3090 vdev_reopen() during reguid causes vdev to be treated as corrupt
[unleashed.git] / usr / src / uts / common / fs / zfs / vdev.c
blob0b8e073f90f0dd2a4bfb06ff626e639f96f41b47
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/zio.h>
40 #include <sys/zap.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/arc.h>
43 #include <sys/zil.h>
44 #include <sys/dsl_scan.h>
47 * Virtual device management.
50 static vdev_ops_t *vdev_ops_table[] = {
51 &vdev_root_ops,
52 &vdev_raidz_ops,
53 &vdev_mirror_ops,
54 &vdev_replacing_ops,
55 &vdev_spare_ops,
56 &vdev_disk_ops,
57 &vdev_file_ops,
58 &vdev_missing_ops,
59 &vdev_hole_ops,
60 NULL
63 /* maximum scrub/resilver I/O queue per leaf vdev */
64 int zfs_scrub_limit = 10;
67 * Given a vdev type, return the appropriate ops vector.
69 static vdev_ops_t *
70 vdev_getops(const char *type)
72 vdev_ops_t *ops, **opspp;
74 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
75 if (strcmp(ops->vdev_op_type, type) == 0)
76 break;
78 return (ops);
82 * Default asize function: return the MAX of psize with the asize of
83 * all children. This is what's used by anything other than RAID-Z.
85 uint64_t
86 vdev_default_asize(vdev_t *vd, uint64_t psize)
88 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
89 uint64_t csize;
91 for (int c = 0; c < vd->vdev_children; c++) {
92 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
93 asize = MAX(asize, csize);
96 return (asize);
100 * Get the minimum allocatable size. We define the allocatable size as
101 * the vdev's asize rounded to the nearest metaslab. This allows us to
102 * replace or attach devices which don't have the same physical size but
103 * can still satisfy the same number of allocations.
105 uint64_t
106 vdev_get_min_asize(vdev_t *vd)
108 vdev_t *pvd = vd->vdev_parent;
111 * If our parent is NULL (inactive spare or cache) or is the root,
112 * just return our own asize.
114 if (pvd == NULL)
115 return (vd->vdev_asize);
118 * The top-level vdev just returns the allocatable size rounded
119 * to the nearest metaslab.
121 if (vd == vd->vdev_top)
122 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
125 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
126 * so each child must provide at least 1/Nth of its asize.
128 if (pvd->vdev_ops == &vdev_raidz_ops)
129 return (pvd->vdev_min_asize / pvd->vdev_children);
131 return (pvd->vdev_min_asize);
134 void
135 vdev_set_min_asize(vdev_t *vd)
137 vd->vdev_min_asize = vdev_get_min_asize(vd);
139 for (int c = 0; c < vd->vdev_children; c++)
140 vdev_set_min_asize(vd->vdev_child[c]);
143 vdev_t *
144 vdev_lookup_top(spa_t *spa, uint64_t vdev)
146 vdev_t *rvd = spa->spa_root_vdev;
148 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
150 if (vdev < rvd->vdev_children) {
151 ASSERT(rvd->vdev_child[vdev] != NULL);
152 return (rvd->vdev_child[vdev]);
155 return (NULL);
158 vdev_t *
159 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
161 vdev_t *mvd;
163 if (vd->vdev_guid == guid)
164 return (vd);
166 for (int c = 0; c < vd->vdev_children; c++)
167 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
168 NULL)
169 return (mvd);
171 return (NULL);
174 void
175 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
177 size_t oldsize, newsize;
178 uint64_t id = cvd->vdev_id;
179 vdev_t **newchild;
181 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
182 ASSERT(cvd->vdev_parent == NULL);
184 cvd->vdev_parent = pvd;
186 if (pvd == NULL)
187 return;
189 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
191 oldsize = pvd->vdev_children * sizeof (vdev_t *);
192 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
193 newsize = pvd->vdev_children * sizeof (vdev_t *);
195 newchild = kmem_zalloc(newsize, KM_SLEEP);
196 if (pvd->vdev_child != NULL) {
197 bcopy(pvd->vdev_child, newchild, oldsize);
198 kmem_free(pvd->vdev_child, oldsize);
201 pvd->vdev_child = newchild;
202 pvd->vdev_child[id] = cvd;
204 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
205 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
208 * Walk up all ancestors to update guid sum.
210 for (; pvd != NULL; pvd = pvd->vdev_parent)
211 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
214 void
215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
217 int c;
218 uint_t id = cvd->vdev_id;
220 ASSERT(cvd->vdev_parent == pvd);
222 if (pvd == NULL)
223 return;
225 ASSERT(id < pvd->vdev_children);
226 ASSERT(pvd->vdev_child[id] == cvd);
228 pvd->vdev_child[id] = NULL;
229 cvd->vdev_parent = NULL;
231 for (c = 0; c < pvd->vdev_children; c++)
232 if (pvd->vdev_child[c])
233 break;
235 if (c == pvd->vdev_children) {
236 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
237 pvd->vdev_child = NULL;
238 pvd->vdev_children = 0;
242 * Walk up all ancestors to update guid sum.
244 for (; pvd != NULL; pvd = pvd->vdev_parent)
245 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
249 * Remove any holes in the child array.
251 void
252 vdev_compact_children(vdev_t *pvd)
254 vdev_t **newchild, *cvd;
255 int oldc = pvd->vdev_children;
256 int newc;
258 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
260 for (int c = newc = 0; c < oldc; c++)
261 if (pvd->vdev_child[c])
262 newc++;
264 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
266 for (int c = newc = 0; c < oldc; c++) {
267 if ((cvd = pvd->vdev_child[c]) != NULL) {
268 newchild[newc] = cvd;
269 cvd->vdev_id = newc++;
273 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
274 pvd->vdev_child = newchild;
275 pvd->vdev_children = newc;
279 * Allocate and minimally initialize a vdev_t.
281 vdev_t *
282 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
284 vdev_t *vd;
286 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
288 if (spa->spa_root_vdev == NULL) {
289 ASSERT(ops == &vdev_root_ops);
290 spa->spa_root_vdev = vd;
291 spa->spa_load_guid = spa_generate_guid(NULL);
294 if (guid == 0 && ops != &vdev_hole_ops) {
295 if (spa->spa_root_vdev == vd) {
297 * The root vdev's guid will also be the pool guid,
298 * which must be unique among all pools.
300 guid = spa_generate_guid(NULL);
301 } else {
303 * Any other vdev's guid must be unique within the pool.
305 guid = spa_generate_guid(spa);
307 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
310 vd->vdev_spa = spa;
311 vd->vdev_id = id;
312 vd->vdev_guid = guid;
313 vd->vdev_guid_sum = guid;
314 vd->vdev_ops = ops;
315 vd->vdev_state = VDEV_STATE_CLOSED;
316 vd->vdev_ishole = (ops == &vdev_hole_ops);
318 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
319 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
320 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
321 for (int t = 0; t < DTL_TYPES; t++) {
322 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
323 &vd->vdev_dtl_lock);
325 txg_list_create(&vd->vdev_ms_list,
326 offsetof(struct metaslab, ms_txg_node));
327 txg_list_create(&vd->vdev_dtl_list,
328 offsetof(struct vdev, vdev_dtl_node));
329 vd->vdev_stat.vs_timestamp = gethrtime();
330 vdev_queue_init(vd);
331 vdev_cache_init(vd);
333 return (vd);
337 * Allocate a new vdev. The 'alloctype' is used to control whether we are
338 * creating a new vdev or loading an existing one - the behavior is slightly
339 * different for each case.
342 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
343 int alloctype)
345 vdev_ops_t *ops;
346 char *type;
347 uint64_t guid = 0, islog, nparity;
348 vdev_t *vd;
350 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
352 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
353 return (EINVAL);
355 if ((ops = vdev_getops(type)) == NULL)
356 return (EINVAL);
359 * If this is a load, get the vdev guid from the nvlist.
360 * Otherwise, vdev_alloc_common() will generate one for us.
362 if (alloctype == VDEV_ALLOC_LOAD) {
363 uint64_t label_id;
365 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
366 label_id != id)
367 return (EINVAL);
369 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
370 return (EINVAL);
371 } else if (alloctype == VDEV_ALLOC_SPARE) {
372 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
373 return (EINVAL);
374 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
375 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376 return (EINVAL);
377 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
378 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
379 return (EINVAL);
383 * The first allocated vdev must be of type 'root'.
385 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
386 return (EINVAL);
389 * Determine whether we're a log vdev.
391 islog = 0;
392 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
393 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
394 return (ENOTSUP);
396 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
397 return (ENOTSUP);
400 * Set the nparity property for RAID-Z vdevs.
402 nparity = -1ULL;
403 if (ops == &vdev_raidz_ops) {
404 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
405 &nparity) == 0) {
406 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
407 return (EINVAL);
409 * Previous versions could only support 1 or 2 parity
410 * device.
412 if (nparity > 1 &&
413 spa_version(spa) < SPA_VERSION_RAIDZ2)
414 return (ENOTSUP);
415 if (nparity > 2 &&
416 spa_version(spa) < SPA_VERSION_RAIDZ3)
417 return (ENOTSUP);
418 } else {
420 * We require the parity to be specified for SPAs that
421 * support multiple parity levels.
423 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
424 return (EINVAL);
426 * Otherwise, we default to 1 parity device for RAID-Z.
428 nparity = 1;
430 } else {
431 nparity = 0;
433 ASSERT(nparity != -1ULL);
435 vd = vdev_alloc_common(spa, id, guid, ops);
437 vd->vdev_islog = islog;
438 vd->vdev_nparity = nparity;
440 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
441 vd->vdev_path = spa_strdup(vd->vdev_path);
442 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
443 vd->vdev_devid = spa_strdup(vd->vdev_devid);
444 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
445 &vd->vdev_physpath) == 0)
446 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
447 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
448 vd->vdev_fru = spa_strdup(vd->vdev_fru);
451 * Set the whole_disk property. If it's not specified, leave the value
452 * as -1.
454 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
455 &vd->vdev_wholedisk) != 0)
456 vd->vdev_wholedisk = -1ULL;
459 * Look for the 'not present' flag. This will only be set if the device
460 * was not present at the time of import.
462 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
463 &vd->vdev_not_present);
466 * Get the alignment requirement.
468 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
471 * Retrieve the vdev creation time.
473 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
474 &vd->vdev_crtxg);
477 * If we're a top-level vdev, try to load the allocation parameters.
479 if (parent && !parent->vdev_parent &&
480 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
481 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
482 &vd->vdev_ms_array);
483 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
484 &vd->vdev_ms_shift);
485 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
486 &vd->vdev_asize);
487 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
488 &vd->vdev_removing);
491 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
492 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
493 alloctype == VDEV_ALLOC_ADD ||
494 alloctype == VDEV_ALLOC_SPLIT ||
495 alloctype == VDEV_ALLOC_ROOTPOOL);
496 vd->vdev_mg = metaslab_group_create(islog ?
497 spa_log_class(spa) : spa_normal_class(spa), vd);
501 * If we're a leaf vdev, try to load the DTL object and other state.
503 if (vd->vdev_ops->vdev_op_leaf &&
504 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
505 alloctype == VDEV_ALLOC_ROOTPOOL)) {
506 if (alloctype == VDEV_ALLOC_LOAD) {
507 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
508 &vd->vdev_dtl_smo.smo_object);
509 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
510 &vd->vdev_unspare);
513 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
514 uint64_t spare = 0;
516 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
517 &spare) == 0 && spare)
518 spa_spare_add(vd);
521 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
522 &vd->vdev_offline);
524 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
525 &vd->vdev_resilvering);
528 * When importing a pool, we want to ignore the persistent fault
529 * state, as the diagnosis made on another system may not be
530 * valid in the current context. Local vdevs will
531 * remain in the faulted state.
533 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
534 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
535 &vd->vdev_faulted);
536 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
537 &vd->vdev_degraded);
538 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
539 &vd->vdev_removed);
541 if (vd->vdev_faulted || vd->vdev_degraded) {
542 char *aux;
544 vd->vdev_label_aux =
545 VDEV_AUX_ERR_EXCEEDED;
546 if (nvlist_lookup_string(nv,
547 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
548 strcmp(aux, "external") == 0)
549 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
555 * Add ourselves to the parent's list of children.
557 vdev_add_child(parent, vd);
559 *vdp = vd;
561 return (0);
564 void
565 vdev_free(vdev_t *vd)
567 spa_t *spa = vd->vdev_spa;
570 * vdev_free() implies closing the vdev first. This is simpler than
571 * trying to ensure complicated semantics for all callers.
573 vdev_close(vd);
575 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
576 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
579 * Free all children.
581 for (int c = 0; c < vd->vdev_children; c++)
582 vdev_free(vd->vdev_child[c]);
584 ASSERT(vd->vdev_child == NULL);
585 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
588 * Discard allocation state.
590 if (vd->vdev_mg != NULL) {
591 vdev_metaslab_fini(vd);
592 metaslab_group_destroy(vd->vdev_mg);
595 ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
596 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
597 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
600 * Remove this vdev from its parent's child list.
602 vdev_remove_child(vd->vdev_parent, vd);
604 ASSERT(vd->vdev_parent == NULL);
607 * Clean up vdev structure.
609 vdev_queue_fini(vd);
610 vdev_cache_fini(vd);
612 if (vd->vdev_path)
613 spa_strfree(vd->vdev_path);
614 if (vd->vdev_devid)
615 spa_strfree(vd->vdev_devid);
616 if (vd->vdev_physpath)
617 spa_strfree(vd->vdev_physpath);
618 if (vd->vdev_fru)
619 spa_strfree(vd->vdev_fru);
621 if (vd->vdev_isspare)
622 spa_spare_remove(vd);
623 if (vd->vdev_isl2cache)
624 spa_l2cache_remove(vd);
626 txg_list_destroy(&vd->vdev_ms_list);
627 txg_list_destroy(&vd->vdev_dtl_list);
629 mutex_enter(&vd->vdev_dtl_lock);
630 for (int t = 0; t < DTL_TYPES; t++) {
631 space_map_unload(&vd->vdev_dtl[t]);
632 space_map_destroy(&vd->vdev_dtl[t]);
634 mutex_exit(&vd->vdev_dtl_lock);
636 mutex_destroy(&vd->vdev_dtl_lock);
637 mutex_destroy(&vd->vdev_stat_lock);
638 mutex_destroy(&vd->vdev_probe_lock);
640 if (vd == spa->spa_root_vdev)
641 spa->spa_root_vdev = NULL;
643 kmem_free(vd, sizeof (vdev_t));
647 * Transfer top-level vdev state from svd to tvd.
649 static void
650 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
652 spa_t *spa = svd->vdev_spa;
653 metaslab_t *msp;
654 vdev_t *vd;
655 int t;
657 ASSERT(tvd == tvd->vdev_top);
659 tvd->vdev_ms_array = svd->vdev_ms_array;
660 tvd->vdev_ms_shift = svd->vdev_ms_shift;
661 tvd->vdev_ms_count = svd->vdev_ms_count;
663 svd->vdev_ms_array = 0;
664 svd->vdev_ms_shift = 0;
665 svd->vdev_ms_count = 0;
667 if (tvd->vdev_mg)
668 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
669 tvd->vdev_mg = svd->vdev_mg;
670 tvd->vdev_ms = svd->vdev_ms;
672 svd->vdev_mg = NULL;
673 svd->vdev_ms = NULL;
675 if (tvd->vdev_mg != NULL)
676 tvd->vdev_mg->mg_vd = tvd;
678 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
679 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
680 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
682 svd->vdev_stat.vs_alloc = 0;
683 svd->vdev_stat.vs_space = 0;
684 svd->vdev_stat.vs_dspace = 0;
686 for (t = 0; t < TXG_SIZE; t++) {
687 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
688 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
689 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
690 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
691 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
692 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
695 if (list_link_active(&svd->vdev_config_dirty_node)) {
696 vdev_config_clean(svd);
697 vdev_config_dirty(tvd);
700 if (list_link_active(&svd->vdev_state_dirty_node)) {
701 vdev_state_clean(svd);
702 vdev_state_dirty(tvd);
705 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
706 svd->vdev_deflate_ratio = 0;
708 tvd->vdev_islog = svd->vdev_islog;
709 svd->vdev_islog = 0;
712 static void
713 vdev_top_update(vdev_t *tvd, vdev_t *vd)
715 if (vd == NULL)
716 return;
718 vd->vdev_top = tvd;
720 for (int c = 0; c < vd->vdev_children; c++)
721 vdev_top_update(tvd, vd->vdev_child[c]);
725 * Add a mirror/replacing vdev above an existing vdev.
727 vdev_t *
728 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
730 spa_t *spa = cvd->vdev_spa;
731 vdev_t *pvd = cvd->vdev_parent;
732 vdev_t *mvd;
734 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
736 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
738 mvd->vdev_asize = cvd->vdev_asize;
739 mvd->vdev_min_asize = cvd->vdev_min_asize;
740 mvd->vdev_max_asize = cvd->vdev_max_asize;
741 mvd->vdev_ashift = cvd->vdev_ashift;
742 mvd->vdev_state = cvd->vdev_state;
743 mvd->vdev_crtxg = cvd->vdev_crtxg;
745 vdev_remove_child(pvd, cvd);
746 vdev_add_child(pvd, mvd);
747 cvd->vdev_id = mvd->vdev_children;
748 vdev_add_child(mvd, cvd);
749 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
751 if (mvd == mvd->vdev_top)
752 vdev_top_transfer(cvd, mvd);
754 return (mvd);
758 * Remove a 1-way mirror/replacing vdev from the tree.
760 void
761 vdev_remove_parent(vdev_t *cvd)
763 vdev_t *mvd = cvd->vdev_parent;
764 vdev_t *pvd = mvd->vdev_parent;
766 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
768 ASSERT(mvd->vdev_children == 1);
769 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
770 mvd->vdev_ops == &vdev_replacing_ops ||
771 mvd->vdev_ops == &vdev_spare_ops);
772 cvd->vdev_ashift = mvd->vdev_ashift;
774 vdev_remove_child(mvd, cvd);
775 vdev_remove_child(pvd, mvd);
778 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
779 * Otherwise, we could have detached an offline device, and when we
780 * go to import the pool we'll think we have two top-level vdevs,
781 * instead of a different version of the same top-level vdev.
783 if (mvd->vdev_top == mvd) {
784 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
785 cvd->vdev_orig_guid = cvd->vdev_guid;
786 cvd->vdev_guid += guid_delta;
787 cvd->vdev_guid_sum += guid_delta;
789 cvd->vdev_id = mvd->vdev_id;
790 vdev_add_child(pvd, cvd);
791 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
793 if (cvd == cvd->vdev_top)
794 vdev_top_transfer(mvd, cvd);
796 ASSERT(mvd->vdev_children == 0);
797 vdev_free(mvd);
801 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
803 spa_t *spa = vd->vdev_spa;
804 objset_t *mos = spa->spa_meta_objset;
805 uint64_t m;
806 uint64_t oldc = vd->vdev_ms_count;
807 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
808 metaslab_t **mspp;
809 int error;
811 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
814 * This vdev is not being allocated from yet or is a hole.
816 if (vd->vdev_ms_shift == 0)
817 return (0);
819 ASSERT(!vd->vdev_ishole);
822 * Compute the raidz-deflation ratio. Note, we hard-code
823 * in 128k (1 << 17) because it is the current "typical" blocksize.
824 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
825 * or we will inconsistently account for existing bp's.
827 vd->vdev_deflate_ratio = (1 << 17) /
828 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
830 ASSERT(oldc <= newc);
832 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
834 if (oldc != 0) {
835 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
836 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
839 vd->vdev_ms = mspp;
840 vd->vdev_ms_count = newc;
842 for (m = oldc; m < newc; m++) {
843 space_map_obj_t smo = { 0, 0, 0 };
844 if (txg == 0) {
845 uint64_t object = 0;
846 error = dmu_read(mos, vd->vdev_ms_array,
847 m * sizeof (uint64_t), sizeof (uint64_t), &object,
848 DMU_READ_PREFETCH);
849 if (error)
850 return (error);
851 if (object != 0) {
852 dmu_buf_t *db;
853 error = dmu_bonus_hold(mos, object, FTAG, &db);
854 if (error)
855 return (error);
856 ASSERT3U(db->db_size, >=, sizeof (smo));
857 bcopy(db->db_data, &smo, sizeof (smo));
858 ASSERT3U(smo.smo_object, ==, object);
859 dmu_buf_rele(db, FTAG);
862 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
863 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
866 if (txg == 0)
867 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
870 * If the vdev is being removed we don't activate
871 * the metaslabs since we want to ensure that no new
872 * allocations are performed on this device.
874 if (oldc == 0 && !vd->vdev_removing)
875 metaslab_group_activate(vd->vdev_mg);
877 if (txg == 0)
878 spa_config_exit(spa, SCL_ALLOC, FTAG);
880 return (0);
883 void
884 vdev_metaslab_fini(vdev_t *vd)
886 uint64_t m;
887 uint64_t count = vd->vdev_ms_count;
889 if (vd->vdev_ms != NULL) {
890 metaslab_group_passivate(vd->vdev_mg);
891 for (m = 0; m < count; m++)
892 if (vd->vdev_ms[m] != NULL)
893 metaslab_fini(vd->vdev_ms[m]);
894 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
895 vd->vdev_ms = NULL;
899 typedef struct vdev_probe_stats {
900 boolean_t vps_readable;
901 boolean_t vps_writeable;
902 int vps_flags;
903 } vdev_probe_stats_t;
905 static void
906 vdev_probe_done(zio_t *zio)
908 spa_t *spa = zio->io_spa;
909 vdev_t *vd = zio->io_vd;
910 vdev_probe_stats_t *vps = zio->io_private;
912 ASSERT(vd->vdev_probe_zio != NULL);
914 if (zio->io_type == ZIO_TYPE_READ) {
915 if (zio->io_error == 0)
916 vps->vps_readable = 1;
917 if (zio->io_error == 0 && spa_writeable(spa)) {
918 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
919 zio->io_offset, zio->io_size, zio->io_data,
920 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
921 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
922 } else {
923 zio_buf_free(zio->io_data, zio->io_size);
925 } else if (zio->io_type == ZIO_TYPE_WRITE) {
926 if (zio->io_error == 0)
927 vps->vps_writeable = 1;
928 zio_buf_free(zio->io_data, zio->io_size);
929 } else if (zio->io_type == ZIO_TYPE_NULL) {
930 zio_t *pio;
932 vd->vdev_cant_read |= !vps->vps_readable;
933 vd->vdev_cant_write |= !vps->vps_writeable;
935 if (vdev_readable(vd) &&
936 (vdev_writeable(vd) || !spa_writeable(spa))) {
937 zio->io_error = 0;
938 } else {
939 ASSERT(zio->io_error != 0);
940 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
941 spa, vd, NULL, 0, 0);
942 zio->io_error = ENXIO;
945 mutex_enter(&vd->vdev_probe_lock);
946 ASSERT(vd->vdev_probe_zio == zio);
947 vd->vdev_probe_zio = NULL;
948 mutex_exit(&vd->vdev_probe_lock);
950 while ((pio = zio_walk_parents(zio)) != NULL)
951 if (!vdev_accessible(vd, pio))
952 pio->io_error = ENXIO;
954 kmem_free(vps, sizeof (*vps));
959 * Determine whether this device is accessible by reading and writing
960 * to several known locations: the pad regions of each vdev label
961 * but the first (which we leave alone in case it contains a VTOC).
963 zio_t *
964 vdev_probe(vdev_t *vd, zio_t *zio)
966 spa_t *spa = vd->vdev_spa;
967 vdev_probe_stats_t *vps = NULL;
968 zio_t *pio;
970 ASSERT(vd->vdev_ops->vdev_op_leaf);
973 * Don't probe the probe.
975 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
976 return (NULL);
979 * To prevent 'probe storms' when a device fails, we create
980 * just one probe i/o at a time. All zios that want to probe
981 * this vdev will become parents of the probe io.
983 mutex_enter(&vd->vdev_probe_lock);
985 if ((pio = vd->vdev_probe_zio) == NULL) {
986 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
988 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
989 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
990 ZIO_FLAG_TRYHARD;
992 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
994 * vdev_cant_read and vdev_cant_write can only
995 * transition from TRUE to FALSE when we have the
996 * SCL_ZIO lock as writer; otherwise they can only
997 * transition from FALSE to TRUE. This ensures that
998 * any zio looking at these values can assume that
999 * failures persist for the life of the I/O. That's
1000 * important because when a device has intermittent
1001 * connectivity problems, we want to ensure that
1002 * they're ascribed to the device (ENXIO) and not
1003 * the zio (EIO).
1005 * Since we hold SCL_ZIO as writer here, clear both
1006 * values so the probe can reevaluate from first
1007 * principles.
1009 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1010 vd->vdev_cant_read = B_FALSE;
1011 vd->vdev_cant_write = B_FALSE;
1014 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1015 vdev_probe_done, vps,
1016 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1019 * We can't change the vdev state in this context, so we
1020 * kick off an async task to do it on our behalf.
1022 if (zio != NULL) {
1023 vd->vdev_probe_wanted = B_TRUE;
1024 spa_async_request(spa, SPA_ASYNC_PROBE);
1028 if (zio != NULL)
1029 zio_add_child(zio, pio);
1031 mutex_exit(&vd->vdev_probe_lock);
1033 if (vps == NULL) {
1034 ASSERT(zio != NULL);
1035 return (NULL);
1038 for (int l = 1; l < VDEV_LABELS; l++) {
1039 zio_nowait(zio_read_phys(pio, vd,
1040 vdev_label_offset(vd->vdev_psize, l,
1041 offsetof(vdev_label_t, vl_pad2)),
1042 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1043 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1044 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1047 if (zio == NULL)
1048 return (pio);
1050 zio_nowait(pio);
1051 return (NULL);
1054 static void
1055 vdev_open_child(void *arg)
1057 vdev_t *vd = arg;
1059 vd->vdev_open_thread = curthread;
1060 vd->vdev_open_error = vdev_open(vd);
1061 vd->vdev_open_thread = NULL;
1064 boolean_t
1065 vdev_uses_zvols(vdev_t *vd)
1067 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1068 strlen(ZVOL_DIR)) == 0)
1069 return (B_TRUE);
1070 for (int c = 0; c < vd->vdev_children; c++)
1071 if (vdev_uses_zvols(vd->vdev_child[c]))
1072 return (B_TRUE);
1073 return (B_FALSE);
1076 void
1077 vdev_open_children(vdev_t *vd)
1079 taskq_t *tq;
1080 int children = vd->vdev_children;
1083 * in order to handle pools on top of zvols, do the opens
1084 * in a single thread so that the same thread holds the
1085 * spa_namespace_lock
1087 if (vdev_uses_zvols(vd)) {
1088 for (int c = 0; c < children; c++)
1089 vd->vdev_child[c]->vdev_open_error =
1090 vdev_open(vd->vdev_child[c]);
1091 return;
1093 tq = taskq_create("vdev_open", children, minclsyspri,
1094 children, children, TASKQ_PREPOPULATE);
1096 for (int c = 0; c < children; c++)
1097 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1098 TQ_SLEEP) != NULL);
1100 taskq_destroy(tq);
1104 * Prepare a virtual device for access.
1107 vdev_open(vdev_t *vd)
1109 spa_t *spa = vd->vdev_spa;
1110 int error;
1111 uint64_t osize = 0;
1112 uint64_t max_osize = 0;
1113 uint64_t asize, max_asize, psize;
1114 uint64_t ashift = 0;
1116 ASSERT(vd->vdev_open_thread == curthread ||
1117 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1118 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1119 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1120 vd->vdev_state == VDEV_STATE_OFFLINE);
1122 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1123 vd->vdev_cant_read = B_FALSE;
1124 vd->vdev_cant_write = B_FALSE;
1125 vd->vdev_min_asize = vdev_get_min_asize(vd);
1128 * If this vdev is not removed, check its fault status. If it's
1129 * faulted, bail out of the open.
1131 if (!vd->vdev_removed && vd->vdev_faulted) {
1132 ASSERT(vd->vdev_children == 0);
1133 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1134 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1135 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1136 vd->vdev_label_aux);
1137 return (ENXIO);
1138 } else if (vd->vdev_offline) {
1139 ASSERT(vd->vdev_children == 0);
1140 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1141 return (ENXIO);
1144 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1147 * Reset the vdev_reopening flag so that we actually close
1148 * the vdev on error.
1150 vd->vdev_reopening = B_FALSE;
1151 if (zio_injection_enabled && error == 0)
1152 error = zio_handle_device_injection(vd, NULL, ENXIO);
1154 if (error) {
1155 if (vd->vdev_removed &&
1156 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1157 vd->vdev_removed = B_FALSE;
1159 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1160 vd->vdev_stat.vs_aux);
1161 return (error);
1164 vd->vdev_removed = B_FALSE;
1167 * Recheck the faulted flag now that we have confirmed that
1168 * the vdev is accessible. If we're faulted, bail.
1170 if (vd->vdev_faulted) {
1171 ASSERT(vd->vdev_children == 0);
1172 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1173 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1174 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1175 vd->vdev_label_aux);
1176 return (ENXIO);
1179 if (vd->vdev_degraded) {
1180 ASSERT(vd->vdev_children == 0);
1181 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1182 VDEV_AUX_ERR_EXCEEDED);
1183 } else {
1184 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1188 * For hole or missing vdevs we just return success.
1190 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1191 return (0);
1193 for (int c = 0; c < vd->vdev_children; c++) {
1194 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1195 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1196 VDEV_AUX_NONE);
1197 break;
1201 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1202 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1204 if (vd->vdev_children == 0) {
1205 if (osize < SPA_MINDEVSIZE) {
1206 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1207 VDEV_AUX_TOO_SMALL);
1208 return (EOVERFLOW);
1210 psize = osize;
1211 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1212 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1213 VDEV_LABEL_END_SIZE);
1214 } else {
1215 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1216 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1217 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1218 VDEV_AUX_TOO_SMALL);
1219 return (EOVERFLOW);
1221 psize = 0;
1222 asize = osize;
1223 max_asize = max_osize;
1226 vd->vdev_psize = psize;
1229 * Make sure the allocatable size hasn't shrunk.
1231 if (asize < vd->vdev_min_asize) {
1232 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1233 VDEV_AUX_BAD_LABEL);
1234 return (EINVAL);
1237 if (vd->vdev_asize == 0) {
1239 * This is the first-ever open, so use the computed values.
1240 * For testing purposes, a higher ashift can be requested.
1242 vd->vdev_asize = asize;
1243 vd->vdev_max_asize = max_asize;
1244 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1245 } else {
1247 * Detect if the alignment requirement has increased.
1248 * We don't want to make the pool unavailable, just
1249 * issue a warning instead.
1251 if (ashift > vd->vdev_top->vdev_ashift &&
1252 vd->vdev_ops->vdev_op_leaf) {
1253 cmn_err(CE_WARN,
1254 "Disk, '%s', has a block alignment that is "
1255 "larger than the pool's alignment\n",
1256 vd->vdev_path);
1258 vd->vdev_max_asize = max_asize;
1262 * If all children are healthy and the asize has increased,
1263 * then we've experienced dynamic LUN growth. If automatic
1264 * expansion is enabled then use the additional space.
1266 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1267 (vd->vdev_expanding || spa->spa_autoexpand))
1268 vd->vdev_asize = asize;
1270 vdev_set_min_asize(vd);
1273 * Ensure we can issue some IO before declaring the
1274 * vdev open for business.
1276 if (vd->vdev_ops->vdev_op_leaf &&
1277 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1278 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1279 VDEV_AUX_ERR_EXCEEDED);
1280 return (error);
1284 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1285 * resilver. But don't do this if we are doing a reopen for a scrub,
1286 * since this would just restart the scrub we are already doing.
1288 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1289 vdev_resilver_needed(vd, NULL, NULL))
1290 spa_async_request(spa, SPA_ASYNC_RESILVER);
1292 return (0);
1296 * Called once the vdevs are all opened, this routine validates the label
1297 * contents. This needs to be done before vdev_load() so that we don't
1298 * inadvertently do repair I/Os to the wrong device.
1300 * If 'strict' is false ignore the spa guid check. This is necessary because
1301 * if the machine crashed during a re-guid the new guid might have been written
1302 * to all of the vdev labels, but not the cached config. The strict check
1303 * will be performed when the pool is opened again using the mos config.
1305 * This function will only return failure if one of the vdevs indicates that it
1306 * has since been destroyed or exported. This is only possible if
1307 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1308 * will be updated but the function will return 0.
1311 vdev_validate(vdev_t *vd, boolean_t strict)
1313 spa_t *spa = vd->vdev_spa;
1314 nvlist_t *label;
1315 uint64_t guid = 0, top_guid;
1316 uint64_t state;
1318 for (int c = 0; c < vd->vdev_children; c++)
1319 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1320 return (EBADF);
1323 * If the device has already failed, or was marked offline, don't do
1324 * any further validation. Otherwise, label I/O will fail and we will
1325 * overwrite the previous state.
1327 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1328 uint64_t aux_guid = 0;
1329 nvlist_t *nvl;
1330 uint64_t txg = strict ? spa->spa_config_txg : -1ULL;
1332 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1333 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1334 VDEV_AUX_BAD_LABEL);
1335 return (0);
1339 * Determine if this vdev has been split off into another
1340 * pool. If so, then refuse to open it.
1342 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1343 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1344 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1345 VDEV_AUX_SPLIT_POOL);
1346 nvlist_free(label);
1347 return (0);
1350 if (strict && (nvlist_lookup_uint64(label,
1351 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1352 guid != spa_guid(spa))) {
1353 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1354 VDEV_AUX_CORRUPT_DATA);
1355 nvlist_free(label);
1356 return (0);
1359 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1360 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1361 &aux_guid) != 0)
1362 aux_guid = 0;
1365 * If this vdev just became a top-level vdev because its
1366 * sibling was detached, it will have adopted the parent's
1367 * vdev guid -- but the label may or may not be on disk yet.
1368 * Fortunately, either version of the label will have the
1369 * same top guid, so if we're a top-level vdev, we can
1370 * safely compare to that instead.
1372 * If we split this vdev off instead, then we also check the
1373 * original pool's guid. We don't want to consider the vdev
1374 * corrupt if it is partway through a split operation.
1376 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1377 &guid) != 0 ||
1378 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1379 &top_guid) != 0 ||
1380 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1381 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1382 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1383 VDEV_AUX_CORRUPT_DATA);
1384 nvlist_free(label);
1385 return (0);
1388 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1389 &state) != 0) {
1390 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1391 VDEV_AUX_CORRUPT_DATA);
1392 nvlist_free(label);
1393 return (0);
1396 nvlist_free(label);
1399 * If this is a verbatim import, no need to check the
1400 * state of the pool.
1402 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1403 spa_load_state(spa) == SPA_LOAD_OPEN &&
1404 state != POOL_STATE_ACTIVE)
1405 return (EBADF);
1408 * If we were able to open and validate a vdev that was
1409 * previously marked permanently unavailable, clear that state
1410 * now.
1412 if (vd->vdev_not_present)
1413 vd->vdev_not_present = 0;
1416 return (0);
1420 * Close a virtual device.
1422 void
1423 vdev_close(vdev_t *vd)
1425 spa_t *spa = vd->vdev_spa;
1426 vdev_t *pvd = vd->vdev_parent;
1428 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1431 * If our parent is reopening, then we are as well, unless we are
1432 * going offline.
1434 if (pvd != NULL && pvd->vdev_reopening)
1435 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1437 vd->vdev_ops->vdev_op_close(vd);
1439 vdev_cache_purge(vd);
1442 * We record the previous state before we close it, so that if we are
1443 * doing a reopen(), we don't generate FMA ereports if we notice that
1444 * it's still faulted.
1446 vd->vdev_prevstate = vd->vdev_state;
1448 if (vd->vdev_offline)
1449 vd->vdev_state = VDEV_STATE_OFFLINE;
1450 else
1451 vd->vdev_state = VDEV_STATE_CLOSED;
1452 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1455 void
1456 vdev_hold(vdev_t *vd)
1458 spa_t *spa = vd->vdev_spa;
1460 ASSERT(spa_is_root(spa));
1461 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1462 return;
1464 for (int c = 0; c < vd->vdev_children; c++)
1465 vdev_hold(vd->vdev_child[c]);
1467 if (vd->vdev_ops->vdev_op_leaf)
1468 vd->vdev_ops->vdev_op_hold(vd);
1471 void
1472 vdev_rele(vdev_t *vd)
1474 spa_t *spa = vd->vdev_spa;
1476 ASSERT(spa_is_root(spa));
1477 for (int c = 0; c < vd->vdev_children; c++)
1478 vdev_rele(vd->vdev_child[c]);
1480 if (vd->vdev_ops->vdev_op_leaf)
1481 vd->vdev_ops->vdev_op_rele(vd);
1485 * Reopen all interior vdevs and any unopened leaves. We don't actually
1486 * reopen leaf vdevs which had previously been opened as they might deadlock
1487 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1488 * If the leaf has never been opened then open it, as usual.
1490 void
1491 vdev_reopen(vdev_t *vd)
1493 spa_t *spa = vd->vdev_spa;
1495 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1497 /* set the reopening flag unless we're taking the vdev offline */
1498 vd->vdev_reopening = !vd->vdev_offline;
1499 vdev_close(vd);
1500 (void) vdev_open(vd);
1503 * Call vdev_validate() here to make sure we have the same device.
1504 * Otherwise, a device with an invalid label could be successfully
1505 * opened in response to vdev_reopen().
1507 if (vd->vdev_aux) {
1508 (void) vdev_validate_aux(vd);
1509 if (vdev_readable(vd) && vdev_writeable(vd) &&
1510 vd->vdev_aux == &spa->spa_l2cache &&
1511 !l2arc_vdev_present(vd))
1512 l2arc_add_vdev(spa, vd);
1513 } else {
1514 (void) vdev_validate(vd, spa_last_synced_txg(spa));
1518 * Reassess parent vdev's health.
1520 vdev_propagate_state(vd);
1524 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1526 int error;
1529 * Normally, partial opens (e.g. of a mirror) are allowed.
1530 * For a create, however, we want to fail the request if
1531 * there are any components we can't open.
1533 error = vdev_open(vd);
1535 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1536 vdev_close(vd);
1537 return (error ? error : ENXIO);
1541 * Recursively initialize all labels.
1543 if ((error = vdev_label_init(vd, txg, isreplacing ?
1544 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1545 vdev_close(vd);
1546 return (error);
1549 return (0);
1552 void
1553 vdev_metaslab_set_size(vdev_t *vd)
1556 * Aim for roughly 200 metaslabs per vdev.
1558 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1559 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1562 void
1563 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1565 ASSERT(vd == vd->vdev_top);
1566 ASSERT(!vd->vdev_ishole);
1567 ASSERT(ISP2(flags));
1568 ASSERT(spa_writeable(vd->vdev_spa));
1570 if (flags & VDD_METASLAB)
1571 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1573 if (flags & VDD_DTL)
1574 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1576 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1580 * DTLs.
1582 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1583 * the vdev has less than perfect replication. There are four kinds of DTL:
1585 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1587 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1589 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1590 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1591 * txgs that was scrubbed.
1593 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1594 * persistent errors or just some device being offline.
1595 * Unlike the other three, the DTL_OUTAGE map is not generally
1596 * maintained; it's only computed when needed, typically to
1597 * determine whether a device can be detached.
1599 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1600 * either has the data or it doesn't.
1602 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1603 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1604 * if any child is less than fully replicated, then so is its parent.
1605 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1606 * comprising only those txgs which appear in 'maxfaults' or more children;
1607 * those are the txgs we don't have enough replication to read. For example,
1608 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1609 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1610 * two child DTL_MISSING maps.
1612 * It should be clear from the above that to compute the DTLs and outage maps
1613 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1614 * Therefore, that is all we keep on disk. When loading the pool, or after
1615 * a configuration change, we generate all other DTLs from first principles.
1617 void
1618 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1620 space_map_t *sm = &vd->vdev_dtl[t];
1622 ASSERT(t < DTL_TYPES);
1623 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1624 ASSERT(spa_writeable(vd->vdev_spa));
1626 mutex_enter(sm->sm_lock);
1627 if (!space_map_contains(sm, txg, size))
1628 space_map_add(sm, txg, size);
1629 mutex_exit(sm->sm_lock);
1632 boolean_t
1633 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1635 space_map_t *sm = &vd->vdev_dtl[t];
1636 boolean_t dirty = B_FALSE;
1638 ASSERT(t < DTL_TYPES);
1639 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1641 mutex_enter(sm->sm_lock);
1642 if (sm->sm_space != 0)
1643 dirty = space_map_contains(sm, txg, size);
1644 mutex_exit(sm->sm_lock);
1646 return (dirty);
1649 boolean_t
1650 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1652 space_map_t *sm = &vd->vdev_dtl[t];
1653 boolean_t empty;
1655 mutex_enter(sm->sm_lock);
1656 empty = (sm->sm_space == 0);
1657 mutex_exit(sm->sm_lock);
1659 return (empty);
1663 * Reassess DTLs after a config change or scrub completion.
1665 void
1666 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1668 spa_t *spa = vd->vdev_spa;
1669 avl_tree_t reftree;
1670 int minref;
1672 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1674 for (int c = 0; c < vd->vdev_children; c++)
1675 vdev_dtl_reassess(vd->vdev_child[c], txg,
1676 scrub_txg, scrub_done);
1678 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1679 return;
1681 if (vd->vdev_ops->vdev_op_leaf) {
1682 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1684 mutex_enter(&vd->vdev_dtl_lock);
1685 if (scrub_txg != 0 &&
1686 (spa->spa_scrub_started ||
1687 (scn && scn->scn_phys.scn_errors == 0))) {
1689 * We completed a scrub up to scrub_txg. If we
1690 * did it without rebooting, then the scrub dtl
1691 * will be valid, so excise the old region and
1692 * fold in the scrub dtl. Otherwise, leave the
1693 * dtl as-is if there was an error.
1695 * There's little trick here: to excise the beginning
1696 * of the DTL_MISSING map, we put it into a reference
1697 * tree and then add a segment with refcnt -1 that
1698 * covers the range [0, scrub_txg). This means
1699 * that each txg in that range has refcnt -1 or 0.
1700 * We then add DTL_SCRUB with a refcnt of 2, so that
1701 * entries in the range [0, scrub_txg) will have a
1702 * positive refcnt -- either 1 or 2. We then convert
1703 * the reference tree into the new DTL_MISSING map.
1705 space_map_ref_create(&reftree);
1706 space_map_ref_add_map(&reftree,
1707 &vd->vdev_dtl[DTL_MISSING], 1);
1708 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1709 space_map_ref_add_map(&reftree,
1710 &vd->vdev_dtl[DTL_SCRUB], 2);
1711 space_map_ref_generate_map(&reftree,
1712 &vd->vdev_dtl[DTL_MISSING], 1);
1713 space_map_ref_destroy(&reftree);
1715 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1716 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1717 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1718 if (scrub_done)
1719 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1720 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1721 if (!vdev_readable(vd))
1722 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1723 else
1724 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1725 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1726 mutex_exit(&vd->vdev_dtl_lock);
1728 if (txg != 0)
1729 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1730 return;
1733 mutex_enter(&vd->vdev_dtl_lock);
1734 for (int t = 0; t < DTL_TYPES; t++) {
1735 /* account for child's outage in parent's missing map */
1736 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1737 if (t == DTL_SCRUB)
1738 continue; /* leaf vdevs only */
1739 if (t == DTL_PARTIAL)
1740 minref = 1; /* i.e. non-zero */
1741 else if (vd->vdev_nparity != 0)
1742 minref = vd->vdev_nparity + 1; /* RAID-Z */
1743 else
1744 minref = vd->vdev_children; /* any kind of mirror */
1745 space_map_ref_create(&reftree);
1746 for (int c = 0; c < vd->vdev_children; c++) {
1747 vdev_t *cvd = vd->vdev_child[c];
1748 mutex_enter(&cvd->vdev_dtl_lock);
1749 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1750 mutex_exit(&cvd->vdev_dtl_lock);
1752 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1753 space_map_ref_destroy(&reftree);
1755 mutex_exit(&vd->vdev_dtl_lock);
1758 static int
1759 vdev_dtl_load(vdev_t *vd)
1761 spa_t *spa = vd->vdev_spa;
1762 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1763 objset_t *mos = spa->spa_meta_objset;
1764 dmu_buf_t *db;
1765 int error;
1767 ASSERT(vd->vdev_children == 0);
1769 if (smo->smo_object == 0)
1770 return (0);
1772 ASSERT(!vd->vdev_ishole);
1774 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1775 return (error);
1777 ASSERT3U(db->db_size, >=, sizeof (*smo));
1778 bcopy(db->db_data, smo, sizeof (*smo));
1779 dmu_buf_rele(db, FTAG);
1781 mutex_enter(&vd->vdev_dtl_lock);
1782 error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1783 NULL, SM_ALLOC, smo, mos);
1784 mutex_exit(&vd->vdev_dtl_lock);
1786 return (error);
1789 void
1790 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1792 spa_t *spa = vd->vdev_spa;
1793 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1794 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1795 objset_t *mos = spa->spa_meta_objset;
1796 space_map_t smsync;
1797 kmutex_t smlock;
1798 dmu_buf_t *db;
1799 dmu_tx_t *tx;
1801 ASSERT(!vd->vdev_ishole);
1803 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1805 if (vd->vdev_detached) {
1806 if (smo->smo_object != 0) {
1807 int err = dmu_object_free(mos, smo->smo_object, tx);
1808 ASSERT3U(err, ==, 0);
1809 smo->smo_object = 0;
1811 dmu_tx_commit(tx);
1812 return;
1815 if (smo->smo_object == 0) {
1816 ASSERT(smo->smo_objsize == 0);
1817 ASSERT(smo->smo_alloc == 0);
1818 smo->smo_object = dmu_object_alloc(mos,
1819 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1820 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1821 ASSERT(smo->smo_object != 0);
1822 vdev_config_dirty(vd->vdev_top);
1825 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1827 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1828 &smlock);
1830 mutex_enter(&smlock);
1832 mutex_enter(&vd->vdev_dtl_lock);
1833 space_map_walk(sm, space_map_add, &smsync);
1834 mutex_exit(&vd->vdev_dtl_lock);
1836 space_map_truncate(smo, mos, tx);
1837 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1839 space_map_destroy(&smsync);
1841 mutex_exit(&smlock);
1842 mutex_destroy(&smlock);
1844 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1845 dmu_buf_will_dirty(db, tx);
1846 ASSERT3U(db->db_size, >=, sizeof (*smo));
1847 bcopy(smo, db->db_data, sizeof (*smo));
1848 dmu_buf_rele(db, FTAG);
1850 dmu_tx_commit(tx);
1854 * Determine whether the specified vdev can be offlined/detached/removed
1855 * without losing data.
1857 boolean_t
1858 vdev_dtl_required(vdev_t *vd)
1860 spa_t *spa = vd->vdev_spa;
1861 vdev_t *tvd = vd->vdev_top;
1862 uint8_t cant_read = vd->vdev_cant_read;
1863 boolean_t required;
1865 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1867 if (vd == spa->spa_root_vdev || vd == tvd)
1868 return (B_TRUE);
1871 * Temporarily mark the device as unreadable, and then determine
1872 * whether this results in any DTL outages in the top-level vdev.
1873 * If not, we can safely offline/detach/remove the device.
1875 vd->vdev_cant_read = B_TRUE;
1876 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1877 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1878 vd->vdev_cant_read = cant_read;
1879 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1881 if (!required && zio_injection_enabled)
1882 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1884 return (required);
1888 * Determine if resilver is needed, and if so the txg range.
1890 boolean_t
1891 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1893 boolean_t needed = B_FALSE;
1894 uint64_t thismin = UINT64_MAX;
1895 uint64_t thismax = 0;
1897 if (vd->vdev_children == 0) {
1898 mutex_enter(&vd->vdev_dtl_lock);
1899 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1900 vdev_writeable(vd)) {
1901 space_seg_t *ss;
1903 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1904 thismin = ss->ss_start - 1;
1905 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1906 thismax = ss->ss_end;
1907 needed = B_TRUE;
1909 mutex_exit(&vd->vdev_dtl_lock);
1910 } else {
1911 for (int c = 0; c < vd->vdev_children; c++) {
1912 vdev_t *cvd = vd->vdev_child[c];
1913 uint64_t cmin, cmax;
1915 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1916 thismin = MIN(thismin, cmin);
1917 thismax = MAX(thismax, cmax);
1918 needed = B_TRUE;
1923 if (needed && minp) {
1924 *minp = thismin;
1925 *maxp = thismax;
1927 return (needed);
1930 void
1931 vdev_load(vdev_t *vd)
1934 * Recursively load all children.
1936 for (int c = 0; c < vd->vdev_children; c++)
1937 vdev_load(vd->vdev_child[c]);
1940 * If this is a top-level vdev, initialize its metaslabs.
1942 if (vd == vd->vdev_top && !vd->vdev_ishole &&
1943 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1944 vdev_metaslab_init(vd, 0) != 0))
1945 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1946 VDEV_AUX_CORRUPT_DATA);
1949 * If this is a leaf vdev, load its DTL.
1951 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1952 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1953 VDEV_AUX_CORRUPT_DATA);
1957 * The special vdev case is used for hot spares and l2cache devices. Its
1958 * sole purpose it to set the vdev state for the associated vdev. To do this,
1959 * we make sure that we can open the underlying device, then try to read the
1960 * label, and make sure that the label is sane and that it hasn't been
1961 * repurposed to another pool.
1964 vdev_validate_aux(vdev_t *vd)
1966 nvlist_t *label;
1967 uint64_t guid, version;
1968 uint64_t state;
1970 if (!vdev_readable(vd))
1971 return (0);
1973 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
1974 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1975 VDEV_AUX_CORRUPT_DATA);
1976 return (-1);
1979 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1980 !SPA_VERSION_IS_SUPPORTED(version) ||
1981 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1982 guid != vd->vdev_guid ||
1983 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1984 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1985 VDEV_AUX_CORRUPT_DATA);
1986 nvlist_free(label);
1987 return (-1);
1991 * We don't actually check the pool state here. If it's in fact in
1992 * use by another pool, we update this fact on the fly when requested.
1994 nvlist_free(label);
1995 return (0);
1998 void
1999 vdev_remove(vdev_t *vd, uint64_t txg)
2001 spa_t *spa = vd->vdev_spa;
2002 objset_t *mos = spa->spa_meta_objset;
2003 dmu_tx_t *tx;
2005 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2007 if (vd->vdev_dtl_smo.smo_object) {
2008 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
2009 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2010 vd->vdev_dtl_smo.smo_object = 0;
2013 if (vd->vdev_ms != NULL) {
2014 for (int m = 0; m < vd->vdev_ms_count; m++) {
2015 metaslab_t *msp = vd->vdev_ms[m];
2017 if (msp == NULL || msp->ms_smo.smo_object == 0)
2018 continue;
2020 ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2021 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2022 msp->ms_smo.smo_object = 0;
2026 if (vd->vdev_ms_array) {
2027 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2028 vd->vdev_ms_array = 0;
2029 vd->vdev_ms_shift = 0;
2031 dmu_tx_commit(tx);
2034 void
2035 vdev_sync_done(vdev_t *vd, uint64_t txg)
2037 metaslab_t *msp;
2038 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2040 ASSERT(!vd->vdev_ishole);
2042 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2043 metaslab_sync_done(msp, txg);
2045 if (reassess)
2046 metaslab_sync_reassess(vd->vdev_mg);
2049 void
2050 vdev_sync(vdev_t *vd, uint64_t txg)
2052 spa_t *spa = vd->vdev_spa;
2053 vdev_t *lvd;
2054 metaslab_t *msp;
2055 dmu_tx_t *tx;
2057 ASSERT(!vd->vdev_ishole);
2059 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2060 ASSERT(vd == vd->vdev_top);
2061 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2062 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2063 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2064 ASSERT(vd->vdev_ms_array != 0);
2065 vdev_config_dirty(vd);
2066 dmu_tx_commit(tx);
2070 * Remove the metadata associated with this vdev once it's empty.
2072 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2073 vdev_remove(vd, txg);
2075 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2076 metaslab_sync(msp, txg);
2077 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2080 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2081 vdev_dtl_sync(lvd, txg);
2083 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2086 uint64_t
2087 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2089 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2093 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2094 * not be opened, and no I/O is attempted.
2097 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2099 vdev_t *vd, *tvd;
2101 spa_vdev_state_enter(spa, SCL_NONE);
2103 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2104 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2106 if (!vd->vdev_ops->vdev_op_leaf)
2107 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2109 tvd = vd->vdev_top;
2112 * We don't directly use the aux state here, but if we do a
2113 * vdev_reopen(), we need this value to be present to remember why we
2114 * were faulted.
2116 vd->vdev_label_aux = aux;
2119 * Faulted state takes precedence over degraded.
2121 vd->vdev_delayed_close = B_FALSE;
2122 vd->vdev_faulted = 1ULL;
2123 vd->vdev_degraded = 0ULL;
2124 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2127 * If this device has the only valid copy of the data, then
2128 * back off and simply mark the vdev as degraded instead.
2130 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2131 vd->vdev_degraded = 1ULL;
2132 vd->vdev_faulted = 0ULL;
2135 * If we reopen the device and it's not dead, only then do we
2136 * mark it degraded.
2138 vdev_reopen(tvd);
2140 if (vdev_readable(vd))
2141 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2144 return (spa_vdev_state_exit(spa, vd, 0));
2148 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2149 * user that something is wrong. The vdev continues to operate as normal as far
2150 * as I/O is concerned.
2153 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2155 vdev_t *vd;
2157 spa_vdev_state_enter(spa, SCL_NONE);
2159 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2160 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2162 if (!vd->vdev_ops->vdev_op_leaf)
2163 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2166 * If the vdev is already faulted, then don't do anything.
2168 if (vd->vdev_faulted || vd->vdev_degraded)
2169 return (spa_vdev_state_exit(spa, NULL, 0));
2171 vd->vdev_degraded = 1ULL;
2172 if (!vdev_is_dead(vd))
2173 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2174 aux);
2176 return (spa_vdev_state_exit(spa, vd, 0));
2180 * Online the given vdev. If 'unspare' is set, it implies two things. First,
2181 * any attached spare device should be detached when the device finishes
2182 * resilvering. Second, the online should be treated like a 'test' online case,
2183 * so no FMA events are generated if the device fails to open.
2186 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2188 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2190 spa_vdev_state_enter(spa, SCL_NONE);
2192 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2193 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2195 if (!vd->vdev_ops->vdev_op_leaf)
2196 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2198 tvd = vd->vdev_top;
2199 vd->vdev_offline = B_FALSE;
2200 vd->vdev_tmpoffline = B_FALSE;
2201 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2202 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2204 /* XXX - L2ARC 1.0 does not support expansion */
2205 if (!vd->vdev_aux) {
2206 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2207 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2210 vdev_reopen(tvd);
2211 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2213 if (!vd->vdev_aux) {
2214 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2215 pvd->vdev_expanding = B_FALSE;
2218 if (newstate)
2219 *newstate = vd->vdev_state;
2220 if ((flags & ZFS_ONLINE_UNSPARE) &&
2221 !vdev_is_dead(vd) && vd->vdev_parent &&
2222 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2223 vd->vdev_parent->vdev_child[0] == vd)
2224 vd->vdev_unspare = B_TRUE;
2226 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2228 /* XXX - L2ARC 1.0 does not support expansion */
2229 if (vd->vdev_aux)
2230 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2231 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2233 return (spa_vdev_state_exit(spa, vd, 0));
2236 static int
2237 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2239 vdev_t *vd, *tvd;
2240 int error = 0;
2241 uint64_t generation;
2242 metaslab_group_t *mg;
2244 top:
2245 spa_vdev_state_enter(spa, SCL_ALLOC);
2247 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2248 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2250 if (!vd->vdev_ops->vdev_op_leaf)
2251 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2253 tvd = vd->vdev_top;
2254 mg = tvd->vdev_mg;
2255 generation = spa->spa_config_generation + 1;
2258 * If the device isn't already offline, try to offline it.
2260 if (!vd->vdev_offline) {
2262 * If this device has the only valid copy of some data,
2263 * don't allow it to be offlined. Log devices are always
2264 * expendable.
2266 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2267 vdev_dtl_required(vd))
2268 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2271 * If the top-level is a slog and it has had allocations
2272 * then proceed. We check that the vdev's metaslab group
2273 * is not NULL since it's possible that we may have just
2274 * added this vdev but not yet initialized its metaslabs.
2276 if (tvd->vdev_islog && mg != NULL) {
2278 * Prevent any future allocations.
2280 metaslab_group_passivate(mg);
2281 (void) spa_vdev_state_exit(spa, vd, 0);
2283 error = spa_offline_log(spa);
2285 spa_vdev_state_enter(spa, SCL_ALLOC);
2288 * Check to see if the config has changed.
2290 if (error || generation != spa->spa_config_generation) {
2291 metaslab_group_activate(mg);
2292 if (error)
2293 return (spa_vdev_state_exit(spa,
2294 vd, error));
2295 (void) spa_vdev_state_exit(spa, vd, 0);
2296 goto top;
2298 ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2302 * Offline this device and reopen its top-level vdev.
2303 * If the top-level vdev is a log device then just offline
2304 * it. Otherwise, if this action results in the top-level
2305 * vdev becoming unusable, undo it and fail the request.
2307 vd->vdev_offline = B_TRUE;
2308 vdev_reopen(tvd);
2310 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2311 vdev_is_dead(tvd)) {
2312 vd->vdev_offline = B_FALSE;
2313 vdev_reopen(tvd);
2314 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2318 * Add the device back into the metaslab rotor so that
2319 * once we online the device it's open for business.
2321 if (tvd->vdev_islog && mg != NULL)
2322 metaslab_group_activate(mg);
2325 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2327 return (spa_vdev_state_exit(spa, vd, 0));
2331 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2333 int error;
2335 mutex_enter(&spa->spa_vdev_top_lock);
2336 error = vdev_offline_locked(spa, guid, flags);
2337 mutex_exit(&spa->spa_vdev_top_lock);
2339 return (error);
2343 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2344 * vdev_offline(), we assume the spa config is locked. We also clear all
2345 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2347 void
2348 vdev_clear(spa_t *spa, vdev_t *vd)
2350 vdev_t *rvd = spa->spa_root_vdev;
2352 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2354 if (vd == NULL)
2355 vd = rvd;
2357 vd->vdev_stat.vs_read_errors = 0;
2358 vd->vdev_stat.vs_write_errors = 0;
2359 vd->vdev_stat.vs_checksum_errors = 0;
2361 for (int c = 0; c < vd->vdev_children; c++)
2362 vdev_clear(spa, vd->vdev_child[c]);
2365 * If we're in the FAULTED state or have experienced failed I/O, then
2366 * clear the persistent state and attempt to reopen the device. We
2367 * also mark the vdev config dirty, so that the new faulted state is
2368 * written out to disk.
2370 if (vd->vdev_faulted || vd->vdev_degraded ||
2371 !vdev_readable(vd) || !vdev_writeable(vd)) {
2374 * When reopening in reponse to a clear event, it may be due to
2375 * a fmadm repair request. In this case, if the device is
2376 * still broken, we want to still post the ereport again.
2378 vd->vdev_forcefault = B_TRUE;
2380 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2381 vd->vdev_cant_read = B_FALSE;
2382 vd->vdev_cant_write = B_FALSE;
2384 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2386 vd->vdev_forcefault = B_FALSE;
2388 if (vd != rvd && vdev_writeable(vd->vdev_top))
2389 vdev_state_dirty(vd->vdev_top);
2391 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2392 spa_async_request(spa, SPA_ASYNC_RESILVER);
2394 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2398 * When clearing a FMA-diagnosed fault, we always want to
2399 * unspare the device, as we assume that the original spare was
2400 * done in response to the FMA fault.
2402 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2403 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2404 vd->vdev_parent->vdev_child[0] == vd)
2405 vd->vdev_unspare = B_TRUE;
2408 boolean_t
2409 vdev_is_dead(vdev_t *vd)
2412 * Holes and missing devices are always considered "dead".
2413 * This simplifies the code since we don't have to check for
2414 * these types of devices in the various code paths.
2415 * Instead we rely on the fact that we skip over dead devices
2416 * before issuing I/O to them.
2418 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2419 vd->vdev_ops == &vdev_missing_ops);
2422 boolean_t
2423 vdev_readable(vdev_t *vd)
2425 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2428 boolean_t
2429 vdev_writeable(vdev_t *vd)
2431 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2434 boolean_t
2435 vdev_allocatable(vdev_t *vd)
2437 uint64_t state = vd->vdev_state;
2440 * We currently allow allocations from vdevs which may be in the
2441 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2442 * fails to reopen then we'll catch it later when we're holding
2443 * the proper locks. Note that we have to get the vdev state
2444 * in a local variable because although it changes atomically,
2445 * we're asking two separate questions about it.
2447 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2448 !vd->vdev_cant_write && !vd->vdev_ishole);
2451 boolean_t
2452 vdev_accessible(vdev_t *vd, zio_t *zio)
2454 ASSERT(zio->io_vd == vd);
2456 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2457 return (B_FALSE);
2459 if (zio->io_type == ZIO_TYPE_READ)
2460 return (!vd->vdev_cant_read);
2462 if (zio->io_type == ZIO_TYPE_WRITE)
2463 return (!vd->vdev_cant_write);
2465 return (B_TRUE);
2469 * Get statistics for the given vdev.
2471 void
2472 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2474 vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2476 mutex_enter(&vd->vdev_stat_lock);
2477 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2478 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2479 vs->vs_state = vd->vdev_state;
2480 vs->vs_rsize = vdev_get_min_asize(vd);
2481 if (vd->vdev_ops->vdev_op_leaf)
2482 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2483 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2484 mutex_exit(&vd->vdev_stat_lock);
2487 * If we're getting stats on the root vdev, aggregate the I/O counts
2488 * over all top-level vdevs (i.e. the direct children of the root).
2490 if (vd == rvd) {
2491 for (int c = 0; c < rvd->vdev_children; c++) {
2492 vdev_t *cvd = rvd->vdev_child[c];
2493 vdev_stat_t *cvs = &cvd->vdev_stat;
2495 mutex_enter(&vd->vdev_stat_lock);
2496 for (int t = 0; t < ZIO_TYPES; t++) {
2497 vs->vs_ops[t] += cvs->vs_ops[t];
2498 vs->vs_bytes[t] += cvs->vs_bytes[t];
2500 cvs->vs_scan_removing = cvd->vdev_removing;
2501 mutex_exit(&vd->vdev_stat_lock);
2506 void
2507 vdev_clear_stats(vdev_t *vd)
2509 mutex_enter(&vd->vdev_stat_lock);
2510 vd->vdev_stat.vs_space = 0;
2511 vd->vdev_stat.vs_dspace = 0;
2512 vd->vdev_stat.vs_alloc = 0;
2513 mutex_exit(&vd->vdev_stat_lock);
2516 void
2517 vdev_scan_stat_init(vdev_t *vd)
2519 vdev_stat_t *vs = &vd->vdev_stat;
2521 for (int c = 0; c < vd->vdev_children; c++)
2522 vdev_scan_stat_init(vd->vdev_child[c]);
2524 mutex_enter(&vd->vdev_stat_lock);
2525 vs->vs_scan_processed = 0;
2526 mutex_exit(&vd->vdev_stat_lock);
2529 void
2530 vdev_stat_update(zio_t *zio, uint64_t psize)
2532 spa_t *spa = zio->io_spa;
2533 vdev_t *rvd = spa->spa_root_vdev;
2534 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2535 vdev_t *pvd;
2536 uint64_t txg = zio->io_txg;
2537 vdev_stat_t *vs = &vd->vdev_stat;
2538 zio_type_t type = zio->io_type;
2539 int flags = zio->io_flags;
2542 * If this i/o is a gang leader, it didn't do any actual work.
2544 if (zio->io_gang_tree)
2545 return;
2547 if (zio->io_error == 0) {
2549 * If this is a root i/o, don't count it -- we've already
2550 * counted the top-level vdevs, and vdev_get_stats() will
2551 * aggregate them when asked. This reduces contention on
2552 * the root vdev_stat_lock and implicitly handles blocks
2553 * that compress away to holes, for which there is no i/o.
2554 * (Holes never create vdev children, so all the counters
2555 * remain zero, which is what we want.)
2557 * Note: this only applies to successful i/o (io_error == 0)
2558 * because unlike i/o counts, errors are not additive.
2559 * When reading a ditto block, for example, failure of
2560 * one top-level vdev does not imply a root-level error.
2562 if (vd == rvd)
2563 return;
2565 ASSERT(vd == zio->io_vd);
2567 if (flags & ZIO_FLAG_IO_BYPASS)
2568 return;
2570 mutex_enter(&vd->vdev_stat_lock);
2572 if (flags & ZIO_FLAG_IO_REPAIR) {
2573 if (flags & ZIO_FLAG_SCAN_THREAD) {
2574 dsl_scan_phys_t *scn_phys =
2575 &spa->spa_dsl_pool->dp_scan->scn_phys;
2576 uint64_t *processed = &scn_phys->scn_processed;
2578 /* XXX cleanup? */
2579 if (vd->vdev_ops->vdev_op_leaf)
2580 atomic_add_64(processed, psize);
2581 vs->vs_scan_processed += psize;
2584 if (flags & ZIO_FLAG_SELF_HEAL)
2585 vs->vs_self_healed += psize;
2588 vs->vs_ops[type]++;
2589 vs->vs_bytes[type] += psize;
2591 mutex_exit(&vd->vdev_stat_lock);
2592 return;
2595 if (flags & ZIO_FLAG_SPECULATIVE)
2596 return;
2599 * If this is an I/O error that is going to be retried, then ignore the
2600 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2601 * hard errors, when in reality they can happen for any number of
2602 * innocuous reasons (bus resets, MPxIO link failure, etc).
2604 if (zio->io_error == EIO &&
2605 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2606 return;
2609 * Intent logs writes won't propagate their error to the root
2610 * I/O so don't mark these types of failures as pool-level
2611 * errors.
2613 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2614 return;
2616 mutex_enter(&vd->vdev_stat_lock);
2617 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2618 if (zio->io_error == ECKSUM)
2619 vs->vs_checksum_errors++;
2620 else
2621 vs->vs_read_errors++;
2623 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2624 vs->vs_write_errors++;
2625 mutex_exit(&vd->vdev_stat_lock);
2627 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2628 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2629 (flags & ZIO_FLAG_SCAN_THREAD) ||
2630 spa->spa_claiming)) {
2632 * This is either a normal write (not a repair), or it's
2633 * a repair induced by the scrub thread, or it's a repair
2634 * made by zil_claim() during spa_load() in the first txg.
2635 * In the normal case, we commit the DTL change in the same
2636 * txg as the block was born. In the scrub-induced repair
2637 * case, we know that scrubs run in first-pass syncing context,
2638 * so we commit the DTL change in spa_syncing_txg(spa).
2639 * In the zil_claim() case, we commit in spa_first_txg(spa).
2641 * We currently do not make DTL entries for failed spontaneous
2642 * self-healing writes triggered by normal (non-scrubbing)
2643 * reads, because we have no transactional context in which to
2644 * do so -- and it's not clear that it'd be desirable anyway.
2646 if (vd->vdev_ops->vdev_op_leaf) {
2647 uint64_t commit_txg = txg;
2648 if (flags & ZIO_FLAG_SCAN_THREAD) {
2649 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2650 ASSERT(spa_sync_pass(spa) == 1);
2651 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2652 commit_txg = spa_syncing_txg(spa);
2653 } else if (spa->spa_claiming) {
2654 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2655 commit_txg = spa_first_txg(spa);
2657 ASSERT(commit_txg >= spa_syncing_txg(spa));
2658 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2659 return;
2660 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2661 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2662 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2664 if (vd != rvd)
2665 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2670 * Update the in-core space usage stats for this vdev, its metaslab class,
2671 * and the root vdev.
2673 void
2674 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2675 int64_t space_delta)
2677 int64_t dspace_delta = space_delta;
2678 spa_t *spa = vd->vdev_spa;
2679 vdev_t *rvd = spa->spa_root_vdev;
2680 metaslab_group_t *mg = vd->vdev_mg;
2681 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2683 ASSERT(vd == vd->vdev_top);
2686 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2687 * factor. We must calculate this here and not at the root vdev
2688 * because the root vdev's psize-to-asize is simply the max of its
2689 * childrens', thus not accurate enough for us.
2691 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2692 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2693 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2694 vd->vdev_deflate_ratio;
2696 mutex_enter(&vd->vdev_stat_lock);
2697 vd->vdev_stat.vs_alloc += alloc_delta;
2698 vd->vdev_stat.vs_space += space_delta;
2699 vd->vdev_stat.vs_dspace += dspace_delta;
2700 mutex_exit(&vd->vdev_stat_lock);
2702 if (mc == spa_normal_class(spa)) {
2703 mutex_enter(&rvd->vdev_stat_lock);
2704 rvd->vdev_stat.vs_alloc += alloc_delta;
2705 rvd->vdev_stat.vs_space += space_delta;
2706 rvd->vdev_stat.vs_dspace += dspace_delta;
2707 mutex_exit(&rvd->vdev_stat_lock);
2710 if (mc != NULL) {
2711 ASSERT(rvd == vd->vdev_parent);
2712 ASSERT(vd->vdev_ms_count != 0);
2714 metaslab_class_space_update(mc,
2715 alloc_delta, defer_delta, space_delta, dspace_delta);
2720 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2721 * so that it will be written out next time the vdev configuration is synced.
2722 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2724 void
2725 vdev_config_dirty(vdev_t *vd)
2727 spa_t *spa = vd->vdev_spa;
2728 vdev_t *rvd = spa->spa_root_vdev;
2729 int c;
2731 ASSERT(spa_writeable(spa));
2734 * If this is an aux vdev (as with l2cache and spare devices), then we
2735 * update the vdev config manually and set the sync flag.
2737 if (vd->vdev_aux != NULL) {
2738 spa_aux_vdev_t *sav = vd->vdev_aux;
2739 nvlist_t **aux;
2740 uint_t naux;
2742 for (c = 0; c < sav->sav_count; c++) {
2743 if (sav->sav_vdevs[c] == vd)
2744 break;
2747 if (c == sav->sav_count) {
2749 * We're being removed. There's nothing more to do.
2751 ASSERT(sav->sav_sync == B_TRUE);
2752 return;
2755 sav->sav_sync = B_TRUE;
2757 if (nvlist_lookup_nvlist_array(sav->sav_config,
2758 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2759 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2760 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2763 ASSERT(c < naux);
2766 * Setting the nvlist in the middle if the array is a little
2767 * sketchy, but it will work.
2769 nvlist_free(aux[c]);
2770 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2772 return;
2776 * The dirty list is protected by the SCL_CONFIG lock. The caller
2777 * must either hold SCL_CONFIG as writer, or must be the sync thread
2778 * (which holds SCL_CONFIG as reader). There's only one sync thread,
2779 * so this is sufficient to ensure mutual exclusion.
2781 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2782 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2783 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2785 if (vd == rvd) {
2786 for (c = 0; c < rvd->vdev_children; c++)
2787 vdev_config_dirty(rvd->vdev_child[c]);
2788 } else {
2789 ASSERT(vd == vd->vdev_top);
2791 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2792 !vd->vdev_ishole)
2793 list_insert_head(&spa->spa_config_dirty_list, vd);
2797 void
2798 vdev_config_clean(vdev_t *vd)
2800 spa_t *spa = vd->vdev_spa;
2802 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2803 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2804 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2806 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2807 list_remove(&spa->spa_config_dirty_list, vd);
2811 * Mark a top-level vdev's state as dirty, so that the next pass of
2812 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2813 * the state changes from larger config changes because they require
2814 * much less locking, and are often needed for administrative actions.
2816 void
2817 vdev_state_dirty(vdev_t *vd)
2819 spa_t *spa = vd->vdev_spa;
2821 ASSERT(spa_writeable(spa));
2822 ASSERT(vd == vd->vdev_top);
2825 * The state list is protected by the SCL_STATE lock. The caller
2826 * must either hold SCL_STATE as writer, or must be the sync thread
2827 * (which holds SCL_STATE as reader). There's only one sync thread,
2828 * so this is sufficient to ensure mutual exclusion.
2830 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2831 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2832 spa_config_held(spa, SCL_STATE, RW_READER)));
2834 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2835 list_insert_head(&spa->spa_state_dirty_list, vd);
2838 void
2839 vdev_state_clean(vdev_t *vd)
2841 spa_t *spa = vd->vdev_spa;
2843 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2844 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2845 spa_config_held(spa, SCL_STATE, RW_READER)));
2847 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2848 list_remove(&spa->spa_state_dirty_list, vd);
2852 * Propagate vdev state up from children to parent.
2854 void
2855 vdev_propagate_state(vdev_t *vd)
2857 spa_t *spa = vd->vdev_spa;
2858 vdev_t *rvd = spa->spa_root_vdev;
2859 int degraded = 0, faulted = 0;
2860 int corrupted = 0;
2861 vdev_t *child;
2863 if (vd->vdev_children > 0) {
2864 for (int c = 0; c < vd->vdev_children; c++) {
2865 child = vd->vdev_child[c];
2868 * Don't factor holes into the decision.
2870 if (child->vdev_ishole)
2871 continue;
2873 if (!vdev_readable(child) ||
2874 (!vdev_writeable(child) && spa_writeable(spa))) {
2876 * Root special: if there is a top-level log
2877 * device, treat the root vdev as if it were
2878 * degraded.
2880 if (child->vdev_islog && vd == rvd)
2881 degraded++;
2882 else
2883 faulted++;
2884 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2885 degraded++;
2888 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2889 corrupted++;
2892 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2895 * Root special: if there is a top-level vdev that cannot be
2896 * opened due to corrupted metadata, then propagate the root
2897 * vdev's aux state as 'corrupt' rather than 'insufficient
2898 * replicas'.
2900 if (corrupted && vd == rvd &&
2901 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2902 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2903 VDEV_AUX_CORRUPT_DATA);
2906 if (vd->vdev_parent)
2907 vdev_propagate_state(vd->vdev_parent);
2911 * Set a vdev's state. If this is during an open, we don't update the parent
2912 * state, because we're in the process of opening children depth-first.
2913 * Otherwise, we propagate the change to the parent.
2915 * If this routine places a device in a faulted state, an appropriate ereport is
2916 * generated.
2918 void
2919 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2921 uint64_t save_state;
2922 spa_t *spa = vd->vdev_spa;
2924 if (state == vd->vdev_state) {
2925 vd->vdev_stat.vs_aux = aux;
2926 return;
2929 save_state = vd->vdev_state;
2931 vd->vdev_state = state;
2932 vd->vdev_stat.vs_aux = aux;
2935 * If we are setting the vdev state to anything but an open state, then
2936 * always close the underlying device unless the device has requested
2937 * a delayed close (i.e. we're about to remove or fault the device).
2938 * Otherwise, we keep accessible but invalid devices open forever.
2939 * We don't call vdev_close() itself, because that implies some extra
2940 * checks (offline, etc) that we don't want here. This is limited to
2941 * leaf devices, because otherwise closing the device will affect other
2942 * children.
2944 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2945 vd->vdev_ops->vdev_op_leaf)
2946 vd->vdev_ops->vdev_op_close(vd);
2949 * If we have brought this vdev back into service, we need
2950 * to notify fmd so that it can gracefully repair any outstanding
2951 * cases due to a missing device. We do this in all cases, even those
2952 * that probably don't correlate to a repaired fault. This is sure to
2953 * catch all cases, and we let the zfs-retire agent sort it out. If
2954 * this is a transient state it's OK, as the retire agent will
2955 * double-check the state of the vdev before repairing it.
2957 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2958 vd->vdev_prevstate != state)
2959 zfs_post_state_change(spa, vd);
2961 if (vd->vdev_removed &&
2962 state == VDEV_STATE_CANT_OPEN &&
2963 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2965 * If the previous state is set to VDEV_STATE_REMOVED, then this
2966 * device was previously marked removed and someone attempted to
2967 * reopen it. If this failed due to a nonexistent device, then
2968 * keep the device in the REMOVED state. We also let this be if
2969 * it is one of our special test online cases, which is only
2970 * attempting to online the device and shouldn't generate an FMA
2971 * fault.
2973 vd->vdev_state = VDEV_STATE_REMOVED;
2974 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2975 } else if (state == VDEV_STATE_REMOVED) {
2976 vd->vdev_removed = B_TRUE;
2977 } else if (state == VDEV_STATE_CANT_OPEN) {
2979 * If we fail to open a vdev during an import or recovery, we
2980 * mark it as "not available", which signifies that it was
2981 * never there to begin with. Failure to open such a device
2982 * is not considered an error.
2984 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2985 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2986 vd->vdev_ops->vdev_op_leaf)
2987 vd->vdev_not_present = 1;
2990 * Post the appropriate ereport. If the 'prevstate' field is
2991 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2992 * that this is part of a vdev_reopen(). In this case, we don't
2993 * want to post the ereport if the device was already in the
2994 * CANT_OPEN state beforehand.
2996 * If the 'checkremove' flag is set, then this is an attempt to
2997 * online the device in response to an insertion event. If we
2998 * hit this case, then we have detected an insertion event for a
2999 * faulted or offline device that wasn't in the removed state.
3000 * In this scenario, we don't post an ereport because we are
3001 * about to replace the device, or attempt an online with
3002 * vdev_forcefault, which will generate the fault for us.
3004 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3005 !vd->vdev_not_present && !vd->vdev_checkremove &&
3006 vd != spa->spa_root_vdev) {
3007 const char *class;
3009 switch (aux) {
3010 case VDEV_AUX_OPEN_FAILED:
3011 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3012 break;
3013 case VDEV_AUX_CORRUPT_DATA:
3014 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3015 break;
3016 case VDEV_AUX_NO_REPLICAS:
3017 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3018 break;
3019 case VDEV_AUX_BAD_GUID_SUM:
3020 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3021 break;
3022 case VDEV_AUX_TOO_SMALL:
3023 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3024 break;
3025 case VDEV_AUX_BAD_LABEL:
3026 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3027 break;
3028 default:
3029 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3032 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3035 /* Erase any notion of persistent removed state */
3036 vd->vdev_removed = B_FALSE;
3037 } else {
3038 vd->vdev_removed = B_FALSE;
3041 if (!isopen && vd->vdev_parent)
3042 vdev_propagate_state(vd->vdev_parent);
3046 * Check the vdev configuration to ensure that it's capable of supporting
3047 * a root pool. Currently, we do not support RAID-Z or partial configuration.
3048 * In addition, only a single top-level vdev is allowed and none of the leaves
3049 * can be wholedisks.
3051 boolean_t
3052 vdev_is_bootable(vdev_t *vd)
3054 if (!vd->vdev_ops->vdev_op_leaf) {
3055 char *vdev_type = vd->vdev_ops->vdev_op_type;
3057 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3058 vd->vdev_children > 1) {
3059 return (B_FALSE);
3060 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3061 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3062 return (B_FALSE);
3064 } else if (vd->vdev_wholedisk == 1) {
3065 return (B_FALSE);
3068 for (int c = 0; c < vd->vdev_children; c++) {
3069 if (!vdev_is_bootable(vd->vdev_child[c]))
3070 return (B_FALSE);
3072 return (B_TRUE);
3076 * Load the state from the original vdev tree (ovd) which
3077 * we've retrieved from the MOS config object. If the original
3078 * vdev was offline or faulted then we transfer that state to the
3079 * device in the current vdev tree (nvd).
3081 void
3082 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3084 spa_t *spa = nvd->vdev_spa;
3086 ASSERT(nvd->vdev_top->vdev_islog);
3087 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3088 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3090 for (int c = 0; c < nvd->vdev_children; c++)
3091 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3093 if (nvd->vdev_ops->vdev_op_leaf) {
3095 * Restore the persistent vdev state
3097 nvd->vdev_offline = ovd->vdev_offline;
3098 nvd->vdev_faulted = ovd->vdev_faulted;
3099 nvd->vdev_degraded = ovd->vdev_degraded;
3100 nvd->vdev_removed = ovd->vdev_removed;
3105 * Determine if a log device has valid content. If the vdev was
3106 * removed or faulted in the MOS config then we know that
3107 * the content on the log device has already been written to the pool.
3109 boolean_t
3110 vdev_log_state_valid(vdev_t *vd)
3112 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3113 !vd->vdev_removed)
3114 return (B_TRUE);
3116 for (int c = 0; c < vd->vdev_children; c++)
3117 if (vdev_log_state_valid(vd->vdev_child[c]))
3118 return (B_TRUE);
3120 return (B_FALSE);
3124 * Expand a vdev if possible.
3126 void
3127 vdev_expand(vdev_t *vd, uint64_t txg)
3129 ASSERT(vd->vdev_top == vd);
3130 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3132 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3133 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3134 vdev_config_dirty(vd);
3139 * Split a vdev.
3141 void
3142 vdev_split(vdev_t *vd)
3144 vdev_t *cvd, *pvd = vd->vdev_parent;
3146 vdev_remove_child(pvd, vd);
3147 vdev_compact_children(pvd);
3149 cvd = pvd->vdev_child[0];
3150 if (pvd->vdev_children == 1) {
3151 vdev_remove_parent(cvd);
3152 cvd->vdev_splitting = B_TRUE;
3154 vdev_propagate_state(cvd);