6990 scan_rsdp() should use signed len
[unleashed.git] / usr / src / uts / i86pc / os / fakebop.c
blob2f00d95f40039dc658f7925b918bf73f6aeeeb37
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
29 * Copyright 2013 Joyent, Inc. All rights reserved.
33 * This file contains the functionality that mimics the boot operations
34 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
35 * The x86 kernel now does everything on its own.
38 #include <sys/types.h>
39 #include <sys/bootconf.h>
40 #include <sys/bootsvcs.h>
41 #include <sys/bootinfo.h>
42 #include <sys/multiboot.h>
43 #include <sys/bootvfs.h>
44 #include <sys/bootprops.h>
45 #include <sys/varargs.h>
46 #include <sys/param.h>
47 #include <sys/machparam.h>
48 #include <sys/machsystm.h>
49 #include <sys/archsystm.h>
50 #include <sys/boot_console.h>
51 #include <sys/cmn_err.h>
52 #include <sys/systm.h>
53 #include <sys/promif.h>
54 #include <sys/archsystm.h>
55 #include <sys/x86_archext.h>
56 #include <sys/kobj.h>
57 #include <sys/privregs.h>
58 #include <sys/sysmacros.h>
59 #include <sys/ctype.h>
60 #include <sys/fastboot.h>
61 #ifdef __xpv
62 #include <sys/hypervisor.h>
63 #include <net/if.h>
64 #endif
65 #include <vm/kboot_mmu.h>
66 #include <vm/hat_pte.h>
67 #include <sys/kobj.h>
68 #include <sys/kobj_lex.h>
69 #include <sys/pci_cfgspace_impl.h>
70 #include <sys/fastboot_impl.h>
71 #include <sys/acpi/acconfig.h>
72 #include <sys/acpi/acpi.h>
74 static int have_console = 0; /* set once primitive console is initialized */
75 static char *boot_args = "";
78 * Debugging macros
80 static uint_t kbm_debug = 0;
81 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); }
82 #define DBG(x) { if (kbm_debug) \
83 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \
86 #define PUT_STRING(s) { \
87 char *cp; \
88 for (cp = (s); *cp; ++cp) \
89 bcons_putchar(*cp); \
92 struct xboot_info *xbootp; /* boot info from "glue" code in low memory */
93 bootops_t bootop; /* simple bootops we'll pass on to kernel */
94 struct bsys_mem bm;
96 static uintptr_t next_virt; /* next available virtual address */
97 static paddr_t next_phys; /* next available physical address from dboot */
98 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */
101 * buffer for vsnprintf for console I/O
103 #define BUFFERSIZE 512
104 static char buffer[BUFFERSIZE];
106 * stuff to store/report/manipulate boot property settings.
108 typedef struct bootprop {
109 struct bootprop *bp_next;
110 char *bp_name;
111 uint_t bp_vlen;
112 char *bp_value;
113 } bootprop_t;
115 static bootprop_t *bprops = NULL;
116 static char *curr_page = NULL; /* ptr to avail bprop memory */
117 static int curr_space = 0; /* amount of memory at curr_page */
119 #ifdef __xpv
120 start_info_t *xen_info;
121 shared_info_t *HYPERVISOR_shared_info;
122 #endif
125 * some allocator statistics
127 static ulong_t total_bop_alloc_scratch = 0;
128 static ulong_t total_bop_alloc_kernel = 0;
130 static void build_firmware_properties(void);
132 static int early_allocation = 1;
134 int force_fastreboot = 0;
135 volatile int fastreboot_onpanic = 0;
136 int post_fastreboot = 0;
137 #ifdef __xpv
138 volatile int fastreboot_capable = 0;
139 #else
140 volatile int fastreboot_capable = 1;
141 #endif
144 * Information saved from current boot for fast reboot.
145 * If the information size exceeds what we have allocated, fast reboot
146 * will not be supported.
148 multiboot_info_t saved_mbi;
149 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
150 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
151 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
152 int saved_cmdline_len = 0;
153 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
156 * Turn off fastreboot_onpanic to avoid panic loop.
158 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
159 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
162 * Pointers to where System Resource Affinity Table (SRAT), System Locality
163 * Information Table (SLIT) and Maximum System Capability Table (MSCT)
164 * are mapped into virtual memory
166 ACPI_TABLE_SRAT *srat_ptr = NULL;
167 ACPI_TABLE_SLIT *slit_ptr = NULL;
168 ACPI_TABLE_MSCT *msct_ptr = NULL;
171 * Arbitrary limit on number of localities we handle; if
172 * this limit is raised to more than UINT16_MAX, make sure
173 * process_slit() knows how to handle it.
175 #define SLIT_LOCALITIES_MAX (4096)
177 #define SLIT_NUM_PROPNAME "acpi-slit-localities"
178 #define SLIT_PROPNAME "acpi-slit"
181 * Allocate aligned physical memory at boot time. This allocator allocates
182 * from the highest possible addresses. This avoids exhausting memory that
183 * would be useful for DMA buffers.
185 paddr_t
186 do_bop_phys_alloc(uint64_t size, uint64_t align)
188 paddr_t pa = 0;
189 paddr_t start;
190 paddr_t end;
191 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install;
194 * Be careful if high memory usage is limited in startup.c
195 * Since there are holes in the low part of the physical address
196 * space we can treat physmem as a pfn (not just a pgcnt) and
197 * get a conservative upper limit.
199 if (physmem != 0 && high_phys > pfn_to_pa(physmem))
200 high_phys = pfn_to_pa(physmem);
203 * find the lowest or highest available memory in physinstalled
204 * On 32 bit avoid physmem above 4Gig if PAE isn't enabled
206 #if defined(__i386)
207 if (xbootp->bi_use_pae == 0 && high_phys > FOUR_GIG)
208 high_phys = FOUR_GIG;
209 #endif
212 * find the highest available memory in physinstalled
214 size = P2ROUNDUP(size, align);
215 for (; ml; ml = ml->ml_next) {
216 start = P2ROUNDUP(ml->ml_address, align);
217 end = P2ALIGN(ml->ml_address + ml->ml_size, align);
218 if (start < next_phys)
219 start = P2ROUNDUP(next_phys, align);
220 if (end > high_phys)
221 end = P2ALIGN(high_phys, align);
223 if (end <= start)
224 continue;
225 if (end - start < size)
226 continue;
229 * Early allocations need to use low memory, since
230 * physmem might be further limited by bootenv.rc
232 if (early_allocation) {
233 if (pa == 0 || start < pa)
234 pa = start;
235 } else {
236 if (end - size > pa)
237 pa = end - size;
240 if (pa != 0) {
241 if (early_allocation)
242 next_phys = pa + size;
243 else
244 high_phys = pa;
245 return (pa);
247 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
248 ") Out of memory\n", size, align);
249 /*NOTREACHED*/
252 uintptr_t
253 alloc_vaddr(size_t size, paddr_t align)
255 uintptr_t rv;
257 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
258 rv = (uintptr_t)next_virt;
259 next_virt += size;
260 return (rv);
264 * Allocate virtual memory. The size is always rounded up to a multiple
265 * of base pagesize.
268 /*ARGSUSED*/
269 static caddr_t
270 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
272 paddr_t a = align; /* same type as pa for masking */
273 uint_t pgsize;
274 paddr_t pa;
275 uintptr_t va;
276 ssize_t s; /* the aligned size */
277 uint_t level;
278 uint_t is_kernel = (virthint != 0);
280 if (a < MMU_PAGESIZE)
281 a = MMU_PAGESIZE;
282 else if (!ISP2(a))
283 prom_panic("do_bsys_alloc() incorrect alignment");
284 size = P2ROUNDUP(size, MMU_PAGESIZE);
287 * Use the next aligned virtual address if we weren't given one.
289 if (virthint == NULL) {
290 virthint = (caddr_t)alloc_vaddr(size, a);
291 total_bop_alloc_scratch += size;
292 } else {
293 total_bop_alloc_kernel += size;
297 * allocate the physical memory
299 pa = do_bop_phys_alloc(size, a);
302 * Add the mappings to the page tables, try large pages first.
304 va = (uintptr_t)virthint;
305 s = size;
306 level = 1;
307 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
308 if (xbootp->bi_use_largepage && a == pgsize) {
309 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
310 s >= pgsize) {
311 kbm_map(va, pa, level, is_kernel);
312 va += pgsize;
313 pa += pgsize;
314 s -= pgsize;
319 * Map remaining pages use small mappings
321 level = 0;
322 pgsize = MMU_PAGESIZE;
323 while (s > 0) {
324 kbm_map(va, pa, level, is_kernel);
325 va += pgsize;
326 pa += pgsize;
327 s -= pgsize;
329 return (virthint);
333 * Free virtual memory - we'll just ignore these.
335 /*ARGSUSED*/
336 static void
337 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
339 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
340 (void *)virt, size);
344 * Old interface
346 /*ARGSUSED*/
347 static caddr_t
348 do_bsys_ealloc(
349 bootops_t *bop,
350 caddr_t virthint,
351 size_t size,
352 int align,
353 int flags)
355 prom_panic("unsupported call to BOP_EALLOC()\n");
356 return (0);
360 static void
361 bsetprop(char *name, int nlen, void *value, int vlen)
363 uint_t size;
364 uint_t need_size;
365 bootprop_t *b;
368 * align the size to 16 byte boundary
370 size = sizeof (bootprop_t) + nlen + 1 + vlen;
371 size = (size + 0xf) & ~0xf;
372 if (size > curr_space) {
373 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
374 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
375 curr_space = need_size;
379 * use a bootprop_t at curr_page and link into list
381 b = (bootprop_t *)curr_page;
382 curr_page += sizeof (bootprop_t);
383 curr_space -= sizeof (bootprop_t);
384 b->bp_next = bprops;
385 bprops = b;
388 * follow by name and ending zero byte
390 b->bp_name = curr_page;
391 bcopy(name, curr_page, nlen);
392 curr_page += nlen;
393 *curr_page++ = 0;
394 curr_space -= nlen + 1;
397 * copy in value, but no ending zero byte
399 b->bp_value = curr_page;
400 b->bp_vlen = vlen;
401 if (vlen > 0) {
402 bcopy(value, curr_page, vlen);
403 curr_page += vlen;
404 curr_space -= vlen;
408 * align new values of curr_page, curr_space
410 while (curr_space & 0xf) {
411 ++curr_page;
412 --curr_space;
416 static void
417 bsetprops(char *name, char *value)
419 bsetprop(name, strlen(name), value, strlen(value) + 1);
422 static void
423 bsetprop64(char *name, uint64_t value)
425 bsetprop(name, strlen(name), (void *)&value, sizeof (value));
428 static void
429 bsetpropsi(char *name, int value)
431 char prop_val[32];
433 (void) snprintf(prop_val, sizeof (prop_val), "%d", value);
434 bsetprops(name, prop_val);
438 * to find the size of the buffer to allocate
440 /*ARGSUSED*/
442 do_bsys_getproplen(bootops_t *bop, const char *name)
444 bootprop_t *b;
446 for (b = bprops; b; b = b->bp_next) {
447 if (strcmp(name, b->bp_name) != 0)
448 continue;
449 return (b->bp_vlen);
451 return (-1);
455 * get the value associated with this name
457 /*ARGSUSED*/
459 do_bsys_getprop(bootops_t *bop, const char *name, void *value)
461 bootprop_t *b;
463 for (b = bprops; b; b = b->bp_next) {
464 if (strcmp(name, b->bp_name) != 0)
465 continue;
466 bcopy(b->bp_value, value, b->bp_vlen);
467 return (0);
469 return (-1);
473 * get the name of the next property in succession from the standalone
475 /*ARGSUSED*/
476 static char *
477 do_bsys_nextprop(bootops_t *bop, char *name)
479 bootprop_t *b;
482 * A null name is a special signal for the 1st boot property
484 if (name == NULL || strlen(name) == 0) {
485 if (bprops == NULL)
486 return (NULL);
487 return (bprops->bp_name);
490 for (b = bprops; b; b = b->bp_next) {
491 if (name != b->bp_name)
492 continue;
493 b = b->bp_next;
494 if (b == NULL)
495 return (NULL);
496 return (b->bp_name);
498 return (NULL);
502 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
504 static int
505 parse_value(char *p, uint64_t *retval)
507 int adjust = 0;
508 uint64_t tmp = 0;
509 int digit;
510 int radix = 10;
512 *retval = 0;
513 if (*p == '-' || *p == '~')
514 adjust = *p++;
516 if (*p == '0') {
517 ++p;
518 if (*p == 0)
519 return (0);
520 if (*p == 'x' || *p == 'X') {
521 radix = 16;
522 ++p;
523 } else {
524 radix = 8;
525 ++p;
528 while (*p) {
529 if ('0' <= *p && *p <= '9')
530 digit = *p - '0';
531 else if ('a' <= *p && *p <= 'f')
532 digit = 10 + *p - 'a';
533 else if ('A' <= *p && *p <= 'F')
534 digit = 10 + *p - 'A';
535 else
536 return (-1);
537 if (digit >= radix)
538 return (-1);
539 tmp = tmp * radix + digit;
540 ++p;
542 if (adjust == '-')
543 tmp = -tmp;
544 else if (adjust == '~')
545 tmp = ~tmp;
546 *retval = tmp;
547 return (0);
551 * 2nd part of building the table of boot properties. This includes:
552 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
554 * lines look like one of:
555 * ^$
556 * ^# comment till end of line
557 * setprop name 'value'
558 * setprop name value
559 * setprop name "value"
561 * we do single character I/O since this is really just looking at memory
563 void
564 boot_prop_finish(void)
566 int fd;
567 char *line;
568 int c;
569 int bytes_read;
570 char *name;
571 int n_len;
572 char *value;
573 int v_len;
574 char *inputdev; /* these override the command line if serial ports */
575 char *outputdev;
576 char *consoledev;
577 uint64_t lvalue;
578 int use_xencons = 0;
580 #ifdef __xpv
581 if (!DOMAIN_IS_INITDOMAIN(xen_info))
582 use_xencons = 1;
583 #endif /* __xpv */
585 DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
586 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
587 DBG(fd);
589 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
590 while (fd >= 0) {
593 * get a line
595 for (c = 0; ; ++c) {
596 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
597 if (bytes_read == 0) {
598 if (c == 0)
599 goto done;
600 break;
602 if (line[c] == '\n')
603 break;
605 line[c] = 0;
608 * ignore comment lines
610 c = 0;
611 while (ISSPACE(line[c]))
612 ++c;
613 if (line[c] == '#' || line[c] == 0)
614 continue;
617 * must have "setprop " or "setprop\t"
619 if (strncmp(line + c, "setprop ", 8) != 0 &&
620 strncmp(line + c, "setprop\t", 8) != 0)
621 continue;
622 c += 8;
623 while (ISSPACE(line[c]))
624 ++c;
625 if (line[c] == 0)
626 continue;
629 * gather up the property name
631 name = line + c;
632 n_len = 0;
633 while (line[c] && !ISSPACE(line[c]))
634 ++n_len, ++c;
637 * gather up the value, if any
639 value = "";
640 v_len = 0;
641 while (ISSPACE(line[c]))
642 ++c;
643 if (line[c] != 0) {
644 value = line + c;
645 while (line[c] && !ISSPACE(line[c]))
646 ++v_len, ++c;
649 if (v_len >= 2 && value[0] == value[v_len - 1] &&
650 (value[0] == '\'' || value[0] == '"')) {
651 ++value;
652 v_len -= 2;
654 name[n_len] = 0;
655 if (v_len > 0)
656 value[v_len] = 0;
657 else
658 continue;
661 * ignore "boot-file" property, it's now meaningless
663 if (strcmp(name, "boot-file") == 0)
664 continue;
665 if (strcmp(name, "boot-args") == 0 &&
666 strlen(boot_args) > 0)
667 continue;
670 * If a property was explicitly set on the command line
671 * it will override a setting in bootenv.rc
673 if (do_bsys_getproplen(NULL, name) > 0)
674 continue;
676 bsetprop(name, n_len, value, v_len + 1);
678 done:
679 if (fd >= 0)
680 (void) BRD_CLOSE(bfs_ops, fd);
683 * Check if we have to limit the boot time allocator
685 if (do_bsys_getproplen(NULL, "physmem") != -1 &&
686 do_bsys_getprop(NULL, "physmem", line) >= 0 &&
687 parse_value(line, &lvalue) != -1) {
688 if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
689 physmem = (pgcnt_t)lvalue;
690 DBG(physmem);
693 early_allocation = 0;
696 * check to see if we have to override the default value of the console
698 if (!use_xencons) {
699 inputdev = line;
700 v_len = do_bsys_getproplen(NULL, "input-device");
701 if (v_len > 0)
702 (void) do_bsys_getprop(NULL, "input-device", inputdev);
703 else
704 v_len = 0;
705 inputdev[v_len] = 0;
707 outputdev = inputdev + v_len + 1;
708 v_len = do_bsys_getproplen(NULL, "output-device");
709 if (v_len > 0)
710 (void) do_bsys_getprop(NULL, "output-device",
711 outputdev);
712 else
713 v_len = 0;
714 outputdev[v_len] = 0;
716 consoledev = outputdev + v_len + 1;
717 v_len = do_bsys_getproplen(NULL, "console");
718 if (v_len > 0) {
719 (void) do_bsys_getprop(NULL, "console", consoledev);
720 if (post_fastreboot &&
721 strcmp(consoledev, "graphics") == 0) {
722 bsetprops("console", "text");
723 v_len = strlen("text");
724 bcopy("text", consoledev, v_len);
726 } else {
727 v_len = 0;
729 consoledev[v_len] = 0;
730 bcons_init2(inputdev, outputdev, consoledev);
731 } else {
733 * Ensure console property exists
734 * If not create it as "hypervisor"
736 v_len = do_bsys_getproplen(NULL, "console");
737 if (v_len < 0)
738 bsetprops("console", "hypervisor");
739 inputdev = outputdev = consoledev = "hypervisor";
740 bcons_init2(inputdev, outputdev, consoledev);
743 if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) {
744 value = line;
745 bop_printf(NULL, "\nBoot properties:\n");
746 name = "";
747 while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
748 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
749 (void) do_bsys_getprop(NULL, name, value);
750 v_len = do_bsys_getproplen(NULL, name);
751 bop_printf(NULL, "len=%d ", v_len);
752 value[v_len] = 0;
753 bop_printf(NULL, "%s\n", value);
759 * print formatted output
761 /*PRINTFLIKE2*/
762 /*ARGSUSED*/
763 void
764 bop_printf(bootops_t *bop, const char *fmt, ...)
766 va_list ap;
768 if (have_console == 0)
769 return;
771 va_start(ap, fmt);
772 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
773 va_end(ap);
774 PUT_STRING(buffer);
778 * Another panic() variant; this one can be used even earlier during boot than
779 * prom_panic().
781 /*PRINTFLIKE1*/
782 void
783 bop_panic(const char *fmt, ...)
785 va_list ap;
787 va_start(ap, fmt);
788 bop_printf(NULL, fmt, ap);
789 va_end(ap);
791 bop_printf(NULL, "\nPress any key to reboot.\n");
792 (void) bcons_getchar();
793 bop_printf(NULL, "Resetting...\n");
794 pc_reset();
798 * Do a real mode interrupt BIOS call
800 typedef struct bios_regs {
801 unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
802 } bios_regs_t;
803 typedef int (*bios_func_t)(int, bios_regs_t *);
805 /*ARGSUSED*/
806 static void
807 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
809 #if defined(__xpv)
810 prom_panic("unsupported call to BOP_DOINT()\n");
811 #else /* __xpv */
812 static int firsttime = 1;
813 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
814 bios_regs_t br;
817 * The first time we do this, we have to copy the pre-packaged
818 * low memory bios call code image into place.
820 if (firsttime) {
821 extern char bios_image[];
822 extern uint32_t bios_size;
824 bcopy(bios_image, (void *)bios_func, bios_size);
825 firsttime = 0;
828 br.ax = rp->eax.word.ax;
829 br.bx = rp->ebx.word.bx;
830 br.cx = rp->ecx.word.cx;
831 br.dx = rp->edx.word.dx;
832 br.bp = rp->ebp.word.bp;
833 br.si = rp->esi.word.si;
834 br.di = rp->edi.word.di;
835 br.ds = rp->ds;
836 br.es = rp->es;
838 DBG_MSG("Doing BIOS call...");
839 DBG(br.ax);
840 DBG(br.bx);
841 DBG(br.dx);
842 rp->eflags = bios_func(intnum, &br);
843 DBG_MSG("done\n");
845 rp->eax.word.ax = br.ax;
846 rp->ebx.word.bx = br.bx;
847 rp->ecx.word.cx = br.cx;
848 rp->edx.word.dx = br.dx;
849 rp->ebp.word.bp = br.bp;
850 rp->esi.word.si = br.si;
851 rp->edi.word.di = br.di;
852 rp->ds = br.ds;
853 rp->es = br.es;
854 #endif /* __xpv */
857 static struct boot_syscalls bop_sysp = {
858 bcons_getchar,
859 bcons_putchar,
860 bcons_ischar,
863 static char *whoami;
865 #define BUFLEN 64
867 #if defined(__xpv)
869 static char namebuf[32];
871 static void
872 xen_parse_props(char *s, char *prop_map[], int n_prop)
874 char **prop_name = prop_map;
875 char *cp = s, *scp;
877 do {
878 scp = cp;
879 while ((*cp != NULL) && (*cp != ':'))
880 cp++;
882 if ((scp != cp) && (*prop_name != NULL)) {
883 *cp = NULL;
884 bsetprops(*prop_name, scp);
887 cp++;
888 prop_name++;
889 n_prop--;
890 } while (n_prop > 0);
893 #define VBDPATHLEN 64
896 * parse the 'xpv-root' property to create properties used by
897 * ufs_mountroot.
899 static void
900 xen_vbdroot_props(char *s)
902 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
903 const char lnamefix[] = "/dev/dsk/c0d";
904 char *pnp;
905 char *prop_p;
906 char mi;
907 short minor;
908 long addr = 0;
910 pnp = vbdpath + strlen(vbdpath);
911 prop_p = s + strlen(lnamefix);
912 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
913 addr = addr * 10 + *prop_p++ - '0';
914 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
915 pnp = vbdpath + strlen(vbdpath);
916 if (*prop_p == 's')
917 mi = 'a';
918 else if (*prop_p == 'p')
919 mi = 'q';
920 else
921 ASSERT(0); /* shouldn't be here */
922 prop_p++;
923 ASSERT(*prop_p != '\0');
924 if (ISDIGIT(*prop_p)) {
925 minor = *prop_p - '0';
926 prop_p++;
927 if (ISDIGIT(*prop_p)) {
928 minor = minor * 10 + *prop_p - '0';
930 } else {
931 /* malformed root path, use 0 as default */
932 minor = 0;
934 ASSERT(minor < 16); /* at most 16 partitions */
935 mi += minor;
936 *pnp++ = ':';
937 *pnp++ = mi;
938 *pnp++ = '\0';
939 bsetprops("fstype", "ufs");
940 bsetprops("bootpath", vbdpath);
942 DBG_MSG("VBD bootpath set to ");
943 DBG_MSG(vbdpath);
944 DBG_MSG("\n");
948 * parse the xpv-nfsroot property to create properties used by
949 * nfs_mountroot.
951 static void
952 xen_nfsroot_props(char *s)
954 char *prop_map[] = {
955 BP_SERVER_IP, /* server IP address */
956 BP_SERVER_NAME, /* server hostname */
957 BP_SERVER_PATH, /* root path */
959 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
961 bsetprop("fstype", 6, "nfs", 4);
963 xen_parse_props(s, prop_map, n_prop);
966 * If a server name wasn't specified, use a default.
968 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
969 bsetprops(BP_SERVER_NAME, "unknown");
973 * Extract our IP address, etc. from the "xpv-ip" property.
975 static void
976 xen_ip_props(char *s)
978 char *prop_map[] = {
979 BP_HOST_IP, /* IP address */
980 NULL, /* NFS server IP address (ignored in */
981 /* favour of xpv-nfsroot) */
982 BP_ROUTER_IP, /* IP gateway */
983 BP_SUBNET_MASK, /* IP subnet mask */
984 "xpv-hostname", /* hostname (ignored) */
985 BP_NETWORK_INTERFACE, /* interface name */
986 "xpv-hcp", /* host configuration protocol */
988 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
989 char ifname[IFNAMSIZ];
991 xen_parse_props(s, prop_map, n_prop);
994 * A Linux dom0 administrator expects all interfaces to be
995 * called "ethX", which is not the case here.
997 * If the interface name specified is "eth0", presume that
998 * this is really intended to be "xnf0" (the first domU ->
999 * dom0 interface for this domain).
1001 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
1002 (strcmp("eth0", ifname) == 0)) {
1003 bsetprops(BP_NETWORK_INTERFACE, "xnf0");
1004 bop_printf(NULL,
1005 "network interface name 'eth0' replaced with 'xnf0'\n");
1009 #else /* __xpv */
1011 static void
1012 setup_rarp_props(struct sol_netinfo *sip)
1014 char buf[BUFLEN]; /* to hold ip/mac addrs */
1015 uint8_t *val;
1017 val = (uint8_t *)&sip->sn_ciaddr;
1018 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1019 val[0], val[1], val[2], val[3]);
1020 bsetprops(BP_HOST_IP, buf);
1022 val = (uint8_t *)&sip->sn_siaddr;
1023 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1024 val[0], val[1], val[2], val[3]);
1025 bsetprops(BP_SERVER_IP, buf);
1027 if (sip->sn_giaddr != 0) {
1028 val = (uint8_t *)&sip->sn_giaddr;
1029 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1030 val[0], val[1], val[2], val[3]);
1031 bsetprops(BP_ROUTER_IP, buf);
1034 if (sip->sn_netmask != 0) {
1035 val = (uint8_t *)&sip->sn_netmask;
1036 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1037 val[0], val[1], val[2], val[3]);
1038 bsetprops(BP_SUBNET_MASK, buf);
1041 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1042 bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1043 sip->sn_mactype, sip->sn_maclen);
1044 } else {
1045 val = sip->sn_macaddr;
1046 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1047 val[0], val[1], val[2], val[3], val[4], val[5]);
1048 bsetprops(BP_BOOT_MAC, buf);
1052 #endif /* __xpv */
1054 static void
1055 build_panic_cmdline(const char *cmd, int cmdlen)
1057 int proplen;
1058 size_t arglen;
1060 arglen = sizeof (fastreboot_onpanic_args);
1062 * If we allready have fastreboot-onpanic set to zero,
1063 * don't add them again.
1065 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
1066 proplen <= sizeof (fastreboot_onpanic_cmdline)) {
1067 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
1068 fastreboot_onpanic_cmdline);
1069 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
1070 arglen = 1;
1074 * construct fastreboot_onpanic_cmdline
1076 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
1077 DBG_MSG("Command line too long: clearing "
1078 FASTREBOOT_ONPANIC "\n");
1079 fastreboot_onpanic = 0;
1080 } else {
1081 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
1082 if (arglen != 1)
1083 bcopy(fastreboot_onpanic_args,
1084 fastreboot_onpanic_cmdline + cmdlen, arglen);
1085 else
1086 fastreboot_onpanic_cmdline[cmdlen] = 0;
1091 #ifndef __xpv
1093 * Construct boot command line for Fast Reboot
1095 static void
1096 build_fastboot_cmdline(void)
1098 saved_cmdline_len = strlen(xbootp->bi_cmdline) + 1;
1099 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1100 DBG(saved_cmdline_len);
1101 DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1102 fastreboot_capable = 0;
1103 } else {
1104 bcopy((void *)(xbootp->bi_cmdline), (void *)saved_cmdline,
1105 saved_cmdline_len);
1106 saved_cmdline[saved_cmdline_len - 1] = '\0';
1107 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
1112 * Save memory layout, disk drive information, unix and boot archive sizes for
1113 * Fast Reboot.
1115 static void
1116 save_boot_info(multiboot_info_t *mbi, struct xboot_info *xbi)
1118 struct boot_modules *modp;
1119 int i;
1121 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1122 if (mbi->mmap_length > sizeof (saved_mmap)) {
1123 DBG_MSG("mbi->mmap_length too big: clearing "
1124 "fastreboot_capable\n");
1125 fastreboot_capable = 0;
1126 } else {
1127 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1128 mbi->mmap_length);
1131 if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) {
1132 if (mbi->drives_length > sizeof (saved_drives)) {
1133 DBG(mbi->drives_length);
1134 DBG_MSG("mbi->drives_length too big: clearing "
1135 "fastreboot_capable\n");
1136 fastreboot_capable = 0;
1137 } else {
1138 bcopy((void *)(uintptr_t)mbi->drives_addr,
1139 (void *)saved_drives, mbi->drives_length);
1141 } else {
1142 saved_mbi.drives_length = 0;
1143 saved_mbi.drives_addr = NULL;
1147 * Current file sizes. Used by fastboot.c to figure out how much
1148 * memory to reserve for panic reboot.
1149 * Use the module list from the dboot-constructed xboot_info
1150 * instead of the list referenced by the multiboot structure
1151 * because that structure may not be addressable now.
1153 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
1154 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules;
1155 i < xbi->bi_module_cnt; i++, modp++) {
1156 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size;
1159 #endif /* __xpv */
1163 * 1st pass at building the table of boot properties. This includes:
1164 * - values set on the command line: -B a=x,b=y,c=z ....
1165 * - known values we just compute (ie. from xbootp)
1166 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
1168 * the grub command line looked like:
1169 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1171 * whoami is the same as boot-file
1173 static void
1174 build_boot_properties(void)
1176 char *name;
1177 int name_len;
1178 char *value;
1179 int value_len;
1180 struct boot_modules *bm, *rdbm;
1181 char *propbuf;
1182 int quoted = 0;
1183 int boot_arg_len;
1184 uint_t i, midx;
1185 char modid[32];
1186 #ifndef __xpv
1187 static int stdout_val = 0;
1188 uchar_t boot_device;
1189 char str[3];
1190 multiboot_info_t *mbi;
1191 int netboot;
1192 struct sol_netinfo *sip;
1193 #endif
1196 * These have to be done first, so that kobj_mount_root() works
1198 DBG_MSG("Building boot properties\n");
1199 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1200 DBG((uintptr_t)propbuf);
1201 if (xbootp->bi_module_cnt > 0) {
1202 bm = xbootp->bi_modules;
1203 rdbm = NULL;
1204 for (midx = i = 0; i < xbootp->bi_module_cnt; i++) {
1205 if (bm[i].bm_type == BMT_ROOTFS) {
1206 rdbm = &bm[i];
1207 continue;
1209 if (bm[i].bm_type == BMT_HASH || bm[i].bm_name == NULL)
1210 continue;
1212 (void) snprintf(modid, sizeof (modid),
1213 "module-name-%u", midx);
1214 bsetprops(modid, (char *)bm[i].bm_name);
1215 (void) snprintf(modid, sizeof (modid),
1216 "module-addr-%u", midx);
1217 bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr);
1218 (void) snprintf(modid, sizeof (modid),
1219 "module-size-%u", midx);
1220 bsetprop64(modid, (uint64_t)bm[i].bm_size);
1221 ++midx;
1223 if (rdbm != NULL) {
1224 bsetprop64("ramdisk_start",
1225 (uint64_t)(uintptr_t)rdbm->bm_addr);
1226 bsetprop64("ramdisk_end",
1227 (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size);
1232 * If there are any boot time modules or hashes present, then disable
1233 * fast reboot.
1235 if (xbootp->bi_module_cnt > 1) {
1236 fastreboot_disable(FBNS_BOOTMOD);
1239 DBG_MSG("Parsing command line for boot properties\n");
1240 value = xbootp->bi_cmdline;
1243 * allocate memory to collect boot_args into
1245 boot_arg_len = strlen(xbootp->bi_cmdline) + 1;
1246 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1247 boot_args[0] = 0;
1248 boot_arg_len = 0;
1250 #ifdef __xpv
1252 * Xen puts a lot of device information in front of the kernel name
1253 * let's grab them and make them boot properties. The first
1254 * string w/o an "=" in it will be the boot-file property.
1256 (void) strcpy(namebuf, "xpv-");
1257 for (;;) {
1259 * get to next property
1261 while (ISSPACE(*value))
1262 ++value;
1263 name = value;
1265 * look for an "="
1267 while (*value && !ISSPACE(*value) && *value != '=') {
1268 value++;
1270 if (*value != '=') { /* no "=" in the property */
1271 value = name;
1272 break;
1274 name_len = value - name;
1275 value_len = 0;
1277 * skip over the "="
1279 value++;
1280 while (value[value_len] && !ISSPACE(value[value_len])) {
1281 ++value_len;
1284 * build property name with "xpv-" prefix
1286 if (name_len + 4 > 32) { /* skip if name too long */
1287 value += value_len;
1288 continue;
1290 bcopy(name, &namebuf[4], name_len);
1291 name_len += 4;
1292 namebuf[name_len] = 0;
1293 bcopy(value, propbuf, value_len);
1294 propbuf[value_len] = 0;
1295 bsetprops(namebuf, propbuf);
1298 * xpv-root is set to the logical disk name of the xen
1299 * VBD when booting from a disk-based filesystem.
1301 if (strcmp(namebuf, "xpv-root") == 0)
1302 xen_vbdroot_props(propbuf);
1304 * While we're here, if we have a "xpv-nfsroot" property
1305 * then we need to set "fstype" to "nfs" so we mount
1306 * our root from the nfs server. Also parse the xpv-nfsroot
1307 * property to create the properties that nfs_mountroot will
1308 * need to find the root and mount it.
1310 if (strcmp(namebuf, "xpv-nfsroot") == 0)
1311 xen_nfsroot_props(propbuf);
1313 if (strcmp(namebuf, "xpv-ip") == 0)
1314 xen_ip_props(propbuf);
1315 value += value_len;
1317 #endif
1319 while (ISSPACE(*value))
1320 ++value;
1322 * value now points at the boot-file
1324 value_len = 0;
1325 while (value[value_len] && !ISSPACE(value[value_len]))
1326 ++value_len;
1327 if (value_len > 0) {
1328 whoami = propbuf;
1329 bcopy(value, whoami, value_len);
1330 whoami[value_len] = 0;
1331 bsetprops("boot-file", whoami);
1333 * strip leading path stuff from whoami, so running from
1334 * PXE/miniroot makes sense.
1336 if (strstr(whoami, "/platform/") != NULL)
1337 whoami = strstr(whoami, "/platform/");
1338 bsetprops("whoami", whoami);
1342 * Values forcibly set boot properties on the command line via -B.
1343 * Allow use of quotes in values. Other stuff goes on kernel
1344 * command line.
1346 name = value + value_len;
1347 while (*name != 0) {
1349 * anything not " -B" is copied to the command line
1351 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1352 boot_args[boot_arg_len++] = *name;
1353 boot_args[boot_arg_len] = 0;
1354 ++name;
1355 continue;
1359 * skip the " -B" and following white space
1361 name += 3;
1362 while (ISSPACE(*name))
1363 ++name;
1364 while (*name && !ISSPACE(*name)) {
1365 value = strstr(name, "=");
1366 if (value == NULL)
1367 break;
1368 name_len = value - name;
1369 ++value;
1370 value_len = 0;
1371 quoted = 0;
1372 for (; ; ++value_len) {
1373 if (!value[value_len])
1374 break;
1377 * is this value quoted?
1379 if (value_len == 0 &&
1380 (value[0] == '\'' || value[0] == '"')) {
1381 quoted = value[0];
1382 ++value_len;
1386 * In the quote accept any character,
1387 * but look for ending quote.
1389 if (quoted) {
1390 if (value[value_len] == quoted)
1391 quoted = 0;
1392 continue;
1396 * a comma or white space ends the value
1398 if (value[value_len] == ',' ||
1399 ISSPACE(value[value_len]))
1400 break;
1403 if (value_len == 0) {
1404 bsetprop(name, name_len, "true", 5);
1405 } else {
1406 char *v = value;
1407 int l = value_len;
1408 if (v[0] == v[l - 1] &&
1409 (v[0] == '\'' || v[0] == '"')) {
1410 ++v;
1411 l -= 2;
1413 bcopy(v, propbuf, l);
1414 propbuf[l] = '\0';
1415 bsetprop(name, name_len, propbuf,
1416 l + 1);
1418 name = value + value_len;
1419 while (*name == ',')
1420 ++name;
1425 * set boot-args property
1426 * 1275 name is bootargs, so set
1427 * that too
1429 bsetprops("boot-args", boot_args);
1430 bsetprops("bootargs", boot_args);
1432 #ifndef __xpv
1434 * set the BIOS boot device from GRUB
1436 netboot = 0;
1437 mbi = xbootp->bi_mb_info;
1440 * Build boot command line for Fast Reboot
1442 build_fastboot_cmdline();
1445 * Save various boot information for Fast Reboot
1447 save_boot_info(mbi, xbootp);
1449 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) {
1450 boot_device = mbi->boot_device >> 24;
1451 if (boot_device == 0x20)
1452 netboot++;
1453 str[0] = (boot_device >> 4) + '0';
1454 str[1] = (boot_device & 0xf) + '0';
1455 str[2] = 0;
1456 bsetprops("bios-boot-device", str);
1457 } else {
1458 netboot = 1;
1462 * In the netboot case, drives_info is overloaded with the dhcp ack.
1463 * This is not multiboot compliant and requires special pxegrub!
1465 if (netboot && mbi->drives_length != 0) {
1466 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1467 if (sip->sn_infotype == SN_TYPE_BOOTP)
1468 bsetprop("bootp-response", sizeof ("bootp-response"),
1469 (void *)(uintptr_t)mbi->drives_addr,
1470 mbi->drives_length);
1471 else if (sip->sn_infotype == SN_TYPE_RARP)
1472 setup_rarp_props(sip);
1474 bsetprop("stdout", strlen("stdout"),
1475 &stdout_val, sizeof (stdout_val));
1476 #endif /* __xpv */
1479 * more conjured up values for made up things....
1481 #if defined(__xpv)
1482 bsetprops("mfg-name", "i86xpv");
1483 bsetprops("impl-arch-name", "i86xpv");
1484 #else
1485 bsetprops("mfg-name", "i86pc");
1486 bsetprops("impl-arch-name", "i86pc");
1487 #endif
1490 * Build firmware-provided system properties
1492 build_firmware_properties();
1495 * XXPV
1497 * Find out what these are:
1498 * - cpuid_feature_ecx_include
1499 * - cpuid_feature_ecx_exclude
1500 * - cpuid_feature_edx_include
1501 * - cpuid_feature_edx_exclude
1503 * Find out what these are in multiboot:
1504 * - netdev-path
1505 * - fstype
1509 #ifdef __xpv
1511 * Under the Hypervisor, memory usable for DMA may be scarce. One
1512 * very likely large pool of DMA friendly memory is occupied by
1513 * the boot_archive, as it was loaded by grub into low MFNs.
1515 * Here we free up that memory by copying the boot archive to what are
1516 * likely higher MFN pages and then swapping the mfn/pfn mappings.
1518 #define PFN_2GIG 0x80000
1519 static void
1520 relocate_boot_archive(void)
1522 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1523 struct boot_modules *bm = xbootp->bi_modules;
1524 uintptr_t va;
1525 pfn_t va_pfn;
1526 mfn_t va_mfn;
1527 caddr_t copy;
1528 pfn_t copy_pfn;
1529 mfn_t copy_mfn;
1530 size_t len;
1531 int slop;
1532 int total = 0;
1533 int relocated = 0;
1534 int mmu_update_return;
1535 mmu_update_t t[2];
1536 x86pte_t pte;
1539 * If all MFN's are below 2Gig, don't bother doing this.
1541 if (max_mfn < PFN_2GIG)
1542 return;
1543 if (xbootp->bi_module_cnt < 1) {
1544 DBG_MSG("no boot_archive!");
1545 return;
1548 DBG_MSG("moving boot_archive to high MFN memory\n");
1549 va = (uintptr_t)bm->bm_addr;
1550 len = bm->bm_size;
1551 slop = va & MMU_PAGEOFFSET;
1552 if (slop) {
1553 va += MMU_PAGESIZE - slop;
1554 len -= MMU_PAGESIZE - slop;
1556 len = P2ALIGN(len, MMU_PAGESIZE);
1559 * Go through all boot_archive pages, swapping any low MFN pages
1560 * with memory at next_phys.
1562 while (len != 0) {
1563 ++total;
1564 va_pfn = mmu_btop(va - ONE_GIG);
1565 va_mfn = mfn_list[va_pfn];
1566 if (mfn_list[va_pfn] < PFN_2GIG) {
1567 copy = kbm_remap_window(next_phys, 1);
1568 bcopy((void *)va, copy, MMU_PAGESIZE);
1569 copy_pfn = mmu_btop(next_phys);
1570 copy_mfn = mfn_list[copy_pfn];
1572 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1573 if (HYPERVISOR_update_va_mapping(va, pte,
1574 UVMF_INVLPG | UVMF_LOCAL))
1575 bop_panic("relocate_boot_archive(): "
1576 "HYPERVISOR_update_va_mapping() failed");
1578 mfn_list[va_pfn] = copy_mfn;
1579 mfn_list[copy_pfn] = va_mfn;
1581 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1582 t[0].val = va_pfn;
1583 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1584 t[1].val = copy_pfn;
1585 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1586 DOMID_SELF) != 0 || mmu_update_return != 2)
1587 bop_panic("relocate_boot_archive(): "
1588 "HYPERVISOR_mmu_update() failed");
1590 next_phys += MMU_PAGESIZE;
1591 ++relocated;
1593 len -= MMU_PAGESIZE;
1594 va += MMU_PAGESIZE;
1596 DBG_MSG("Relocated pages:\n");
1597 DBG(relocated);
1598 DBG_MSG("Out of total pages:\n");
1599 DBG(total);
1601 #endif /* __xpv */
1603 #if !defined(__xpv)
1605 * Install a temporary IDT that lets us catch errors in the boot time code.
1606 * We shouldn't get any faults at all while this is installed, so we'll
1607 * just generate a traceback and exit.
1609 #ifdef __amd64
1610 static const int bcode_sel = B64CODE_SEL;
1611 #else
1612 static const int bcode_sel = B32CODE_SEL;
1613 #endif
1616 * simple description of a stack frame (args are 32 bit only currently)
1618 typedef struct bop_frame {
1619 struct bop_frame *old_frame;
1620 pc_t retaddr;
1621 long arg[1];
1622 } bop_frame_t;
1624 void
1625 bop_traceback(bop_frame_t *frame)
1627 pc_t pc;
1628 int cnt;
1629 char *ksym;
1630 ulong_t off;
1631 #if defined(__i386)
1632 int a;
1633 #endif
1635 bop_printf(NULL, "Stack traceback:\n");
1636 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */
1637 pc = frame->retaddr;
1638 if (pc == 0)
1639 break;
1640 ksym = kobj_getsymname(pc, &off);
1641 if (ksym)
1642 bop_printf(NULL, " %s+%lx", ksym, off);
1643 else
1644 bop_printf(NULL, " 0x%lx", pc);
1646 frame = frame->old_frame;
1647 if (frame == 0) {
1648 bop_printf(NULL, "\n");
1649 break;
1651 #if defined(__i386)
1652 for (a = 0; a < 6; ++a) { /* try for 6 args */
1653 if ((void *)&frame->arg[a] == (void *)frame->old_frame)
1654 break;
1655 if (a == 0)
1656 bop_printf(NULL, "(");
1657 else
1658 bop_printf(NULL, ",");
1659 bop_printf(NULL, "0x%lx", frame->arg[a]);
1661 bop_printf(NULL, ")");
1662 #endif
1663 bop_printf(NULL, "\n");
1667 struct trapframe {
1668 ulong_t error_code; /* optional */
1669 ulong_t inst_ptr;
1670 ulong_t code_seg;
1671 ulong_t flags_reg;
1672 #ifdef __amd64
1673 ulong_t stk_ptr;
1674 ulong_t stk_seg;
1675 #endif
1678 void
1679 bop_trap(ulong_t *tfp)
1681 struct trapframe *tf = (struct trapframe *)tfp;
1682 bop_frame_t fakeframe;
1683 static int depth = 0;
1686 * Check for an infinite loop of traps.
1688 if (++depth > 2)
1689 bop_panic("Nested trap");
1691 bop_printf(NULL, "Unexpected trap\n");
1694 * adjust the tf for optional error_code by detecting the code selector
1696 if (tf->code_seg != bcode_sel)
1697 tf = (struct trapframe *)(tfp - 1);
1698 else
1699 bop_printf(NULL, "error code 0x%lx\n",
1700 tf->error_code & 0xffffffff);
1702 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr);
1703 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff);
1704 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg);
1705 #ifdef __amd64
1706 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr);
1707 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff);
1708 #endif
1710 /* grab %[er]bp pushed by our code from the stack */
1711 fakeframe.old_frame = (bop_frame_t *)*(tfp - 3);
1712 fakeframe.retaddr = (pc_t)tf->inst_ptr;
1713 bop_printf(NULL, "Attempting stack backtrace:\n");
1714 bop_traceback(&fakeframe);
1715 bop_panic("unexpected trap in early boot");
1718 extern void bop_trap_handler(void);
1720 static gate_desc_t *bop_idt;
1722 static desctbr_t bop_idt_info;
1724 static void
1725 bop_idt_init(void)
1727 int t;
1729 bop_idt = (gate_desc_t *)
1730 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1731 bzero(bop_idt, MMU_PAGESIZE);
1732 for (t = 0; t < NIDT; ++t) {
1734 * Note that since boot runs without a TSS, the
1735 * double fault handler cannot use an alternate stack
1736 * (64-bit) or a task gate (32-bit).
1738 set_gatesegd(&bop_idt[t], &bop_trap_handler, bcode_sel,
1739 SDT_SYSIGT, TRP_KPL, 0);
1741 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
1742 bop_idt_info.dtr_base = (uintptr_t)bop_idt;
1743 wr_idtr(&bop_idt_info);
1745 #endif /* !defined(__xpv) */
1748 * This is where we enter the kernel. It dummies up the boot_ops and
1749 * boot_syscalls vectors and jumps off to _kobj_boot()
1751 void
1752 _start(struct xboot_info *xbp)
1754 bootops_t *bops = &bootop;
1755 extern void _kobj_boot();
1758 * 1st off - initialize the console for any error messages
1760 xbootp = xbp;
1761 #ifdef __xpv
1762 HYPERVISOR_shared_info = (void *)xbootp->bi_shared_info;
1763 xen_info = xbootp->bi_xen_start_info;
1764 #endif
1766 #ifndef __xpv
1767 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
1768 FASTBOOT_MAGIC) {
1769 post_fastreboot = 1;
1770 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
1772 #endif
1774 bcons_init((void *)xbootp->bi_cmdline);
1775 have_console = 1;
1778 * enable debugging
1780 if (strstr((char *)xbootp->bi_cmdline, "kbm_debug"))
1781 kbm_debug = 1;
1783 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
1784 DBG_MSG((char *)xbootp->bi_cmdline);
1785 DBG_MSG("\n\n\n");
1788 * physavail is no longer used by startup
1790 bm.physinstalled = xbp->bi_phys_install;
1791 bm.pcimem = xbp->bi_pcimem;
1792 bm.rsvdmem = xbp->bi_rsvdmem;
1793 bm.physavail = NULL;
1796 * initialize the boot time allocator
1798 next_phys = xbootp->bi_next_paddr;
1799 DBG(next_phys);
1800 next_virt = (uintptr_t)xbootp->bi_next_vaddr;
1801 DBG(next_virt);
1802 DBG_MSG("Initializing boot time memory management...");
1803 #ifdef __xpv
1805 xen_platform_parameters_t p;
1807 /* This call shouldn't fail, dboot already did it once. */
1808 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
1809 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
1810 DBG(xen_virt_start);
1812 #endif
1813 kbm_init(xbootp);
1814 DBG_MSG("done\n");
1817 * Fill in the bootops vector
1819 bops->bsys_version = BO_VERSION;
1820 bops->boot_mem = &bm;
1821 bops->bsys_alloc = do_bsys_alloc;
1822 bops->bsys_free = do_bsys_free;
1823 bops->bsys_getproplen = do_bsys_getproplen;
1824 bops->bsys_getprop = do_bsys_getprop;
1825 bops->bsys_nextprop = do_bsys_nextprop;
1826 bops->bsys_printf = bop_printf;
1827 bops->bsys_doint = do_bsys_doint;
1830 * BOP_EALLOC() is no longer needed
1832 bops->bsys_ealloc = do_bsys_ealloc;
1834 #ifdef __xpv
1836 * On domain 0 we need to free up some physical memory that is
1837 * usable for DMA. Since GRUB loaded the boot_archive, it is
1838 * sitting in low MFN memory. We'll relocated the boot archive
1839 * pages to high PFN memory.
1841 if (DOMAIN_IS_INITDOMAIN(xen_info))
1842 relocate_boot_archive();
1843 #endif
1845 #ifndef __xpv
1847 * Install an IDT to catch early pagefaults (shouldn't have any).
1848 * Also needed for kmdb.
1850 bop_idt_init();
1851 #endif
1854 * Start building the boot properties from the command line
1856 DBG_MSG("Initializing boot properties:\n");
1857 build_boot_properties();
1859 if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) {
1860 char *name;
1861 char *value;
1862 char *cp;
1863 int len;
1865 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1866 bop_printf(NULL, "\nBoot properties:\n");
1867 name = "";
1868 while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
1869 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
1870 (void) do_bsys_getprop(NULL, name, value);
1871 len = do_bsys_getproplen(NULL, name);
1872 bop_printf(NULL, "len=%d ", len);
1873 value[len] = 0;
1874 for (cp = value; *cp; ++cp) {
1875 if (' ' <= *cp && *cp <= '~')
1876 bop_printf(NULL, "%c", *cp);
1877 else
1878 bop_printf(NULL, "-0x%x-", *cp);
1880 bop_printf(NULL, "\n");
1885 * jump into krtld...
1887 _kobj_boot(&bop_sysp, NULL, bops, NULL);
1891 /*ARGSUSED*/
1892 static caddr_t
1893 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
1895 panic("Attempt to bsys_alloc() too late\n");
1896 return (NULL);
1899 /*ARGSUSED*/
1900 static void
1901 no_more_free(bootops_t *bop, caddr_t virt, size_t size)
1903 panic("Attempt to bsys_free() too late\n");
1906 void
1907 bop_no_more_mem(void)
1909 DBG(total_bop_alloc_scratch);
1910 DBG(total_bop_alloc_kernel);
1911 bootops->bsys_alloc = no_more_alloc;
1912 bootops->bsys_free = no_more_free;
1917 * Set ACPI firmware properties
1920 static caddr_t
1921 vmap_phys(size_t length, paddr_t pa)
1923 paddr_t start, end;
1924 caddr_t va;
1925 size_t len, page;
1927 #ifdef __xpv
1928 pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET);
1929 #endif
1930 start = P2ALIGN(pa, MMU_PAGESIZE);
1931 end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
1932 len = end - start;
1933 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
1934 for (page = 0; page < len; page += MMU_PAGESIZE)
1935 kbm_map((uintptr_t)va + page, start + page, 0, 0);
1936 return (va + (pa & MMU_PAGEOFFSET));
1939 static uint8_t
1940 checksum_table(uint8_t *tp, size_t len)
1942 uint8_t sum = 0;
1944 while (len-- > 0)
1945 sum += *tp++;
1947 return (sum);
1950 static int
1951 valid_rsdp(ACPI_TABLE_RSDP *rp)
1954 /* validate the V1.x checksum */
1955 if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0)
1956 return (0);
1958 /* If pre-ACPI 2.0, this is a valid RSDP */
1959 if (rp->Revision < 2)
1960 return (1);
1962 /* validate the V2.x checksum */
1963 if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0)
1964 return (0);
1966 return (1);
1970 * Scan memory range for an RSDP;
1971 * see ACPI 3.0 Spec, 5.2.5.1
1973 static ACPI_TABLE_RSDP *
1974 scan_rsdp(paddr_t start, paddr_t end)
1976 ssize_t len = end - start;
1977 caddr_t ptr;
1979 ptr = vmap_phys(len, start);
1980 while (len > 0) {
1981 if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 &&
1982 valid_rsdp((ACPI_TABLE_RSDP *)ptr))
1983 return ((ACPI_TABLE_RSDP *)ptr);
1985 ptr += ACPI_RSDP_SCAN_STEP;
1986 len -= ACPI_RSDP_SCAN_STEP;
1989 return (NULL);
1993 * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function
1995 static ACPI_TABLE_RSDP *
1996 find_rsdp()
1998 ACPI_TABLE_RSDP *rsdp;
1999 uint16_t *ebda_seg;
2000 paddr_t ebda_addr;
2003 * Get the EBDA segment and scan the first 1K
2005 ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t),
2006 ACPI_EBDA_PTR_LOCATION);
2007 ebda_addr = *ebda_seg << 4;
2008 rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_WINDOW_SIZE);
2009 if (rsdp == NULL)
2010 /* if EBDA doesn't contain RSDP, look in BIOS memory */
2011 rsdp = scan_rsdp(ACPI_HI_RSDP_WINDOW_BASE,
2012 ACPI_HI_RSDP_WINDOW_BASE + ACPI_HI_RSDP_WINDOW_SIZE);
2013 return (rsdp);
2016 static ACPI_TABLE_HEADER *
2017 map_fw_table(paddr_t table_addr)
2019 ACPI_TABLE_HEADER *tp;
2020 size_t len = MAX(sizeof (*tp), MMU_PAGESIZE);
2023 * Map at least a page; if the table is larger than this, remap it
2025 tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr);
2026 if (tp->Length > len)
2027 tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr);
2028 return (tp);
2031 static ACPI_TABLE_HEADER *
2032 find_fw_table(char *signature)
2034 static int revision = 0;
2035 static ACPI_TABLE_XSDT *xsdt;
2036 static int len;
2037 paddr_t xsdt_addr;
2038 ACPI_TABLE_RSDP *rsdp;
2039 ACPI_TABLE_HEADER *tp;
2040 paddr_t table_addr;
2041 int n;
2043 if (strlen(signature) != ACPI_NAME_SIZE)
2044 return (NULL);
2047 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
2048 * understand this code. If we haven't already found the RSDT/XSDT,
2049 * revision will be 0. Find the RSDP and check the revision
2050 * to find out whether to use the RSDT or XSDT. If revision is
2051 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
2052 * use the XSDT. If the XSDT address is 0, though, fall back to
2053 * revision 1 and use the RSDT.
2055 if (revision == 0) {
2056 if ((rsdp = find_rsdp()) != NULL) {
2057 revision = rsdp->Revision;
2059 * ACPI 6.0 states that current revision is 2
2060 * from acpi_table_rsdp definition:
2061 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+
2063 if (revision > 2)
2064 revision = 2;
2065 switch (revision) {
2066 case 2:
2068 * Use the XSDT unless BIOS is buggy and
2069 * claims to be rev 2 but has a null XSDT
2070 * address
2072 xsdt_addr = rsdp->XsdtPhysicalAddress;
2073 if (xsdt_addr != 0)
2074 break;
2075 /* FALLTHROUGH */
2076 case 0:
2077 /* treat RSDP rev 0 as revision 1 internally */
2078 revision = 1;
2079 /* FALLTHROUGH */
2080 case 1:
2081 /* use the RSDT for rev 0/1 */
2082 xsdt_addr = rsdp->RsdtPhysicalAddress;
2083 break;
2084 default:
2085 /* unknown revision */
2086 revision = 0;
2087 break;
2090 if (revision == 0)
2091 return (NULL);
2093 /* cache the XSDT info */
2094 xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr);
2095 len = (xsdt->Header.Length - sizeof (xsdt->Header)) /
2096 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
2100 * Scan the table headers looking for a signature match
2102 for (n = 0; n < len; n++) {
2103 ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt;
2104 table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] :
2105 xsdt->TableOffsetEntry[n];
2107 if (table_addr == 0)
2108 continue;
2109 tp = map_fw_table(table_addr);
2110 if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) {
2111 return (tp);
2114 return (NULL);
2117 static void
2118 process_mcfg(ACPI_TABLE_MCFG *tp)
2120 ACPI_MCFG_ALLOCATION *cfg_baap;
2121 char *cfg_baa_endp;
2122 int64_t ecfginfo[4];
2124 cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp));
2125 cfg_baa_endp = ((char *)tp) + tp->Header.Length;
2126 while ((char *)cfg_baap < cfg_baa_endp) {
2127 if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) {
2128 ecfginfo[0] = cfg_baap->Address;
2129 ecfginfo[1] = cfg_baap->PciSegment;
2130 ecfginfo[2] = cfg_baap->StartBusNumber;
2131 ecfginfo[3] = cfg_baap->EndBusNumber;
2132 bsetprop(MCFG_PROPNAME, strlen(MCFG_PROPNAME),
2133 ecfginfo, sizeof (ecfginfo));
2134 break;
2136 cfg_baap++;
2140 #ifndef __xpv
2141 static void
2142 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp,
2143 uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array)
2145 ACPI_SUBTABLE_HEADER *item, *end;
2146 uint32_t cpu_count = 0;
2147 uint32_t cpu_possible_count = 0;
2150 * Determine number of CPUs and keep track of "final" APIC ID
2151 * for each CPU by walking through ACPI MADT processor list
2153 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2154 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2156 while (item < end) {
2157 switch (item->Type) {
2158 case ACPI_MADT_TYPE_LOCAL_APIC: {
2159 ACPI_MADT_LOCAL_APIC *cpu =
2160 (ACPI_MADT_LOCAL_APIC *) item;
2162 if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2163 if (cpu_apicid_array != NULL)
2164 cpu_apicid_array[cpu_count] = cpu->Id;
2165 cpu_count++;
2167 cpu_possible_count++;
2168 break;
2170 case ACPI_MADT_TYPE_LOCAL_X2APIC: {
2171 ACPI_MADT_LOCAL_X2APIC *cpu =
2172 (ACPI_MADT_LOCAL_X2APIC *) item;
2174 if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2175 if (cpu_apicid_array != NULL)
2176 cpu_apicid_array[cpu_count] =
2177 cpu->LocalApicId;
2178 cpu_count++;
2180 cpu_possible_count++;
2181 break;
2183 default:
2184 if (kbm_debug)
2185 bop_printf(NULL, "MADT type %d\n", item->Type);
2186 break;
2189 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
2191 if (cpu_countp)
2192 *cpu_countp = cpu_count;
2193 if (cpu_possible_countp)
2194 *cpu_possible_countp = cpu_possible_count;
2197 static void
2198 process_madt(ACPI_TABLE_MADT *tp)
2200 uint32_t cpu_count = 0;
2201 uint32_t cpu_possible_count = 0;
2202 uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */
2204 if (tp != NULL) {
2205 /* count cpu's */
2206 process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL);
2208 cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL,
2209 cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE);
2210 if (cpu_apicid_array == NULL)
2211 bop_panic("Not enough memory for APIC ID array");
2213 /* copy IDs */
2214 process_madt_entries(tp, NULL, NULL, cpu_apicid_array);
2217 * Make boot property for array of "final" APIC IDs for each
2218 * CPU
2220 bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
2221 cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array));
2225 * Check whether property plat-max-ncpus is already set.
2227 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2229 * Set plat-max-ncpus to number of maximum possible CPUs given
2230 * in MADT if it hasn't been set.
2231 * There's no formal way to detect max possible CPUs supported
2232 * by platform according to ACPI spec3.0b. So current CPU
2233 * hotplug implementation expects that all possible CPUs will
2234 * have an entry in MADT table and set plat-max-ncpus to number
2235 * of entries in MADT.
2236 * With introducing of ACPI4.0, Maximum System Capability Table
2237 * (MSCT) provides maximum number of CPUs supported by platform.
2238 * If MSCT is unavailable, fall back to old way.
2240 if (tp != NULL)
2241 bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count);
2245 * Set boot property boot-max-ncpus to number of CPUs existing at
2246 * boot time. boot-max-ncpus is mainly used for optimization.
2248 if (tp != NULL)
2249 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count);
2252 * User-set boot-ncpus overrides firmware count
2254 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2255 return;
2258 * Set boot property boot-ncpus to number of active CPUs given in MADT
2259 * if it hasn't been set yet.
2261 if (tp != NULL)
2262 bsetpropsi(BOOT_NCPUS_NAME, cpu_count);
2265 static void
2266 process_srat(ACPI_TABLE_SRAT *tp)
2268 ACPI_SUBTABLE_HEADER *item, *end;
2269 int i;
2270 int proc_num, mem_num;
2271 #pragma pack(1)
2272 struct {
2273 uint32_t domain;
2274 uint32_t apic_id;
2275 uint32_t sapic_id;
2276 } processor;
2277 struct {
2278 uint32_t domain;
2279 uint32_t x2apic_id;
2280 } x2apic;
2281 struct {
2282 uint32_t domain;
2283 uint64_t addr;
2284 uint64_t length;
2285 uint32_t flags;
2286 } memory;
2287 #pragma pack()
2288 char prop_name[30];
2289 uint64_t maxmem = 0;
2291 if (tp == NULL)
2292 return;
2294 proc_num = mem_num = 0;
2295 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2296 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2297 while (item < end) {
2298 switch (item->Type) {
2299 case ACPI_SRAT_TYPE_CPU_AFFINITY: {
2300 ACPI_SRAT_CPU_AFFINITY *cpu =
2301 (ACPI_SRAT_CPU_AFFINITY *) item;
2303 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2304 break;
2305 processor.domain = cpu->ProximityDomainLo;
2306 for (i = 0; i < 3; i++)
2307 processor.domain +=
2308 cpu->ProximityDomainHi[i] << ((i + 1) * 8);
2309 processor.apic_id = cpu->ApicId;
2310 processor.sapic_id = cpu->LocalSapicEid;
2311 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2312 proc_num);
2313 bsetprop(prop_name, strlen(prop_name), &processor,
2314 sizeof (processor));
2315 proc_num++;
2316 break;
2318 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: {
2319 ACPI_SRAT_MEM_AFFINITY *mem =
2320 (ACPI_SRAT_MEM_AFFINITY *)item;
2322 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
2323 break;
2324 memory.domain = mem->ProximityDomain;
2325 memory.addr = mem->BaseAddress;
2326 memory.length = mem->Length;
2327 memory.flags = mem->Flags;
2328 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2329 mem_num);
2330 bsetprop(prop_name, strlen(prop_name), &memory,
2331 sizeof (memory));
2332 if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) &&
2333 (memory.addr + memory.length > maxmem)) {
2334 maxmem = memory.addr + memory.length;
2336 mem_num++;
2337 break;
2339 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: {
2340 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
2341 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
2343 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2344 break;
2345 x2apic.domain = x2cpu->ProximityDomain;
2346 x2apic.x2apic_id = x2cpu->ApicId;
2347 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2348 proc_num);
2349 bsetprop(prop_name, strlen(prop_name), &x2apic,
2350 sizeof (x2apic));
2351 proc_num++;
2352 break;
2354 default:
2355 if (kbm_debug)
2356 bop_printf(NULL, "SRAT type %d\n", item->Type);
2357 break;
2360 item = (ACPI_SUBTABLE_HEADER *)
2361 (item->Length + (uintptr_t)item);
2365 * The maximum physical address calculated from the SRAT table is more
2366 * accurate than that calculated from the MSCT table.
2368 if (maxmem != 0) {
2369 plat_dr_physmax = btop(maxmem);
2373 static void
2374 process_slit(ACPI_TABLE_SLIT *tp)
2378 * Check the number of localities; if it's too huge, we just
2379 * return and locality enumeration code will handle this later,
2380 * if possible.
2382 * Note that the size of the table is the square of the
2383 * number of localities; if the number of localities exceeds
2384 * UINT16_MAX, the table size may overflow an int when being
2385 * passed to bsetprop() below.
2387 if (tp->LocalityCount >= SLIT_LOCALITIES_MAX)
2388 return;
2390 bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME),
2391 &tp->LocalityCount, sizeof (tp->LocalityCount));
2392 bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry,
2393 tp->LocalityCount * tp->LocalityCount);
2396 static ACPI_TABLE_MSCT *
2397 process_msct(ACPI_TABLE_MSCT *tp)
2399 int last_seen = 0;
2400 int proc_num = 0;
2401 ACPI_MSCT_PROXIMITY *item, *end;
2402 extern uint64_t plat_dr_options;
2404 ASSERT(tp != NULL);
2406 end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp);
2407 for (item = (void *)((uintptr_t)tp + tp->ProximityOffset);
2408 item < end;
2409 item = (void *)(item->Length + (uintptr_t)item)) {
2411 * Sanity check according to section 5.2.19.1 of ACPI 4.0.
2412 * Revision 1
2413 * Length 22
2415 if (item->Revision != 1 || item->Length != 22) {
2416 cmn_err(CE_CONT,
2417 "?boot: unknown proximity domain structure in MSCT "
2418 "with Revision(%d), Length(%d).\n",
2419 (int)item->Revision, (int)item->Length);
2420 return (NULL);
2421 } else if (item->RangeStart > item->RangeEnd) {
2422 cmn_err(CE_CONT,
2423 "?boot: invalid proximity domain structure in MSCT "
2424 "with RangeStart(%u), RangeEnd(%u).\n",
2425 item->RangeStart, item->RangeEnd);
2426 return (NULL);
2427 } else if (item->RangeStart != last_seen) {
2429 * Items must be organized in ascending order of the
2430 * proximity domain enumerations.
2432 cmn_err(CE_CONT,
2433 "?boot: invalid proximity domain structure in MSCT,"
2434 " items are not orginized in ascending order.\n");
2435 return (NULL);
2439 * If ProcessorCapacity is 0 then there would be no CPUs in this
2440 * domain.
2442 if (item->ProcessorCapacity != 0) {
2443 proc_num += (item->RangeEnd - item->RangeStart + 1) *
2444 item->ProcessorCapacity;
2447 last_seen = item->RangeEnd - item->RangeStart + 1;
2449 * Break out if all proximity domains have been processed.
2450 * Some BIOSes may have unused items at the end of MSCT table.
2452 if (last_seen > tp->MaxProximityDomains) {
2453 break;
2456 if (last_seen != tp->MaxProximityDomains + 1) {
2457 cmn_err(CE_CONT,
2458 "?boot: invalid proximity domain structure in MSCT, "
2459 "proximity domain count doesn't match.\n");
2460 return (NULL);
2464 * Set plat-max-ncpus property if it hasn't been set yet.
2466 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2467 if (proc_num != 0) {
2468 bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num);
2473 * Use Maximum Physical Address from the MSCT table as upper limit for
2474 * memory hot-adding by default. It may be overridden by value from
2475 * the SRAT table or the "plat-dr-physmax" boot option.
2477 plat_dr_physmax = btop(tp->MaxAddress + 1);
2480 * Existence of MSCT implies CPU/memory hotplug-capability for the
2481 * platform.
2483 plat_dr_options |= PLAT_DR_FEATURE_CPU;
2484 plat_dr_options |= PLAT_DR_FEATURE_MEMORY;
2486 return (tp);
2489 #else /* __xpv */
2490 static void
2491 enumerate_xen_cpus()
2493 processorid_t id, max_id;
2496 * User-set boot-ncpus overrides enumeration
2498 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2499 return;
2502 * Probe every possible virtual CPU id and remember the
2503 * highest id present; the count of CPUs is one greater
2504 * than this. This tacitly assumes at least cpu 0 is present.
2506 max_id = 0;
2507 for (id = 0; id < MAX_VIRT_CPUS; id++)
2508 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2509 max_id = id;
2511 bsetpropsi(BOOT_NCPUS_NAME, max_id+1);
2514 #endif /* __xpv */
2516 static void
2517 build_firmware_properties(void)
2519 ACPI_TABLE_HEADER *tp = NULL;
2521 #ifndef __xpv
2522 if ((tp = find_fw_table(ACPI_SIG_MSCT)) != NULL)
2523 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp);
2524 else
2525 msct_ptr = NULL;
2527 if ((tp = find_fw_table(ACPI_SIG_MADT)) != NULL)
2528 process_madt((ACPI_TABLE_MADT *)tp);
2530 if ((srat_ptr = (ACPI_TABLE_SRAT *)
2531 find_fw_table(ACPI_SIG_SRAT)) != NULL)
2532 process_srat(srat_ptr);
2534 if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(ACPI_SIG_SLIT))
2535 process_slit(slit_ptr);
2537 tp = find_fw_table(ACPI_SIG_MCFG);
2538 #else /* __xpv */
2539 enumerate_xen_cpus();
2540 if (DOMAIN_IS_INITDOMAIN(xen_info))
2541 tp = find_fw_table(ACPI_SIG_MCFG);
2542 #endif /* __xpv */
2543 if (tp != NULL)
2544 process_mcfg((ACPI_TABLE_MCFG *)tp);
2548 * fake up a boot property for deferred early console output
2549 * this is used by both graphical boot and the (developer only)
2550 * USB serial console
2552 void *
2553 defcons_init(size_t size)
2555 static char *p = NULL;
2557 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2558 *p = 0;
2559 bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1,
2560 &p, sizeof (p));
2561 return (p);
2564 /*ARGSUSED*/
2566 boot_compinfo(int fd, struct compinfo *cbp)
2568 cbp->iscmp = 0;
2569 cbp->blksize = MAXBSIZE;
2570 return (0);
2573 #define BP_MAX_STRLEN 32
2576 * Get value for given boot property
2579 bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
2581 int boot_prop_len;
2582 char str[BP_MAX_STRLEN];
2583 u_longlong_t value;
2585 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2586 if (boot_prop_len < 0 || boot_prop_len > sizeof (str) ||
2587 BOP_GETPROP(bootops, prop_name, str) < 0 ||
2588 kobj_getvalue(str, &value) == -1)
2589 return (-1);
2591 if (prop_value)
2592 *prop_value = value;
2594 return (0);