4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
31 #include <sys/zfs_context.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/spa_impl.h>
36 #include <sys/dsl_pool.h>
37 #include <sys/metaslab_impl.h>
44 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The
45 * I/O scheduler determines when and in what order those operations are
46 * issued. The I/O scheduler divides operations into five I/O classes
47 * prioritized in the following order: sync read, sync write, async read,
48 * async write, and scrub/resilver. Each queue defines the minimum and
49 * maximum number of concurrent operations that may be issued to the device.
50 * In addition, the device has an aggregate maximum. Note that the sum of the
51 * per-queue minimums must not exceed the aggregate maximum, and if the
52 * aggregate maximum is equal to or greater than the sum of the per-queue
53 * maximums, the per-queue minimum has no effect.
55 * For many physical devices, throughput increases with the number of
56 * concurrent operations, but latency typically suffers. Further, physical
57 * devices typically have a limit at which more concurrent operations have no
58 * effect on throughput or can actually cause it to decrease.
60 * The scheduler selects the next operation to issue by first looking for an
61 * I/O class whose minimum has not been satisfied. Once all are satisfied and
62 * the aggregate maximum has not been hit, the scheduler looks for classes
63 * whose maximum has not been satisfied. Iteration through the I/O classes is
64 * done in the order specified above. No further operations are issued if the
65 * aggregate maximum number of concurrent operations has been hit or if there
66 * are no operations queued for an I/O class that has not hit its maximum.
67 * Every time an i/o is queued or an operation completes, the I/O scheduler
68 * looks for new operations to issue.
70 * All I/O classes have a fixed maximum number of outstanding operations
71 * except for the async write class. Asynchronous writes represent the data
72 * that is committed to stable storage during the syncing stage for
73 * transaction groups (see txg.c). Transaction groups enter the syncing state
74 * periodically so the number of queued async writes will quickly burst up and
75 * then bleed down to zero. Rather than servicing them as quickly as possible,
76 * the I/O scheduler changes the maximum number of active async write i/os
77 * according to the amount of dirty data in the pool (see dsl_pool.c). Since
78 * both throughput and latency typically increase with the number of
79 * concurrent operations issued to physical devices, reducing the burstiness
80 * in the number of concurrent operations also stabilizes the response time of
81 * operations from other -- and in particular synchronous -- queues. In broad
82 * strokes, the I/O scheduler will issue more concurrent operations from the
83 * async write queue as there's more dirty data in the pool.
87 * The number of concurrent operations issued for the async write I/O class
88 * follows a piece-wise linear function defined by a few adjustable points.
90 * | o---------| <-- zfs_vdev_async_write_max_active
97 * |------------o | | <-- zfs_vdev_async_write_min_active
98 * 0|____________^______|_________|
99 * 0% | | 100% of zfs_dirty_data_max
101 * | `-- zfs_vdev_async_write_active_max_dirty_percent
102 * `--------- zfs_vdev_async_write_active_min_dirty_percent
104 * Until the amount of dirty data exceeds a minimum percentage of the dirty
105 * data allowed in the pool, the I/O scheduler will limit the number of
106 * concurrent operations to the minimum. As that threshold is crossed, the
107 * number of concurrent operations issued increases linearly to the maximum at
108 * the specified maximum percentage of the dirty data allowed in the pool.
110 * Ideally, the amount of dirty data on a busy pool will stay in the sloped
111 * part of the function between zfs_vdev_async_write_active_min_dirty_percent
112 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
113 * maximum percentage, this indicates that the rate of incoming data is
114 * greater than the rate that the backend storage can handle. In this case, we
115 * must further throttle incoming writes (see dmu_tx_delay() for details).
119 * The maximum number of i/os active to each device. Ideally, this will be >=
120 * the sum of each queue's max_active. It must be at least the sum of each
121 * queue's min_active.
123 uint32_t zfs_vdev_max_active
= 1000;
126 * Per-queue limits on the number of i/os active to each device. If the
127 * sum of the queue's max_active is < zfs_vdev_max_active, then the
128 * min_active comes into play. We will send min_active from each queue,
129 * and then select from queues in the order defined by zio_priority_t.
131 * In general, smaller max_active's will lead to lower latency of synchronous
132 * operations. Larger max_active's may lead to higher overall throughput,
133 * depending on underlying storage.
135 * The ratio of the queues' max_actives determines the balance of performance
136 * between reads, writes, and scrubs. E.g., increasing
137 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
138 * more quickly, but reads and writes to have higher latency and lower
141 uint32_t zfs_vdev_sync_read_min_active
= 10;
142 uint32_t zfs_vdev_sync_read_max_active
= 10;
143 uint32_t zfs_vdev_sync_write_min_active
= 10;
144 uint32_t zfs_vdev_sync_write_max_active
= 10;
145 uint32_t zfs_vdev_async_read_min_active
= 1;
146 uint32_t zfs_vdev_async_read_max_active
= 3;
147 uint32_t zfs_vdev_async_write_min_active
= 1;
148 uint32_t zfs_vdev_async_write_max_active
= 10;
149 uint32_t zfs_vdev_scrub_min_active
= 1;
150 uint32_t zfs_vdev_scrub_max_active
= 2;
151 uint32_t zfs_vdev_removal_min_active
= 1;
152 uint32_t zfs_vdev_removal_max_active
= 2;
155 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
156 * dirty data, use zfs_vdev_async_write_min_active. When it has more than
157 * zfs_vdev_async_write_active_max_dirty_percent, use
158 * zfs_vdev_async_write_max_active. The value is linearly interpolated
159 * between min and max.
161 int zfs_vdev_async_write_active_min_dirty_percent
= 30;
162 int zfs_vdev_async_write_active_max_dirty_percent
= 60;
165 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
166 * For read I/Os, we also aggregate across small adjacency gaps; for writes
167 * we include spans of optional I/Os to aid aggregation at the disk even when
168 * they aren't able to help us aggregate at this level.
170 int zfs_vdev_aggregation_limit
= SPA_OLD_MAXBLOCKSIZE
;
171 int zfs_vdev_read_gap_limit
= 32 << 10;
172 int zfs_vdev_write_gap_limit
= 4 << 10;
175 * Define the queue depth percentage for each top-level. This percentage is
176 * used in conjunction with zfs_vdev_async_max_active to determine how many
177 * allocations a specific top-level vdev should handle. Once the queue depth
178 * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100
179 * then allocator will stop allocating blocks on that top-level device.
180 * The default kernel setting is 1000% which will yield 100 allocations per
181 * device. For userland testing, the default setting is 300% which equates
182 * to 30 allocations per device.
185 int zfs_vdev_queue_depth_pct
= 1000;
187 int zfs_vdev_queue_depth_pct
= 300;
191 * When performing allocations for a given metaslab, we want to make sure that
192 * there are enough IOs to aggregate together to improve throughput. We want to
193 * ensure that there are at least 128k worth of IOs that can be aggregated, and
194 * we assume that the average allocation size is 4k, so we need the queue depth
195 * to be 32 per allocator to get good aggregation of sequential writes.
197 int zfs_vdev_def_queue_depth
= 32;
201 vdev_queue_offset_compare(const void *x1
, const void *x2
)
203 const zio_t
*z1
= x1
;
204 const zio_t
*z2
= x2
;
206 if (z1
->io_offset
< z2
->io_offset
)
208 if (z1
->io_offset
> z2
->io_offset
)
219 static inline avl_tree_t
*
220 vdev_queue_class_tree(vdev_queue_t
*vq
, zio_priority_t p
)
222 return (&vq
->vq_class
[p
].vqc_queued_tree
);
225 static inline avl_tree_t
*
226 vdev_queue_type_tree(vdev_queue_t
*vq
, zio_type_t t
)
228 ASSERT(t
== ZIO_TYPE_READ
|| t
== ZIO_TYPE_WRITE
);
229 if (t
== ZIO_TYPE_READ
)
230 return (&vq
->vq_read_offset_tree
);
232 return (&vq
->vq_write_offset_tree
);
236 vdev_queue_timestamp_compare(const void *x1
, const void *x2
)
238 const zio_t
*z1
= x1
;
239 const zio_t
*z2
= x2
;
241 if (z1
->io_timestamp
< z2
->io_timestamp
)
243 if (z1
->io_timestamp
> z2
->io_timestamp
)
255 vdev_queue_init(vdev_t
*vd
)
257 vdev_queue_t
*vq
= &vd
->vdev_queue
;
259 mutex_init(&vq
->vq_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
262 avl_create(&vq
->vq_active_tree
, vdev_queue_offset_compare
,
263 sizeof (zio_t
), offsetof(struct zio
, io_queue_node
));
264 avl_create(vdev_queue_type_tree(vq
, ZIO_TYPE_READ
),
265 vdev_queue_offset_compare
, sizeof (zio_t
),
266 offsetof(struct zio
, io_offset_node
));
267 avl_create(vdev_queue_type_tree(vq
, ZIO_TYPE_WRITE
),
268 vdev_queue_offset_compare
, sizeof (zio_t
),
269 offsetof(struct zio
, io_offset_node
));
271 for (zio_priority_t p
= 0; p
< ZIO_PRIORITY_NUM_QUEUEABLE
; p
++) {
272 int (*compfn
) (const void *, const void *);
275 * The synchronous i/o queues are dispatched in FIFO rather
276 * than LBA order. This provides more consistent latency for
279 if (p
== ZIO_PRIORITY_SYNC_READ
|| p
== ZIO_PRIORITY_SYNC_WRITE
)
280 compfn
= vdev_queue_timestamp_compare
;
282 compfn
= vdev_queue_offset_compare
;
284 avl_create(vdev_queue_class_tree(vq
, p
), compfn
,
285 sizeof (zio_t
), offsetof(struct zio
, io_queue_node
));
290 vdev_queue_fini(vdev_t
*vd
)
292 vdev_queue_t
*vq
= &vd
->vdev_queue
;
294 for (zio_priority_t p
= 0; p
< ZIO_PRIORITY_NUM_QUEUEABLE
; p
++)
295 avl_destroy(vdev_queue_class_tree(vq
, p
));
296 avl_destroy(&vq
->vq_active_tree
);
297 avl_destroy(vdev_queue_type_tree(vq
, ZIO_TYPE_READ
));
298 avl_destroy(vdev_queue_type_tree(vq
, ZIO_TYPE_WRITE
));
300 mutex_destroy(&vq
->vq_lock
);
304 vdev_queue_io_add(vdev_queue_t
*vq
, zio_t
*zio
)
306 spa_t
*spa
= zio
->io_spa
;
308 ASSERT3U(zio
->io_priority
, <, ZIO_PRIORITY_NUM_QUEUEABLE
);
309 avl_add(vdev_queue_class_tree(vq
, zio
->io_priority
), zio
);
310 avl_add(vdev_queue_type_tree(vq
, zio
->io_type
), zio
);
312 mutex_enter(&spa
->spa_iokstat_lock
);
313 spa
->spa_queue_stats
[zio
->io_priority
].spa_queued
++;
314 if (spa
->spa_iokstat
!= NULL
)
315 kstat_waitq_enter(spa
->spa_iokstat
->ks_data
);
316 mutex_exit(&spa
->spa_iokstat_lock
);
320 vdev_queue_io_remove(vdev_queue_t
*vq
, zio_t
*zio
)
322 spa_t
*spa
= zio
->io_spa
;
324 ASSERT3U(zio
->io_priority
, <, ZIO_PRIORITY_NUM_QUEUEABLE
);
325 avl_remove(vdev_queue_class_tree(vq
, zio
->io_priority
), zio
);
326 avl_remove(vdev_queue_type_tree(vq
, zio
->io_type
), zio
);
328 mutex_enter(&spa
->spa_iokstat_lock
);
329 ASSERT3U(spa
->spa_queue_stats
[zio
->io_priority
].spa_queued
, >, 0);
330 spa
->spa_queue_stats
[zio
->io_priority
].spa_queued
--;
331 if (spa
->spa_iokstat
!= NULL
)
332 kstat_waitq_exit(spa
->spa_iokstat
->ks_data
);
333 mutex_exit(&spa
->spa_iokstat_lock
);
337 vdev_queue_pending_add(vdev_queue_t
*vq
, zio_t
*zio
)
339 spa_t
*spa
= zio
->io_spa
;
340 ASSERT(MUTEX_HELD(&vq
->vq_lock
));
341 ASSERT3U(zio
->io_priority
, <, ZIO_PRIORITY_NUM_QUEUEABLE
);
342 vq
->vq_class
[zio
->io_priority
].vqc_active
++;
343 avl_add(&vq
->vq_active_tree
, zio
);
345 mutex_enter(&spa
->spa_iokstat_lock
);
346 spa
->spa_queue_stats
[zio
->io_priority
].spa_active
++;
347 if (spa
->spa_iokstat
!= NULL
)
348 kstat_runq_enter(spa
->spa_iokstat
->ks_data
);
349 mutex_exit(&spa
->spa_iokstat_lock
);
353 vdev_queue_pending_remove(vdev_queue_t
*vq
, zio_t
*zio
)
355 spa_t
*spa
= zio
->io_spa
;
356 ASSERT(MUTEX_HELD(&vq
->vq_lock
));
357 ASSERT3U(zio
->io_priority
, <, ZIO_PRIORITY_NUM_QUEUEABLE
);
358 vq
->vq_class
[zio
->io_priority
].vqc_active
--;
359 avl_remove(&vq
->vq_active_tree
, zio
);
361 mutex_enter(&spa
->spa_iokstat_lock
);
362 ASSERT3U(spa
->spa_queue_stats
[zio
->io_priority
].spa_active
, >, 0);
363 spa
->spa_queue_stats
[zio
->io_priority
].spa_active
--;
364 if (spa
->spa_iokstat
!= NULL
) {
365 kstat_io_t
*ksio
= spa
->spa_iokstat
->ks_data
;
367 kstat_runq_exit(spa
->spa_iokstat
->ks_data
);
368 if (zio
->io_type
== ZIO_TYPE_READ
) {
370 ksio
->nread
+= zio
->io_size
;
371 } else if (zio
->io_type
== ZIO_TYPE_WRITE
) {
373 ksio
->nwritten
+= zio
->io_size
;
376 mutex_exit(&spa
->spa_iokstat_lock
);
380 vdev_queue_agg_io_done(zio_t
*aio
)
382 if (aio
->io_type
== ZIO_TYPE_READ
) {
384 zio_link_t
*zl
= NULL
;
385 while ((pio
= zio_walk_parents(aio
, &zl
)) != NULL
) {
386 abd_copy_off(pio
->io_abd
, aio
->io_abd
,
387 0, pio
->io_offset
- aio
->io_offset
, pio
->io_size
);
391 abd_free(aio
->io_abd
);
395 vdev_queue_class_min_active(zio_priority_t p
)
398 case ZIO_PRIORITY_SYNC_READ
:
399 return (zfs_vdev_sync_read_min_active
);
400 case ZIO_PRIORITY_SYNC_WRITE
:
401 return (zfs_vdev_sync_write_min_active
);
402 case ZIO_PRIORITY_ASYNC_READ
:
403 return (zfs_vdev_async_read_min_active
);
404 case ZIO_PRIORITY_ASYNC_WRITE
:
405 return (zfs_vdev_async_write_min_active
);
406 case ZIO_PRIORITY_SCRUB
:
407 return (zfs_vdev_scrub_min_active
);
408 case ZIO_PRIORITY_REMOVAL
:
409 return (zfs_vdev_removal_min_active
);
411 panic("invalid priority %u", p
);
417 vdev_queue_max_async_writes(spa_t
*spa
)
420 uint64_t dirty
= spa
->spa_dsl_pool
->dp_dirty_total
;
421 uint64_t min_bytes
= zfs_dirty_data_max
*
422 zfs_vdev_async_write_active_min_dirty_percent
/ 100;
423 uint64_t max_bytes
= zfs_dirty_data_max
*
424 zfs_vdev_async_write_active_max_dirty_percent
/ 100;
427 * Sync tasks correspond to interactive user actions. To reduce the
428 * execution time of those actions we push data out as fast as possible.
430 if (spa_has_pending_synctask(spa
)) {
431 return (zfs_vdev_async_write_max_active
);
434 if (dirty
< min_bytes
)
435 return (zfs_vdev_async_write_min_active
);
436 if (dirty
> max_bytes
)
437 return (zfs_vdev_async_write_max_active
);
440 * linear interpolation:
441 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
442 * move right by min_bytes
443 * move up by min_writes
445 writes
= (dirty
- min_bytes
) *
446 (zfs_vdev_async_write_max_active
-
447 zfs_vdev_async_write_min_active
) /
448 (max_bytes
- min_bytes
) +
449 zfs_vdev_async_write_min_active
;
450 ASSERT3U(writes
, >=, zfs_vdev_async_write_min_active
);
451 ASSERT3U(writes
, <=, zfs_vdev_async_write_max_active
);
456 vdev_queue_class_max_active(spa_t
*spa
, zio_priority_t p
)
459 case ZIO_PRIORITY_SYNC_READ
:
460 return (zfs_vdev_sync_read_max_active
);
461 case ZIO_PRIORITY_SYNC_WRITE
:
462 return (zfs_vdev_sync_write_max_active
);
463 case ZIO_PRIORITY_ASYNC_READ
:
464 return (zfs_vdev_async_read_max_active
);
465 case ZIO_PRIORITY_ASYNC_WRITE
:
466 return (vdev_queue_max_async_writes(spa
));
467 case ZIO_PRIORITY_SCRUB
:
468 return (zfs_vdev_scrub_max_active
);
469 case ZIO_PRIORITY_REMOVAL
:
470 return (zfs_vdev_removal_max_active
);
472 panic("invalid priority %u", p
);
478 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
479 * there is no eligible class.
481 static zio_priority_t
482 vdev_queue_class_to_issue(vdev_queue_t
*vq
)
484 spa_t
*spa
= vq
->vq_vdev
->vdev_spa
;
487 if (avl_numnodes(&vq
->vq_active_tree
) >= zfs_vdev_max_active
)
488 return (ZIO_PRIORITY_NUM_QUEUEABLE
);
490 /* find a queue that has not reached its minimum # outstanding i/os */
491 for (p
= 0; p
< ZIO_PRIORITY_NUM_QUEUEABLE
; p
++) {
492 if (avl_numnodes(vdev_queue_class_tree(vq
, p
)) > 0 &&
493 vq
->vq_class
[p
].vqc_active
<
494 vdev_queue_class_min_active(p
))
499 * If we haven't found a queue, look for one that hasn't reached its
500 * maximum # outstanding i/os.
502 for (p
= 0; p
< ZIO_PRIORITY_NUM_QUEUEABLE
; p
++) {
503 if (avl_numnodes(vdev_queue_class_tree(vq
, p
)) > 0 &&
504 vq
->vq_class
[p
].vqc_active
<
505 vdev_queue_class_max_active(spa
, p
))
509 /* No eligible queued i/os */
510 return (ZIO_PRIORITY_NUM_QUEUEABLE
);
514 * Compute the range spanned by two i/os, which is the endpoint of the last
515 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
516 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
517 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
519 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
520 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
523 vdev_queue_aggregate(vdev_queue_t
*vq
, zio_t
*zio
)
525 zio_t
*first
, *last
, *aio
, *dio
, *mandatory
, *nio
;
528 boolean_t stretch
= B_FALSE
;
529 avl_tree_t
*t
= vdev_queue_type_tree(vq
, zio
->io_type
);
530 enum zio_flag flags
= zio
->io_flags
& ZIO_FLAG_AGG_INHERIT
;
532 if (zio
->io_flags
& ZIO_FLAG_DONT_AGGREGATE
)
537 if (zio
->io_type
== ZIO_TYPE_READ
)
538 maxgap
= zfs_vdev_read_gap_limit
;
541 * We can aggregate I/Os that are sufficiently adjacent and of
542 * the same flavor, as expressed by the AGG_INHERIT flags.
543 * The latter requirement is necessary so that certain
544 * attributes of the I/O, such as whether it's a normal I/O
545 * or a scrub/resilver, can be preserved in the aggregate.
546 * We can include optional I/Os, but don't allow them
547 * to begin a range as they add no benefit in that situation.
551 * We keep track of the last non-optional I/O.
553 mandatory
= (first
->io_flags
& ZIO_FLAG_OPTIONAL
) ? NULL
: first
;
556 * Walk backwards through sufficiently contiguous I/Os
557 * recording the last non-optional I/O.
559 while ((dio
= AVL_PREV(t
, first
)) != NULL
&&
560 (dio
->io_flags
& ZIO_FLAG_AGG_INHERIT
) == flags
&&
561 IO_SPAN(dio
, last
) <= zfs_vdev_aggregation_limit
&&
562 IO_GAP(dio
, first
) <= maxgap
&&
563 dio
->io_type
== zio
->io_type
) {
565 if (mandatory
== NULL
&& !(first
->io_flags
& ZIO_FLAG_OPTIONAL
))
570 * Skip any initial optional I/Os.
572 while ((first
->io_flags
& ZIO_FLAG_OPTIONAL
) && first
!= last
) {
573 first
= AVL_NEXT(t
, first
);
574 ASSERT(first
!= NULL
);
578 * Walk forward through sufficiently contiguous I/Os.
579 * The aggregation limit does not apply to optional i/os, so that
580 * we can issue contiguous writes even if they are larger than the
583 while ((dio
= AVL_NEXT(t
, last
)) != NULL
&&
584 (dio
->io_flags
& ZIO_FLAG_AGG_INHERIT
) == flags
&&
585 (IO_SPAN(first
, dio
) <= zfs_vdev_aggregation_limit
||
586 (dio
->io_flags
& ZIO_FLAG_OPTIONAL
)) &&
587 IO_GAP(last
, dio
) <= maxgap
&&
588 dio
->io_type
== zio
->io_type
) {
590 if (!(last
->io_flags
& ZIO_FLAG_OPTIONAL
))
595 * Now that we've established the range of the I/O aggregation
596 * we must decide what to do with trailing optional I/Os.
597 * For reads, there's nothing to do. While we are unable to
598 * aggregate further, it's possible that a trailing optional
599 * I/O would allow the underlying device to aggregate with
600 * subsequent I/Os. We must therefore determine if the next
601 * non-optional I/O is close enough to make aggregation
604 if (zio
->io_type
== ZIO_TYPE_WRITE
&& mandatory
!= NULL
) {
606 while ((dio
= AVL_NEXT(t
, nio
)) != NULL
&&
607 IO_GAP(nio
, dio
) == 0 &&
608 IO_GAP(mandatory
, dio
) <= zfs_vdev_write_gap_limit
) {
610 if (!(nio
->io_flags
& ZIO_FLAG_OPTIONAL
)) {
619 * We are going to include an optional io in our aggregated
620 * span, thus closing the write gap. Only mandatory i/os can
621 * start aggregated spans, so make sure that the next i/o
622 * after our span is mandatory.
624 dio
= AVL_NEXT(t
, last
);
625 dio
->io_flags
&= ~ZIO_FLAG_OPTIONAL
;
627 /* do not include the optional i/o */
628 while (last
!= mandatory
&& last
!= first
) {
629 ASSERT(last
->io_flags
& ZIO_FLAG_OPTIONAL
);
630 last
= AVL_PREV(t
, last
);
631 ASSERT(last
!= NULL
);
638 size
= IO_SPAN(first
, last
);
639 ASSERT3U(size
, <=, SPA_MAXBLOCKSIZE
);
641 aio
= zio_vdev_delegated_io(first
->io_vd
, first
->io_offset
,
642 abd_alloc_for_io(size
, B_TRUE
), size
, first
->io_type
,
643 zio
->io_priority
, flags
| ZIO_FLAG_DONT_CACHE
| ZIO_FLAG_DONT_QUEUE
,
644 vdev_queue_agg_io_done
, NULL
);
645 aio
->io_timestamp
= first
->io_timestamp
;
650 nio
= AVL_NEXT(t
, dio
);
651 ASSERT3U(dio
->io_type
, ==, aio
->io_type
);
653 if (dio
->io_flags
& ZIO_FLAG_NODATA
) {
654 ASSERT3U(dio
->io_type
, ==, ZIO_TYPE_WRITE
);
655 abd_zero_off(aio
->io_abd
,
656 dio
->io_offset
- aio
->io_offset
, dio
->io_size
);
657 } else if (dio
->io_type
== ZIO_TYPE_WRITE
) {
658 abd_copy_off(aio
->io_abd
, dio
->io_abd
,
659 dio
->io_offset
- aio
->io_offset
, 0, dio
->io_size
);
662 zio_add_child(dio
, aio
);
663 vdev_queue_io_remove(vq
, dio
);
664 zio_vdev_io_bypass(dio
);
666 } while (dio
!= last
);
672 vdev_queue_io_to_issue(vdev_queue_t
*vq
)
681 ASSERT(MUTEX_HELD(&vq
->vq_lock
));
683 p
= vdev_queue_class_to_issue(vq
);
685 if (p
== ZIO_PRIORITY_NUM_QUEUEABLE
) {
686 /* No eligible queued i/os */
691 * For LBA-ordered queues (async / scrub), issue the i/o which follows
692 * the most recently issued i/o in LBA (offset) order.
694 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
696 tree
= vdev_queue_class_tree(vq
, p
);
697 search
.io_timestamp
= 0;
698 search
.io_offset
= vq
->vq_last_offset
+ 1;
699 VERIFY3P(avl_find(tree
, &search
, &idx
), ==, NULL
);
700 zio
= avl_nearest(tree
, idx
, AVL_AFTER
);
702 zio
= avl_first(tree
);
703 ASSERT3U(zio
->io_priority
, ==, p
);
705 aio
= vdev_queue_aggregate(vq
, zio
);
709 vdev_queue_io_remove(vq
, zio
);
712 * If the I/O is or was optional and therefore has no data, we need to
713 * simply discard it. We need to drop the vdev queue's lock to avoid a
714 * deadlock that we could encounter since this I/O will complete
717 if (zio
->io_flags
& ZIO_FLAG_NODATA
) {
718 mutex_exit(&vq
->vq_lock
);
719 zio_vdev_io_bypass(zio
);
721 mutex_enter(&vq
->vq_lock
);
725 vdev_queue_pending_add(vq
, zio
);
726 vq
->vq_last_offset
= zio
->io_offset
;
732 vdev_queue_io(zio_t
*zio
)
734 vdev_queue_t
*vq
= &zio
->io_vd
->vdev_queue
;
737 if (zio
->io_flags
& ZIO_FLAG_DONT_QUEUE
)
741 * Children i/os inherent their parent's priority, which might
742 * not match the child's i/o type. Fix it up here.
744 if (zio
->io_type
== ZIO_TYPE_READ
) {
745 if (zio
->io_priority
!= ZIO_PRIORITY_SYNC_READ
&&
746 zio
->io_priority
!= ZIO_PRIORITY_ASYNC_READ
&&
747 zio
->io_priority
!= ZIO_PRIORITY_SCRUB
&&
748 zio
->io_priority
!= ZIO_PRIORITY_REMOVAL
)
749 zio
->io_priority
= ZIO_PRIORITY_ASYNC_READ
;
751 ASSERT(zio
->io_type
== ZIO_TYPE_WRITE
);
752 if (zio
->io_priority
!= ZIO_PRIORITY_SYNC_WRITE
&&
753 zio
->io_priority
!= ZIO_PRIORITY_ASYNC_WRITE
&&
754 zio
->io_priority
!= ZIO_PRIORITY_REMOVAL
)
755 zio
->io_priority
= ZIO_PRIORITY_ASYNC_WRITE
;
758 zio
->io_flags
|= ZIO_FLAG_DONT_CACHE
| ZIO_FLAG_DONT_QUEUE
;
760 mutex_enter(&vq
->vq_lock
);
761 zio
->io_timestamp
= gethrtime();
762 vdev_queue_io_add(vq
, zio
);
763 nio
= vdev_queue_io_to_issue(vq
);
764 mutex_exit(&vq
->vq_lock
);
769 if (nio
->io_done
== vdev_queue_agg_io_done
) {
778 vdev_queue_io_done(zio_t
*zio
)
780 vdev_queue_t
*vq
= &zio
->io_vd
->vdev_queue
;
783 mutex_enter(&vq
->vq_lock
);
785 vdev_queue_pending_remove(vq
, zio
);
787 vq
->vq_io_complete_ts
= gethrtime();
789 while ((nio
= vdev_queue_io_to_issue(vq
)) != NULL
) {
790 mutex_exit(&vq
->vq_lock
);
791 if (nio
->io_done
== vdev_queue_agg_io_done
) {
794 zio_vdev_io_reissue(nio
);
797 mutex_enter(&vq
->vq_lock
);
800 mutex_exit(&vq
->vq_lock
);