS_ERR_DISCARDING_CHECKPOINT
;
1851 return (spa_vdev_exit(spa
, NULL
, txg
, error
));
1856 vd
= spa_lookup_by_guid(spa
, guid
, B_FALSE
);
1858 if (spa
->spa_spares
.sav_vdevs
!= NULL
&&
1859 nvlist_lookup_nvlist_array(spa
->spa_spares
.sav_config
,
1860 ZPOOL_CONFIG_SPARES
, &spares
, &nspares
) == 0 &&
1861 (nv
= spa_nvlist_lookup_by_guid(spares
, nspares
, guid
)) != NULL
) {
1863 * Only remove the hot spare if it's not currently in use
1866 if (vd
== NULL
|| unspare
) {
1867 char *nvstr
= fnvlist_lookup_string(nv
,
1869 spa_history_log_internal(spa
, "vdev remove", NULL
,
1870 "%s vdev (%s) %s", spa_name(spa
),
1871 VDEV_TYPE_SPARE
, nvstr
);
1873 vd
= spa_lookup_by_guid(spa
, guid
, B_TRUE
);
1874 ev
= spa_event_create(spa
, vd
, NULL
,
1875 ESC_ZFS_VDEV_REMOVE_AUX
);
1876 spa_vdev_remove_aux(spa
->spa_spares
.sav_config
,
1877 ZPOOL_CONFIG_SPARES
, spares
, nspares
, nv
);
1878 spa_load_spares(spa
);
1879 spa
->spa_spares
.sav_sync
= B_TRUE
;
1881 error
= SET_ERROR(EBUSY
);
1883 } else if (spa
->spa_l2cache
.sav_vdevs
!= NULL
&&
1884 nvlist_lookup_nvlist_array(spa
->spa_l2cache
.sav_config
,
1885 ZPOOL_CONFIG_L2CACHE
, &l2cache
, &nl2cache
) == 0 &&
1886 (nv
= spa_nvlist_lookup_by_guid(l2cache
, nl2cache
, guid
)) != NULL
) {
1887 char *nvstr
= fnvlist_lookup_string(nv
, ZPOOL_CONFIG_PATH
);
1888 spa_history_log_internal(spa
, "vdev remove", NULL
,
1889 "%s vdev (%s) %s", spa_name(spa
), VDEV_TYPE_L2CACHE
, nvstr
);
1891 * Cache devices can always be removed.
1893 vd
= spa_lookup_by_guid(spa
, guid
, B_TRUE
);
1894 ev
= spa_event_create(spa
, vd
, NULL
, ESC_ZFS_VDEV_REMOVE_AUX
);
1895 spa_vdev_remove_aux(spa
->spa_l2cache
.sav_config
,
1896 ZPOOL_CONFIG_L2CACHE
, l2cache
, nl2cache
, nv
);
1897 spa_load_l2cache(spa
);
1898 spa
->spa_l2cache
.sav_sync
= B_TRUE
;
1899 } else if (vd
!= NULL
&& vd
->vdev_islog
) {
1901 error
= spa_vdev_remove_log(vd
, &txg
);
1902 } else if (vd
!= NULL
) {
1904 error
= spa_vdev_remove_top(vd
, &txg
);
1907 * There is no vdev of any kind with the specified guid.
1909 error
= SET_ERROR(ENOENT
);
1913 error
= spa_vdev_exit(spa
, NULL
, txg
, error
);
1917 spa_event_discard(ev
);
1927 spa_removal_get_stats(spa_t
*spa
, pool_removal_stat_t
*prs
)
1929 prs
->prs_state
= spa
->spa_removing_phys
.sr_state
;
1931 if (prs
->prs_state
== DSS_NONE
)
1932 return (SET_ERROR(ENOENT
));
1934 prs
->prs_removing_vdev
= spa
->spa_removing_phys
.sr_removing_vdev
;
1935 prs
->prs_start_time
= spa
->spa_removing_phys
.sr_start_time
;
1936 prs
->prs_end_time
= spa
->spa_removing_phys
.sr_end_time
;
1937 prs
->prs_to_copy
= spa
->spa_removing_phys
.sr_to_copy
;
1938 prs
->prs_copied
= spa
->spa_removing_phys
.sr_copied
;
1940 if (spa
->spa_vdev_removal
!= NULL
) {
1941 for (int i
= 0; i
< TXG_SIZE
; i
++) {
1943 spa
->spa_vdev_removal
->svr_bytes_done
[i
];
1947 prs
->prs_mapping_memory
= 0;
1948 uint64_t indirect_vdev_id
=
1949 spa
->spa_removing_phys
.sr_prev_indirect_vdev
;
1950 while (indirect_vdev_id
!= -1) {
1951 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[indirect_vdev_id
];
1952 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
1953 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
1955 ASSERT3P(vd
->vdev_ops
, ==, &vdev_indirect_ops
);
1956 prs
->prs_mapping_memory
+= vdev_indirect_mapping_size(vim
);
1957 indirect_vdev_id
= vic
->vic_prev_indirect_vdev
;