build: silence lex(1) statistics output
[unleashed.git] / kernel / os / kmem.c
blob87e9957cee8a03af0160e952bb8fa0d6ca3a011a
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
28 * Kernel memory allocator, as described in the following two papers and a
29 * statement about the consolidator:
31 * Jeff Bonwick,
32 * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
33 * Proceedings of the Summer 1994 Usenix Conference.
34 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
36 * Jeff Bonwick and Jonathan Adams,
37 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
38 * Arbitrary Resources.
39 * Proceedings of the 2001 Usenix Conference.
40 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
42 * kmem Slab Consolidator Big Theory Statement:
44 * 1. Motivation
46 * As stated in Bonwick94, slabs provide the following advantages over other
47 * allocation structures in terms of memory fragmentation:
49 * - Internal fragmentation (per-buffer wasted space) is minimal.
50 * - Severe external fragmentation (unused buffers on the free list) is
51 * unlikely.
53 * Segregating objects by size eliminates one source of external fragmentation,
54 * and according to Bonwick:
56 * The other reason that slabs reduce external fragmentation is that all
57 * objects in a slab are of the same type, so they have the same lifetime
58 * distribution. The resulting segregation of short-lived and long-lived
59 * objects at slab granularity reduces the likelihood of an entire page being
60 * held hostage due to a single long-lived allocation [Barrett93, Hanson90].
62 * While unlikely, severe external fragmentation remains possible. Clients that
63 * allocate both short- and long-lived objects from the same cache cannot
64 * anticipate the distribution of long-lived objects within the allocator's slab
65 * implementation. Even a small percentage of long-lived objects distributed
66 * randomly across many slabs can lead to a worst case scenario where the client
67 * frees the majority of its objects and the system gets back almost none of the
68 * slabs. Despite the client doing what it reasonably can to help the system
69 * reclaim memory, the allocator cannot shake free enough slabs because of
70 * lonely allocations stubbornly hanging on. Although the allocator is in a
71 * position to diagnose the fragmentation, there is nothing that the allocator
72 * by itself can do about it. It only takes a single allocated object to prevent
73 * an entire slab from being reclaimed, and any object handed out by
74 * kmem_cache_alloc() is by definition in the client's control. Conversely,
75 * although the client is in a position to move a long-lived object, it has no
76 * way of knowing if the object is causing fragmentation, and if so, where to
77 * move it. A solution necessarily requires further cooperation between the
78 * allocator and the client.
80 * 2. Move Callback
82 * The kmem slab consolidator therefore adds a move callback to the
83 * allocator/client interface, improving worst-case external fragmentation in
84 * kmem caches that supply a function to move objects from one memory location
85 * to another. In a situation of low memory kmem attempts to consolidate all of
86 * a cache's slabs at once; otherwise it works slowly to bring external
87 * fragmentation within the 1/8 limit guaranteed for internal fragmentation,
88 * thereby helping to avoid a low memory situation in the future.
90 * The callback has the following signature:
92 * kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg)
94 * It supplies the kmem client with two addresses: the allocated object that
95 * kmem wants to move and a buffer selected by kmem for the client to use as the
96 * copy destination. The callback is kmem's way of saying "Please get off of
97 * this buffer and use this one instead." kmem knows where it wants to move the
98 * object in order to best reduce fragmentation. All the client needs to know
99 * about the second argument (void *new) is that it is an allocated, constructed
100 * object ready to take the contents of the old object. When the move function
101 * is called, the system is likely to be low on memory, and the new object
102 * spares the client from having to worry about allocating memory for the
103 * requested move. The third argument supplies the size of the object, in case a
104 * single move function handles multiple caches whose objects differ only in
105 * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional
106 * user argument passed to the constructor, destructor, and reclaim functions is
107 * also passed to the move callback.
109 * 2.1 Setting the Move Callback
111 * The client sets the move callback after creating the cache and before
112 * allocating from it:
114 * object_cache = kmem_cache_create(...);
115 * kmem_cache_set_move(object_cache, object_move);
117 * 2.2 Move Callback Return Values
119 * Only the client knows about its own data and when is a good time to move it.
120 * The client is cooperating with kmem to return unused memory to the system,
121 * and kmem respectfully accepts this help at the client's convenience. When
122 * asked to move an object, the client can respond with any of the following:
124 * typedef enum kmem_cbrc {
125 * KMEM_CBRC_YES,
126 * KMEM_CBRC_NO,
127 * KMEM_CBRC_LATER,
128 * KMEM_CBRC_DONT_NEED,
129 * KMEM_CBRC_DONT_KNOW
130 * } kmem_cbrc_t;
132 * The client must not explicitly kmem_cache_free() either of the objects passed
133 * to the callback, since kmem wants to free them directly to the slab layer
134 * (bypassing the per-CPU magazine layer). The response tells kmem which of the
135 * objects to free:
137 * YES: (Did it) The client moved the object, so kmem frees the old one.
138 * NO: (Never) The client refused, so kmem frees the new object (the
139 * unused copy destination). kmem also marks the slab of the old
140 * object so as not to bother the client with further callbacks for
141 * that object as long as the slab remains on the partial slab list.
142 * (The system won't be getting the slab back as long as the
143 * immovable object holds it hostage, so there's no point in moving
144 * any of its objects.)
145 * LATER: The client is using the object and cannot move it now, so kmem
146 * frees the new object (the unused copy destination). kmem still
147 * attempts to move other objects off the slab, since it expects to
148 * succeed in clearing the slab in a later callback. The client
149 * should use LATER instead of NO if the object is likely to become
150 * movable very soon.
151 * DONT_NEED: The client no longer needs the object, so kmem frees the old along
152 * with the new object (the unused copy destination). This response
153 * is the client's opportunity to be a model citizen and give back as
154 * much as it can.
155 * DONT_KNOW: The client does not know about the object because
156 * a) the client has just allocated the object and not yet put it
157 * wherever it expects to find known objects
158 * b) the client has removed the object from wherever it expects to
159 * find known objects and is about to free it, or
160 * c) the client has freed the object.
161 * In all these cases (a, b, and c) kmem frees the new object (the
162 * unused copy destination). In the first case, the object is in
163 * use and the correct action is that for LATER; in the latter two
164 * cases, we know that the object is either freed or about to be
165 * freed, in which case it is either already in a magazine or about
166 * to be in one. In these cases, we know that the object will either
167 * be reallocated and reused, or it will end up in a full magazine
168 * that will be reaped (thereby liberating the slab). Because it
169 * is prohibitively expensive to differentiate these cases, and
170 * because the defrag code is executed when we're low on memory
171 * (thereby biasing the system to reclaim full magazines) we treat
172 * all DONT_KNOW cases as LATER and rely on cache reaping to
173 * generally clean up full magazines. While we take the same action
174 * for these cases, we maintain their semantic distinction: if
175 * defragmentation is not occurring, it is useful to know if this
176 * is due to objects in use (LATER) or objects in an unknown state
177 * of transition (DONT_KNOW).
179 * 2.3 Object States
181 * Neither kmem nor the client can be assumed to know the object's whereabouts
182 * at the time of the callback. An object belonging to a kmem cache may be in
183 * any of the following states:
185 * 1. Uninitialized on the slab
186 * 2. Allocated from the slab but not constructed (still uninitialized)
187 * 3. Allocated from the slab, constructed, but not yet ready for business
188 * (not in a valid state for the move callback)
189 * 4. In use (valid and known to the client)
190 * 5. About to be freed (no longer in a valid state for the move callback)
191 * 6. Freed to a magazine (still constructed)
192 * 7. Allocated from a magazine, not yet ready for business (not in a valid
193 * state for the move callback), and about to return to state #4
194 * 8. Deconstructed on a magazine that is about to be freed
195 * 9. Freed to the slab
197 * Since the move callback may be called at any time while the object is in any
198 * of the above states (except state #1), the client needs a safe way to
199 * determine whether or not it knows about the object. Specifically, the client
200 * needs to know whether or not the object is in state #4, the only state in
201 * which a move is valid. If the object is in any other state, the client should
202 * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of
203 * the object's fields.
205 * Note that although an object may be in state #4 when kmem initiates the move
206 * request, the object may no longer be in that state by the time kmem actually
207 * calls the move function. Not only does the client free objects
208 * asynchronously, kmem itself puts move requests on a queue where thay are
209 * pending until kmem processes them from another context. Also, objects freed
210 * to a magazine appear allocated from the point of view of the slab layer, so
211 * kmem may even initiate requests for objects in a state other than state #4.
213 * 2.3.1 Magazine Layer
215 * An important insight revealed by the states listed above is that the magazine
216 * layer is populated only by kmem_cache_free(). Magazines of constructed
217 * objects are never populated directly from the slab layer (which contains raw,
218 * unconstructed objects). Whenever an allocation request cannot be satisfied
219 * from the magazine layer, the magazines are bypassed and the request is
220 * satisfied from the slab layer (creating a new slab if necessary). kmem calls
221 * the object constructor only when allocating from the slab layer, and only in
222 * response to kmem_cache_alloc() or to prepare the destination buffer passed in
223 * the move callback. kmem does not preconstruct objects in anticipation of
224 * kmem_cache_alloc().
226 * 2.3.2 Object Constructor and Destructor
228 * If the client supplies a destructor, it must be valid to call the destructor
229 * on a newly created object (immediately after the constructor).
231 * 2.4 Recognizing Known Objects
233 * There is a simple test to determine safely whether or not the client knows
234 * about a given object in the move callback. It relies on the fact that kmem
235 * guarantees that the object of the move callback has only been touched by the
236 * client itself or else by kmem. kmem does this by ensuring that none of the
237 * cache's slabs are freed to the virtual memory (VM) subsystem while a move
238 * callback is pending. When the last object on a slab is freed, if there is a
239 * pending move, kmem puts the slab on a per-cache dead list and defers freeing
240 * slabs on that list until all pending callbacks are completed. That way,
241 * clients can be certain that the object of a move callback is in one of the
242 * states listed above, making it possible to distinguish known objects (in
243 * state #4) using the two low order bits of any pointer member (with the
244 * exception of 'char *' or 'short *' which may not be 4-byte aligned on some
245 * platforms).
247 * The test works as long as the client always transitions objects from state #4
248 * (known, in use) to state #5 (about to be freed, invalid) by setting the low
249 * order bit of the client-designated pointer member. Since kmem only writes
250 * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and
251 * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is
252 * guaranteed to set at least one of the two low order bits. Therefore, given an
253 * object with a back pointer to a 'container_t *o_container', the client can
254 * test
256 * container_t *container = object->o_container;
257 * if ((uintptr_t)container & 0x3) {
258 * return (KMEM_CBRC_DONT_KNOW);
261 * Typically, an object will have a pointer to some structure with a list or
262 * hash where objects from the cache are kept while in use. Assuming that the
263 * client has some way of knowing that the container structure is valid and will
264 * not go away during the move, and assuming that the structure includes a lock
265 * to protect whatever collection is used, then the client would continue as
266 * follows:
268 * // Ensure that the container structure does not go away.
269 * if (container_hold(container) == 0) {
270 * return (KMEM_CBRC_DONT_KNOW);
272 * mutex_enter(&container->c_objects_lock);
273 * if (container != object->o_container) {
274 * mutex_exit(&container->c_objects_lock);
275 * container_rele(container);
276 * return (KMEM_CBRC_DONT_KNOW);
279 * At this point the client knows that the object cannot be freed as long as
280 * c_objects_lock is held. Note that after acquiring the lock, the client must
281 * recheck the o_container pointer in case the object was removed just before
282 * acquiring the lock.
284 * When the client is about to free an object, it must first remove that object
285 * from the list, hash, or other structure where it is kept. At that time, to
286 * mark the object so it can be distinguished from the remaining, known objects,
287 * the client sets the designated low order bit:
289 * mutex_enter(&container->c_objects_lock);
290 * object->o_container = (void *)((uintptr_t)object->o_container | 0x1);
291 * list_remove(&container->c_objects, object);
292 * mutex_exit(&container->c_objects_lock);
294 * In the common case, the object is freed to the magazine layer, where it may
295 * be reused on a subsequent allocation without the overhead of calling the
296 * constructor. While in the magazine it appears allocated from the point of
297 * view of the slab layer, making it a candidate for the move callback. Most
298 * objects unrecognized by the client in the move callback fall into this
299 * category and are cheaply distinguished from known objects by the test
300 * described earlier. Because searching magazines is prohibitively expensive
301 * for kmem, clients that do not mark freed objects (and therefore return
302 * KMEM_CBRC_DONT_KNOW for large numbers of objects) may find defragmentation
303 * efficacy reduced.
305 * Invalidating the designated pointer member before freeing the object marks
306 * the object to be avoided in the callback, and conversely, assigning a valid
307 * value to the designated pointer member after allocating the object makes the
308 * object fair game for the callback:
310 * ... allocate object ...
311 * ... set any initial state not set by the constructor ...
313 * mutex_enter(&container->c_objects_lock);
314 * list_insert_tail(&container->c_objects, object);
315 * membar_producer();
316 * object->o_container = container;
317 * mutex_exit(&container->c_objects_lock);
319 * Note that everything else must be valid before setting o_container makes the
320 * object fair game for the move callback. The membar_producer() call ensures
321 * that all the object's state is written to memory before setting the pointer
322 * that transitions the object from state #3 or #7 (allocated, constructed, not
323 * yet in use) to state #4 (in use, valid). That's important because the move
324 * function has to check the validity of the pointer before it can safely
325 * acquire the lock protecting the collection where it expects to find known
326 * objects.
328 * This method of distinguishing known objects observes the usual symmetry:
329 * invalidating the designated pointer is the first thing the client does before
330 * freeing the object, and setting the designated pointer is the last thing the
331 * client does after allocating the object. Of course, the client is not
332 * required to use this method. Fundamentally, how the client recognizes known
333 * objects is completely up to the client, but this method is recommended as an
334 * efficient and safe way to take advantage of the guarantees made by kmem. If
335 * the entire object is arbitrary data without any markable bits from a suitable
336 * pointer member, then the client must find some other method, such as
337 * searching a hash table of known objects.
339 * 2.5 Preventing Objects From Moving
341 * Besides a way to distinguish known objects, the other thing that the client
342 * needs is a strategy to ensure that an object will not move while the client
343 * is actively using it. The details of satisfying this requirement tend to be
344 * highly cache-specific. It might seem that the same rules that let a client
345 * remove an object safely should also decide when an object can be moved
346 * safely. However, any object state that makes a removal attempt invalid is
347 * likely to be long-lasting for objects that the client does not expect to
348 * remove. kmem knows nothing about the object state and is equally likely (from
349 * the client's point of view) to request a move for any object in the cache,
350 * whether prepared for removal or not. Even a low percentage of objects stuck
351 * in place by unremovability will defeat the consolidator if the stuck objects
352 * are the same long-lived allocations likely to hold slabs hostage.
353 * Fundamentally, the consolidator is not aimed at common cases. Severe external
354 * fragmentation is a worst case scenario manifested as sparsely allocated
355 * slabs, by definition a low percentage of the cache's objects. When deciding
356 * what makes an object movable, keep in mind the goal of the consolidator: to
357 * bring worst-case external fragmentation within the limits guaranteed for
358 * internal fragmentation. Removability is a poor criterion if it is likely to
359 * exclude more than an insignificant percentage of objects for long periods of
360 * time.
362 * A tricky general solution exists, and it has the advantage of letting you
363 * move any object at almost any moment, practically eliminating the likelihood
364 * that an object can hold a slab hostage. However, if there is a cache-specific
365 * way to ensure that an object is not actively in use in the vast majority of
366 * cases, a simpler solution that leverages this cache-specific knowledge is
367 * preferred.
369 * 2.5.1 Cache-Specific Solution
371 * As an example of a cache-specific solution, the ZFS znode cache takes
372 * advantage of the fact that the vast majority of znodes are only being
373 * referenced from the DNLC. (A typical case might be a few hundred in active
374 * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS
375 * client has established that it recognizes the znode and can access its fields
376 * safely (using the method described earlier), it then tests whether the znode
377 * is referenced by anything other than the DNLC. If so, it assumes that the
378 * znode may be in active use and is unsafe to move, so it drops its locks and
379 * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere
380 * else znodes are used, no change is needed to protect against the possibility
381 * of the znode moving. The disadvantage is that it remains possible for an
382 * application to hold a znode slab hostage with an open file descriptor.
383 * However, this case ought to be rare and the consolidator has a way to deal
384 * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same
385 * object, kmem eventually stops believing it and treats the slab as if the
386 * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can
387 * then focus on getting it off of the partial slab list by allocating rather
388 * than freeing all of its objects. (Either way of getting a slab off the
389 * free list reduces fragmentation.)
391 * 2.5.2 General Solution
393 * The general solution, on the other hand, requires an explicit hold everywhere
394 * the object is used to prevent it from moving. To keep the client locking
395 * strategy as uncomplicated as possible, kmem guarantees the simplifying
396 * assumption that move callbacks are sequential, even across multiple caches.
397 * Internally, a global queue processed by a single thread supports all caches
398 * implementing the callback function. No matter how many caches supply a move
399 * function, the consolidator never moves more than one object at a time, so the
400 * client does not have to worry about tricky lock ordering involving several
401 * related objects from different kmem caches.
403 * The general solution implements the explicit hold as a read-write lock, which
404 * allows multiple readers to access an object from the cache simultaneously
405 * while a single writer is excluded from moving it. A single rwlock for the
406 * entire cache would lock out all threads from using any of the cache's objects
407 * even though only a single object is being moved, so to reduce contention,
408 * the client can fan out the single rwlock into an array of rwlocks hashed by
409 * the object address, making it probable that moving one object will not
410 * prevent other threads from using a different object. The rwlock cannot be a
411 * member of the object itself, because the possibility of the object moving
412 * makes it unsafe to access any of the object's fields until the lock is
413 * acquired.
415 * Assuming a small, fixed number of locks, it's possible that multiple objects
416 * will hash to the same lock. A thread that needs to use multiple objects in
417 * the same function may acquire the same lock multiple times. Since rwlocks are
418 * reentrant for readers, and since there is never more than a single writer at
419 * a time (assuming that the client acquires the lock as a writer only when
420 * moving an object inside the callback), there would seem to be no problem.
421 * However, a client locking multiple objects in the same function must handle
422 * one case of potential deadlock: Assume that thread A needs to prevent both
423 * object 1 and object 2 from moving, and thread B, the callback, meanwhile
424 * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the
425 * same lock, that thread A will acquire the lock for object 1 as a reader
426 * before thread B sets the lock's write-wanted bit, preventing thread A from
427 * reacquiring the lock for object 2 as a reader. Unable to make forward
428 * progress, thread A will never release the lock for object 1, resulting in
429 * deadlock.
431 * There are two ways of avoiding the deadlock just described. The first is to
432 * use rw_tryenter() rather than rw_enter() in the callback function when
433 * attempting to acquire the lock as a writer. If tryenter discovers that the
434 * same object (or another object hashed to the same lock) is already in use, it
435 * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use
436 * rprwlock_t (declared in kernel/fs/zfs/sys/rprwlock.h) instead of rwlock_t,
437 * since it allows a thread to acquire the lock as a reader in spite of a
438 * waiting writer. This second approach insists on moving the object now, no
439 * matter how many readers the move function must wait for in order to do so,
440 * and could delay the completion of the callback indefinitely (blocking
441 * callbacks to other clients). In practice, a less insistent callback using
442 * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems
443 * little reason to use anything else.
445 * Avoiding deadlock is not the only problem that an implementation using an
446 * explicit hold needs to solve. Locking the object in the first place (to
447 * prevent it from moving) remains a problem, since the object could move
448 * between the time you obtain a pointer to the object and the time you acquire
449 * the rwlock hashed to that pointer value. Therefore the client needs to
450 * recheck the value of the pointer after acquiring the lock, drop the lock if
451 * the value has changed, and try again. This requires a level of indirection:
452 * something that points to the object rather than the object itself, that the
453 * client can access safely while attempting to acquire the lock. (The object
454 * itself cannot be referenced safely because it can move at any time.)
455 * The following lock-acquisition function takes whatever is safe to reference
456 * (arg), follows its pointer to the object (using function f), and tries as
457 * often as necessary to acquire the hashed lock and verify that the object
458 * still has not moved:
460 * object_t *
461 * object_hold(object_f f, void *arg)
463 * object_t *op;
465 * op = f(arg);
466 * if (op == NULL) {
467 * return (NULL);
470 * rw_enter(OBJECT_RWLOCK(op), RW_READER);
471 * while (op != f(arg)) {
472 * rw_exit(OBJECT_RWLOCK(op));
473 * op = f(arg);
474 * if (op == NULL) {
475 * break;
477 * rw_enter(OBJECT_RWLOCK(op), RW_READER);
480 * return (op);
483 * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The
484 * lock reacquisition loop, while necessary, almost never executes. The function
485 * pointer f (used to obtain the object pointer from arg) has the following type
486 * definition:
488 * typedef object_t *(*object_f)(void *arg);
490 * An object_f implementation is likely to be as simple as accessing a structure
491 * member:
493 * object_t *
494 * s_object(void *arg)
496 * something_t *sp = arg;
497 * return (sp->s_object);
500 * The flexibility of a function pointer allows the path to the object to be
501 * arbitrarily complex and also supports the notion that depending on where you
502 * are using the object, you may need to get it from someplace different.
504 * The function that releases the explicit hold is simpler because it does not
505 * have to worry about the object moving:
507 * void
508 * object_rele(object_t *op)
510 * rw_exit(OBJECT_RWLOCK(op));
513 * The caller is spared these details so that obtaining and releasing an
514 * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller
515 * of object_hold() only needs to know that the returned object pointer is valid
516 * if not NULL and that the object will not move until released.
518 * Although object_hold() prevents an object from moving, it does not prevent it
519 * from being freed. The caller must take measures before calling object_hold()
520 * (afterwards is too late) to ensure that the held object cannot be freed. The
521 * caller must do so without accessing the unsafe object reference, so any lock
522 * or reference count used to ensure the continued existence of the object must
523 * live outside the object itself.
525 * Obtaining a new object is a special case where an explicit hold is impossible
526 * for the caller. Any function that returns a newly allocated object (either as
527 * a return value, or as an in-out paramter) must return it already held; after
528 * the caller gets it is too late, since the object cannot be safely accessed
529 * without the level of indirection described earlier. The following
530 * object_alloc() example uses the same code shown earlier to transition a new
531 * object into the state of being recognized (by the client) as a known object.
532 * The function must acquire the hold (rw_enter) before that state transition
533 * makes the object movable:
535 * static object_t *
536 * object_alloc(container_t *container)
538 * object_t *object = kmem_cache_alloc(object_cache, 0);
539 * ... set any initial state not set by the constructor ...
540 * rw_enter(OBJECT_RWLOCK(object), RW_READER);
541 * mutex_enter(&container->c_objects_lock);
542 * list_insert_tail(&container->c_objects, object);
543 * membar_producer();
544 * object->o_container = container;
545 * mutex_exit(&container->c_objects_lock);
546 * return (object);
549 * Functions that implicitly acquire an object hold (any function that calls
550 * object_alloc() to supply an object for the caller) need to be carefully noted
551 * so that the matching object_rele() is not neglected. Otherwise, leaked holds
552 * prevent all objects hashed to the affected rwlocks from ever being moved.
554 * The pointer to a held object can be hashed to the holding rwlock even after
555 * the object has been freed. Although it is possible to release the hold
556 * after freeing the object, you may decide to release the hold implicitly in
557 * whatever function frees the object, so as to release the hold as soon as
558 * possible, and for the sake of symmetry with the function that implicitly
559 * acquires the hold when it allocates the object. Here, object_free() releases
560 * the hold acquired by object_alloc(). Its implicit object_rele() forms a
561 * matching pair with object_hold():
563 * void
564 * object_free(object_t *object)
566 * container_t *container;
568 * ASSERT(object_held(object));
569 * container = object->o_container;
570 * mutex_enter(&container->c_objects_lock);
571 * object->o_container =
572 * (void *)((uintptr_t)object->o_container | 0x1);
573 * list_remove(&container->c_objects, object);
574 * mutex_exit(&container->c_objects_lock);
575 * object_rele(object);
576 * kmem_cache_free(object_cache, object);
579 * Note that object_free() cannot safely accept an object pointer as an argument
580 * unless the object is already held. Any function that calls object_free()
581 * needs to be carefully noted since it similarly forms a matching pair with
582 * object_hold().
584 * To complete the picture, the following callback function implements the
585 * general solution by moving objects only if they are currently unheld:
587 * static kmem_cbrc_t
588 * object_move(void *buf, void *newbuf, size_t size, void *arg)
590 * object_t *op = buf, *np = newbuf;
591 * container_t *container;
593 * container = op->o_container;
594 * if ((uintptr_t)container & 0x3) {
595 * return (KMEM_CBRC_DONT_KNOW);
598 * // Ensure that the container structure does not go away.
599 * if (container_hold(container) == 0) {
600 * return (KMEM_CBRC_DONT_KNOW);
603 * mutex_enter(&container->c_objects_lock);
604 * if (container != op->o_container) {
605 * mutex_exit(&container->c_objects_lock);
606 * container_rele(container);
607 * return (KMEM_CBRC_DONT_KNOW);
610 * if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) {
611 * mutex_exit(&container->c_objects_lock);
612 * container_rele(container);
613 * return (KMEM_CBRC_LATER);
616 * object_move_impl(op, np); // critical section
617 * rw_exit(OBJECT_RWLOCK(op));
619 * op->o_container = (void *)((uintptr_t)op->o_container | 0x1);
620 * list_link_replace(&op->o_link_node, &np->o_link_node);
621 * mutex_exit(&container->c_objects_lock);
622 * container_rele(container);
623 * return (KMEM_CBRC_YES);
626 * Note that object_move() must invalidate the designated o_container pointer of
627 * the old object in the same way that object_free() does, since kmem will free
628 * the object in response to the KMEM_CBRC_YES return value.
630 * The lock order in object_move() differs from object_alloc(), which locks
631 * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the
632 * callback uses rw_tryenter() (preventing the deadlock described earlier), it's
633 * not a problem. Holding the lock on the object list in the example above
634 * through the entire callback not only prevents the object from going away, it
635 * also allows you to lock the list elsewhere and know that none of its elements
636 * will move during iteration.
638 * Adding an explicit hold everywhere an object from the cache is used is tricky
639 * and involves much more change to client code than a cache-specific solution
640 * that leverages existing state to decide whether or not an object is
641 * movable. However, this approach has the advantage that no object remains
642 * immovable for any significant length of time, making it extremely unlikely
643 * that long-lived allocations can continue holding slabs hostage; and it works
644 * for any cache.
646 * 3. Consolidator Implementation
648 * Once the client supplies a move function that a) recognizes known objects and
649 * b) avoids moving objects that are actively in use, the remaining work is up
650 * to the consolidator to decide which objects to move and when to issue
651 * callbacks.
653 * The consolidator relies on the fact that a cache's slabs are ordered by
654 * usage. Each slab has a fixed number of objects. Depending on the slab's
655 * "color" (the offset of the first object from the beginning of the slab;
656 * offsets are staggered to mitigate false sharing of cache lines) it is either
657 * the maximum number of objects per slab determined at cache creation time or
658 * else the number closest to the maximum that fits within the space remaining
659 * after the initial offset. A completely allocated slab may contribute some
660 * internal fragmentation (per-slab overhead) but no external fragmentation, so
661 * it is of no interest to the consolidator. At the other extreme, slabs whose
662 * objects have all been freed to the slab are released to the virtual memory
663 * (VM) subsystem (objects freed to magazines are still allocated as far as the
664 * slab is concerned). External fragmentation exists when there are slabs
665 * somewhere between these extremes. A partial slab has at least one but not all
666 * of its objects allocated. The more partial slabs, and the fewer allocated
667 * objects on each of them, the higher the fragmentation. Hence the
668 * consolidator's overall strategy is to reduce the number of partial slabs by
669 * moving allocated objects from the least allocated slabs to the most allocated
670 * slabs.
672 * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated
673 * slabs are kept separately in an unordered list. Since the majority of slabs
674 * tend to be completely allocated (a typical unfragmented cache may have
675 * thousands of complete slabs and only a single partial slab), separating
676 * complete slabs improves the efficiency of partial slab ordering, since the
677 * complete slabs do not affect the depth or balance of the AVL tree. This
678 * ordered sequence of partial slabs acts as a "free list" supplying objects for
679 * allocation requests.
681 * Objects are always allocated from the first partial slab in the free list,
682 * where the allocation is most likely to eliminate a partial slab (by
683 * completely allocating it). Conversely, when a single object from a completely
684 * allocated slab is freed to the slab, that slab is added to the front of the
685 * free list. Since most free list activity involves highly allocated slabs
686 * coming and going at the front of the list, slabs tend naturally toward the
687 * ideal order: highly allocated at the front, sparsely allocated at the back.
688 * Slabs with few allocated objects are likely to become completely free if they
689 * keep a safe distance away from the front of the free list. Slab misorders
690 * interfere with the natural tendency of slabs to become completely free or
691 * completely allocated. For example, a slab with a single allocated object
692 * needs only a single free to escape the cache; its natural desire is
693 * frustrated when it finds itself at the front of the list where a second
694 * allocation happens just before the free could have released it. Another slab
695 * with all but one object allocated might have supplied the buffer instead, so
696 * that both (as opposed to neither) of the slabs would have been taken off the
697 * free list.
699 * Although slabs tend naturally toward the ideal order, misorders allowed by a
700 * simple list implementation defeat the consolidator's strategy of merging
701 * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem
702 * needs another way to fix misorders to optimize its callback strategy. One
703 * approach is to periodically scan a limited number of slabs, advancing a
704 * marker to hold the current scan position, and to move extreme misorders to
705 * the front or back of the free list and to the front or back of the current
706 * scan range. By making consecutive scan ranges overlap by one slab, the least
707 * allocated slab in the current range can be carried along from the end of one
708 * scan to the start of the next.
710 * Maintaining partial slabs in an AVL tree relieves kmem of this additional
711 * task, however. Since most of the cache's activity is in the magazine layer,
712 * and allocations from the slab layer represent only a startup cost, the
713 * overhead of maintaining a balanced tree is not a significant concern compared
714 * to the opportunity of reducing complexity by eliminating the partial slab
715 * scanner just described. The overhead of an AVL tree is minimized by
716 * maintaining only partial slabs in the tree and keeping completely allocated
717 * slabs separately in a list. To avoid increasing the size of the slab
718 * structure the AVL linkage pointers are reused for the slab's list linkage,
719 * since the slab will always be either partial or complete, never stored both
720 * ways at the same time. To further minimize the overhead of the AVL tree the
721 * compare function that orders partial slabs by usage divides the range of
722 * allocated object counts into bins such that counts within the same bin are
723 * considered equal. Binning partial slabs makes it less likely that allocating
724 * or freeing a single object will change the slab's order, requiring a tree
725 * reinsertion (an avl_remove() followed by an avl_add(), both potentially
726 * requiring some rebalancing of the tree). Allocation counts closest to
727 * completely free and completely allocated are left unbinned (finely sorted) to
728 * better support the consolidator's strategy of merging slabs at either
729 * extreme.
731 * 3.1 Assessing Fragmentation and Selecting Candidate Slabs
733 * The consolidator piggybacks on the kmem maintenance thread and is called on
734 * the same interval as kmem_cache_update(), once per cache every fifteen
735 * seconds. kmem maintains a running count of unallocated objects in the slab
736 * layer (cache_bufslab). The consolidator checks whether that number exceeds
737 * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether
738 * there is a significant number of slabs in the cache (arbitrarily a minimum
739 * 101 total slabs). Unused objects that have fallen out of the magazine layer's
740 * working set are included in the assessment, and magazines in the depot are
741 * reaped if those objects would lift cache_bufslab above the fragmentation
742 * threshold. Once the consolidator decides that a cache is fragmented, it looks
743 * for a candidate slab to reclaim, starting at the end of the partial slab free
744 * list and scanning backwards. At first the consolidator is choosy: only a slab
745 * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a
746 * single allocated object, regardless of percentage). If there is difficulty
747 * finding a candidate slab, kmem raises the allocation threshold incrementally,
748 * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce
749 * external fragmentation (unused objects on the free list) below 12.5% (1/8),
750 * even in the worst case of every slab in the cache being almost 7/8 allocated.
751 * The threshold can also be lowered incrementally when candidate slabs are easy
752 * to find, and the threshold is reset to the minimum 1/8 as soon as the cache
753 * is no longer fragmented.
755 * 3.2 Generating Callbacks
757 * Once an eligible slab is chosen, a callback is generated for every allocated
758 * object on the slab, in the hope that the client will move everything off the
759 * slab and make it reclaimable. Objects selected as move destinations are
760 * chosen from slabs at the front of the free list. Assuming slabs in the ideal
761 * order (most allocated at the front, least allocated at the back) and a
762 * cooperative client, the consolidator will succeed in removing slabs from both
763 * ends of the free list, completely allocating on the one hand and completely
764 * freeing on the other. Objects selected as move destinations are allocated in
765 * the kmem maintenance thread where move requests are enqueued. A separate
766 * callback thread removes pending callbacks from the queue and calls the
767 * client. The separate thread ensures that client code (the move function) does
768 * not interfere with internal kmem maintenance tasks. A map of pending
769 * callbacks keyed by object address (the object to be moved) is checked to
770 * ensure that duplicate callbacks are not generated for the same object.
771 * Allocating the move destination (the object to move to) prevents subsequent
772 * callbacks from selecting the same destination as an earlier pending callback.
774 * Move requests can also be generated by kmem_cache_reap() when the system is
775 * desperate for memory and by kmem_cache_move_notify(), called by the client to
776 * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible.
777 * The map of pending callbacks is protected by the same lock that protects the
778 * slab layer.
780 * When the system is desperate for memory, kmem does not bother to determine
781 * whether or not the cache exceeds the fragmentation threshold, but tries to
782 * consolidate as many slabs as possible. Normally, the consolidator chews
783 * slowly, one sparsely allocated slab at a time during each maintenance
784 * interval that the cache is fragmented. When desperate, the consolidator
785 * starts at the last partial slab and enqueues callbacks for every allocated
786 * object on every partial slab, working backwards until it reaches the first
787 * partial slab. The first partial slab, meanwhile, advances in pace with the
788 * consolidator as allocations to supply move destinations for the enqueued
789 * callbacks use up the highly allocated slabs at the front of the free list.
790 * Ideally, the overgrown free list collapses like an accordion, starting at
791 * both ends and ending at the center with a single partial slab.
793 * 3.3 Client Responses
795 * When the client returns KMEM_CBRC_NO in response to the move callback, kmem
796 * marks the slab that supplied the stuck object non-reclaimable and moves it to
797 * front of the free list. The slab remains marked as long as it remains on the
798 * free list, and it appears more allocated to the partial slab compare function
799 * than any unmarked slab, no matter how many of its objects are allocated.
800 * Since even one immovable object ties up the entire slab, the goal is to
801 * completely allocate any slab that cannot be completely freed. kmem does not
802 * bother generating callbacks to move objects from a marked slab unless the
803 * system is desperate.
805 * When the client responds KMEM_CBRC_LATER, kmem increments a count for the
806 * slab. If the client responds LATER too many times, kmem disbelieves and
807 * treats the response as a NO. The count is cleared when the slab is taken off
808 * the partial slab list or when the client moves one of the slab's objects.
810 * 4. Observability
812 * A kmem cache's external fragmentation is best observed with 'mdb -k' using
813 * the ::kmem_slabs dcmd. For a complete description of the command, enter
814 * '::help kmem_slabs' at the mdb prompt.
817 #include <sys/kmem_impl.h>
818 #include <sys/vmem_impl.h>
819 #include <sys/param.h>
820 #include <sys/sysmacros.h>
821 #include <sys/vm.h>
822 #include <sys/proc.h>
823 #include <sys/tuneable.h>
824 #include <sys/systm.h>
825 #include <sys/cmn_err.h>
826 #include <sys/debug.h>
827 #include <sys/sdt.h>
828 #include <sys/mutex.h>
829 #include <sys/bitmap.h>
830 #include <sys/atomic.h>
831 #include <sys/kobj.h>
832 #include <sys/disp.h>
833 #include <vm/seg_kmem.h>
834 #include <sys/log.h>
835 #include <sys/callb.h>
836 #include <sys/taskq.h>
837 #include <sys/modctl.h>
838 #include <sys/reboot.h>
839 #include <sys/id32.h>
840 #include <sys/zone.h>
841 #include <sys/netstack.h>
842 #ifdef DEBUG
843 #include <sys/random.h>
844 #endif
846 extern void streams_msg_init(void);
847 extern int segkp_fromheap;
848 extern void segkp_cache_free(void);
849 extern int callout_init_done;
851 struct kmem_cache_kstat {
852 kstat_named_t kmc_buf_size;
853 kstat_named_t kmc_align;
854 kstat_named_t kmc_chunk_size;
855 kstat_named_t kmc_slab_size;
856 kstat_named_t kmc_alloc;
857 kstat_named_t kmc_alloc_fail;
858 kstat_named_t kmc_free;
859 kstat_named_t kmc_depot_alloc;
860 kstat_named_t kmc_depot_free;
861 kstat_named_t kmc_depot_contention;
862 kstat_named_t kmc_slab_alloc;
863 kstat_named_t kmc_slab_free;
864 kstat_named_t kmc_buf_constructed;
865 kstat_named_t kmc_buf_avail;
866 kstat_named_t kmc_buf_inuse;
867 kstat_named_t kmc_buf_total;
868 kstat_named_t kmc_buf_max;
869 kstat_named_t kmc_slab_create;
870 kstat_named_t kmc_slab_destroy;
871 kstat_named_t kmc_vmem_source;
872 kstat_named_t kmc_hash_size;
873 kstat_named_t kmc_hash_lookup_depth;
874 kstat_named_t kmc_hash_rescale;
875 kstat_named_t kmc_full_magazines;
876 kstat_named_t kmc_empty_magazines;
877 kstat_named_t kmc_magazine_size;
878 kstat_named_t kmc_reap; /* number of kmem_cache_reap() calls */
879 kstat_named_t kmc_defrag; /* attempts to defrag all partial slabs */
880 kstat_named_t kmc_scan; /* attempts to defrag one partial slab */
881 kstat_named_t kmc_move_callbacks; /* sum of yes, no, later, dn, dk */
882 kstat_named_t kmc_move_yes;
883 kstat_named_t kmc_move_no;
884 kstat_named_t kmc_move_later;
885 kstat_named_t kmc_move_dont_need;
886 kstat_named_t kmc_move_dont_know; /* obj unrecognized by client ... */
887 kstat_named_t kmc_move_hunt_found; /* ... but found in mag layer */
888 kstat_named_t kmc_move_slabs_freed; /* slabs freed by consolidator */
889 kstat_named_t kmc_move_reclaimable; /* buffers, if consolidator ran */
890 } kmem_cache_kstat = {
891 { "buf_size", KSTAT_DATA_UINT64 },
892 { "align", KSTAT_DATA_UINT64 },
893 { "chunk_size", KSTAT_DATA_UINT64 },
894 { "slab_size", KSTAT_DATA_UINT64 },
895 { "alloc", KSTAT_DATA_UINT64 },
896 { "alloc_fail", KSTAT_DATA_UINT64 },
897 { "free", KSTAT_DATA_UINT64 },
898 { "depot_alloc", KSTAT_DATA_UINT64 },
899 { "depot_free", KSTAT_DATA_UINT64 },
900 { "depot_contention", KSTAT_DATA_UINT64 },
901 { "slab_alloc", KSTAT_DATA_UINT64 },
902 { "slab_free", KSTAT_DATA_UINT64 },
903 { "buf_constructed", KSTAT_DATA_UINT64 },
904 { "buf_avail", KSTAT_DATA_UINT64 },
905 { "buf_inuse", KSTAT_DATA_UINT64 },
906 { "buf_total", KSTAT_DATA_UINT64 },
907 { "buf_max", KSTAT_DATA_UINT64 },
908 { "slab_create", KSTAT_DATA_UINT64 },
909 { "slab_destroy", KSTAT_DATA_UINT64 },
910 { "vmem_source", KSTAT_DATA_UINT64 },
911 { "hash_size", KSTAT_DATA_UINT64 },
912 { "hash_lookup_depth", KSTAT_DATA_UINT64 },
913 { "hash_rescale", KSTAT_DATA_UINT64 },
914 { "full_magazines", KSTAT_DATA_UINT64 },
915 { "empty_magazines", KSTAT_DATA_UINT64 },
916 { "magazine_size", KSTAT_DATA_UINT64 },
917 { "reap", KSTAT_DATA_UINT64 },
918 { "defrag", KSTAT_DATA_UINT64 },
919 { "scan", KSTAT_DATA_UINT64 },
920 { "move_callbacks", KSTAT_DATA_UINT64 },
921 { "move_yes", KSTAT_DATA_UINT64 },
922 { "move_no", KSTAT_DATA_UINT64 },
923 { "move_later", KSTAT_DATA_UINT64 },
924 { "move_dont_need", KSTAT_DATA_UINT64 },
925 { "move_dont_know", KSTAT_DATA_UINT64 },
926 { "move_hunt_found", KSTAT_DATA_UINT64 },
927 { "move_slabs_freed", KSTAT_DATA_UINT64 },
928 { "move_reclaimable", KSTAT_DATA_UINT64 },
931 static kmutex_t kmem_cache_kstat_lock;
934 * The default set of caches to back kmem_alloc().
935 * These sizes should be reevaluated periodically.
937 * We want allocations that are multiples of the coherency granularity
938 * (64 bytes) to be satisfied from a cache which is a multiple of 64
939 * bytes, so that it will be 64-byte aligned. For all multiples of 64,
940 * the next kmem_cache_size greater than or equal to it must be a
941 * multiple of 64.
943 * We split the table into two sections: size <= 4k and size > 4k. This
944 * saves a lot of space and cache footprint in our cache tables.
946 static const int kmem_alloc_sizes[] = {
947 1 * 8,
948 2 * 8,
949 3 * 8,
950 4 * 8, 5 * 8, 6 * 8, 7 * 8,
951 4 * 16, 5 * 16, 6 * 16, 7 * 16,
952 4 * 32, 5 * 32, 6 * 32, 7 * 32,
953 4 * 64, 5 * 64, 6 * 64, 7 * 64,
954 4 * 128, 5 * 128, 6 * 128, 7 * 128,
955 P2ALIGN(8192 / 7, 64),
956 P2ALIGN(8192 / 6, 64),
957 P2ALIGN(8192 / 5, 64),
958 P2ALIGN(8192 / 4, 64),
959 P2ALIGN(8192 / 3, 64),
960 P2ALIGN(8192 / 2, 64),
963 static const int kmem_big_alloc_sizes[] = {
964 2 * 4096, 3 * 4096,
965 2 * 8192, 3 * 8192,
966 4 * 8192, 5 * 8192, 6 * 8192, 7 * 8192,
967 8 * 8192, 9 * 8192, 10 * 8192, 11 * 8192,
968 12 * 8192, 13 * 8192, 14 * 8192, 15 * 8192,
969 16 * 8192
972 #define KMEM_MAXBUF 4096
973 #define KMEM_BIG_MAXBUF_32BIT 32768
974 #define KMEM_BIG_MAXBUF 131072
976 #define KMEM_BIG_MULTIPLE 4096 /* big_alloc_sizes must be a multiple */
977 #define KMEM_BIG_SHIFT 12 /* lg(KMEM_BIG_MULTIPLE) */
979 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT];
980 static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT];
982 #define KMEM_ALLOC_TABLE_MAX (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT)
983 static size_t kmem_big_alloc_table_max = 0; /* # of filled elements */
985 static kmem_magtype_t kmem_magtype[] = {
986 { 1, 8, 3200, 65536 },
987 { 3, 16, 256, 32768 },
988 { 7, 32, 64, 16384 },
989 { 15, 64, 0, 8192 },
990 { 31, 64, 0, 4096 },
991 { 47, 64, 0, 2048 },
992 { 63, 64, 0, 1024 },
993 { 95, 64, 0, 512 },
994 { 143, 64, 0, 0 },
997 static uint32_t kmem_reaping;
998 static uint32_t kmem_reaping_idspace;
1001 * kmem tunables
1003 clock_t kmem_reap_interval; /* cache reaping rate [15 * HZ ticks] */
1004 int kmem_depot_contention = 3; /* max failed tryenters per real interval */
1005 pgcnt_t kmem_reapahead = 0; /* start reaping N pages before pageout */
1006 int kmem_panic = 1; /* whether to panic on error */
1007 int kmem_logging = 1; /* kmem_log_enter() override */
1008 uint32_t kmem_mtbf = 0; /* mean time between failures [default: off] */
1009 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */
1010 size_t kmem_content_log_size; /* content log size [2% of memory] */
1011 size_t kmem_failure_log_size; /* failure log [4 pages per CPU] */
1012 size_t kmem_slab_log_size; /* slab create log [4 pages per CPU] */
1013 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */
1014 size_t kmem_lite_minsize = 0; /* minimum buffer size for KMF_LITE */
1015 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */
1016 int kmem_lite_pcs = 4; /* number of PCs to store in KMF_LITE mode */
1017 size_t kmem_maxverify; /* maximum bytes to inspect in debug routines */
1018 size_t kmem_minfirewall; /* hardware-enforced redzone threshold */
1020 #ifdef _LP64
1021 size_t kmem_max_cached = KMEM_BIG_MAXBUF; /* maximum kmem_alloc cache */
1022 #else
1023 size_t kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */
1024 #endif
1026 #ifdef DEBUG
1027 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS;
1028 #else
1029 int kmem_flags = 0;
1030 #endif
1031 int kmem_ready;
1033 static kmem_cache_t *kmem_slab_cache;
1034 static kmem_cache_t *kmem_bufctl_cache;
1035 static kmem_cache_t *kmem_bufctl_audit_cache;
1037 static kmutex_t kmem_cache_lock; /* inter-cache linkage only */
1038 static list_t kmem_caches;
1040 static taskq_t *kmem_taskq;
1041 static kmutex_t kmem_flags_lock;
1042 static vmem_t *kmem_metadata_arena;
1043 static vmem_t *kmem_msb_arena; /* arena for metadata caches */
1044 static vmem_t *kmem_cache_arena;
1045 static vmem_t *kmem_hash_arena;
1046 static vmem_t *kmem_log_arena;
1047 static vmem_t *kmem_oversize_arena;
1048 static vmem_t *kmem_va_arena;
1049 static vmem_t *kmem_default_arena;
1050 static vmem_t *kmem_firewall_va_arena;
1051 static vmem_t *kmem_firewall_arena;
1054 * kmem slab consolidator thresholds (tunables)
1056 size_t kmem_frag_minslabs = 101; /* minimum total slabs */
1057 size_t kmem_frag_numer = 1; /* free buffers (numerator) */
1058 size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */
1060 * Maximum number of slabs from which to move buffers during a single
1061 * maintenance interval while the system is not low on memory.
1063 size_t kmem_reclaim_max_slabs = 1;
1065 * Number of slabs to scan backwards from the end of the partial slab list
1066 * when searching for buffers to relocate.
1068 size_t kmem_reclaim_scan_range = 12;
1070 /* consolidator knobs */
1071 boolean_t kmem_move_noreap;
1072 boolean_t kmem_move_blocked;
1073 boolean_t kmem_move_fulltilt;
1074 boolean_t kmem_move_any_partial;
1076 #ifdef DEBUG
1078 * kmem consolidator debug tunables:
1079 * Ensure code coverage by occasionally running the consolidator even when the
1080 * caches are not fragmented (they may never be). These intervals are mean time
1081 * in cache maintenance intervals (kmem_cache_update).
1083 uint32_t kmem_mtb_move = 60; /* defrag 1 slab (~15min) */
1084 uint32_t kmem_mtb_reap = 1800; /* defrag all slabs (~7.5hrs) */
1085 #endif /* DEBUG */
1087 static kmem_cache_t *kmem_defrag_cache;
1088 static kmem_cache_t *kmem_move_cache;
1089 static taskq_t *kmem_move_taskq;
1091 static void kmem_cache_scan(kmem_cache_t *);
1092 static void kmem_cache_defrag(kmem_cache_t *);
1093 static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *);
1096 kmem_log_header_t *kmem_transaction_log;
1097 kmem_log_header_t *kmem_content_log;
1098 kmem_log_header_t *kmem_failure_log;
1099 kmem_log_header_t *kmem_slab_log;
1101 static int kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */
1103 #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller) \
1104 if ((count) > 0) { \
1105 pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \
1106 pc_t *_e; \
1107 /* memmove() the old entries down one notch */ \
1108 for (_e = &_s[(count) - 1]; _e > _s; _e--) \
1109 *_e = *(_e - 1); \
1110 *_s = (uintptr_t)(caller); \
1113 #define KMERR_MODIFIED 0 /* buffer modified while on freelist */
1114 #define KMERR_REDZONE 1 /* redzone violation (write past end of buf) */
1115 #define KMERR_DUPFREE 2 /* freed a buffer twice */
1116 #define KMERR_BADADDR 3 /* freed a bad (unallocated) address */
1117 #define KMERR_BADBUFTAG 4 /* buftag corrupted */
1118 #define KMERR_BADBUFCTL 5 /* bufctl corrupted */
1119 #define KMERR_BADCACHE 6 /* freed a buffer to the wrong cache */
1120 #define KMERR_BADSIZE 7 /* alloc size != free size */
1121 #define KMERR_BADBASE 8 /* buffer base address wrong */
1123 struct {
1124 hrtime_t kmp_timestamp; /* timestamp of panic */
1125 int kmp_error; /* type of kmem error */
1126 void *kmp_buffer; /* buffer that induced panic */
1127 void *kmp_realbuf; /* real start address for buffer */
1128 kmem_cache_t *kmp_cache; /* buffer's cache according to client */
1129 kmem_cache_t *kmp_realcache; /* actual cache containing buffer */
1130 kmem_slab_t *kmp_slab; /* slab accoring to kmem_findslab() */
1131 kmem_bufctl_t *kmp_bufctl; /* bufctl */
1132 } kmem_panic_info;
1135 static void
1136 copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
1138 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1139 uint64_t *buf = buf_arg;
1141 while (buf < bufend)
1142 *buf++ = pattern;
1145 static void *
1146 verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
1148 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1149 uint64_t *buf;
1151 for (buf = buf_arg; buf < bufend; buf++)
1152 if (*buf != pattern)
1153 return (buf);
1154 return (NULL);
1157 static void *
1158 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
1160 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1161 uint64_t *buf;
1163 for (buf = buf_arg; buf < bufend; buf++) {
1164 if (*buf != old) {
1165 copy_pattern(old, buf_arg,
1166 (char *)buf - (char *)buf_arg);
1167 return (buf);
1169 *buf = new;
1172 return (NULL);
1175 static void
1176 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1178 kmem_cache_t *cp;
1180 mutex_enter(&kmem_cache_lock);
1181 for (cp = list_head(&kmem_caches); cp != NULL;
1182 cp = list_next(&kmem_caches, cp))
1183 if (tq != NULL)
1184 (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1185 tqflag);
1186 else
1187 func(cp);
1188 mutex_exit(&kmem_cache_lock);
1191 static void
1192 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1194 kmem_cache_t *cp;
1196 mutex_enter(&kmem_cache_lock);
1197 for (cp = list_head(&kmem_caches); cp != NULL;
1198 cp = list_next(&kmem_caches, cp)) {
1199 if (!(cp->cache_cflags & KMC_IDENTIFIER))
1200 continue;
1201 if (tq != NULL)
1202 (void) taskq_dispatch(tq, (task_func_t *)func, cp,
1203 tqflag);
1204 else
1205 func(cp);
1207 mutex_exit(&kmem_cache_lock);
1211 * Debugging support. Given a buffer address, find its slab.
1213 static kmem_slab_t *
1214 kmem_findslab(kmem_cache_t *cp, void *buf)
1216 kmem_slab_t *sp;
1218 mutex_enter(&cp->cache_lock);
1219 for (sp = list_head(&cp->cache_complete_slabs); sp != NULL;
1220 sp = list_next(&cp->cache_complete_slabs, sp)) {
1221 if (KMEM_SLAB_MEMBER(sp, buf)) {
1222 mutex_exit(&cp->cache_lock);
1223 return (sp);
1226 for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL;
1227 sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) {
1228 if (KMEM_SLAB_MEMBER(sp, buf)) {
1229 mutex_exit(&cp->cache_lock);
1230 return (sp);
1233 mutex_exit(&cp->cache_lock);
1235 return (NULL);
1238 static void
1239 kmem_error(int error, kmem_cache_t *cparg, void *bufarg)
1241 kmem_buftag_t *btp = NULL;
1242 kmem_bufctl_t *bcp = NULL;
1243 kmem_cache_t *cp = cparg;
1244 kmem_slab_t *sp;
1245 uint64_t *off;
1246 void *buf = bufarg;
1248 kmem_logging = 0; /* stop logging when a bad thing happens */
1250 kmem_panic_info.kmp_timestamp = gethrtime();
1252 sp = kmem_findslab(cp, buf);
1253 if (sp == NULL) {
1254 for (cp = list_tail(&kmem_caches); cp != NULL;
1255 cp = list_prev(&kmem_caches, cp)) {
1256 if ((sp = kmem_findslab(cp, buf)) != NULL)
1257 break;
1261 if (sp == NULL) {
1262 cp = NULL;
1263 error = KMERR_BADADDR;
1264 } else {
1265 if (cp != cparg)
1266 error = KMERR_BADCACHE;
1267 else
1268 buf = (char *)bufarg - ((uintptr_t)bufarg -
1269 (uintptr_t)sp->slab_base) % cp->cache_chunksize;
1270 if (buf != bufarg)
1271 error = KMERR_BADBASE;
1272 if (cp->cache_flags & KMF_BUFTAG)
1273 btp = KMEM_BUFTAG(cp, buf);
1274 if (cp->cache_flags & KMF_HASH) {
1275 mutex_enter(&cp->cache_lock);
1276 for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
1277 if (bcp->bc_addr == buf)
1278 break;
1279 mutex_exit(&cp->cache_lock);
1280 if (bcp == NULL && btp != NULL)
1281 bcp = btp->bt_bufctl;
1282 if (kmem_findslab(cp->cache_bufctl_cache, bcp) ==
1283 NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) ||
1284 bcp->bc_addr != buf) {
1285 error = KMERR_BADBUFCTL;
1286 bcp = NULL;
1291 kmem_panic_info.kmp_error = error;
1292 kmem_panic_info.kmp_buffer = bufarg;
1293 kmem_panic_info.kmp_realbuf = buf;
1294 kmem_panic_info.kmp_cache = cparg;
1295 kmem_panic_info.kmp_realcache = cp;
1296 kmem_panic_info.kmp_slab = sp;
1297 kmem_panic_info.kmp_bufctl = bcp;
1299 printf("kernel memory allocator: ");
1301 switch (error) {
1303 case KMERR_MODIFIED:
1304 printf("buffer modified after being freed\n");
1305 off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1306 if (off == NULL) /* shouldn't happen */
1307 off = buf;
1308 printf("modification occurred at offset 0x%lx "
1309 "(0x%llx replaced by 0x%llx)\n",
1310 (uintptr_t)off - (uintptr_t)buf,
1311 (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off);
1312 break;
1314 case KMERR_REDZONE:
1315 printf("redzone violation: write past end of buffer\n");
1316 break;
1318 case KMERR_BADADDR:
1319 printf("invalid free: buffer not in cache\n");
1320 break;
1322 case KMERR_DUPFREE:
1323 printf("duplicate free: buffer freed twice\n");
1324 break;
1326 case KMERR_BADBUFTAG:
1327 printf("boundary tag corrupted\n");
1328 printf("bcp ^ bxstat = %lx, should be %lx\n",
1329 (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
1330 KMEM_BUFTAG_FREE);
1331 break;
1333 case KMERR_BADBUFCTL:
1334 printf("bufctl corrupted\n");
1335 break;
1337 case KMERR_BADCACHE:
1338 printf("buffer freed to wrong cache\n");
1339 printf("buffer was allocated from %s,\n", cp->cache_name);
1340 printf("caller attempting free to %s.\n", cparg->cache_name);
1341 break;
1343 case KMERR_BADSIZE:
1344 printf("bad free: free size (%u) != alloc size (%u)\n",
1345 KMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
1346 KMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
1347 break;
1349 case KMERR_BADBASE:
1350 printf("bad free: free address (%p) != alloc address (%p)\n",
1351 bufarg, buf);
1352 break;
1355 printf("buffer=%p bufctl=%p cache: %s\n",
1356 bufarg, (void *)bcp, cparg->cache_name);
1358 if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) &&
1359 error != KMERR_BADBUFCTL) {
1360 int d;
1361 timestruc_t ts;
1362 kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp;
1364 hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts);
1365 printf("previous transaction on buffer %p:\n", buf);
1366 printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n",
1367 (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
1368 (void *)sp, cp->cache_name);
1369 for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) {
1370 ulong_t off;
1371 char *sym = kobj_getsymname(bcap->bc_stack[d], &off);
1372 printf("%s+%lx\n", sym ? sym : "?", off);
1375 if (kmem_panic > 0)
1376 panic("kernel heap corruption detected");
1377 if (kmem_panic == 0)
1378 debug_enter(NULL);
1379 kmem_logging = 1; /* resume logging */
1382 static kmem_log_header_t *
1383 kmem_log_init(size_t logsize)
1385 kmem_log_header_t *lhp;
1386 int nchunks = 4 * max_ncpus;
1387 size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus];
1388 int i;
1391 * Make sure that lhp->lh_cpu[] is nicely aligned
1392 * to prevent false sharing of cache lines.
1394 lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN);
1395 lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
1396 NULL, NULL, VM_SLEEP);
1397 bzero(lhp, lhsize);
1399 mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL);
1400 lhp->lh_nchunks = nchunks;
1401 lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE);
1402 lhp->lh_base = vmem_alloc(kmem_log_arena,
1403 lhp->lh_chunksize * nchunks, VM_SLEEP);
1404 lhp->lh_free = vmem_alloc(kmem_log_arena,
1405 nchunks * sizeof (int), VM_SLEEP);
1406 bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
1408 for (i = 0; i < max_ncpus; i++) {
1409 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
1410 mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL);
1411 clhp->clh_chunk = i;
1414 for (i = max_ncpus; i < nchunks; i++)
1415 lhp->lh_free[i] = i;
1417 lhp->lh_head = max_ncpus;
1418 lhp->lh_tail = 0;
1420 return (lhp);
1423 static void *
1424 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size)
1426 void *logspace;
1427 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid];
1429 if (lhp == NULL || kmem_logging == 0 || panicstr)
1430 return (NULL);
1432 mutex_enter(&clhp->clh_lock);
1433 clhp->clh_hits++;
1434 if (size > clhp->clh_avail) {
1435 mutex_enter(&lhp->lh_lock);
1436 lhp->lh_hits++;
1437 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
1438 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
1439 clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
1440 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
1441 clhp->clh_current = lhp->lh_base +
1442 clhp->clh_chunk * lhp->lh_chunksize;
1443 clhp->clh_avail = lhp->lh_chunksize;
1444 if (size > lhp->lh_chunksize)
1445 size = lhp->lh_chunksize;
1446 mutex_exit(&lhp->lh_lock);
1448 logspace = clhp->clh_current;
1449 clhp->clh_current += size;
1450 clhp->clh_avail -= size;
1451 bcopy(data, logspace, size);
1452 mutex_exit(&clhp->clh_lock);
1453 return (logspace);
1456 #define KMEM_AUDIT(lp, cp, bcp) \
1458 kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp); \
1459 _bcp->bc_timestamp = gethrtime(); \
1460 _bcp->bc_thread = curthread; \
1461 _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH); \
1462 _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp)); \
1465 static void
1466 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp,
1467 kmem_slab_t *sp, void *addr)
1469 kmem_bufctl_audit_t bca;
1471 bzero(&bca, sizeof (kmem_bufctl_audit_t));
1472 bca.bc_addr = addr;
1473 bca.bc_slab = sp;
1474 bca.bc_cache = cp;
1475 KMEM_AUDIT(lp, cp, &bca);
1479 * Create a new slab for cache cp.
1481 static kmem_slab_t *
1482 kmem_slab_create(kmem_cache_t *cp, int kmflag)
1484 size_t slabsize = cp->cache_slabsize;
1485 size_t chunksize = cp->cache_chunksize;
1486 int cache_flags = cp->cache_flags;
1487 size_t color, chunks;
1488 char *buf, *slab;
1489 kmem_slab_t *sp;
1490 kmem_bufctl_t *bcp;
1491 vmem_t *vmp = cp->cache_arena;
1493 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1495 color = cp->cache_color + cp->cache_align;
1496 if (color > cp->cache_maxcolor)
1497 color = cp->cache_mincolor;
1498 cp->cache_color = color;
1500 slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS);
1502 if (slab == NULL)
1503 goto vmem_alloc_failure;
1505 ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
1508 * Reverify what was already checked in kmem_cache_set_move(), since the
1509 * consolidator depends (for correctness) on slabs being initialized
1510 * with the 0xbaddcafe memory pattern (setting a low order bit usable by
1511 * clients to distinguish uninitialized memory from known objects).
1513 ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH));
1514 if (!(cp->cache_cflags & KMC_NOTOUCH))
1515 copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize);
1517 if (cache_flags & KMF_HASH) {
1518 if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL)
1519 goto slab_alloc_failure;
1520 chunks = (slabsize - color) / chunksize;
1521 } else {
1522 sp = KMEM_SLAB(cp, slab);
1523 chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize;
1526 sp->slab_cache = cp;
1527 sp->slab_head = NULL;
1528 sp->slab_refcnt = 0;
1529 sp->slab_base = buf = slab + color;
1530 sp->slab_chunks = chunks;
1531 sp->slab_stuck_offset = (uint32_t)-1;
1532 sp->slab_later_count = 0;
1533 sp->slab_flags = 0;
1535 ASSERT(chunks > 0);
1536 while (chunks-- != 0) {
1537 if (cache_flags & KMF_HASH) {
1538 bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag);
1539 if (bcp == NULL)
1540 goto bufctl_alloc_failure;
1541 if (cache_flags & KMF_AUDIT) {
1542 kmem_bufctl_audit_t *bcap =
1543 (kmem_bufctl_audit_t *)bcp;
1544 bzero(bcap, sizeof (kmem_bufctl_audit_t));
1545 bcap->bc_cache = cp;
1547 bcp->bc_addr = buf;
1548 bcp->bc_slab = sp;
1549 } else {
1550 bcp = KMEM_BUFCTL(cp, buf);
1552 if (cache_flags & KMF_BUFTAG) {
1553 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1554 btp->bt_redzone = KMEM_REDZONE_PATTERN;
1555 btp->bt_bufctl = bcp;
1556 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1557 if (cache_flags & KMF_DEADBEEF) {
1558 copy_pattern(KMEM_FREE_PATTERN, buf,
1559 cp->cache_verify);
1562 bcp->bc_next = sp->slab_head;
1563 sp->slab_head = bcp;
1564 buf += chunksize;
1567 kmem_log_event(kmem_slab_log, cp, sp, slab);
1569 return (sp);
1571 bufctl_alloc_failure:
1573 while ((bcp = sp->slab_head) != NULL) {
1574 sp->slab_head = bcp->bc_next;
1575 kmem_cache_free(cp->cache_bufctl_cache, bcp);
1577 kmem_cache_free(kmem_slab_cache, sp);
1579 slab_alloc_failure:
1581 vmem_free(vmp, slab, slabsize);
1583 vmem_alloc_failure:
1585 kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1586 atomic_inc_64(&cp->cache_alloc_fail);
1588 return (NULL);
1592 * Destroy a slab.
1594 static void
1595 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp)
1597 vmem_t *vmp = cp->cache_arena;
1598 void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
1600 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1601 ASSERT(sp->slab_refcnt == 0);
1603 if (cp->cache_flags & KMF_HASH) {
1604 kmem_bufctl_t *bcp;
1605 while ((bcp = sp->slab_head) != NULL) {
1606 sp->slab_head = bcp->bc_next;
1607 kmem_cache_free(cp->cache_bufctl_cache, bcp);
1609 kmem_cache_free(kmem_slab_cache, sp);
1611 vmem_free(vmp, slab, cp->cache_slabsize);
1614 static void *
1615 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill)
1617 kmem_bufctl_t *bcp, **hash_bucket;
1618 void *buf;
1619 boolean_t new_slab = (sp->slab_refcnt == 0);
1621 ASSERT(MUTEX_HELD(&cp->cache_lock));
1623 * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we
1624 * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the
1625 * slab is newly created.
1627 ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) &&
1628 (sp == avl_first(&cp->cache_partial_slabs))));
1629 ASSERT(sp->slab_cache == cp);
1631 cp->cache_slab_alloc++;
1632 cp->cache_bufslab--;
1633 sp->slab_refcnt++;
1635 bcp = sp->slab_head;
1636 sp->slab_head = bcp->bc_next;
1638 if (cp->cache_flags & KMF_HASH) {
1640 * Add buffer to allocated-address hash table.
1642 buf = bcp->bc_addr;
1643 hash_bucket = KMEM_HASH(cp, buf);
1644 bcp->bc_next = *hash_bucket;
1645 *hash_bucket = bcp;
1646 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1647 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1649 } else {
1650 buf = KMEM_BUF(cp, bcp);
1653 ASSERT(KMEM_SLAB_MEMBER(sp, buf));
1655 if (sp->slab_head == NULL) {
1656 ASSERT(KMEM_SLAB_IS_ALL_USED(sp));
1657 if (new_slab) {
1658 ASSERT(sp->slab_chunks == 1);
1659 } else {
1660 ASSERT(sp->slab_chunks > 1); /* the slab was partial */
1661 avl_remove(&cp->cache_partial_slabs, sp);
1662 sp->slab_later_count = 0; /* clear history */
1663 sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
1664 sp->slab_stuck_offset = (uint32_t)-1;
1666 list_insert_head(&cp->cache_complete_slabs, sp);
1667 cp->cache_complete_slab_count++;
1668 return (buf);
1671 ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
1673 * Peek to see if the magazine layer is enabled before
1674 * we prefill. We're not holding the cpu cache lock,
1675 * so the peek could be wrong, but there's no harm in it.
1677 if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) &&
1678 (KMEM_CPU_CACHE(cp)->cc_magsize != 0)) {
1679 kmem_slab_prefill(cp, sp);
1680 return (buf);
1683 if (new_slab) {
1684 avl_add(&cp->cache_partial_slabs, sp);
1685 return (buf);
1689 * The slab is now more allocated than it was, so the
1690 * order remains unchanged.
1692 ASSERT(!avl_update(&cp->cache_partial_slabs, sp));
1693 return (buf);
1697 * Allocate a raw (unconstructed) buffer from cp's slab layer.
1699 static void *
1700 kmem_slab_alloc(kmem_cache_t *cp, int kmflag)
1702 kmem_slab_t *sp;
1703 void *buf;
1704 boolean_t test_destructor;
1706 mutex_enter(&cp->cache_lock);
1707 test_destructor = (cp->cache_slab_alloc == 0);
1708 sp = avl_first(&cp->cache_partial_slabs);
1709 if (sp == NULL) {
1710 ASSERT(cp->cache_bufslab == 0);
1713 * The freelist is empty. Create a new slab.
1715 mutex_exit(&cp->cache_lock);
1716 if ((sp = kmem_slab_create(cp, kmflag)) == NULL) {
1717 return (NULL);
1719 mutex_enter(&cp->cache_lock);
1720 cp->cache_slab_create++;
1721 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1722 cp->cache_bufmax = cp->cache_buftotal;
1723 cp->cache_bufslab += sp->slab_chunks;
1726 buf = kmem_slab_alloc_impl(cp, sp, B_TRUE);
1727 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1728 (cp->cache_complete_slab_count +
1729 avl_numnodes(&cp->cache_partial_slabs) +
1730 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1731 mutex_exit(&cp->cache_lock);
1733 if (test_destructor && cp->cache_destructor != NULL) {
1735 * On the first kmem_slab_alloc(), assert that it is valid to
1736 * call the destructor on a newly constructed object without any
1737 * client involvement.
1739 if ((cp->cache_constructor == NULL) ||
1740 cp->cache_constructor(buf, cp->cache_private,
1741 kmflag) == 0) {
1742 cp->cache_destructor(buf, cp->cache_private);
1744 copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf,
1745 cp->cache_bufsize);
1746 if (cp->cache_flags & KMF_DEADBEEF) {
1747 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1751 return (buf);
1754 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *);
1757 * Free a raw (unconstructed) buffer to cp's slab layer.
1759 static void
1760 kmem_slab_free(kmem_cache_t *cp, void *buf)
1762 kmem_slab_t *sp;
1763 kmem_bufctl_t *bcp, **prev_bcpp;
1765 ASSERT(buf != NULL);
1767 mutex_enter(&cp->cache_lock);
1768 cp->cache_slab_free++;
1770 if (cp->cache_flags & KMF_HASH) {
1772 * Look up buffer in allocated-address hash table.
1774 prev_bcpp = KMEM_HASH(cp, buf);
1775 while ((bcp = *prev_bcpp) != NULL) {
1776 if (bcp->bc_addr == buf) {
1777 *prev_bcpp = bcp->bc_next;
1778 sp = bcp->bc_slab;
1779 break;
1781 cp->cache_lookup_depth++;
1782 prev_bcpp = &bcp->bc_next;
1784 } else {
1785 bcp = KMEM_BUFCTL(cp, buf);
1786 sp = KMEM_SLAB(cp, buf);
1789 if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) {
1790 mutex_exit(&cp->cache_lock);
1791 kmem_error(KMERR_BADADDR, cp, buf);
1792 return;
1795 if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) {
1797 * If this is the buffer that prevented the consolidator from
1798 * clearing the slab, we can reset the slab flags now that the
1799 * buffer is freed. (It makes sense to do this in
1800 * kmem_cache_free(), where the client gives up ownership of the
1801 * buffer, but on the hot path the test is too expensive.)
1803 kmem_slab_move_yes(cp, sp, buf);
1806 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1807 if (cp->cache_flags & KMF_CONTENTS)
1808 ((kmem_bufctl_audit_t *)bcp)->bc_contents =
1809 kmem_log_enter(kmem_content_log, buf,
1810 cp->cache_contents);
1811 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1814 bcp->bc_next = sp->slab_head;
1815 sp->slab_head = bcp;
1817 cp->cache_bufslab++;
1818 ASSERT(sp->slab_refcnt >= 1);
1820 if (--sp->slab_refcnt == 0) {
1822 * There are no outstanding allocations from this slab,
1823 * so we can reclaim the memory.
1825 if (sp->slab_chunks == 1) {
1826 list_remove(&cp->cache_complete_slabs, sp);
1827 cp->cache_complete_slab_count--;
1828 } else {
1829 avl_remove(&cp->cache_partial_slabs, sp);
1832 cp->cache_buftotal -= sp->slab_chunks;
1833 cp->cache_bufslab -= sp->slab_chunks;
1835 * Defer releasing the slab to the virtual memory subsystem
1836 * while there is a pending move callback, since we guarantee
1837 * that buffers passed to the move callback have only been
1838 * touched by kmem or by the client itself. Since the memory
1839 * patterns baddcafe (uninitialized) and deadbeef (freed) both
1840 * set at least one of the two lowest order bits, the client can
1841 * test those bits in the move callback to determine whether or
1842 * not it knows about the buffer (assuming that the client also
1843 * sets one of those low order bits whenever it frees a buffer).
1845 if (cp->cache_defrag == NULL ||
1846 (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) &&
1847 !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) {
1848 cp->cache_slab_destroy++;
1849 mutex_exit(&cp->cache_lock);
1850 kmem_slab_destroy(cp, sp);
1851 } else {
1852 list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
1854 * Slabs are inserted at both ends of the deadlist to
1855 * distinguish between slabs freed while move callbacks
1856 * are pending (list head) and a slab freed while the
1857 * lock is dropped in kmem_move_buffers() (list tail) so
1858 * that in both cases slab_destroy() is called from the
1859 * right context.
1861 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
1862 list_insert_tail(deadlist, sp);
1863 } else {
1864 list_insert_head(deadlist, sp);
1866 cp->cache_defrag->kmd_deadcount++;
1867 mutex_exit(&cp->cache_lock);
1869 return;
1872 if (bcp->bc_next == NULL) {
1873 /* Transition the slab from completely allocated to partial. */
1874 ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1));
1875 ASSERT(sp->slab_chunks > 1);
1876 list_remove(&cp->cache_complete_slabs, sp);
1877 cp->cache_complete_slab_count--;
1878 avl_add(&cp->cache_partial_slabs, sp);
1879 } else {
1880 (void) avl_update_gt(&cp->cache_partial_slabs, sp);
1883 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1884 (cp->cache_complete_slab_count +
1885 avl_numnodes(&cp->cache_partial_slabs) +
1886 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1887 mutex_exit(&cp->cache_lock);
1891 * Return -1 if kmem_error, 1 if constructor fails, 0 if successful.
1893 static int
1894 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct,
1895 caddr_t caller)
1897 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1898 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1899 uint32_t mtbf;
1901 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1902 kmem_error(KMERR_BADBUFTAG, cp, buf);
1903 return (-1);
1906 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC;
1908 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1909 kmem_error(KMERR_BADBUFCTL, cp, buf);
1910 return (-1);
1913 if (cp->cache_flags & KMF_DEADBEEF) {
1914 if (!construct && (cp->cache_flags & KMF_LITE)) {
1915 if (*(uint64_t *)buf != KMEM_FREE_PATTERN) {
1916 kmem_error(KMERR_MODIFIED, cp, buf);
1917 return (-1);
1919 if (cp->cache_constructor != NULL)
1920 *(uint64_t *)buf = btp->bt_redzone;
1921 else
1922 *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN;
1923 } else {
1924 construct = 1;
1925 if (verify_and_copy_pattern(KMEM_FREE_PATTERN,
1926 KMEM_UNINITIALIZED_PATTERN, buf,
1927 cp->cache_verify)) {
1928 kmem_error(KMERR_MODIFIED, cp, buf);
1929 return (-1);
1933 btp->bt_redzone = KMEM_REDZONE_PATTERN;
1935 if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 &&
1936 gethrtime() % mtbf == 0 &&
1937 (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) {
1938 kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1939 if (!construct && cp->cache_destructor != NULL)
1940 cp->cache_destructor(buf, cp->cache_private);
1941 } else {
1942 mtbf = 0;
1945 if (mtbf || (construct && cp->cache_constructor != NULL &&
1946 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) {
1947 atomic_inc_64(&cp->cache_alloc_fail);
1948 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1949 if (cp->cache_flags & KMF_DEADBEEF)
1950 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1951 kmem_slab_free(cp, buf);
1952 return (1);
1955 if (cp->cache_flags & KMF_AUDIT) {
1956 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1959 if ((cp->cache_flags & KMF_LITE) &&
1960 !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
1961 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
1964 return (0);
1967 static int
1968 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller)
1970 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1971 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1972 kmem_slab_t *sp;
1974 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) {
1975 if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1976 kmem_error(KMERR_DUPFREE, cp, buf);
1977 return (-1);
1979 sp = kmem_findslab(cp, buf);
1980 if (sp == NULL || sp->slab_cache != cp)
1981 kmem_error(KMERR_BADADDR, cp, buf);
1982 else
1983 kmem_error(KMERR_REDZONE, cp, buf);
1984 return (-1);
1987 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1989 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1990 kmem_error(KMERR_BADBUFCTL, cp, buf);
1991 return (-1);
1994 if (btp->bt_redzone != KMEM_REDZONE_PATTERN) {
1995 kmem_error(KMERR_REDZONE, cp, buf);
1996 return (-1);
1999 if (cp->cache_flags & KMF_AUDIT) {
2000 if (cp->cache_flags & KMF_CONTENTS)
2001 bcp->bc_contents = kmem_log_enter(kmem_content_log,
2002 buf, cp->cache_contents);
2003 KMEM_AUDIT(kmem_transaction_log, cp, bcp);
2006 if ((cp->cache_flags & KMF_LITE) &&
2007 !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
2008 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
2011 if (cp->cache_flags & KMF_DEADBEEF) {
2012 if (cp->cache_flags & KMF_LITE)
2013 btp->bt_redzone = *(uint64_t *)buf;
2014 else if (cp->cache_destructor != NULL)
2015 cp->cache_destructor(buf, cp->cache_private);
2017 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
2020 return (0);
2024 * Free each object in magazine mp to cp's slab layer, and free mp itself.
2026 static void
2027 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds)
2029 int round;
2031 ASSERT(!list_link_active(&cp->cache_link) ||
2032 taskq_member(kmem_taskq, curthread));
2034 for (round = 0; round < nrounds; round++) {
2035 void *buf = mp->mag_round[round];
2037 if (cp->cache_flags & KMF_DEADBEEF) {
2038 if (verify_pattern(KMEM_FREE_PATTERN, buf,
2039 cp->cache_verify) != NULL) {
2040 kmem_error(KMERR_MODIFIED, cp, buf);
2041 continue;
2043 if ((cp->cache_flags & KMF_LITE) &&
2044 cp->cache_destructor != NULL) {
2045 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2046 *(uint64_t *)buf = btp->bt_redzone;
2047 cp->cache_destructor(buf, cp->cache_private);
2048 *(uint64_t *)buf = KMEM_FREE_PATTERN;
2050 } else if (cp->cache_destructor != NULL) {
2051 cp->cache_destructor(buf, cp->cache_private);
2054 kmem_slab_free(cp, buf);
2056 ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2057 kmem_cache_free(cp->cache_magtype->mt_cache, mp);
2061 * Allocate a magazine from the depot.
2063 static kmem_magazine_t *
2064 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp)
2066 kmem_magazine_t *mp;
2069 * If we can't get the depot lock without contention,
2070 * update our contention count. We use the depot
2071 * contention rate to determine whether we need to
2072 * increase the magazine size for better scalability.
2074 if (!mutex_tryenter(&cp->cache_depot_lock)) {
2075 mutex_enter(&cp->cache_depot_lock);
2076 cp->cache_depot_contention++;
2079 if ((mp = mlp->ml_list) != NULL) {
2080 ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2081 mlp->ml_list = mp->mag_next;
2082 if (--mlp->ml_total < mlp->ml_min)
2083 mlp->ml_min = mlp->ml_total;
2084 mlp->ml_alloc++;
2087 mutex_exit(&cp->cache_depot_lock);
2089 return (mp);
2093 * Free a magazine to the depot.
2095 static void
2096 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp)
2098 mutex_enter(&cp->cache_depot_lock);
2099 ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2100 mp->mag_next = mlp->ml_list;
2101 mlp->ml_list = mp;
2102 mlp->ml_total++;
2103 mutex_exit(&cp->cache_depot_lock);
2107 * Update the working set statistics for cp's depot.
2109 static void
2110 kmem_depot_ws_update(kmem_cache_t *cp)
2112 mutex_enter(&cp->cache_depot_lock);
2113 cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
2114 cp->cache_full.ml_min = cp->cache_full.ml_total;
2115 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
2116 cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2117 mutex_exit(&cp->cache_depot_lock);
2121 * Set the working set statistics for cp's depot to zero. (Everything is
2122 * eligible for reaping.)
2124 static void
2125 kmem_depot_ws_zero(kmem_cache_t *cp)
2127 mutex_enter(&cp->cache_depot_lock);
2128 cp->cache_full.ml_reaplimit = cp->cache_full.ml_total;
2129 cp->cache_full.ml_min = cp->cache_full.ml_total;
2130 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total;
2131 cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2132 mutex_exit(&cp->cache_depot_lock);
2136 * The number of bytes to reap before we call kpreempt(). The default (1MB)
2137 * causes us to preempt reaping up to hundreds of times per second. Using a
2138 * larger value (1GB) causes this to have virtually no effect.
2140 size_t kmem_reap_preempt_bytes = 1024 * 1024;
2143 * Reap all magazines that have fallen out of the depot's working set.
2145 static void
2146 kmem_depot_ws_reap(kmem_cache_t *cp)
2148 size_t bytes = 0;
2149 long reap;
2150 kmem_magazine_t *mp;
2152 ASSERT(!list_link_active(&cp->cache_link) ||
2153 taskq_member(kmem_taskq, curthread));
2155 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
2156 while (reap-- &&
2157 (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) {
2158 kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
2159 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2160 if (bytes > kmem_reap_preempt_bytes) {
2161 kpreempt(KPREEMPT_SYNC);
2162 bytes = 0;
2166 reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
2167 while (reap-- &&
2168 (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) {
2169 kmem_magazine_destroy(cp, mp, 0);
2170 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2171 if (bytes > kmem_reap_preempt_bytes) {
2172 kpreempt(KPREEMPT_SYNC);
2173 bytes = 0;
2178 static void
2179 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds)
2181 ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
2182 (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
2183 ASSERT(ccp->cc_magsize > 0);
2185 ccp->cc_ploaded = ccp->cc_loaded;
2186 ccp->cc_prounds = ccp->cc_rounds;
2187 ccp->cc_loaded = mp;
2188 ccp->cc_rounds = rounds;
2192 * Intercept kmem alloc/free calls during crash dump in order to avoid
2193 * changing kmem state while memory is being saved to the dump device.
2194 * Otherwise, ::kmem_verify will report "corrupt buffers". Note that
2195 * there are no locks because only one CPU calls kmem during a crash
2196 * dump. To enable this feature, first create the associated vmem
2197 * arena with VMC_DUMPSAFE.
2199 static void *kmem_dump_start; /* start of pre-reserved heap */
2200 static void *kmem_dump_end; /* end of heap area */
2201 static void *kmem_dump_curr; /* current free heap pointer */
2202 static size_t kmem_dump_size; /* size of heap area */
2204 /* append to each buf created in the pre-reserved heap */
2205 typedef struct kmem_dumpctl {
2206 void *kdc_next; /* cache dump free list linkage */
2207 } kmem_dumpctl_t;
2209 #define KMEM_DUMPCTL(cp, buf) \
2210 ((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \
2211 sizeof (void *)))
2213 /* Keep some simple stats. */
2214 #define KMEM_DUMP_LOGS (100)
2216 typedef struct kmem_dump_log {
2217 kmem_cache_t *kdl_cache;
2218 uint_t kdl_allocs; /* # of dump allocations */
2219 uint_t kdl_frees; /* # of dump frees */
2220 uint_t kdl_alloc_fails; /* # of allocation failures */
2221 uint_t kdl_free_nondump; /* # of non-dump frees */
2222 uint_t kdl_unsafe; /* cache was used, but unsafe */
2223 } kmem_dump_log_t;
2225 static kmem_dump_log_t *kmem_dump_log;
2226 static int kmem_dump_log_idx;
2228 #define KDI_LOG(cp, stat) { \
2229 kmem_dump_log_t *kdl; \
2230 if ((kdl = (kmem_dump_log_t *)((cp)->cache_dumplog)) != NULL) { \
2231 kdl->stat++; \
2232 } else if (kmem_dump_log_idx < KMEM_DUMP_LOGS) { \
2233 kdl = &kmem_dump_log[kmem_dump_log_idx++]; \
2234 kdl->stat++; \
2235 kdl->kdl_cache = (cp); \
2236 (cp)->cache_dumplog = kdl; \
2240 /* set non zero for full report */
2241 uint_t kmem_dump_verbose = 0;
2243 /* stats for overize heap */
2244 uint_t kmem_dump_oversize_allocs = 0;
2245 uint_t kmem_dump_oversize_max = 0;
2247 static void
2248 kmem_dumppr(char **pp, char *e, const char *format, ...)
2250 char *p = *pp;
2252 if (p < e) {
2253 int n;
2254 va_list ap;
2256 va_start(ap, format);
2257 n = vsnprintf(p, e - p, format, ap);
2258 va_end(ap);
2259 *pp = p + n;
2264 * Called when dumpadm(1M) configures dump parameters.
2266 void
2267 kmem_dump_init(size_t size)
2269 if (kmem_dump_start != NULL)
2270 kmem_free(kmem_dump_start, kmem_dump_size);
2272 if (kmem_dump_log == NULL)
2273 kmem_dump_log = (kmem_dump_log_t *)kmem_zalloc(KMEM_DUMP_LOGS *
2274 sizeof (kmem_dump_log_t), KM_SLEEP);
2276 kmem_dump_start = kmem_alloc(size, KM_SLEEP);
2278 if (kmem_dump_start != NULL) {
2279 kmem_dump_size = size;
2280 kmem_dump_curr = kmem_dump_start;
2281 kmem_dump_end = (void *)((char *)kmem_dump_start + size);
2282 copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size);
2283 } else {
2284 kmem_dump_size = 0;
2285 kmem_dump_curr = NULL;
2286 kmem_dump_end = NULL;
2291 * Set flag for each kmem_cache_t if is safe to use alternate dump
2292 * memory. Called just before panic crash dump starts. Set the flag
2293 * for the calling CPU.
2295 void
2296 kmem_dump_begin(void)
2298 ASSERT(panicstr != NULL);
2299 if (kmem_dump_start != NULL) {
2300 kmem_cache_t *cp;
2302 for (cp = list_head(&kmem_caches); cp != NULL;
2303 cp = list_next(&kmem_caches, cp)) {
2304 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2306 if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) {
2307 cp->cache_flags |= KMF_DUMPDIVERT;
2308 ccp->cc_flags |= KMF_DUMPDIVERT;
2309 ccp->cc_dump_rounds = ccp->cc_rounds;
2310 ccp->cc_dump_prounds = ccp->cc_prounds;
2311 ccp->cc_rounds = ccp->cc_prounds = -1;
2312 } else {
2313 cp->cache_flags |= KMF_DUMPUNSAFE;
2314 ccp->cc_flags |= KMF_DUMPUNSAFE;
2321 * finished dump intercept
2322 * print any warnings on the console
2323 * return verbose information to dumpsys() in the given buffer
2325 size_t
2326 kmem_dump_finish(char *buf, size_t size)
2328 int kdi_idx;
2329 int kdi_end = kmem_dump_log_idx;
2330 int percent = 0;
2331 int header = 0;
2332 int warn = 0;
2333 size_t used;
2334 kmem_cache_t *cp;
2335 kmem_dump_log_t *kdl;
2336 char *e = buf + size;
2337 char *p = buf;
2339 if (kmem_dump_size == 0 || kmem_dump_verbose == 0)
2340 return (0);
2342 used = (char *)kmem_dump_curr - (char *)kmem_dump_start;
2343 percent = (used * 100) / kmem_dump_size;
2345 kmem_dumppr(&p, e, "%% heap used,%d\n", percent);
2346 kmem_dumppr(&p, e, "used bytes,%ld\n", used);
2347 kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size);
2348 kmem_dumppr(&p, e, "Oversize allocs,%d\n",
2349 kmem_dump_oversize_allocs);
2350 kmem_dumppr(&p, e, "Oversize max size,%ld\n",
2351 kmem_dump_oversize_max);
2353 for (kdi_idx = 0; kdi_idx < kdi_end; kdi_idx++) {
2354 kdl = &kmem_dump_log[kdi_idx];
2355 cp = kdl->kdl_cache;
2356 if (cp == NULL)
2357 break;
2358 if (kdl->kdl_alloc_fails)
2359 ++warn;
2360 if (header == 0) {
2361 kmem_dumppr(&p, e,
2362 "Cache Name,Allocs,Frees,Alloc Fails,"
2363 "Nondump Frees,Unsafe Allocs/Frees\n");
2364 header = 1;
2366 kmem_dumppr(&p, e, "%s,%d,%d,%d,%d,%d\n",
2367 cp->cache_name, kdl->kdl_allocs, kdl->kdl_frees,
2368 kdl->kdl_alloc_fails, kdl->kdl_free_nondump,
2369 kdl->kdl_unsafe);
2372 /* return buffer size used */
2373 if (p < e)
2374 bzero(p, e - p);
2375 return (p - buf);
2379 * Allocate a constructed object from alternate dump memory.
2381 void *
2382 kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag)
2384 void *buf;
2385 void *curr;
2386 char *bufend;
2388 /* return a constructed object */
2389 if ((buf = cp->cache_dumpfreelist) != NULL) {
2390 cp->cache_dumpfreelist = KMEM_DUMPCTL(cp, buf)->kdc_next;
2391 KDI_LOG(cp, kdl_allocs);
2392 return (buf);
2395 /* create a new constructed object */
2396 curr = kmem_dump_curr;
2397 buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align);
2398 bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t);
2400 /* hat layer objects cannot cross a page boundary */
2401 if (cp->cache_align < PAGESIZE) {
2402 char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE);
2403 if (bufend > page) {
2404 bufend += page - (char *)buf;
2405 buf = (void *)page;
2409 /* fall back to normal alloc if reserved area is used up */
2410 if (bufend > (char *)kmem_dump_end) {
2411 kmem_dump_curr = kmem_dump_end;
2412 KDI_LOG(cp, kdl_alloc_fails);
2413 return (NULL);
2417 * Must advance curr pointer before calling a constructor that
2418 * may also allocate memory.
2420 kmem_dump_curr = bufend;
2422 /* run constructor */
2423 if (cp->cache_constructor != NULL &&
2424 cp->cache_constructor(buf, cp->cache_private, kmflag)
2425 != 0) {
2426 #ifdef DEBUG
2427 printf("name='%s' cache=0x%p: kmem cache constructor failed\n",
2428 cp->cache_name, (void *)cp);
2429 #endif
2430 /* reset curr pointer iff no allocs were done */
2431 if (kmem_dump_curr == bufend)
2432 kmem_dump_curr = curr;
2434 /* fall back to normal alloc if the constructor fails */
2435 KDI_LOG(cp, kdl_alloc_fails);
2436 return (NULL);
2439 KDI_LOG(cp, kdl_allocs);
2440 return (buf);
2444 * Free a constructed object in alternate dump memory.
2447 kmem_cache_free_dump(kmem_cache_t *cp, void *buf)
2449 /* save constructed buffers for next time */
2450 if ((char *)buf >= (char *)kmem_dump_start &&
2451 (char *)buf < (char *)kmem_dump_end) {
2452 KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dumpfreelist;
2453 cp->cache_dumpfreelist = buf;
2454 KDI_LOG(cp, kdl_frees);
2455 return (0);
2458 /* count all non-dump buf frees */
2459 KDI_LOG(cp, kdl_free_nondump);
2461 /* just drop buffers that were allocated before dump started */
2462 if (kmem_dump_curr < kmem_dump_end)
2463 return (0);
2465 /* fall back to normal free if reserved area is used up */
2466 return (1);
2470 * Allocate a constructed object from cache cp.
2472 void *
2473 kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
2475 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2476 kmem_magazine_t *fmp;
2477 void *buf;
2479 mutex_enter(&ccp->cc_lock);
2480 for (;;) {
2482 * If there's an object available in the current CPU's
2483 * loaded magazine, just take it and return.
2485 if (ccp->cc_rounds > 0) {
2486 buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
2487 ccp->cc_alloc++;
2488 mutex_exit(&ccp->cc_lock);
2489 if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) {
2490 if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2491 ASSERT(!(ccp->cc_flags &
2492 KMF_DUMPDIVERT));
2493 KDI_LOG(cp, kdl_unsafe);
2495 if ((ccp->cc_flags & KMF_BUFTAG) &&
2496 kmem_cache_alloc_debug(cp, buf, kmflag, 0,
2497 caller()) != 0) {
2498 if (kmflag & KM_NOSLEEP)
2499 return (NULL);
2500 mutex_enter(&ccp->cc_lock);
2501 continue;
2504 goto done;
2508 * The loaded magazine is empty. If the previously loaded
2509 * magazine was full, exchange them and try again.
2511 if (ccp->cc_prounds > 0) {
2512 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2513 continue;
2517 * Return an alternate buffer at dump time to preserve
2518 * the heap.
2520 if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2521 if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2522 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2523 /* log it so that we can warn about it */
2524 KDI_LOG(cp, kdl_unsafe);
2525 } else {
2526 if ((buf = kmem_cache_alloc_dump(cp, kmflag)) !=
2527 NULL) {
2528 mutex_exit(&ccp->cc_lock);
2529 goto done;
2531 break; /* fall back to slab layer */
2536 * If the magazine layer is disabled, break out now.
2538 if (ccp->cc_magsize == 0)
2539 break;
2542 * Try to get a full magazine from the depot.
2544 fmp = kmem_depot_alloc(cp, &cp->cache_full);
2545 if (fmp != NULL) {
2546 if (ccp->cc_ploaded != NULL)
2547 kmem_depot_free(cp, &cp->cache_empty,
2548 ccp->cc_ploaded);
2549 kmem_cpu_reload(ccp, fmp, ccp->cc_magsize);
2550 continue;
2554 * There are no full magazines in the depot,
2555 * so fall through to the slab layer.
2557 break;
2559 mutex_exit(&ccp->cc_lock);
2562 * We couldn't allocate a constructed object from the magazine layer,
2563 * so get a raw buffer from the slab layer and apply its constructor.
2565 buf = kmem_slab_alloc(cp, kmflag);
2567 if (buf == NULL)
2568 return (NULL);
2570 if (cp->cache_flags & KMF_BUFTAG) {
2572 * Make kmem_cache_alloc_debug() apply the constructor for us.
2574 int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller());
2575 if (rc != 0) {
2576 if (kmflag & KM_NOSLEEP)
2577 return (NULL);
2579 * kmem_cache_alloc_debug() detected corruption
2580 * but didn't panic (kmem_panic <= 0). We should not be
2581 * here because the constructor failed (indicated by a
2582 * return code of 1). Try again.
2584 ASSERT(rc == -1);
2585 return (kmem_cache_alloc(cp, kmflag));
2587 goto done;
2590 if (cp->cache_constructor != NULL &&
2591 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) {
2592 atomic_inc_64(&cp->cache_alloc_fail);
2593 kmem_slab_free(cp, buf);
2594 return (NULL);
2597 done:
2598 if (buf != NULL && (kmflag & KM_ZERO))
2599 bzero(buf, cp->cache_bufsize);
2601 return (buf);
2605 * The freed argument tells whether or not kmem_cache_free_debug() has already
2606 * been called so that we can avoid the duplicate free error. For example, a
2607 * buffer on a magazine has already been freed by the client but is still
2608 * constructed.
2610 static void
2611 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed)
2613 if (!freed && (cp->cache_flags & KMF_BUFTAG))
2614 if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2615 return;
2618 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not,
2619 * kmem_cache_free_debug() will have already applied the destructor.
2621 if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF &&
2622 cp->cache_destructor != NULL) {
2623 if (cp->cache_flags & KMF_DEADBEEF) { /* KMF_LITE implied */
2624 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2625 *(uint64_t *)buf = btp->bt_redzone;
2626 cp->cache_destructor(buf, cp->cache_private);
2627 *(uint64_t *)buf = KMEM_FREE_PATTERN;
2628 } else {
2629 cp->cache_destructor(buf, cp->cache_private);
2633 kmem_slab_free(cp, buf);
2637 * Used when there's no room to free a buffer to the per-CPU cache.
2638 * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the
2639 * caller should try freeing to the per-CPU cache again.
2640 * Note that we don't directly install the magazine in the cpu cache,
2641 * since its state may have changed wildly while the lock was dropped.
2643 static int
2644 kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp)
2646 kmem_magazine_t *emp;
2647 kmem_magtype_t *mtp;
2649 ASSERT(MUTEX_HELD(&ccp->cc_lock));
2650 ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize ||
2651 ((uint_t)ccp->cc_rounds == -1)) &&
2652 ((uint_t)ccp->cc_prounds == ccp->cc_magsize ||
2653 ((uint_t)ccp->cc_prounds == -1)));
2655 emp = kmem_depot_alloc(cp, &cp->cache_empty);
2656 if (emp != NULL) {
2657 if (ccp->cc_ploaded != NULL)
2658 kmem_depot_free(cp, &cp->cache_full,
2659 ccp->cc_ploaded);
2660 kmem_cpu_reload(ccp, emp, 0);
2661 return (1);
2664 * There are no empty magazines in the depot,
2665 * so try to allocate a new one. We must drop all locks
2666 * across kmem_cache_alloc() because lower layers may
2667 * attempt to allocate from this cache.
2669 mtp = cp->cache_magtype;
2670 mutex_exit(&ccp->cc_lock);
2671 emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP);
2672 mutex_enter(&ccp->cc_lock);
2674 if (emp != NULL) {
2676 * We successfully allocated an empty magazine.
2677 * However, we had to drop ccp->cc_lock to do it,
2678 * so the cache's magazine size may have changed.
2679 * If so, free the magazine and try again.
2681 if (ccp->cc_magsize != mtp->mt_magsize) {
2682 mutex_exit(&ccp->cc_lock);
2683 kmem_cache_free(mtp->mt_cache, emp);
2684 mutex_enter(&ccp->cc_lock);
2685 return (1);
2689 * We got a magazine of the right size. Add it to
2690 * the depot and try the whole dance again.
2692 kmem_depot_free(cp, &cp->cache_empty, emp);
2693 return (1);
2697 * We couldn't allocate an empty magazine,
2698 * so fall through to the slab layer.
2700 return (0);
2704 * Free a constructed object to cache cp.
2706 void
2707 kmem_cache_free(kmem_cache_t *cp, void *buf)
2709 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2712 * The client must not free either of the buffers passed to the move
2713 * callback function.
2715 ASSERT(cp->cache_defrag == NULL ||
2716 cp->cache_defrag->kmd_thread != curthread ||
2717 (buf != cp->cache_defrag->kmd_from_buf &&
2718 buf != cp->cache_defrag->kmd_to_buf));
2720 if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2721 if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2722 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2723 /* log it so that we can warn about it */
2724 KDI_LOG(cp, kdl_unsafe);
2725 } else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) {
2726 return;
2728 if (ccp->cc_flags & KMF_BUFTAG) {
2729 if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2730 return;
2734 mutex_enter(&ccp->cc_lock);
2736 * Any changes to this logic should be reflected in kmem_slab_prefill()
2738 for (;;) {
2740 * If there's a slot available in the current CPU's
2741 * loaded magazine, just put the object there and return.
2743 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2744 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
2745 ccp->cc_free++;
2746 mutex_exit(&ccp->cc_lock);
2747 return;
2751 * The loaded magazine is full. If the previously loaded
2752 * magazine was empty, exchange them and try again.
2754 if (ccp->cc_prounds == 0) {
2755 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2756 continue;
2760 * If the magazine layer is disabled, break out now.
2762 if (ccp->cc_magsize == 0)
2763 break;
2765 if (!kmem_cpucache_magazine_alloc(ccp, cp)) {
2767 * We couldn't free our constructed object to the
2768 * magazine layer, so apply its destructor and free it
2769 * to the slab layer.
2771 break;
2774 mutex_exit(&ccp->cc_lock);
2775 kmem_slab_free_constructed(cp, buf, B_TRUE);
2778 static void
2779 kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp)
2781 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2782 int cache_flags = cp->cache_flags;
2784 kmem_bufctl_t *next, *head;
2785 size_t nbufs;
2788 * Completely allocate the newly created slab and put the pre-allocated
2789 * buffers in magazines. Any of the buffers that cannot be put in
2790 * magazines must be returned to the slab.
2792 ASSERT(MUTEX_HELD(&cp->cache_lock));
2793 ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL);
2794 ASSERT(cp->cache_constructor == NULL);
2795 ASSERT(sp->slab_cache == cp);
2796 ASSERT(sp->slab_refcnt == 1);
2797 ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt);
2798 ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL);
2800 head = sp->slab_head;
2801 nbufs = (sp->slab_chunks - sp->slab_refcnt);
2802 sp->slab_head = NULL;
2803 sp->slab_refcnt += nbufs;
2804 cp->cache_bufslab -= nbufs;
2805 cp->cache_slab_alloc += nbufs;
2806 list_insert_head(&cp->cache_complete_slabs, sp);
2807 cp->cache_complete_slab_count++;
2808 mutex_exit(&cp->cache_lock);
2809 mutex_enter(&ccp->cc_lock);
2811 while (head != NULL) {
2812 void *buf = KMEM_BUF(cp, head);
2814 * If there's a slot available in the current CPU's
2815 * loaded magazine, just put the object there and
2816 * continue.
2818 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2819 ccp->cc_loaded->mag_round[ccp->cc_rounds++] =
2820 buf;
2821 ccp->cc_free++;
2822 nbufs--;
2823 head = head->bc_next;
2824 continue;
2828 * The loaded magazine is full. If the previously
2829 * loaded magazine was empty, exchange them and try
2830 * again.
2832 if (ccp->cc_prounds == 0) {
2833 kmem_cpu_reload(ccp, ccp->cc_ploaded,
2834 ccp->cc_prounds);
2835 continue;
2839 * If the magazine layer is disabled, break out now.
2842 if (ccp->cc_magsize == 0) {
2843 break;
2846 if (!kmem_cpucache_magazine_alloc(ccp, cp))
2847 break;
2849 mutex_exit(&ccp->cc_lock);
2850 if (nbufs != 0) {
2851 ASSERT(head != NULL);
2854 * If there was a failure, return remaining objects to
2855 * the slab
2857 while (head != NULL) {
2858 ASSERT(nbufs != 0);
2859 next = head->bc_next;
2860 head->bc_next = NULL;
2861 kmem_slab_free(cp, KMEM_BUF(cp, head));
2862 head = next;
2863 nbufs--;
2866 ASSERT(head == NULL);
2867 ASSERT(nbufs == 0);
2868 mutex_enter(&cp->cache_lock);
2871 static void *
2872 do_kmem_alloc(size_t size, int kmflag, void *caller_pc)
2874 size_t index;
2875 kmem_cache_t *cp;
2876 void *buf;
2878 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2879 cp = kmem_alloc_table[index];
2880 /* fall through to kmem_cache_alloc() */
2882 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2883 kmem_big_alloc_table_max) {
2884 cp = kmem_big_alloc_table[index];
2885 /* fall through to kmem_cache_alloc() */
2887 } else {
2888 if (size == 0)
2889 return (NULL);
2891 buf = vmem_alloc(kmem_oversize_arena, size,
2892 kmflag & KM_VMFLAGS);
2893 if (buf == NULL)
2894 kmem_log_event(kmem_failure_log, NULL, NULL,
2895 (void *)size);
2896 else if (KMEM_DUMP(kmem_slab_cache)) {
2897 /* stats for dump intercept */
2898 kmem_dump_oversize_allocs++;
2899 if (size > kmem_dump_oversize_max)
2900 kmem_dump_oversize_max = size;
2902 if (buf != NULL && (kmflag & KM_ZERO))
2903 bzero(buf, size);
2904 return (buf);
2907 buf = kmem_cache_alloc(cp, kmflag);
2908 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) {
2909 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2910 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2911 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2913 if (cp->cache_flags & KMF_LITE) {
2914 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller_pc);
2917 return (buf);
2920 void *
2921 kmem_zalloc(size_t size, int kmflag)
2923 return (do_kmem_alloc(size, kmflag | KM_ZERO, caller()));
2926 void *
2927 kmem_alloc(size_t size, int kmflag)
2929 return (do_kmem_alloc(size, kmflag, caller()));
2932 void
2933 kmem_free(void *buf, size_t size)
2935 size_t index;
2936 kmem_cache_t *cp;
2938 if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) {
2939 cp = kmem_alloc_table[index];
2940 /* fall through to kmem_cache_free() */
2942 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2943 kmem_big_alloc_table_max) {
2944 cp = kmem_big_alloc_table[index];
2945 /* fall through to kmem_cache_free() */
2947 } else {
2948 EQUIV(buf == NULL, size == 0);
2949 if (buf == NULL && size == 0)
2950 return;
2951 vmem_free(kmem_oversize_arena, buf, size);
2952 return;
2955 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2956 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2957 uint32_t *ip = (uint32_t *)btp;
2958 if (ip[1] != KMEM_SIZE_ENCODE(size)) {
2959 if (*(uint64_t *)buf == KMEM_FREE_PATTERN) {
2960 kmem_error(KMERR_DUPFREE, cp, buf);
2961 return;
2963 if (KMEM_SIZE_VALID(ip[1])) {
2964 ip[0] = KMEM_SIZE_ENCODE(size);
2965 kmem_error(KMERR_BADSIZE, cp, buf);
2966 } else {
2967 kmem_error(KMERR_REDZONE, cp, buf);
2969 return;
2971 if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) {
2972 kmem_error(KMERR_REDZONE, cp, buf);
2973 return;
2975 btp->bt_redzone = KMEM_REDZONE_PATTERN;
2976 if (cp->cache_flags & KMF_LITE) {
2977 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
2978 caller());
2981 kmem_cache_free(cp, buf);
2984 void *
2985 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
2987 size_t realsize = size + vmp->vm_quantum;
2988 void *addr;
2991 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
2992 * vm_quantum will cause integer wraparound. Check for this, and
2993 * blow off the firewall page in this case. Note that such a
2994 * giant allocation (the entire kernel address space) can never
2995 * be satisfied, so it will either fail immediately (VM_NOSLEEP)
2996 * or sleep forever (VM_SLEEP). Thus, there is no need for a
2997 * corresponding check in kmem_firewall_va_free().
2999 if (realsize < size)
3000 realsize = size;
3003 * While boot still owns resource management, make sure that this
3004 * redzone virtual address allocation is properly accounted for in
3005 * OBPs "virtual-memory" "available" lists because we're
3006 * effectively claiming them for a red zone. If we don't do this,
3007 * the available lists become too fragmented and too large for the
3008 * current boot/kernel memory list interface.
3010 addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT);
3012 if (addr != NULL && kvseg.s_base == NULL && realsize != size)
3013 (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum);
3015 return (addr);
3018 void
3019 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
3021 ASSERT((kvseg.s_base == NULL ?
3022 va_to_pfn((char *)addr + size) :
3023 hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID);
3025 vmem_free(vmp, addr, size + vmp->vm_quantum);
3029 * Try to allocate at least `size' bytes of memory without sleeping or
3030 * panicking. Return actual allocated size in `asize'. If allocation failed,
3031 * try final allocation with sleep or panic allowed.
3033 void *
3034 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag)
3036 void *p;
3038 *asize = P2ROUNDUP(size, KMEM_ALIGN);
3039 do {
3040 p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC);
3041 if (p != NULL)
3042 return (p);
3043 *asize += KMEM_ALIGN;
3044 } while (*asize <= PAGESIZE);
3046 *asize = P2ROUNDUP(size, KMEM_ALIGN);
3047 return (kmem_alloc(*asize, kmflag));
3051 * Reclaim all unused memory from a cache.
3053 static void
3054 kmem_cache_reap(kmem_cache_t *cp)
3056 ASSERT(taskq_member(kmem_taskq, curthread));
3057 cp->cache_reap++;
3060 * Ask the cache's owner to free some memory if possible.
3061 * The idea is to handle things like the inode cache, which
3062 * typically sits on a bunch of memory that it doesn't truly
3063 * *need*. Reclaim policy is entirely up to the owner; this
3064 * callback is just an advisory plea for help.
3066 if (cp->cache_reclaim != NULL) {
3067 long delta;
3070 * Reclaimed memory should be reapable (not included in the
3071 * depot's working set).
3073 delta = cp->cache_full.ml_total;
3074 cp->cache_reclaim(cp->cache_private);
3075 delta = cp->cache_full.ml_total - delta;
3076 if (delta > 0) {
3077 mutex_enter(&cp->cache_depot_lock);
3078 cp->cache_full.ml_reaplimit += delta;
3079 cp->cache_full.ml_min += delta;
3080 mutex_exit(&cp->cache_depot_lock);
3084 kmem_depot_ws_reap(cp);
3086 if (cp->cache_defrag != NULL && !kmem_move_noreap) {
3087 kmem_cache_defrag(cp);
3091 static void
3092 kmem_reap_timeout(void *flag_arg)
3094 uint32_t *flag = (uint32_t *)flag_arg;
3096 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3097 *flag = 0;
3100 static void
3101 kmem_reap_done(void *flag)
3103 if (!callout_init_done) {
3104 /* can't schedule a timeout at this point */
3105 kmem_reap_timeout(flag);
3106 } else {
3107 (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval);
3111 static void
3112 kmem_reap_start(void *flag)
3114 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3116 if (flag == &kmem_reaping) {
3117 kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3119 * if we have segkp under heap, reap segkp cache.
3121 if (segkp_fromheap)
3122 segkp_cache_free();
3124 else
3125 kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3128 * We use taskq_dispatch() to schedule a timeout to clear
3129 * the flag so that kmem_reap() becomes self-throttling:
3130 * we won't reap again until the current reap completes *and*
3131 * at least kmem_reap_interval ticks have elapsed.
3133 if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP))
3134 kmem_reap_done(flag);
3137 static void
3138 kmem_reap_common(void *flag_arg)
3140 uint32_t *flag = (uint32_t *)flag_arg;
3142 if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL ||
3143 atomic_cas_32(flag, 0, 1) != 0)
3144 return;
3147 * It may not be kosher to do memory allocation when a reap is called
3148 * (for example, if vmem_populate() is in the call chain). So we
3149 * start the reap going with a TQ_NOALLOC dispatch. If the dispatch
3150 * fails, we reset the flag, and the next reap will try again.
3152 if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC))
3153 *flag = 0;
3157 * Reclaim all unused memory from all caches. Called from the VM system
3158 * when memory gets tight.
3160 void
3161 kmem_reap(void)
3163 kmem_reap_common(&kmem_reaping);
3167 * Reclaim all unused memory from identifier arenas, called when a vmem
3168 * arena not back by memory is exhausted. Since reaping memory-backed caches
3169 * cannot help with identifier exhaustion, we avoid both a large amount of
3170 * work and unwanted side-effects from reclaim callbacks.
3172 void
3173 kmem_reap_idspace(void)
3175 kmem_reap_common(&kmem_reaping_idspace);
3179 * Purge all magazines from a cache and set its magazine limit to zero.
3180 * All calls are serialized by the kmem_taskq lock, except for the final
3181 * call from kmem_cache_destroy().
3183 static void
3184 kmem_cache_magazine_purge(kmem_cache_t *cp)
3186 kmem_cpu_cache_t *ccp;
3187 kmem_magazine_t *mp, *pmp;
3188 int rounds, prounds, cpu_seqid;
3190 ASSERT(!list_link_active(&cp->cache_link) ||
3191 taskq_member(kmem_taskq, curthread));
3192 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
3194 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3195 ccp = &cp->cache_cpu[cpu_seqid];
3197 mutex_enter(&ccp->cc_lock);
3198 mp = ccp->cc_loaded;
3199 pmp = ccp->cc_ploaded;
3200 rounds = ccp->cc_rounds;
3201 prounds = ccp->cc_prounds;
3202 ccp->cc_loaded = NULL;
3203 ccp->cc_ploaded = NULL;
3204 ccp->cc_rounds = -1;
3205 ccp->cc_prounds = -1;
3206 ccp->cc_magsize = 0;
3207 mutex_exit(&ccp->cc_lock);
3209 if (mp)
3210 kmem_magazine_destroy(cp, mp, rounds);
3211 if (pmp)
3212 kmem_magazine_destroy(cp, pmp, prounds);
3215 kmem_depot_ws_zero(cp);
3216 kmem_depot_ws_reap(cp);
3220 * Enable per-cpu magazines on a cache.
3222 static void
3223 kmem_cache_magazine_enable(kmem_cache_t *cp)
3225 int cpu_seqid;
3227 if (cp->cache_flags & KMF_NOMAGAZINE)
3228 return;
3230 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3231 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3232 mutex_enter(&ccp->cc_lock);
3233 ccp->cc_magsize = cp->cache_magtype->mt_magsize;
3234 mutex_exit(&ccp->cc_lock);
3240 * Reap (almost) everything right now.
3242 void
3243 kmem_cache_reap_now(kmem_cache_t *cp)
3245 ASSERT(list_link_active(&cp->cache_link));
3247 kmem_depot_ws_zero(cp);
3249 (void) taskq_dispatch(kmem_taskq,
3250 (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP);
3251 taskq_wait(kmem_taskq);
3255 * Recompute a cache's magazine size. The trade-off is that larger magazines
3256 * provide a higher transfer rate with the depot, while smaller magazines
3257 * reduce memory consumption. Magazine resizing is an expensive operation;
3258 * it should not be done frequently.
3260 * Changes to the magazine size are serialized by the kmem_taskq lock.
3262 * Note: at present this only grows the magazine size. It might be useful
3263 * to allow shrinkage too.
3265 static void
3266 kmem_cache_magazine_resize(kmem_cache_t *cp)
3268 kmem_magtype_t *mtp = cp->cache_magtype;
3270 ASSERT(taskq_member(kmem_taskq, curthread));
3272 if (cp->cache_chunksize < mtp->mt_maxbuf) {
3273 kmem_cache_magazine_purge(cp);
3274 mutex_enter(&cp->cache_depot_lock);
3275 cp->cache_magtype = ++mtp;
3276 cp->cache_depot_contention_prev =
3277 cp->cache_depot_contention + INT_MAX;
3278 mutex_exit(&cp->cache_depot_lock);
3279 kmem_cache_magazine_enable(cp);
3284 * Rescale a cache's hash table, so that the table size is roughly the
3285 * cache size. We want the average lookup time to be extremely small.
3287 static void
3288 kmem_hash_rescale(kmem_cache_t *cp)
3290 kmem_bufctl_t **old_table, **new_table, *bcp;
3291 size_t old_size, new_size, h;
3293 ASSERT(taskq_member(kmem_taskq, curthread));
3295 new_size = MAX(KMEM_HASH_INITIAL,
3296 1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
3297 old_size = cp->cache_hash_mask + 1;
3299 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
3300 return;
3302 new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *),
3303 VM_NOSLEEP);
3304 if (new_table == NULL)
3305 return;
3306 bzero(new_table, new_size * sizeof (void *));
3308 mutex_enter(&cp->cache_lock);
3310 old_size = cp->cache_hash_mask + 1;
3311 old_table = cp->cache_hash_table;
3313 cp->cache_hash_mask = new_size - 1;
3314 cp->cache_hash_table = new_table;
3315 cp->cache_rescale++;
3317 for (h = 0; h < old_size; h++) {
3318 bcp = old_table[h];
3319 while (bcp != NULL) {
3320 void *addr = bcp->bc_addr;
3321 kmem_bufctl_t *next_bcp = bcp->bc_next;
3322 kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr);
3323 bcp->bc_next = *hash_bucket;
3324 *hash_bucket = bcp;
3325 bcp = next_bcp;
3329 mutex_exit(&cp->cache_lock);
3331 vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *));
3335 * Perform periodic maintenance on a cache: hash rescaling, depot working-set
3336 * update, magazine resizing, and slab consolidation.
3338 static void
3339 kmem_cache_update(kmem_cache_t *cp)
3341 int need_hash_rescale = 0;
3342 int need_magazine_resize = 0;
3344 ASSERT(MUTEX_HELD(&kmem_cache_lock));
3347 * If the cache has become much larger or smaller than its hash table,
3348 * fire off a request to rescale the hash table.
3350 mutex_enter(&cp->cache_lock);
3352 if ((cp->cache_flags & KMF_HASH) &&
3353 (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
3354 (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
3355 cp->cache_hash_mask > KMEM_HASH_INITIAL)))
3356 need_hash_rescale = 1;
3358 mutex_exit(&cp->cache_lock);
3361 * Update the depot working set statistics.
3363 kmem_depot_ws_update(cp);
3366 * If there's a lot of contention in the depot,
3367 * increase the magazine size.
3369 mutex_enter(&cp->cache_depot_lock);
3371 if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
3372 (int)(cp->cache_depot_contention -
3373 cp->cache_depot_contention_prev) > kmem_depot_contention)
3374 need_magazine_resize = 1;
3376 cp->cache_depot_contention_prev = cp->cache_depot_contention;
3378 mutex_exit(&cp->cache_depot_lock);
3380 if (need_hash_rescale)
3381 (void) taskq_dispatch(kmem_taskq,
3382 (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP);
3384 if (need_magazine_resize)
3385 (void) taskq_dispatch(kmem_taskq,
3386 (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP);
3388 if (cp->cache_defrag != NULL)
3389 (void) taskq_dispatch(kmem_taskq,
3390 (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP);
3393 static void kmem_update(void *);
3395 static void
3396 kmem_update_timeout(void *dummy)
3398 (void) timeout(kmem_update, dummy, kmem_reap_interval);
3401 static void
3402 kmem_update(void *dummy)
3404 kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP);
3407 * We use taskq_dispatch() to reschedule the timeout so that
3408 * kmem_update() becomes self-throttling: it won't schedule
3409 * new tasks until all previous tasks have completed.
3411 if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP))
3412 kmem_update_timeout(NULL);
3415 static int
3416 kmem_cache_kstat_update(kstat_t *ksp, int rw)
3418 struct kmem_cache_kstat *kmcp = &kmem_cache_kstat;
3419 kmem_cache_t *cp = ksp->ks_private;
3420 uint64_t cpu_buf_avail;
3421 uint64_t buf_avail = 0;
3422 int cpu_seqid;
3423 long reap;
3425 ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock));
3427 if (rw == KSTAT_WRITE)
3428 return (EACCES);
3430 mutex_enter(&cp->cache_lock);
3432 kmcp->kmc_alloc_fail.value.ui64 = cp->cache_alloc_fail;
3433 kmcp->kmc_alloc.value.ui64 = cp->cache_slab_alloc;
3434 kmcp->kmc_free.value.ui64 = cp->cache_slab_free;
3435 kmcp->kmc_slab_alloc.value.ui64 = cp->cache_slab_alloc;
3436 kmcp->kmc_slab_free.value.ui64 = cp->cache_slab_free;
3438 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3439 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3441 mutex_enter(&ccp->cc_lock);
3443 cpu_buf_avail = 0;
3444 if (ccp->cc_rounds > 0)
3445 cpu_buf_avail += ccp->cc_rounds;
3446 if (ccp->cc_prounds > 0)
3447 cpu_buf_avail += ccp->cc_prounds;
3449 kmcp->kmc_alloc.value.ui64 += ccp->cc_alloc;
3450 kmcp->kmc_free.value.ui64 += ccp->cc_free;
3451 buf_avail += cpu_buf_avail;
3453 mutex_exit(&ccp->cc_lock);
3456 mutex_enter(&cp->cache_depot_lock);
3458 kmcp->kmc_depot_alloc.value.ui64 = cp->cache_full.ml_alloc;
3459 kmcp->kmc_depot_free.value.ui64 = cp->cache_empty.ml_alloc;
3460 kmcp->kmc_depot_contention.value.ui64 = cp->cache_depot_contention;
3461 kmcp->kmc_full_magazines.value.ui64 = cp->cache_full.ml_total;
3462 kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total;
3463 kmcp->kmc_magazine_size.value.ui64 =
3464 (cp->cache_flags & KMF_NOMAGAZINE) ?
3465 0 : cp->cache_magtype->mt_magsize;
3467 kmcp->kmc_alloc.value.ui64 += cp->cache_full.ml_alloc;
3468 kmcp->kmc_free.value.ui64 += cp->cache_empty.ml_alloc;
3469 buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize;
3471 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
3472 reap = MIN(reap, cp->cache_full.ml_total);
3474 mutex_exit(&cp->cache_depot_lock);
3476 kmcp->kmc_buf_size.value.ui64 = cp->cache_bufsize;
3477 kmcp->kmc_align.value.ui64 = cp->cache_align;
3478 kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize;
3479 kmcp->kmc_slab_size.value.ui64 = cp->cache_slabsize;
3480 kmcp->kmc_buf_constructed.value.ui64 = buf_avail;
3481 buf_avail += cp->cache_bufslab;
3482 kmcp->kmc_buf_avail.value.ui64 = buf_avail;
3483 kmcp->kmc_buf_inuse.value.ui64 = cp->cache_buftotal - buf_avail;
3484 kmcp->kmc_buf_total.value.ui64 = cp->cache_buftotal;
3485 kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax;
3486 kmcp->kmc_slab_create.value.ui64 = cp->cache_slab_create;
3487 kmcp->kmc_slab_destroy.value.ui64 = cp->cache_slab_destroy;
3488 kmcp->kmc_hash_size.value.ui64 = (cp->cache_flags & KMF_HASH) ?
3489 cp->cache_hash_mask + 1 : 0;
3490 kmcp->kmc_hash_lookup_depth.value.ui64 = cp->cache_lookup_depth;
3491 kmcp->kmc_hash_rescale.value.ui64 = cp->cache_rescale;
3492 kmcp->kmc_vmem_source.value.ui64 = cp->cache_arena->vm_id;
3493 kmcp->kmc_reap.value.ui64 = cp->cache_reap;
3495 if (cp->cache_defrag == NULL) {
3496 kmcp->kmc_move_callbacks.value.ui64 = 0;
3497 kmcp->kmc_move_yes.value.ui64 = 0;
3498 kmcp->kmc_move_no.value.ui64 = 0;
3499 kmcp->kmc_move_later.value.ui64 = 0;
3500 kmcp->kmc_move_dont_need.value.ui64 = 0;
3501 kmcp->kmc_move_dont_know.value.ui64 = 0;
3502 kmcp->kmc_move_hunt_found.value.ui64 = 0;
3503 kmcp->kmc_move_slabs_freed.value.ui64 = 0;
3504 kmcp->kmc_defrag.value.ui64 = 0;
3505 kmcp->kmc_scan.value.ui64 = 0;
3506 kmcp->kmc_move_reclaimable.value.ui64 = 0;
3507 } else {
3508 int64_t reclaimable;
3510 kmem_defrag_t *kd = cp->cache_defrag;
3511 kmcp->kmc_move_callbacks.value.ui64 = kd->kmd_callbacks;
3512 kmcp->kmc_move_yes.value.ui64 = kd->kmd_yes;
3513 kmcp->kmc_move_no.value.ui64 = kd->kmd_no;
3514 kmcp->kmc_move_later.value.ui64 = kd->kmd_later;
3515 kmcp->kmc_move_dont_need.value.ui64 = kd->kmd_dont_need;
3516 kmcp->kmc_move_dont_know.value.ui64 = kd->kmd_dont_know;
3517 kmcp->kmc_move_hunt_found.value.ui64 = 0;
3518 kmcp->kmc_move_slabs_freed.value.ui64 = kd->kmd_slabs_freed;
3519 kmcp->kmc_defrag.value.ui64 = kd->kmd_defrags;
3520 kmcp->kmc_scan.value.ui64 = kd->kmd_scans;
3522 reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1);
3523 reclaimable = MAX(reclaimable, 0);
3524 reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
3525 kmcp->kmc_move_reclaimable.value.ui64 = reclaimable;
3528 mutex_exit(&cp->cache_lock);
3529 return (0);
3533 * Return a named statistic about a particular cache.
3534 * This shouldn't be called very often, so it's currently designed for
3535 * simplicity (leverages existing kstat support) rather than efficiency.
3537 uint64_t
3538 kmem_cache_stat(kmem_cache_t *cp, char *name)
3540 int i;
3541 kstat_t *ksp = cp->cache_kstat;
3542 kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat;
3543 uint64_t value = 0;
3545 if (ksp != NULL) {
3546 mutex_enter(&kmem_cache_kstat_lock);
3547 (void) kmem_cache_kstat_update(ksp, KSTAT_READ);
3548 for (i = 0; i < ksp->ks_ndata; i++) {
3549 if (strcmp(knp[i].name, name) == 0) {
3550 value = knp[i].value.ui64;
3551 break;
3554 mutex_exit(&kmem_cache_kstat_lock);
3556 return (value);
3560 * Return an estimate of currently available kernel heap memory.
3561 * On 32-bit systems, physical memory may exceed virtual memory,
3562 * we just truncate the result at 1GB.
3564 size_t
3565 kmem_avail(void)
3567 spgcnt_t rmem = availrmem - tune.t_minarmem;
3568 spgcnt_t fmem = freemem - minfree;
3570 return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0),
3571 1 << (30 - PAGESHIFT))));
3575 * Return the maximum amount of memory that is (in theory) allocatable
3576 * from the heap. This may be used as an estimate only since there
3577 * is no guarentee this space will still be available when an allocation
3578 * request is made, nor that the space may be allocated in one big request
3579 * due to kernel heap fragmentation.
3581 size_t
3582 kmem_maxavail(void)
3584 spgcnt_t pmem = availrmem - tune.t_minarmem;
3585 spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE));
3587 return ((size_t)ptob(MAX(MIN(pmem, vmem), 0)));
3591 * Indicate whether memory-intensive kmem debugging is enabled.
3594 kmem_debugging(void)
3596 return (kmem_flags & (KMF_AUDIT | KMF_REDZONE));
3599 /* binning function, sorts finely at the two extremes */
3600 #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift) \
3601 ((((sp)->slab_refcnt <= (binshift)) || \
3602 (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift))) \
3603 ? -(sp)->slab_refcnt \
3604 : -((binshift) + ((sp)->slab_refcnt >> (binshift))))
3607 * Minimizing the number of partial slabs on the freelist minimizes
3608 * fragmentation (the ratio of unused buffers held by the slab layer). There are
3609 * two ways to get a slab off of the freelist: 1) free all the buffers on the
3610 * slab, and 2) allocate all the buffers on the slab. It follows that we want
3611 * the most-used slabs at the front of the list where they have the best chance
3612 * of being completely allocated, and the least-used slabs at a safe distance
3613 * from the front to improve the odds that the few remaining buffers will all be
3614 * freed before another allocation can tie up the slab. For that reason a slab
3615 * with a higher slab_refcnt sorts less than than a slab with a lower
3616 * slab_refcnt.
3618 * However, if a slab has at least one buffer that is deemed unfreeable, we
3619 * would rather have that slab at the front of the list regardless of
3620 * slab_refcnt, since even one unfreeable buffer makes the entire slab
3621 * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move()
3622 * callback, the slab is marked unfreeable for as long as it remains on the
3623 * freelist.
3625 static int
3626 kmem_partial_slab_cmp(const void *p0, const void *p1)
3628 const kmem_cache_t *cp;
3629 const kmem_slab_t *s0 = p0;
3630 const kmem_slab_t *s1 = p1;
3631 int w0, w1;
3632 size_t binshift;
3634 ASSERT(KMEM_SLAB_IS_PARTIAL(s0));
3635 ASSERT(KMEM_SLAB_IS_PARTIAL(s1));
3636 ASSERT(s0->slab_cache == s1->slab_cache);
3637 cp = s1->slab_cache;
3638 ASSERT(MUTEX_HELD(&cp->cache_lock));
3639 binshift = cp->cache_partial_binshift;
3641 /* weight of first slab */
3642 w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift);
3643 if (s0->slab_flags & KMEM_SLAB_NOMOVE) {
3644 w0 -= cp->cache_maxchunks;
3647 /* weight of second slab */
3648 w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift);
3649 if (s1->slab_flags & KMEM_SLAB_NOMOVE) {
3650 w1 -= cp->cache_maxchunks;
3653 if (w0 < w1)
3654 return (-1);
3655 if (w0 > w1)
3656 return (1);
3658 /* compare pointer values */
3659 if ((uintptr_t)s0 < (uintptr_t)s1)
3660 return (-1);
3661 if ((uintptr_t)s0 > (uintptr_t)s1)
3662 return (1);
3664 return (0);
3668 * It must be valid to call the destructor (if any) on a newly created object.
3669 * That is, the constructor (if any) must leave the object in a valid state for
3670 * the destructor.
3672 kmem_cache_t *
3673 kmem_cache_create(
3674 char *name, /* descriptive name for this cache */
3675 size_t bufsize, /* size of the objects it manages */
3676 size_t align, /* required object alignment */
3677 int (*constructor)(void *, void *, int), /* object constructor */
3678 void (*destructor)(void *, void *), /* object destructor */
3679 void (*reclaim)(void *), /* memory reclaim callback */
3680 void *private, /* pass-thru arg for constr/destr/reclaim */
3681 vmem_t *vmp, /* vmem source for slab allocation */
3682 int cflags) /* cache creation flags */
3684 int cpu_seqid;
3685 size_t chunksize;
3686 kmem_cache_t *cp;
3687 kmem_magtype_t *mtp;
3688 size_t csize = KMEM_CACHE_SIZE(max_ncpus);
3690 #ifdef DEBUG
3692 * Cache names should conform to the rules for valid C identifiers
3694 if (!strident_valid(name)) {
3695 cmn_err(CE_CONT,
3696 "kmem_cache_create: '%s' is an invalid cache name\n"
3697 "cache names must conform to the rules for "
3698 "C identifiers\n", name);
3700 #endif /* DEBUG */
3702 if (vmp == NULL)
3703 vmp = kmem_default_arena;
3706 * If this kmem cache has an identifier vmem arena as its source, mark
3707 * it such to allow kmem_reap_idspace().
3709 ASSERT(!(cflags & KMC_IDENTIFIER)); /* consumer should not set this */
3710 if (vmp->vm_cflags & VMC_IDENTIFIER)
3711 cflags |= KMC_IDENTIFIER;
3714 * Get a kmem_cache structure. We arrange that cp->cache_cpu[]
3715 * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent
3716 * false sharing of per-CPU data.
3718 cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE,
3719 P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP);
3720 bzero(cp, csize);
3721 list_link_init(&cp->cache_link);
3723 if (align == 0)
3724 align = KMEM_ALIGN;
3727 * If we're not at least KMEM_ALIGN aligned, we can't use free
3728 * memory to hold bufctl information (because we can't safely
3729 * perform word loads and stores on it).
3731 if (align < KMEM_ALIGN)
3732 cflags |= KMC_NOTOUCH;
3734 if (!ISP2(align) || align > vmp->vm_quantum)
3735 panic("kmem_cache_create: bad alignment %lu", align);
3737 mutex_enter(&kmem_flags_lock);
3738 if (kmem_flags & KMF_RANDOMIZE)
3739 kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) |
3740 KMF_RANDOMIZE;
3741 cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG;
3742 mutex_exit(&kmem_flags_lock);
3745 * Make sure all the various flags are reasonable.
3747 ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH));
3749 if (cp->cache_flags & KMF_LITE) {
3750 if (bufsize >= kmem_lite_minsize &&
3751 align <= kmem_lite_maxalign &&
3752 P2PHASE(bufsize, kmem_lite_maxalign) != 0) {
3753 cp->cache_flags |= KMF_BUFTAG;
3754 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3755 } else {
3756 cp->cache_flags &= ~KMF_DEBUG;
3760 if (cp->cache_flags & KMF_DEADBEEF)
3761 cp->cache_flags |= KMF_REDZONE;
3763 if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT))
3764 cp->cache_flags |= KMF_NOMAGAZINE;
3766 if (cflags & KMC_NODEBUG)
3767 cp->cache_flags &= ~KMF_DEBUG;
3769 if (cflags & KMC_NOTOUCH)
3770 cp->cache_flags &= ~KMF_TOUCH;
3772 if (cflags & KMC_PREFILL)
3773 cp->cache_flags |= KMF_PREFILL;
3775 if (cflags & KMC_NOHASH)
3776 cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3778 if (cflags & KMC_NOMAGAZINE)
3779 cp->cache_flags |= KMF_NOMAGAZINE;
3781 if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH))
3782 cp->cache_flags |= KMF_REDZONE;
3784 if (!(cp->cache_flags & KMF_AUDIT))
3785 cp->cache_flags &= ~KMF_CONTENTS;
3787 if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall &&
3788 !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH))
3789 cp->cache_flags |= KMF_FIREWALL;
3791 if (vmp != kmem_default_arena || kmem_firewall_arena == NULL)
3792 cp->cache_flags &= ~KMF_FIREWALL;
3794 if (cp->cache_flags & KMF_FIREWALL) {
3795 cp->cache_flags &= ~KMF_BUFTAG;
3796 cp->cache_flags |= KMF_NOMAGAZINE;
3797 ASSERT(vmp == kmem_default_arena);
3798 vmp = kmem_firewall_arena;
3802 * Set cache properties.
3804 (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN);
3805 strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1);
3806 cp->cache_bufsize = bufsize;
3807 cp->cache_align = align;
3808 cp->cache_constructor = constructor;
3809 cp->cache_destructor = destructor;
3810 cp->cache_reclaim = reclaim;
3811 cp->cache_private = private;
3812 cp->cache_arena = vmp;
3813 cp->cache_cflags = cflags;
3816 * Determine the chunk size.
3818 chunksize = bufsize;
3820 if (align >= KMEM_ALIGN) {
3821 chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN);
3822 cp->cache_bufctl = chunksize - KMEM_ALIGN;
3825 if (cp->cache_flags & KMF_BUFTAG) {
3826 cp->cache_bufctl = chunksize;
3827 cp->cache_buftag = chunksize;
3828 if (cp->cache_flags & KMF_LITE)
3829 chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count);
3830 else
3831 chunksize += sizeof (kmem_buftag_t);
3834 if (cp->cache_flags & KMF_DEADBEEF) {
3835 cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify);
3836 if (cp->cache_flags & KMF_LITE)
3837 cp->cache_verify = sizeof (uint64_t);
3840 cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave);
3842 cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
3845 * Now that we know the chunk size, determine the optimal slab size.
3847 if (vmp == kmem_firewall_arena) {
3848 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
3849 cp->cache_mincolor = cp->cache_slabsize - chunksize;
3850 cp->cache_maxcolor = cp->cache_mincolor;
3851 cp->cache_flags |= KMF_HASH;
3852 ASSERT(!(cp->cache_flags & KMF_BUFTAG));
3853 } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) &&
3854 !(cp->cache_flags & KMF_AUDIT) &&
3855 chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) {
3856 cp->cache_slabsize = vmp->vm_quantum;
3857 cp->cache_mincolor = 0;
3858 cp->cache_maxcolor =
3859 (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize;
3860 ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize);
3861 ASSERT(!(cp->cache_flags & KMF_AUDIT));
3862 } else {
3863 size_t chunks, bestfit, waste, slabsize;
3864 size_t minwaste = LONG_MAX;
3866 for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) {
3867 slabsize = P2ROUNDUP(chunksize * chunks,
3868 vmp->vm_quantum);
3869 chunks = slabsize / chunksize;
3870 waste = (slabsize % chunksize) / chunks;
3871 if (waste < minwaste) {
3872 minwaste = waste;
3873 bestfit = slabsize;
3876 if (cflags & KMC_QCACHE)
3877 bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max);
3878 cp->cache_slabsize = bestfit;
3879 cp->cache_mincolor = 0;
3880 cp->cache_maxcolor = bestfit % chunksize;
3881 cp->cache_flags |= KMF_HASH;
3884 cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize);
3885 cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1;
3888 * Disallowing prefill when either the DEBUG or HASH flag is set or when
3889 * there is a constructor avoids some tricky issues with debug setup
3890 * that may be revisited later. We cannot allow prefill in a
3891 * metadata cache because of potential recursion.
3893 if (vmp == kmem_msb_arena ||
3894 cp->cache_flags & (KMF_HASH | KMF_BUFTAG) ||
3895 cp->cache_constructor != NULL)
3896 cp->cache_flags &= ~KMF_PREFILL;
3898 if (cp->cache_flags & KMF_HASH) {
3899 ASSERT(!(cflags & KMC_NOHASH));
3900 cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ?
3901 kmem_bufctl_audit_cache : kmem_bufctl_cache;
3904 if (cp->cache_maxcolor >= vmp->vm_quantum)
3905 cp->cache_maxcolor = vmp->vm_quantum - 1;
3907 cp->cache_color = cp->cache_mincolor;
3910 * Initialize the rest of the slab layer.
3912 mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL);
3914 avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp,
3915 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3916 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
3917 /* reuse partial slab AVL linkage for complete slab list linkage */
3918 list_create(&cp->cache_complete_slabs,
3919 sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3921 if (cp->cache_flags & KMF_HASH) {
3922 cp->cache_hash_table = vmem_alloc(kmem_hash_arena,
3923 KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP);
3924 bzero(cp->cache_hash_table,
3925 KMEM_HASH_INITIAL * sizeof (void *));
3926 cp->cache_hash_mask = KMEM_HASH_INITIAL - 1;
3927 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
3931 * Initialize the depot.
3933 mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL);
3935 for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
3936 continue;
3938 cp->cache_magtype = mtp;
3941 * Initialize the CPU layer.
3943 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3944 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3945 mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL);
3946 ccp->cc_flags = cp->cache_flags;
3947 ccp->cc_rounds = -1;
3948 ccp->cc_prounds = -1;
3952 * Create the cache's kstats.
3954 if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name,
3955 "kmem_cache", KSTAT_TYPE_NAMED,
3956 sizeof (kmem_cache_kstat) / sizeof (kstat_named_t),
3957 KSTAT_FLAG_VIRTUAL)) != NULL) {
3958 cp->cache_kstat->ks_data = &kmem_cache_kstat;
3959 cp->cache_kstat->ks_update = kmem_cache_kstat_update;
3960 cp->cache_kstat->ks_private = cp;
3961 cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock;
3962 kstat_install(cp->cache_kstat);
3966 * Add the cache to the global list. This makes it visible
3967 * to kmem_update(), so the cache must be ready for business.
3969 mutex_enter(&kmem_cache_lock);
3970 list_insert_tail(&kmem_caches, cp);
3971 mutex_exit(&kmem_cache_lock);
3973 if (kmem_ready)
3974 kmem_cache_magazine_enable(cp);
3976 return (cp);
3979 static int
3980 kmem_move_cmp(const void *buf, const void *p)
3982 const kmem_move_t *kmm = p;
3983 uintptr_t v1 = (uintptr_t)buf;
3984 uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf;
3985 return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0));
3988 static void
3989 kmem_reset_reclaim_threshold(kmem_defrag_t *kmd)
3991 kmd->kmd_reclaim_numer = 1;
3995 * Initially, when choosing candidate slabs for buffers to move, we want to be
3996 * very selective and take only slabs that are less than
3997 * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate
3998 * slabs, then we raise the allocation ceiling incrementally. The reclaim
3999 * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no
4000 * longer fragmented.
4002 static void
4003 kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction)
4005 if (direction > 0) {
4006 /* make it easier to find a candidate slab */
4007 if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) {
4008 kmd->kmd_reclaim_numer++;
4010 } else {
4011 /* be more selective */
4012 if (kmd->kmd_reclaim_numer > 1) {
4013 kmd->kmd_reclaim_numer--;
4018 void
4019 kmem_cache_set_move(kmem_cache_t *cp,
4020 kmem_cbrc_t (*move)(void *, void *, size_t, void *))
4022 kmem_defrag_t *defrag;
4024 ASSERT(move != NULL);
4026 * The consolidator does not support NOTOUCH caches because kmem cannot
4027 * initialize their slabs with the 0xbaddcafe memory pattern, which sets
4028 * a low order bit usable by clients to distinguish uninitialized memory
4029 * from known objects (see kmem_slab_create).
4031 ASSERT(!(cp->cache_cflags & KMC_NOTOUCH));
4032 ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER));
4035 * We should not be holding anyone's cache lock when calling
4036 * kmem_cache_alloc(), so allocate in all cases before acquiring the
4037 * lock.
4039 defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP);
4041 mutex_enter(&cp->cache_lock);
4043 if (KMEM_IS_MOVABLE(cp)) {
4044 if (cp->cache_move == NULL) {
4045 ASSERT(cp->cache_slab_alloc == 0);
4047 cp->cache_defrag = defrag;
4048 defrag = NULL; /* nothing to free */
4049 bzero(cp->cache_defrag, sizeof (kmem_defrag_t));
4050 avl_create(&cp->cache_defrag->kmd_moves_pending,
4051 kmem_move_cmp, sizeof (kmem_move_t),
4052 offsetof(kmem_move_t, kmm_entry));
4053 ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
4054 /* reuse the slab's AVL linkage for deadlist linkage */
4055 list_create(&cp->cache_defrag->kmd_deadlist,
4056 sizeof (kmem_slab_t),
4057 offsetof(kmem_slab_t, slab_link));
4058 kmem_reset_reclaim_threshold(cp->cache_defrag);
4060 cp->cache_move = move;
4063 mutex_exit(&cp->cache_lock);
4065 if (defrag != NULL) {
4066 kmem_cache_free(kmem_defrag_cache, defrag); /* unused */
4070 void
4071 kmem_cache_destroy(kmem_cache_t *cp)
4073 int cpu_seqid;
4076 * Remove the cache from the global cache list so that no one else
4077 * can schedule tasks on its behalf, wait for any pending tasks to
4078 * complete, purge the cache, and then destroy it.
4080 mutex_enter(&kmem_cache_lock);
4081 list_remove(&kmem_caches, cp);
4082 mutex_exit(&kmem_cache_lock);
4084 if (kmem_taskq != NULL)
4085 taskq_wait(kmem_taskq);
4087 if (kmem_move_taskq != NULL && cp->cache_defrag != NULL)
4088 taskq_wait(kmem_move_taskq);
4090 kmem_cache_magazine_purge(cp);
4092 mutex_enter(&cp->cache_lock);
4093 if (cp->cache_buftotal != 0)
4094 cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty",
4095 cp->cache_name, (void *)cp);
4096 if (cp->cache_defrag != NULL) {
4097 avl_destroy(&cp->cache_defrag->kmd_moves_pending);
4098 list_destroy(&cp->cache_defrag->kmd_deadlist);
4099 kmem_cache_free(kmem_defrag_cache, cp->cache_defrag);
4100 cp->cache_defrag = NULL;
4103 * The cache is now dead. There should be no further activity. We
4104 * enforce this by setting land mines in the constructor, destructor,
4105 * reclaim, and move routines that induce a kernel text fault if
4106 * invoked.
4108 cp->cache_constructor = (int (*)(void *, void *, int))1;
4109 cp->cache_destructor = (void (*)(void *, void *))2;
4110 cp->cache_reclaim = (void (*)(void *))3;
4111 cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4;
4112 mutex_exit(&cp->cache_lock);
4114 kstat_delete(cp->cache_kstat);
4116 if (cp->cache_hash_table != NULL)
4117 vmem_free(kmem_hash_arena, cp->cache_hash_table,
4118 (cp->cache_hash_mask + 1) * sizeof (void *));
4120 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++)
4121 mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
4123 mutex_destroy(&cp->cache_depot_lock);
4124 mutex_destroy(&cp->cache_lock);
4126 vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus));
4129 /*ARGSUSED*/
4130 static int
4131 kmem_cpu_setup(cpu_setup_t what, int id, void *arg)
4133 ASSERT(MUTEX_HELD(&cpu_lock));
4134 if (what == CPU_UNCONFIG) {
4135 kmem_cache_applyall(kmem_cache_magazine_purge,
4136 kmem_taskq, TQ_SLEEP);
4137 kmem_cache_applyall(kmem_cache_magazine_enable,
4138 kmem_taskq, TQ_SLEEP);
4140 return (0);
4143 static void
4144 kmem_alloc_caches_create(const int *array, size_t count,
4145 kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift)
4147 char name[KMEM_CACHE_NAMELEN + 1];
4148 size_t table_unit = (1 << shift); /* range of one alloc_table entry */
4149 size_t size = table_unit;
4150 int i;
4152 for (i = 0; i < count; i++) {
4153 size_t cache_size = array[i];
4154 size_t align = KMEM_ALIGN;
4155 kmem_cache_t *cp;
4157 /* if the table has an entry for maxbuf, we're done */
4158 if (size > maxbuf)
4159 break;
4161 /* cache size must be a multiple of the table unit */
4162 ASSERT(P2PHASE(cache_size, table_unit) == 0);
4165 * If they allocate a multiple of the coherency granularity,
4166 * they get a coherency-granularity-aligned address.
4168 if (IS_P2ALIGNED(cache_size, 64))
4169 align = 64;
4170 if (IS_P2ALIGNED(cache_size, PAGESIZE))
4171 align = PAGESIZE;
4172 (void) snprintf(name, sizeof (name),
4173 "kmem_alloc_%lu", cache_size);
4174 cp = kmem_cache_create(name, cache_size, align,
4175 NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC);
4177 while (size <= cache_size) {
4178 alloc_table[(size - 1) >> shift] = cp;
4179 size += table_unit;
4183 ASSERT(size > maxbuf); /* i.e. maxbuf <= max(cache_size) */
4186 static void
4187 kmem_cache_init(int pass, int use_large_pages)
4189 int i;
4190 size_t maxbuf;
4191 kmem_magtype_t *mtp;
4193 for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) {
4194 char name[KMEM_CACHE_NAMELEN + 1];
4196 mtp = &kmem_magtype[i];
4197 (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize);
4198 mtp->mt_cache = kmem_cache_create(name,
4199 (mtp->mt_magsize + 1) * sizeof (void *),
4200 mtp->mt_align, NULL, NULL, NULL, NULL,
4201 kmem_msb_arena, KMC_NOHASH);
4204 kmem_slab_cache = kmem_cache_create("kmem_slab_cache",
4205 sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL,
4206 kmem_msb_arena, KMC_NOHASH);
4208 kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache",
4209 sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL,
4210 kmem_msb_arena, KMC_NOHASH);
4212 kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache",
4213 sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL,
4214 kmem_msb_arena, KMC_NOHASH);
4216 if (pass == 2) {
4217 kmem_va_arena = vmem_create("kmem_va",
4218 NULL, 0, PAGESIZE,
4219 vmem_alloc, vmem_free, heap_arena,
4220 8 * PAGESIZE, VM_SLEEP);
4222 if (use_large_pages) {
4223 kmem_default_arena = vmem_xcreate("kmem_default",
4224 NULL, 0, PAGESIZE,
4225 segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena,
4226 0, VMC_DUMPSAFE | VM_SLEEP);
4227 } else {
4228 kmem_default_arena = vmem_create("kmem_default",
4229 NULL, 0, PAGESIZE,
4230 segkmem_alloc, segkmem_free, kmem_va_arena,
4231 0, VMC_DUMPSAFE | VM_SLEEP);
4234 /* Figure out what our maximum cache size is */
4235 maxbuf = kmem_max_cached;
4236 if (maxbuf <= KMEM_MAXBUF) {
4237 maxbuf = 0;
4238 kmem_max_cached = KMEM_MAXBUF;
4239 } else {
4240 size_t size = 0;
4241 size_t max =
4242 sizeof (kmem_big_alloc_sizes) / sizeof (int);
4244 * Round maxbuf up to an existing cache size. If maxbuf
4245 * is larger than the largest cache, we truncate it to
4246 * the largest cache's size.
4248 for (i = 0; i < max; i++) {
4249 size = kmem_big_alloc_sizes[i];
4250 if (maxbuf <= size)
4251 break;
4253 kmem_max_cached = maxbuf = size;
4257 * The big alloc table may not be completely overwritten, so
4258 * we clear out any stale cache pointers from the first pass.
4260 bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table));
4261 } else {
4263 * During the first pass, the kmem_alloc_* caches
4264 * are treated as metadata.
4266 kmem_default_arena = kmem_msb_arena;
4267 maxbuf = KMEM_BIG_MAXBUF_32BIT;
4271 * Set up the default caches to back kmem_alloc()
4273 kmem_alloc_caches_create(
4274 kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int),
4275 kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT);
4277 kmem_alloc_caches_create(
4278 kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int),
4279 kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT);
4281 kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT;
4284 void
4285 kmem_init(void)
4287 kmem_cache_t *cp;
4288 int old_kmem_flags = kmem_flags;
4289 int use_large_pages = 0;
4290 size_t maxverify, minfirewall;
4292 kstat_init();
4295 * Don't do firewalled allocations if the heap is less than 1TB
4296 * (i.e. on a 32-bit kernel)
4297 * The resulting VM_NEXTFIT allocations would create too much
4298 * fragmentation in a small heap.
4300 #if defined(_LP64)
4301 maxverify = minfirewall = PAGESIZE / 2;
4302 #else
4303 maxverify = minfirewall = ULONG_MAX;
4304 #endif
4306 ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE);
4308 list_create(&kmem_caches, sizeof (kmem_cache_t),
4309 offsetof(kmem_cache_t, cache_link));
4311 kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE,
4312 vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE,
4313 VM_SLEEP | VMC_NO_QCACHE);
4315 kmem_msb_arena = vmem_create("kmem_msb", NULL, 0,
4316 PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0,
4317 VMC_DUMPSAFE | VM_SLEEP);
4319 kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN,
4320 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4322 kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN,
4323 segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4325 kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN,
4326 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4328 kmem_firewall_va_arena = vmem_create("kmem_firewall_va",
4329 NULL, 0, PAGESIZE,
4330 kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena,
4331 0, VM_SLEEP);
4333 kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE,
4334 segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0,
4335 VMC_DUMPSAFE | VM_SLEEP);
4337 /* temporary oversize arena for mod_read_system_file */
4338 kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE,
4339 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4341 kmem_reap_interval = 15 * hz;
4344 * Read /etc/system. This is a chicken-and-egg problem because
4345 * kmem_flags may be set in /etc/system, but mod_read_system_file()
4346 * needs to use the allocator. The simplest solution is to create
4347 * all the standard kmem caches, read /etc/system, destroy all the
4348 * caches we just created, and then create them all again in light
4349 * of the (possibly) new kmem_flags and other kmem tunables.
4351 kmem_cache_init(1, 0);
4353 mod_read_system_file(boothowto & RB_ASKNAME);
4355 while ((cp = list_tail(&kmem_caches)) != NULL)
4356 kmem_cache_destroy(cp);
4358 vmem_destroy(kmem_oversize_arena);
4360 if (old_kmem_flags & KMF_STICKY)
4361 kmem_flags = old_kmem_flags;
4363 if (!(kmem_flags & KMF_AUDIT))
4364 vmem_seg_size = offsetof(vmem_seg_t, vs_thread);
4366 if (kmem_maxverify == 0)
4367 kmem_maxverify = maxverify;
4369 if (kmem_minfirewall == 0)
4370 kmem_minfirewall = minfirewall;
4373 * give segkmem a chance to figure out if we are using large pages
4374 * for the kernel heap
4376 use_large_pages = segkmem_lpsetup();
4379 * To protect against corruption, we keep the actual number of callers
4380 * KMF_LITE records seperate from the tunable. We arbitrarily clamp
4381 * to 16, since the overhead for small buffers quickly gets out of
4382 * hand.
4384 * The real limit would depend on the needs of the largest KMC_NOHASH
4385 * cache.
4387 kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16);
4388 kmem_lite_pcs = kmem_lite_count;
4391 * Normally, we firewall oversized allocations when possible, but
4392 * if we are using large pages for kernel memory, and we don't have
4393 * any non-LITE debugging flags set, we want to allocate oversized
4394 * buffers from large pages, and so skip the firewalling.
4396 if (use_large_pages &&
4397 ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) {
4398 kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0,
4399 PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena,
4400 0, VMC_DUMPSAFE | VM_SLEEP);
4401 } else {
4402 kmem_oversize_arena = vmem_create("kmem_oversize",
4403 NULL, 0, PAGESIZE,
4404 segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX?
4405 kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE |
4406 VM_SLEEP);
4409 kmem_cache_init(2, use_large_pages);
4411 if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) {
4412 if (kmem_transaction_log_size == 0)
4413 kmem_transaction_log_size = kmem_maxavail() / 50;
4414 kmem_transaction_log = kmem_log_init(kmem_transaction_log_size);
4417 if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) {
4418 if (kmem_content_log_size == 0)
4419 kmem_content_log_size = kmem_maxavail() / 50;
4420 kmem_content_log = kmem_log_init(kmem_content_log_size);
4423 kmem_failure_log = kmem_log_init(kmem_failure_log_size);
4425 kmem_slab_log = kmem_log_init(kmem_slab_log_size);
4428 * Initialize STREAMS message caches so allocb() is available.
4429 * This allows us to initialize the logging framework (cmn_err(9F),
4430 * strlog(9F), etc) so we can start recording messages.
4432 streams_msg_init();
4435 * Initialize the ZSD framework in Zones so modules loaded henceforth
4436 * can register their callbacks.
4438 zone_zsd_init();
4440 log_init();
4441 taskq_init();
4444 * Warn about invalid or dangerous values of kmem_flags.
4445 * Always warn about unsupported values.
4447 if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE |
4448 KMF_CONTENTS | KMF_LITE)) != 0) ||
4449 ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE))
4450 cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. "
4451 "See the Solaris Tunable Parameters Reference Manual.",
4452 kmem_flags);
4454 #ifdef DEBUG
4455 if ((kmem_flags & KMF_DEBUG) == 0)
4456 cmn_err(CE_NOTE, "kmem debugging disabled.");
4457 #else
4459 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE,
4460 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled
4461 * if KMF_AUDIT is set). We should warn the user about the performance
4462 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE
4463 * isn't set (since that disables AUDIT).
4465 if (!(kmem_flags & KMF_LITE) &&
4466 (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0)
4467 cmn_err(CE_WARN, "High-overhead kmem debugging features "
4468 "enabled (kmem_flags = 0x%x). Performance degradation "
4469 "and large memory overhead possible. See the Solaris "
4470 "Tunable Parameters Reference Manual.", kmem_flags);
4471 #endif /* not DEBUG */
4473 kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP);
4475 kmem_ready = 1;
4478 * Initialize the platform-specific aligned/DMA memory allocator.
4480 ka_init();
4483 * Initialize 32-bit ID cache.
4485 id32_init();
4488 * Initialize the networking stack so modules loaded can
4489 * register their callbacks.
4491 netstack_init();
4494 static void
4495 kmem_move_init(void)
4497 kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache",
4498 sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL,
4499 kmem_msb_arena, KMC_NOHASH);
4500 kmem_move_cache = kmem_cache_create("kmem_move_cache",
4501 sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL,
4502 kmem_msb_arena, KMC_NOHASH);
4505 * kmem guarantees that move callbacks are sequential and that even
4506 * across multiple caches no two moves ever execute simultaneously.
4507 * Move callbacks are processed on a separate taskq so that client code
4508 * does not interfere with internal maintenance tasks.
4510 kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1,
4511 minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE);
4514 void
4515 kmem_thread_init(void)
4517 kmem_move_init();
4518 kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri,
4519 300, INT_MAX, TASKQ_PREPOPULATE);
4522 void
4523 kmem_mp_init(void)
4525 mutex_enter(&cpu_lock);
4526 register_cpu_setup_func(kmem_cpu_setup, NULL);
4527 mutex_exit(&cpu_lock);
4529 kmem_update_timeout(NULL);
4531 taskq_mp_init();
4535 * Return the slab of the allocated buffer, or NULL if the buffer is not
4536 * allocated. This function may be called with a known slab address to determine
4537 * whether or not the buffer is allocated, or with a NULL slab address to obtain
4538 * an allocated buffer's slab.
4540 static kmem_slab_t *
4541 kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf)
4543 kmem_bufctl_t *bcp, *bufbcp;
4545 ASSERT(MUTEX_HELD(&cp->cache_lock));
4546 ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf));
4548 if (cp->cache_flags & KMF_HASH) {
4549 for (bcp = *KMEM_HASH(cp, buf);
4550 (bcp != NULL) && (bcp->bc_addr != buf);
4551 bcp = bcp->bc_next) {
4552 continue;
4554 ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1);
4555 return (bcp == NULL ? NULL : bcp->bc_slab);
4558 if (sp == NULL) {
4559 sp = KMEM_SLAB(cp, buf);
4561 bufbcp = KMEM_BUFCTL(cp, buf);
4562 for (bcp = sp->slab_head;
4563 (bcp != NULL) && (bcp != bufbcp);
4564 bcp = bcp->bc_next) {
4565 continue;
4567 return (bcp == NULL ? sp : NULL);
4570 static boolean_t
4571 kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags)
4573 long refcnt = sp->slab_refcnt;
4575 ASSERT(cp->cache_defrag != NULL);
4578 * For code coverage we want to be able to move an object within the
4579 * same slab (the only partial slab) even if allocating the destination
4580 * buffer resulted in a completely allocated slab.
4582 if (flags & KMM_DEBUG) {
4583 return ((flags & KMM_DESPERATE) ||
4584 ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0));
4587 /* If we're desperate, we don't care if the client said NO. */
4588 if (flags & KMM_DESPERATE) {
4589 return (refcnt < sp->slab_chunks); /* any partial */
4592 if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4593 return (B_FALSE);
4596 if ((refcnt == 1) || kmem_move_any_partial) {
4597 return (refcnt < sp->slab_chunks);
4601 * The reclaim threshold is adjusted at each kmem_cache_scan() so that
4602 * slabs with a progressively higher percentage of used buffers can be
4603 * reclaimed until the cache as a whole is no longer fragmented.
4605 * sp->slab_refcnt kmd_reclaim_numer
4606 * --------------- < ------------------
4607 * sp->slab_chunks KMEM_VOID_FRACTION
4609 return ((refcnt * KMEM_VOID_FRACTION) <
4610 (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer));
4614 * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(),
4615 * or when the buffer is freed.
4617 static void
4618 kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4620 ASSERT(MUTEX_HELD(&cp->cache_lock));
4621 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4623 if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4624 return;
4627 if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4628 if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) {
4629 avl_remove(&cp->cache_partial_slabs, sp);
4630 sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
4631 sp->slab_stuck_offset = (uint32_t)-1;
4632 avl_add(&cp->cache_partial_slabs, sp);
4634 } else {
4635 sp->slab_later_count = 0;
4636 sp->slab_stuck_offset = (uint32_t)-1;
4640 static void
4641 kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4643 ASSERT(taskq_member(kmem_move_taskq, curthread));
4644 ASSERT(MUTEX_HELD(&cp->cache_lock));
4645 ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4647 if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4648 return;
4651 avl_remove(&cp->cache_partial_slabs, sp);
4652 sp->slab_later_count = 0;
4653 sp->slab_flags |= KMEM_SLAB_NOMOVE;
4654 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf);
4655 avl_add(&cp->cache_partial_slabs, sp);
4658 static void kmem_move_end(kmem_cache_t *, kmem_move_t *);
4661 * The move callback takes two buffer addresses, the buffer to be moved, and a
4662 * newly allocated and constructed buffer selected by kmem as the destination.
4663 * It also takes the size of the buffer and an optional user argument specified
4664 * at cache creation time. kmem guarantees that the buffer to be moved has not
4665 * been unmapped by the virtual memory subsystem. Beyond that, it cannot
4666 * guarantee the present whereabouts of the buffer to be moved, so it is up to
4667 * the client to safely determine whether or not it is still using the buffer.
4668 * The client must not free either of the buffers passed to the move callback,
4669 * since kmem wants to free them directly to the slab layer. The client response
4670 * tells kmem which of the two buffers to free:
4672 * YES kmem frees the old buffer (the move was successful)
4673 * NO kmem frees the new buffer, marks the slab of the old buffer
4674 * non-reclaimable to avoid bothering the client again
4675 * LATER kmem frees the new buffer, increments slab_later_count
4676 * DONT_KNOW kmem frees the new buffer
4677 * DONT_NEED kmem frees both the old buffer and the new buffer
4679 * The pending callback argument now being processed contains both of the
4680 * buffers (old and new) passed to the move callback function, the slab of the
4681 * old buffer, and flags related to the move request, such as whether or not the
4682 * system was desperate for memory.
4684 * Slabs are not freed while there is a pending callback, but instead are kept
4685 * on a deadlist, which is drained after the last callback completes. This means
4686 * that slabs are safe to access until kmem_move_end(), no matter how many of
4687 * their buffers have been freed. Once slab_refcnt reaches zero, it stays at
4688 * zero for as long as the slab remains on the deadlist and until the slab is
4689 * freed.
4691 static void
4692 kmem_move_buffer(kmem_move_t *callback)
4694 kmem_cbrc_t response;
4695 kmem_slab_t *sp = callback->kmm_from_slab;
4696 kmem_cache_t *cp = sp->slab_cache;
4697 boolean_t free_on_slab;
4699 ASSERT(taskq_member(kmem_move_taskq, curthread));
4700 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4701 ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf));
4704 * The number of allocated buffers on the slab may have changed since we
4705 * last checked the slab's reclaimability (when the pending move was
4706 * enqueued), or the client may have responded NO when asked to move
4707 * another buffer on the same slab.
4709 if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) {
4710 kmem_slab_free(cp, callback->kmm_to_buf);
4711 kmem_move_end(cp, callback);
4712 return;
4716 * Checking the slab layer is easy, so we might as well do that here
4717 * in case we can avoid bothering the client.
4719 mutex_enter(&cp->cache_lock);
4720 free_on_slab = (kmem_slab_allocated(cp, sp,
4721 callback->kmm_from_buf) == NULL);
4722 mutex_exit(&cp->cache_lock);
4724 if (free_on_slab) {
4725 kmem_slab_free(cp, callback->kmm_to_buf);
4726 kmem_move_end(cp, callback);
4727 return;
4730 if (cp->cache_flags & KMF_BUFTAG) {
4732 * Make kmem_cache_alloc_debug() apply the constructor for us.
4734 if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf,
4735 KM_NOSLEEP, 1, caller()) != 0) {
4736 kmem_move_end(cp, callback);
4737 return;
4739 } else if (cp->cache_constructor != NULL &&
4740 cp->cache_constructor(callback->kmm_to_buf, cp->cache_private,
4741 KM_NOSLEEP) != 0) {
4742 atomic_inc_64(&cp->cache_alloc_fail);
4743 kmem_slab_free(cp, callback->kmm_to_buf);
4744 kmem_move_end(cp, callback);
4745 return;
4748 cp->cache_defrag->kmd_callbacks++;
4749 cp->cache_defrag->kmd_thread = curthread;
4750 cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf;
4751 cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf;
4752 DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *,
4753 callback);
4755 response = cp->cache_move(callback->kmm_from_buf,
4756 callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private);
4758 DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *,
4759 callback, kmem_cbrc_t, response);
4760 cp->cache_defrag->kmd_thread = NULL;
4761 cp->cache_defrag->kmd_from_buf = NULL;
4762 cp->cache_defrag->kmd_to_buf = NULL;
4764 if (response == KMEM_CBRC_YES) {
4765 cp->cache_defrag->kmd_yes++;
4766 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4767 /* slab safe to access until kmem_move_end() */
4768 if (sp->slab_refcnt == 0)
4769 cp->cache_defrag->kmd_slabs_freed++;
4770 mutex_enter(&cp->cache_lock);
4771 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4772 mutex_exit(&cp->cache_lock);
4773 kmem_move_end(cp, callback);
4774 return;
4777 switch (response) {
4778 case KMEM_CBRC_NO:
4779 cp->cache_defrag->kmd_no++;
4780 mutex_enter(&cp->cache_lock);
4781 kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4782 mutex_exit(&cp->cache_lock);
4783 break;
4784 case KMEM_CBRC_LATER:
4785 cp->cache_defrag->kmd_later++;
4786 mutex_enter(&cp->cache_lock);
4787 if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4788 mutex_exit(&cp->cache_lock);
4789 break;
4792 if (++sp->slab_later_count >= KMEM_DISBELIEF) {
4793 kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4794 } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) {
4795 sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp,
4796 callback->kmm_from_buf);
4798 mutex_exit(&cp->cache_lock);
4799 break;
4800 case KMEM_CBRC_DONT_NEED:
4801 cp->cache_defrag->kmd_dont_need++;
4802 kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4803 if (sp->slab_refcnt == 0)
4804 cp->cache_defrag->kmd_slabs_freed++;
4805 mutex_enter(&cp->cache_lock);
4806 kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4807 mutex_exit(&cp->cache_lock);
4808 break;
4809 case KMEM_CBRC_DONT_KNOW:
4811 * If we don't know if we can move this buffer or not, we'll
4812 * just assume that we can't: if the buffer is in fact free,
4813 * then it is sitting in one of the per-CPU magazines or in
4814 * a full magazine in the depot layer. Either way, because
4815 * defrag is induced in the same logic that reaps a cache,
4816 * it's likely that full magazines will be returned to the
4817 * system soon (thereby accomplishing what we're trying to
4818 * accomplish here: return those magazines to their slabs).
4819 * Given this, any work that we might do now to locate a buffer
4820 * in a magazine is wasted (and expensive!) work; we bump
4821 * a counter in this case and otherwise assume that we can't
4822 * move it.
4824 cp->cache_defrag->kmd_dont_know++;
4825 break;
4826 default:
4827 panic("'%s' (%p) unexpected move callback response %d\n",
4828 cp->cache_name, (void *)cp, response);
4831 kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE);
4832 kmem_move_end(cp, callback);
4835 /* Return B_FALSE if there is insufficient memory for the move request. */
4836 static boolean_t
4837 kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags)
4839 void *to_buf;
4840 avl_index_t index;
4841 kmem_move_t *callback, *pending;
4842 ulong_t n;
4844 ASSERT(taskq_member(kmem_taskq, curthread));
4845 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4846 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4848 callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP);
4850 if (callback == NULL)
4851 return (B_FALSE);
4853 callback->kmm_from_slab = sp;
4854 callback->kmm_from_buf = buf;
4855 callback->kmm_flags = flags;
4857 mutex_enter(&cp->cache_lock);
4859 n = avl_numnodes(&cp->cache_partial_slabs);
4860 if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) {
4861 mutex_exit(&cp->cache_lock);
4862 kmem_cache_free(kmem_move_cache, callback);
4863 return (B_TRUE); /* there is no need for the move request */
4866 pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index);
4867 if (pending != NULL) {
4869 * If the move is already pending and we're desperate now,
4870 * update the move flags.
4872 if (flags & KMM_DESPERATE) {
4873 pending->kmm_flags |= KMM_DESPERATE;
4875 mutex_exit(&cp->cache_lock);
4876 kmem_cache_free(kmem_move_cache, callback);
4877 return (B_TRUE);
4880 to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs),
4881 B_FALSE);
4882 callback->kmm_to_buf = to_buf;
4883 avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index);
4885 mutex_exit(&cp->cache_lock);
4887 if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer,
4888 callback, TQ_NOSLEEP)) {
4889 mutex_enter(&cp->cache_lock);
4890 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4891 mutex_exit(&cp->cache_lock);
4892 kmem_slab_free(cp, to_buf);
4893 kmem_cache_free(kmem_move_cache, callback);
4894 return (B_FALSE);
4897 return (B_TRUE);
4900 static void
4901 kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback)
4903 avl_index_t index;
4905 ASSERT(cp->cache_defrag != NULL);
4906 ASSERT(taskq_member(kmem_move_taskq, curthread));
4907 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4909 mutex_enter(&cp->cache_lock);
4910 VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending,
4911 callback->kmm_from_buf, &index) != NULL);
4912 avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4913 if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) {
4914 list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
4915 kmem_slab_t *sp;
4918 * The last pending move completed. Release all slabs from the
4919 * front of the dead list except for any slab at the tail that
4920 * needs to be released from the context of kmem_move_buffers().
4921 * kmem deferred unmapping the buffers on these slabs in order
4922 * to guarantee that buffers passed to the move callback have
4923 * been touched only by kmem or by the client itself.
4925 while ((sp = list_remove_head(deadlist)) != NULL) {
4926 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
4927 list_insert_tail(deadlist, sp);
4928 break;
4930 cp->cache_defrag->kmd_deadcount--;
4931 cp->cache_slab_destroy++;
4932 mutex_exit(&cp->cache_lock);
4933 kmem_slab_destroy(cp, sp);
4934 mutex_enter(&cp->cache_lock);
4937 mutex_exit(&cp->cache_lock);
4938 kmem_cache_free(kmem_move_cache, callback);
4942 * Move buffers from least used slabs first by scanning backwards from the end
4943 * of the partial slab list. Scan at most max_scan candidate slabs and move
4944 * buffers from at most max_slabs slabs (0 for all partial slabs in both cases).
4945 * If desperate to reclaim memory, move buffers from any partial slab, otherwise
4946 * skip slabs with a ratio of allocated buffers at or above the current
4947 * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the
4948 * scan is aborted) so that the caller can adjust the reclaimability threshold
4949 * depending on how many reclaimable slabs it finds.
4951 * kmem_move_buffers() drops and reacquires cache_lock every time it issues a
4952 * move request, since it is not valid for kmem_move_begin() to call
4953 * kmem_cache_alloc() or taskq_dispatch() with cache_lock held.
4955 static int
4956 kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs,
4957 int flags)
4959 kmem_slab_t *sp;
4960 void *buf;
4961 int i, j; /* slab index, buffer index */
4962 int s; /* reclaimable slabs */
4963 int b; /* allocated (movable) buffers on reclaimable slab */
4964 boolean_t success;
4965 int refcnt;
4966 int nomove;
4968 ASSERT(taskq_member(kmem_taskq, curthread));
4969 ASSERT(MUTEX_HELD(&cp->cache_lock));
4970 ASSERT(kmem_move_cache != NULL);
4971 ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL);
4972 ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) :
4973 avl_numnodes(&cp->cache_partial_slabs) > 1);
4975 if (kmem_move_blocked) {
4976 return (0);
4979 if (kmem_move_fulltilt) {
4980 flags |= KMM_DESPERATE;
4983 if (max_scan == 0 || (flags & KMM_DESPERATE)) {
4985 * Scan as many slabs as needed to find the desired number of
4986 * candidate slabs.
4988 max_scan = (size_t)-1;
4991 if (max_slabs == 0 || (flags & KMM_DESPERATE)) {
4992 /* Find as many candidate slabs as possible. */
4993 max_slabs = (size_t)-1;
4996 sp = avl_last(&cp->cache_partial_slabs);
4997 ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
4998 for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) &&
4999 ((sp != avl_first(&cp->cache_partial_slabs)) ||
5000 (flags & KMM_DEBUG));
5001 sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) {
5003 if (!kmem_slab_is_reclaimable(cp, sp, flags)) {
5004 continue;
5006 s++;
5008 /* Look for allocated buffers to move. */
5009 for (j = 0, b = 0, buf = sp->slab_base;
5010 (j < sp->slab_chunks) && (b < sp->slab_refcnt);
5011 buf = (((char *)buf) + cp->cache_chunksize), j++) {
5013 if (kmem_slab_allocated(cp, sp, buf) == NULL) {
5014 continue;
5017 b++;
5020 * Prevent the slab from being destroyed while we drop
5021 * cache_lock and while the pending move is not yet
5022 * registered. Flag the pending move while
5023 * kmd_moves_pending may still be empty, since we can't
5024 * yet rely on a non-zero pending move count to prevent
5025 * the slab from being destroyed.
5027 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5028 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5030 * Recheck refcnt and nomove after reacquiring the lock,
5031 * since these control the order of partial slabs, and
5032 * we want to know if we can pick up the scan where we
5033 * left off.
5035 refcnt = sp->slab_refcnt;
5036 nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE);
5037 mutex_exit(&cp->cache_lock);
5039 success = kmem_move_begin(cp, sp, buf, flags);
5042 * Now, before the lock is reacquired, kmem could
5043 * process all pending move requests and purge the
5044 * deadlist, so that upon reacquiring the lock, sp has
5045 * been remapped. Or, the client may free all the
5046 * objects on the slab while the pending moves are still
5047 * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING
5048 * flag causes the slab to be put at the end of the
5049 * deadlist and prevents it from being destroyed, since
5050 * we plan to destroy it here after reacquiring the
5051 * lock.
5053 mutex_enter(&cp->cache_lock);
5054 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5055 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5057 if (sp->slab_refcnt == 0) {
5058 list_t *deadlist =
5059 &cp->cache_defrag->kmd_deadlist;
5060 list_remove(deadlist, sp);
5062 if (!avl_is_empty(
5063 &cp->cache_defrag->kmd_moves_pending)) {
5065 * A pending move makes it unsafe to
5066 * destroy the slab, because even though
5067 * the move is no longer needed, the
5068 * context where that is determined
5069 * requires the slab to exist.
5070 * Fortunately, a pending move also
5071 * means we don't need to destroy the
5072 * slab here, since it will get
5073 * destroyed along with any other slabs
5074 * on the deadlist after the last
5075 * pending move completes.
5077 list_insert_head(deadlist, sp);
5078 return (-1);
5082 * Destroy the slab now if it was completely
5083 * freed while we dropped cache_lock and there
5084 * are no pending moves. Since slab_refcnt
5085 * cannot change once it reaches zero, no new
5086 * pending moves from that slab are possible.
5088 cp->cache_defrag->kmd_deadcount--;
5089 cp->cache_slab_destroy++;
5090 mutex_exit(&cp->cache_lock);
5091 kmem_slab_destroy(cp, sp);
5092 mutex_enter(&cp->cache_lock);
5094 * Since we can't pick up the scan where we left
5095 * off, abort the scan and say nothing about the
5096 * number of reclaimable slabs.
5098 return (-1);
5101 if (!success) {
5103 * Abort the scan if there is not enough memory
5104 * for the request and say nothing about the
5105 * number of reclaimable slabs.
5107 return (-1);
5111 * The slab's position changed while the lock was
5112 * dropped, so we don't know where we are in the
5113 * sequence any more.
5115 if (sp->slab_refcnt != refcnt) {
5117 * If this is a KMM_DEBUG move, the slab_refcnt
5118 * may have changed because we allocated a
5119 * destination buffer on the same slab. In that
5120 * case, we're not interested in counting it.
5122 return (-1);
5124 if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove)
5125 return (-1);
5128 * Generating a move request allocates a destination
5129 * buffer from the slab layer, bumping the first partial
5130 * slab if it is completely allocated. If the current
5131 * slab becomes the first partial slab as a result, we
5132 * can't continue to scan backwards.
5134 * If this is a KMM_DEBUG move and we allocated the
5135 * destination buffer from the last partial slab, then
5136 * the buffer we're moving is on the same slab and our
5137 * slab_refcnt has changed, causing us to return before
5138 * reaching here if there are no partial slabs left.
5140 ASSERT(!avl_is_empty(&cp->cache_partial_slabs));
5141 if (sp == avl_first(&cp->cache_partial_slabs)) {
5143 * We're not interested in a second KMM_DEBUG
5144 * move.
5146 goto end_scan;
5150 end_scan:
5152 return (s);
5155 typedef struct kmem_move_notify_args {
5156 kmem_cache_t *kmna_cache;
5157 void *kmna_buf;
5158 } kmem_move_notify_args_t;
5160 static void
5161 kmem_cache_move_notify_task(void *arg)
5163 kmem_move_notify_args_t *args = arg;
5164 kmem_cache_t *cp = args->kmna_cache;
5165 void *buf = args->kmna_buf;
5166 kmem_slab_t *sp;
5168 ASSERT(taskq_member(kmem_taskq, curthread));
5169 ASSERT(list_link_active(&cp->cache_link));
5171 kmem_free(args, sizeof (kmem_move_notify_args_t));
5172 mutex_enter(&cp->cache_lock);
5173 sp = kmem_slab_allocated(cp, NULL, buf);
5175 /* Ignore the notification if the buffer is no longer allocated. */
5176 if (sp == NULL) {
5177 mutex_exit(&cp->cache_lock);
5178 return;
5181 /* Ignore the notification if there's no reason to move the buffer. */
5182 if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5184 * So far the notification is not ignored. Ignore the
5185 * notification if the slab is not marked by an earlier refusal
5186 * to move a buffer.
5188 if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) &&
5189 (sp->slab_later_count == 0)) {
5190 mutex_exit(&cp->cache_lock);
5191 return;
5194 kmem_slab_move_yes(cp, sp, buf);
5195 ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5196 sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5197 mutex_exit(&cp->cache_lock);
5198 /* see kmem_move_buffers() about dropping the lock */
5199 (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY);
5200 mutex_enter(&cp->cache_lock);
5201 ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5202 sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5203 if (sp->slab_refcnt == 0) {
5204 list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
5205 list_remove(deadlist, sp);
5207 if (!avl_is_empty(
5208 &cp->cache_defrag->kmd_moves_pending)) {
5209 list_insert_head(deadlist, sp);
5210 mutex_exit(&cp->cache_lock);
5211 return;
5214 cp->cache_defrag->kmd_deadcount--;
5215 cp->cache_slab_destroy++;
5216 mutex_exit(&cp->cache_lock);
5217 kmem_slab_destroy(cp, sp);
5218 return;
5220 } else {
5221 kmem_slab_move_yes(cp, sp, buf);
5223 mutex_exit(&cp->cache_lock);
5226 void
5227 kmem_cache_move_notify(kmem_cache_t *cp, void *buf)
5229 kmem_move_notify_args_t *args;
5231 args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP);
5232 if (args != NULL) {
5233 args->kmna_cache = cp;
5234 args->kmna_buf = buf;
5235 if (!taskq_dispatch(kmem_taskq,
5236 (task_func_t *)kmem_cache_move_notify_task, args,
5237 TQ_NOSLEEP))
5238 kmem_free(args, sizeof (kmem_move_notify_args_t));
5242 static void
5243 kmem_cache_defrag(kmem_cache_t *cp)
5245 size_t n;
5247 ASSERT(cp->cache_defrag != NULL);
5249 mutex_enter(&cp->cache_lock);
5250 n = avl_numnodes(&cp->cache_partial_slabs);
5251 if (n > 1) {
5252 /* kmem_move_buffers() drops and reacquires cache_lock */
5253 cp->cache_defrag->kmd_defrags++;
5254 (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE);
5256 mutex_exit(&cp->cache_lock);
5259 /* Is this cache above the fragmentation threshold? */
5260 static boolean_t
5261 kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree)
5264 * nfree kmem_frag_numer
5265 * ------------------ > ---------------
5266 * cp->cache_buftotal kmem_frag_denom
5268 return ((nfree * kmem_frag_denom) >
5269 (cp->cache_buftotal * kmem_frag_numer));
5272 static boolean_t
5273 kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap)
5275 boolean_t fragmented;
5276 uint64_t nfree;
5278 ASSERT(MUTEX_HELD(&cp->cache_lock));
5279 *doreap = B_FALSE;
5281 if (kmem_move_fulltilt) {
5282 if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5283 return (B_TRUE);
5285 } else {
5286 if ((cp->cache_complete_slab_count + avl_numnodes(
5287 &cp->cache_partial_slabs)) < kmem_frag_minslabs) {
5288 return (B_FALSE);
5292 nfree = cp->cache_bufslab;
5293 fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) &&
5294 kmem_cache_frag_threshold(cp, nfree));
5297 * Free buffers in the magazine layer appear allocated from the point of
5298 * view of the slab layer. We want to know if the slab layer would
5299 * appear fragmented if we included free buffers from magazines that
5300 * have fallen out of the working set.
5302 if (!fragmented) {
5303 long reap;
5305 mutex_enter(&cp->cache_depot_lock);
5306 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
5307 reap = MIN(reap, cp->cache_full.ml_total);
5308 mutex_exit(&cp->cache_depot_lock);
5310 nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
5311 if (kmem_cache_frag_threshold(cp, nfree)) {
5312 *doreap = B_TRUE;
5316 return (fragmented);
5319 /* Called periodically from kmem_taskq */
5320 static void
5321 kmem_cache_scan(kmem_cache_t *cp)
5323 boolean_t reap = B_FALSE;
5324 kmem_defrag_t *kmd;
5326 ASSERT(taskq_member(kmem_taskq, curthread));
5328 mutex_enter(&cp->cache_lock);
5330 kmd = cp->cache_defrag;
5331 if (kmd->kmd_consolidate > 0) {
5332 kmd->kmd_consolidate--;
5333 mutex_exit(&cp->cache_lock);
5334 kmem_cache_reap(cp);
5335 return;
5338 if (kmem_cache_is_fragmented(cp, &reap)) {
5339 size_t slabs_found;
5342 * Consolidate reclaimable slabs from the end of the partial
5343 * slab list (scan at most kmem_reclaim_scan_range slabs to find
5344 * reclaimable slabs). Keep track of how many candidate slabs we
5345 * looked for and how many we actually found so we can adjust
5346 * the definition of a candidate slab if we're having trouble
5347 * finding them.
5349 * kmem_move_buffers() drops and reacquires cache_lock.
5351 kmd->kmd_scans++;
5352 slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range,
5353 kmem_reclaim_max_slabs, 0);
5354 if (slabs_found >= 0) {
5355 kmd->kmd_slabs_sought += kmem_reclaim_max_slabs;
5356 kmd->kmd_slabs_found += slabs_found;
5359 if (++kmd->kmd_tries >= kmem_reclaim_scan_range) {
5360 kmd->kmd_tries = 0;
5363 * If we had difficulty finding candidate slabs in
5364 * previous scans, adjust the threshold so that
5365 * candidates are easier to find.
5367 if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) {
5368 kmem_adjust_reclaim_threshold(kmd, -1);
5369 } else if ((kmd->kmd_slabs_found * 2) <
5370 kmd->kmd_slabs_sought) {
5371 kmem_adjust_reclaim_threshold(kmd, 1);
5373 kmd->kmd_slabs_sought = 0;
5374 kmd->kmd_slabs_found = 0;
5376 } else {
5377 kmem_reset_reclaim_threshold(cp->cache_defrag);
5378 #ifdef DEBUG
5379 if (!avl_is_empty(&cp->cache_partial_slabs)) {
5381 * In a debug kernel we want the consolidator to
5382 * run occasionally even when there is plenty of
5383 * memory.
5385 uint16_t debug_rand;
5387 (void) random_get_bytes((uint8_t *)&debug_rand, 2);
5388 if (!kmem_move_noreap &&
5389 ((debug_rand % kmem_mtb_reap) == 0)) {
5390 mutex_exit(&cp->cache_lock);
5391 kmem_cache_reap(cp);
5392 return;
5393 } else if ((debug_rand % kmem_mtb_move) == 0) {
5394 kmd->kmd_scans++;
5395 (void) kmem_move_buffers(cp,
5396 kmem_reclaim_scan_range, 1, KMM_DEBUG);
5399 #endif /* DEBUG */
5402 mutex_exit(&cp->cache_lock);
5404 if (reap)
5405 kmem_depot_ws_reap(cp);