loader: remove devdesc comments and assertions
[unleashed.git] / kernel / os / errorq.c
blobbc8e7e82b8ef57f7f309046d70b7fc7ecbdf4271
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Kernel Error Queues
29 * A common problem when handling hardware error traps and interrupts is that
30 * these errors frequently must be handled at high interrupt level, where
31 * reliably producing error messages and safely examining and manipulating
32 * other kernel state may not be possible. The kernel error queue primitive is
33 * a common set of routines that allow a subsystem to maintain a queue of
34 * errors that can be processed by an explicit call from a safe context or by a
35 * soft interrupt that fires at a specific lower interrupt level. The queue
36 * management code also ensures that if the system panics, all in-transit
37 * errors are logged prior to reset. Each queue has an associated kstat for
38 * observing the number of errors dispatched and logged, and mdb(1) debugging
39 * support is provided for live and post-mortem observability.
41 * Memory Allocation
43 * All of the queue data structures are allocated in advance as part of
44 * the errorq_create() call. No additional memory allocations are
45 * performed as part of errorq_dispatch(), errorq_reserve(),
46 * errorq_commit() or errorq_drain(). This design
47 * facilitates reliable error queue processing even when the system is low
48 * on memory, and ensures that errorq_dispatch() can be called from any
49 * context. When the queue is created, the maximum queue length is
50 * specified as a parameter to errorq_create() and errorq_nvcreate(). This
51 * length should represent a reasonable upper bound on the number of
52 * simultaneous errors. If errorq_dispatch() or errorq_reserve() is
53 * invoked and no free queue elements are available, the error is
54 * dropped and will not be logged. Typically, the queue will only be
55 * exhausted by an error storm, and in this case
56 * the earlier errors provide the most important data for analysis.
57 * When a new error is dispatched, the error data is copied into the
58 * preallocated queue element so that the caller's buffer can be reused.
60 * When a new error is reserved, an element is moved from the free pool
61 * and returned to the caller. The element buffer data, eqe_data, may be
62 * managed by the caller and dispatched to the errorq by calling
63 * errorq_commit(). This is useful for additions to errorq's
64 * created with errorq_nvcreate() to handle name-value pair (nvpair) data.
65 * See below for a discussion on nvlist errorq's.
67 * Queue Drain Callback
69 * When the error queue is drained, the caller's queue drain callback is
70 * invoked with a pointer to the saved error data. This function may be
71 * called from passive kernel context or soft interrupt context at or
72 * below LOCK_LEVEL, or as part of panic(). As such, the callback should
73 * basically only be calling cmn_err (but NOT with the CE_PANIC flag).
74 * The callback must not call panic(), attempt to allocate memory, or wait
75 * on a condition variable. The callback may not call errorq_destroy()
76 * or errorq_drain() on the same error queue that called it.
78 * The queue drain callback will always be called for each pending error
79 * in the order in which errors were enqueued (oldest to newest). The
80 * queue drain callback is guaranteed to provide at *least* once semantics
81 * for all errors that are successfully dispatched (i.e. for which
82 * errorq_dispatch() has successfully completed). If an unrelated panic
83 * occurs while the queue drain callback is running on a vital queue, the
84 * panic subsystem will continue the queue drain and the callback may be
85 * invoked again for the same error. Therefore, the callback should
86 * restrict itself to logging messages and taking other actions that are
87 * not destructive if repeated.
89 * Name-Value Pair Error Queues
91 * During error handling, it may be more convenient to store error
92 * queue element data as a fixed buffer of name-value pairs. The
93 * nvpair library allows construction and destruction of nvlists
94 * in pre-allocated memory buffers.
96 * Error queues created via errorq_nvcreate() store queue element
97 * data as fixed buffer nvlists (ereports). errorq_reserve()
98 * allocates an errorq element from eqp->eq_bitmap and returns a valid
99 * pointer to a errorq_elem_t (queue element) and a pre-allocated
100 * fixed buffer nvlist. errorq_elem_nvl() is used to gain access
101 * to the nvlist to add name-value ereport members prior to
102 * dispatching the error queue element in errorq_commit().
104 * Once dispatched, the drain function will return the element to
105 * eqp->eq_bitmap and reset the associated nv_alloc structure.
106 * error_cancel() may be called to cancel an element reservation
107 * element that was never dispatched (committed). This is useful in
108 * cases where a programming error prevents a queue element from being
109 * dispatched.
111 * Queue Management
113 * The queue element structures and error data buffers are allocated in
114 * two contiguous chunks as part of errorq_create() or errorq_nvcreate().
115 * Each queue element structure contains a next pointer,
116 * a previous pointer, and a pointer to the corresponding error data
117 * buffer. The data buffer for a nvlist errorq is a shared buffer
118 * for the allocation of name-value pair lists. The elements are kept on
119 * one of four lists:
121 * Unused elements are kept in the free pool, managed by eqp->eq_bitmap.
122 * The eqe_prev and eqe_next pointers are not used while in the free pool
123 * and will be set to NULL.
125 * Pending errors are kept on the pending list, a singly-linked list
126 * pointed to by eqp->eq_pend, and linked together using eqe_prev. This
127 * list is maintained in order from newest error to oldest. The eqe_next
128 * pointer is not used by the pending list and will be set to NULL.
130 * The processing list is a doubly-linked list pointed to by eqp->eq_phead
131 * (the oldest element) and eqp->eq_ptail (the newest element). The
132 * eqe_next pointer is used to traverse from eq_phead to eq_ptail, and the
133 * eqe_prev pointer is used to traverse from eq_ptail to eq_phead. Once a
134 * queue drain operation begins, the current pending list is moved to the
135 * processing list in a two-phase commit fashion (eq_ptail being cleared
136 * at the beginning but eq_phead only at the end), allowing the panic code
137 * to always locate and process all pending errors in the event that a
138 * panic occurs in the middle of queue processing.
140 * A fourth list is maintained for nvlist errorqs. The dump list,
141 * eq_dump is used to link all errorq elements that should be stored
142 * in a crash dump file in the event of a system panic. During
143 * errorq_panic(), the list is created and subsequently traversed
144 * in errorq_dump() during the final phases of a crash dump.
146 * Platform Considerations
148 * In order to simplify their implementation, error queues make use of the
149 * C wrappers for compare-and-swap. If the platform itself does not
150 * support compare-and-swap in hardware and the kernel emulation routines
151 * are used instead, then the context in which errorq_dispatch() can be
152 * safely invoked is further constrained by the implementation of the
153 * compare-and-swap emulation. Specifically, if errorq_dispatch() is
154 * called from a code path that can be executed above ATOMIC_LEVEL on such
155 * a platform, the dispatch code could potentially deadlock unless the
156 * corresponding error interrupt is blocked or disabled prior to calling
157 * errorq_dispatch(). Error queues should therefore be deployed with
158 * caution on these platforms.
160 * Interfaces
162 * errorq_t *errorq_create(name, func, private, qlen, eltsize, ipl, flags);
163 * errorq_t *errorq_nvcreate(name, func, private, qlen, eltsize, ipl, flags);
165 * Create a new error queue with the specified name, callback, and
166 * properties. A pointer to the new error queue is returned upon success,
167 * or NULL is returned to indicate that the queue could not be created.
168 * This function must be called from passive kernel context with no locks
169 * held that can prevent a sleeping memory allocation from occurring.
170 * errorq_create() will return failure if the queue kstats cannot be
171 * created, or if a soft interrupt handler cannot be registered.
173 * The queue 'name' is a string that is recorded for live and post-mortem
174 * examination by a debugger. The queue callback 'func' will be invoked
175 * for each error drained from the queue, and will receive the 'private'
176 * pointer as its first argument. The callback must obey the rules for
177 * callbacks described above. The queue will have maximum length 'qlen'
178 * and each element will be able to record up to 'eltsize' bytes of data.
179 * The queue's soft interrupt (see errorq_dispatch(), below) will fire
180 * at 'ipl', which should not exceed LOCK_LEVEL. The queue 'flags' may
181 * include the following flag:
183 * ERRORQ_VITAL - This queue contains information that is considered
184 * vital to problem diagnosis. Error queues that are marked vital will
185 * be automatically drained by the panic subsystem prior to printing
186 * the panic messages to the console.
188 * void errorq_destroy(errorq);
190 * Destroy the specified error queue. The queue is drained of any
191 * pending elements and these are logged before errorq_destroy returns.
192 * Once errorq_destroy() begins draining the queue, any simultaneous
193 * calls to dispatch errors will result in the errors being dropped.
194 * The caller must invoke a higher-level abstraction (e.g. disabling
195 * an error interrupt) to ensure that error handling code does not
196 * attempt to dispatch errors to the queue while it is being freed.
198 * void errorq_dispatch(errorq, data, len, flag);
200 * Attempt to enqueue the specified error data. If a free queue element
201 * is available, the data is copied into a free element and placed on a
202 * pending list. If no free queue element is available, the error is
203 * dropped. The data length (len) is specified in bytes and should not
204 * exceed the queue's maximum element size. If the data length is less
205 * than the maximum element size, the remainder of the queue element is
206 * filled with zeroes. The flag parameter should be one of:
208 * ERRORQ_ASYNC - Schedule a soft interrupt at the previously specified
209 * IPL to asynchronously drain the queue on behalf of the caller.
211 * ERRORQ_SYNC - Do not schedule a soft interrupt to drain the queue.
212 * The caller is presumed to be calling errorq_drain() or panic() in
213 * the near future in order to drain the queue and log the error.
215 * The errorq_dispatch() function may be called from any context, subject
216 * to the Platform Considerations described above.
218 * void errorq_drain(errorq);
220 * Drain the error queue of all pending errors. The queue's callback
221 * function is invoked for each error in order from oldest to newest.
222 * This function may be used at or below LOCK_LEVEL or from panic context.
224 * errorq_elem_t *errorq_reserve(errorq);
226 * Reserve an error queue element for later processing and dispatching.
227 * The element is returned to the caller who may add error-specific data
228 * to element. The element is retured to the free pool when either
229 * errorq_commit() is called and the element asynchronously processed
230 * or immediately when errorq_cancel() is called.
232 * void errorq_commit(errorq, errorq_elem, flag);
234 * Commit an errorq element (eqep) for dispatching, see
235 * errorq_dispatch().
237 * void errorq_cancel(errorq, errorq_elem);
239 * Cancel a pending errorq element reservation. The errorq element is
240 * returned to the free pool upon cancelation.
243 #include <sys/errorq_impl.h>
244 #include <sys/sysmacros.h>
245 #include <sys/machlock.h>
246 #include <sys/cmn_err.h>
247 #include <sys/atomic.h>
248 #include <sys/systm.h>
249 #include <sys/kmem.h>
250 #include <sys/conf.h>
251 #include <sys/ddi.h>
252 #include <sys/sunddi.h>
253 #include <sys/bootconf.h>
254 #include <sys/spl.h>
255 #include <sys/dumphdr.h>
256 #include <sys/compress.h>
257 #include <sys/time.h>
258 #include <sys/panic.h>
259 #include <sys/bitmap.h>
260 #include <sys/fm/protocol.h>
261 #include <sys/fm/util.h>
263 static struct errorq_kstat errorq_kstat_template = {
264 { "dispatched", KSTAT_DATA_UINT64 },
265 { "dropped", KSTAT_DATA_UINT64 },
266 { "logged", KSTAT_DATA_UINT64 },
267 { "reserved", KSTAT_DATA_UINT64 },
268 { "reserve_fail", KSTAT_DATA_UINT64 },
269 { "committed", KSTAT_DATA_UINT64 },
270 { "commit_fail", KSTAT_DATA_UINT64 },
271 { "cancelled", KSTAT_DATA_UINT64 }
274 static uint64_t errorq_lost = 0;
275 static errorq_t *errorq_list = NULL;
276 static kmutex_t errorq_lock;
277 static uint64_t errorq_vitalmin = 5;
279 static uint_t
280 errorq_intr(caddr_t eqp)
282 errorq_drain((errorq_t *)eqp);
283 return (DDI_INTR_CLAIMED);
287 * Create a new error queue with the specified properties and add a software
288 * interrupt handler and kstat for it. This function must be called from
289 * passive kernel context with no locks held that can prevent a sleeping
290 * memory allocation from occurring. This function will return NULL if the
291 * softint or kstat for this queue cannot be created.
293 errorq_t *
294 errorq_create(const char *name, errorq_func_t func, void *private,
295 ulong_t qlen, size_t size, uint_t ipl, uint_t flags)
297 errorq_t *eqp = kmem_alloc(sizeof (errorq_t), KM_SLEEP);
298 ddi_iblock_cookie_t ibc = (ddi_iblock_cookie_t)(uintptr_t)ipltospl(ipl);
299 dev_info_t *dip = ddi_root_node();
301 errorq_elem_t *eep;
302 ddi_softintr_t id = NULL;
303 caddr_t data;
305 ASSERT(qlen != 0 && size != 0);
306 ASSERT(ipl > 0 && ipl <= LOCK_LEVEL);
309 * If a queue is created very early in boot before device tree services
310 * are available, the queue softint handler cannot be created. We
311 * manually drain these queues and create their softint handlers when
312 * it is safe to do so as part of errorq_init(), below.
314 if (modrootloaded && ddi_add_softintr(dip, DDI_SOFTINT_FIXED, &id,
315 &ibc, NULL, errorq_intr, (caddr_t)eqp) != DDI_SUCCESS) {
316 cmn_err(CE_WARN, "errorq_create: failed to register "
317 "IPL %u softint for queue %s", ipl, name);
318 kmem_free(eqp, sizeof (errorq_t));
319 return (NULL);
322 if ((eqp->eq_ksp = kstat_create("unix", 0, name, "errorq",
323 KSTAT_TYPE_NAMED, sizeof (struct errorq_kstat) /
324 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) == NULL) {
325 cmn_err(CE_WARN, "errorq_create: failed to create kstat "
326 "for queue %s", name);
327 if (id != NULL)
328 ddi_remove_softintr(id);
329 kmem_free(eqp, sizeof (errorq_t));
330 return (NULL);
333 bcopy(&errorq_kstat_template, &eqp->eq_kstat,
334 sizeof (struct errorq_kstat));
335 eqp->eq_ksp->ks_data = &eqp->eq_kstat;
336 eqp->eq_ksp->ks_private = eqp;
337 kstat_install(eqp->eq_ksp);
339 (void) strncpy(eqp->eq_name, name, ERRORQ_NAMELEN);
340 eqp->eq_name[ERRORQ_NAMELEN] = '\0';
341 eqp->eq_func = func;
342 eqp->eq_private = private;
343 eqp->eq_data = kmem_alloc(qlen * size, KM_SLEEP);
344 eqp->eq_qlen = qlen;
345 eqp->eq_size = size;
346 eqp->eq_ipl = ipl;
347 eqp->eq_flags = flags | ERRORQ_ACTIVE;
348 eqp->eq_id = id;
349 mutex_init(&eqp->eq_lock, NULL, MUTEX_DEFAULT, NULL);
350 eqp->eq_elems = kmem_alloc(qlen * sizeof (errorq_elem_t), KM_SLEEP);
351 eqp->eq_phead = NULL;
352 eqp->eq_ptail = NULL;
353 eqp->eq_pend = NULL;
354 eqp->eq_dump = NULL;
355 eqp->eq_bitmap = kmem_zalloc(BT_SIZEOFMAP(qlen), KM_SLEEP);
356 eqp->eq_rotor = 0;
359 * Iterate over the array of errorq_elem_t structures and set its
360 * data pointer.
362 for (eep = eqp->eq_elems, data = eqp->eq_data; qlen > 1; qlen--) {
363 eep->eqe_next = NULL;
364 eep->eqe_dump = NULL;
365 eep->eqe_prev = NULL;
366 eep->eqe_data = data;
367 data += size;
368 eep++;
370 eep->eqe_next = NULL;
371 eep->eqe_prev = NULL;
372 eep->eqe_data = data;
373 eep->eqe_dump = NULL;
376 * Once the errorq is initialized, add it to the global list of queues,
377 * and then return a pointer to the new queue to the caller.
379 mutex_enter(&errorq_lock);
380 eqp->eq_next = errorq_list;
381 errorq_list = eqp;
382 mutex_exit(&errorq_lock);
384 return (eqp);
388 * Create a new errorq as if by errorq_create(), but set the ERRORQ_NVLIST
389 * flag and initialize each element to have the start of its data region used
390 * as an errorq_nvelem_t with a nvlist allocator that consumes the data region.
392 errorq_t *
393 errorq_nvcreate(const char *name, errorq_func_t func, void *private,
394 ulong_t qlen, size_t size, uint_t ipl, uint_t flags)
396 errorq_t *eqp;
397 errorq_elem_t *eep;
399 eqp = errorq_create(name, func, private, qlen,
400 size + sizeof (errorq_nvelem_t), ipl, flags | ERRORQ_NVLIST);
402 if (eqp == NULL)
403 return (NULL);
405 mutex_enter(&eqp->eq_lock);
407 for (eep = eqp->eq_elems; qlen != 0; eep++, qlen--) {
408 errorq_nvelem_t *eqnp = eep->eqe_data;
409 eqnp->eqn_buf = (char *)eqnp + sizeof (errorq_nvelem_t);
410 eqnp->eqn_nva = fm_nva_xcreate(eqnp->eqn_buf, size);
413 mutex_exit(&eqp->eq_lock);
414 return (eqp);
418 * To destroy an error queue, we mark it as disabled and then explicitly drain
419 * all pending errors. Once the drain is complete, we can remove the queue
420 * from the global list of queues examined by errorq_panic(), and then free
421 * the various queue data structures. The caller must use some higher-level
422 * abstraction (e.g. disabling an error interrupt) to ensure that no one will
423 * attempt to enqueue new errors while we are freeing this queue.
425 void
426 errorq_destroy(errorq_t *eqp)
428 errorq_t *p, **pp;
429 errorq_elem_t *eep;
430 ulong_t i;
432 ASSERT(eqp != NULL);
433 eqp->eq_flags &= ~ERRORQ_ACTIVE;
434 errorq_drain(eqp);
436 mutex_enter(&errorq_lock);
437 pp = &errorq_list;
439 for (p = errorq_list; p != NULL; p = p->eq_next) {
440 if (p == eqp) {
441 *pp = p->eq_next;
442 break;
444 pp = &p->eq_next;
447 mutex_exit(&errorq_lock);
448 ASSERT(p != NULL);
450 if (eqp->eq_flags & ERRORQ_NVLIST) {
451 for (eep = eqp->eq_elems, i = 0; i < eqp->eq_qlen; i++, eep++) {
452 errorq_nvelem_t *eqnp = eep->eqe_data;
453 fm_nva_xdestroy(eqnp->eqn_nva);
457 mutex_destroy(&eqp->eq_lock);
458 kstat_delete(eqp->eq_ksp);
460 if (eqp->eq_id != NULL)
461 ddi_remove_softintr(eqp->eq_id);
463 kmem_free(eqp->eq_elems, eqp->eq_qlen * sizeof (errorq_elem_t));
464 kmem_free(eqp->eq_bitmap, BT_SIZEOFMAP(eqp->eq_qlen));
465 kmem_free(eqp->eq_data, eqp->eq_qlen * eqp->eq_size);
467 kmem_free(eqp, sizeof (errorq_t));
471 * private version of bt_availbit which makes a best-efforts attempt
472 * at allocating in a round-robin fashion in order to facilitate post-mortem
473 * diagnosis.
475 static index_t
476 errorq_availbit(ulong_t *bitmap, size_t nbits, index_t curindex)
478 ulong_t bit, maxbit, bx;
479 index_t rval, nextindex = curindex + 1;
480 index_t nextword = nextindex >> BT_ULSHIFT;
481 ulong_t nextbitindex = nextindex & BT_ULMASK;
482 index_t maxindex = nbits - 1;
483 index_t maxword = maxindex >> BT_ULSHIFT;
484 ulong_t maxbitindex = maxindex & BT_ULMASK;
487 * First check if there are still some bits remaining in the current
488 * word, and see if any of those are available. We need to do this by
489 * hand as the bt_availbit() function always starts at the beginning
490 * of a word.
492 if (nextindex <= maxindex && nextbitindex != 0) {
493 maxbit = (nextword == maxword) ? maxbitindex : BT_ULMASK;
494 for (bx = 0, bit = 1; bx <= maxbit; bx++, bit <<= 1)
495 if (bx >= nextbitindex && !(bitmap[nextword] & bit))
496 return ((nextword << BT_ULSHIFT) + bx);
497 nextword++;
500 * Now check if there are any words remaining before the end of the
501 * bitmap. Use bt_availbit() to find any free bits.
503 if (nextword <= maxword)
504 if ((rval = bt_availbit(&bitmap[nextword],
505 nbits - (nextword << BT_ULSHIFT))) != -1)
506 return ((nextword << BT_ULSHIFT) + rval);
508 * Finally loop back to the start and look for any free bits starting
509 * from the beginning of the bitmap to the current rotor position.
511 return (bt_availbit(bitmap, nextindex));
515 * Dispatch a new error into the queue for later processing. The specified
516 * data buffer is copied into a preallocated queue element. If 'len' is
517 * smaller than the queue element size, the remainder of the queue element is
518 * filled with zeroes. This function may be called from any context subject
519 * to the Platform Considerations described above.
521 void
522 errorq_dispatch(errorq_t *eqp, const void *data, size_t len, uint_t flag)
524 errorq_elem_t *eep, *old;
526 if (eqp == NULL || !(eqp->eq_flags & ERRORQ_ACTIVE)) {
527 atomic_inc_64(&errorq_lost);
528 return; /* drop error if queue is uninitialized or disabled */
531 for (;;) {
532 int i, rval;
534 if ((i = errorq_availbit(eqp->eq_bitmap, eqp->eq_qlen,
535 eqp->eq_rotor)) == -1) {
536 atomic_inc_64(&eqp->eq_kstat.eqk_dropped.value.ui64);
537 return;
539 BT_ATOMIC_SET_EXCL(eqp->eq_bitmap, i, rval);
540 if (rval == 0) {
541 eqp->eq_rotor = i;
542 eep = &eqp->eq_elems[i];
543 break;
547 ASSERT(len <= eqp->eq_size);
548 bcopy(data, eep->eqe_data, MIN(eqp->eq_size, len));
550 if (len < eqp->eq_size)
551 bzero((caddr_t)eep->eqe_data + len, eqp->eq_size - len);
553 for (;;) {
554 old = eqp->eq_pend;
555 eep->eqe_prev = old;
556 membar_producer();
558 if (atomic_cas_ptr(&eqp->eq_pend, old, eep) == old)
559 break;
562 atomic_inc_64(&eqp->eq_kstat.eqk_dispatched.value.ui64);
564 if (flag == ERRORQ_ASYNC && eqp->eq_id != NULL)
565 ddi_trigger_softintr(eqp->eq_id);
569 * Drain the specified error queue by calling eq_func() for each pending error.
570 * This function must be called at or below LOCK_LEVEL or from panic context.
571 * In order to synchronize with other attempts to drain the queue, we acquire
572 * the adaptive eq_lock, blocking other consumers. Once this lock is held,
573 * we must use compare-and-swap to move the pending list to the processing
574 * list and to return elements to the free pool in order to synchronize
575 * with producers, who do not acquire any locks and only use atomic set/clear.
577 * An additional constraint on this function is that if the system panics
578 * while this function is running, the panic code must be able to detect and
579 * handle all intermediate states and correctly dequeue all errors. The
580 * errorq_panic() function below will be used for detecting and handling
581 * these intermediate states. The comments in errorq_drain() below explain
582 * how we make sure each intermediate state is distinct and consistent.
584 void
585 errorq_drain(errorq_t *eqp)
587 errorq_elem_t *eep, *dep;
589 ASSERT(eqp != NULL);
590 mutex_enter(&eqp->eq_lock);
593 * If there are one or more pending errors, set eq_ptail to point to
594 * the first element on the pending list and then attempt to compare-
595 * and-swap NULL to the pending list. We use membar_producer() to
596 * make sure that eq_ptail will be visible to errorq_panic() below
597 * before the pending list is NULLed out. This section is labeled
598 * case (1) for errorq_panic, below. If eq_ptail is not yet set (1A)
599 * eq_pend has all the pending errors. If atomic_cas_ptr fails or
600 * has not been called yet (1B), eq_pend still has all the pending
601 * errors. If atomic_cas_ptr succeeds (1C), eq_ptail has all the
602 * pending errors.
604 while ((eep = eqp->eq_pend) != NULL) {
605 eqp->eq_ptail = eep;
606 membar_producer();
608 if (atomic_cas_ptr(&eqp->eq_pend, eep, NULL) == eep)
609 break;
613 * If no errors were pending, assert that eq_ptail is set to NULL,
614 * drop the consumer lock, and return without doing anything.
616 if (eep == NULL) {
617 ASSERT(eqp->eq_ptail == NULL);
618 mutex_exit(&eqp->eq_lock);
619 return;
623 * Now iterate from eq_ptail (a.k.a. eep, the newest error) to the
624 * oldest error, setting the eqe_next pointer so that we can iterate
625 * over the errors from oldest to newest. We use membar_producer()
626 * to make sure that these stores are visible before we set eq_phead.
627 * If we panic before, during, or just after this loop (case 2),
628 * errorq_panic() will simply redo this work, as described below.
630 for (eep->eqe_next = NULL; eep->eqe_prev != NULL; eep = eep->eqe_prev)
631 eep->eqe_prev->eqe_next = eep;
632 membar_producer();
635 * Now set eq_phead to the head of the processing list (the oldest
636 * error) and issue another membar_producer() to make sure that
637 * eq_phead is seen as non-NULL before we clear eq_ptail. If we panic
638 * after eq_phead is set (case 3), we will detect and log these errors
639 * in errorq_panic(), as described below.
641 eqp->eq_phead = eep;
642 membar_producer();
644 eqp->eq_ptail = NULL;
645 membar_producer();
648 * If we enter from errorq_panic_drain(), we may already have
649 * errorq elements on the dump list. Find the tail of
650 * the list ready for append.
652 if (panicstr && (dep = eqp->eq_dump) != NULL) {
653 while (dep->eqe_dump != NULL)
654 dep = dep->eqe_dump;
658 * Now iterate over the processing list from oldest (eq_phead) to
659 * newest and log each error. Once an error is logged, we use
660 * atomic clear to return it to the free pool. If we panic before,
661 * during, or after calling eq_func() (case 4), the error will still be
662 * found on eq_phead and will be logged in errorq_panic below.
665 while ((eep = eqp->eq_phead) != NULL) {
666 eqp->eq_func(eqp->eq_private, eep->eqe_data, eep);
667 eqp->eq_kstat.eqk_logged.value.ui64++;
669 eqp->eq_phead = eep->eqe_next;
670 membar_producer();
672 eep->eqe_next = NULL;
675 * On panic, we add the element to the dump list for each
676 * nvlist errorq. Elements are stored oldest to newest.
677 * Then continue, so we don't free and subsequently overwrite
678 * any elements which we've put on the dump queue.
680 if (panicstr && (eqp->eq_flags & ERRORQ_NVLIST)) {
681 if (eqp->eq_dump == NULL)
682 dep = eqp->eq_dump = eep;
683 else
684 dep = dep->eqe_dump = eep;
685 membar_producer();
686 continue;
689 eep->eqe_prev = NULL;
690 BT_ATOMIC_CLEAR(eqp->eq_bitmap, eep - eqp->eq_elems);
693 mutex_exit(&eqp->eq_lock);
697 * Now that device tree services are available, set up the soft interrupt
698 * handlers for any queues that were created early in boot. We then
699 * manually drain these queues to report any pending early errors.
701 void
702 errorq_init(void)
704 dev_info_t *dip = ddi_root_node();
705 ddi_softintr_t id;
706 errorq_t *eqp;
708 ASSERT(modrootloaded != 0);
709 ASSERT(dip != NULL);
711 mutex_enter(&errorq_lock);
713 for (eqp = errorq_list; eqp != NULL; eqp = eqp->eq_next) {
714 ddi_iblock_cookie_t ibc =
715 (ddi_iblock_cookie_t)(uintptr_t)ipltospl(eqp->eq_ipl);
717 if (eqp->eq_id != NULL)
718 continue; /* softint already initialized */
720 if (ddi_add_softintr(dip, DDI_SOFTINT_FIXED, &id, &ibc, NULL,
721 errorq_intr, (caddr_t)eqp) != DDI_SUCCESS) {
722 panic("errorq_init: failed to register IPL %u softint "
723 "for queue %s", eqp->eq_ipl, eqp->eq_name);
726 eqp->eq_id = id;
727 errorq_drain(eqp);
730 mutex_exit(&errorq_lock);
734 * This function is designed to be called from panic context only, and
735 * therefore does not need to acquire errorq_lock when iterating over
736 * errorq_list. This function must be called no more than once for each
737 * 'what' value (if you change this then review the manipulation of 'dep'.
739 static uint64_t
740 errorq_panic_drain(uint_t what)
742 errorq_elem_t *eep, *nep, *dep;
743 errorq_t *eqp;
744 uint64_t loggedtmp;
745 uint64_t logged = 0;
747 for (eqp = errorq_list; eqp != NULL; eqp = eqp->eq_next) {
748 if ((eqp->eq_flags & (ERRORQ_VITAL | ERRORQ_NVLIST)) != what)
749 continue; /* do not drain this queue on this pass */
751 loggedtmp = eqp->eq_kstat.eqk_logged.value.ui64;
754 * In case (1B) above, eq_ptail may be set but the
755 * atomic_cas_ptr may not have been executed yet or may have
756 * failed. Either way, we must log errors in chronological
757 * order. So we search the pending list for the error
758 * pointed to by eq_ptail. If it is found, we know that all
759 * subsequent errors are also still on the pending list, so
760 * just NULL out eq_ptail and let errorq_drain(), below,
761 * take care of the logging.
763 for (eep = eqp->eq_pend; eep != NULL; eep = eep->eqe_prev) {
764 if (eep == eqp->eq_ptail) {
765 ASSERT(eqp->eq_phead == NULL);
766 eqp->eq_ptail = NULL;
767 break;
772 * In cases (1C) and (2) above, eq_ptail will be set to the
773 * newest error on the processing list but eq_phead will still
774 * be NULL. We set the eqe_next pointers so we can iterate
775 * over the processing list in order from oldest error to the
776 * newest error. We then set eq_phead to point to the oldest
777 * error and fall into the for-loop below.
779 if (eqp->eq_phead == NULL && (eep = eqp->eq_ptail) != NULL) {
780 for (eep->eqe_next = NULL; eep->eqe_prev != NULL;
781 eep = eep->eqe_prev)
782 eep->eqe_prev->eqe_next = eep;
784 eqp->eq_phead = eep;
785 eqp->eq_ptail = NULL;
789 * In cases (3) and (4) above (or after case (1C/2) handling),
790 * eq_phead will be set to the oldest error on the processing
791 * list. We log each error and return it to the free pool.
793 * Unlike errorq_drain(), we don't need to worry about updating
794 * eq_phead because errorq_panic() will be called at most once.
795 * However, we must use atomic_cas_ptr to update the
796 * freelist in case errors are still being enqueued during
797 * panic.
799 for (eep = eqp->eq_phead; eep != NULL; eep = nep) {
800 eqp->eq_func(eqp->eq_private, eep->eqe_data, eep);
801 eqp->eq_kstat.eqk_logged.value.ui64++;
803 nep = eep->eqe_next;
804 eep->eqe_next = NULL;
807 * On panic, we add the element to the dump list for
808 * each nvlist errorq, stored oldest to newest. Then
809 * continue, so we don't free and subsequently overwrite
810 * any elements which we've put on the dump queue.
812 if (eqp->eq_flags & ERRORQ_NVLIST) {
813 if (eqp->eq_dump == NULL)
814 dep = eqp->eq_dump = eep;
815 else
816 dep = dep->eqe_dump = eep;
817 membar_producer();
818 continue;
821 eep->eqe_prev = NULL;
822 BT_ATOMIC_CLEAR(eqp->eq_bitmap, eep - eqp->eq_elems);
826 * Now go ahead and drain any other errors on the pending list.
827 * This call transparently handles case (1A) above, as well as
828 * any other errors that were dispatched after errorq_drain()
829 * completed its first compare-and-swap.
831 errorq_drain(eqp);
833 logged += eqp->eq_kstat.eqk_logged.value.ui64 - loggedtmp;
835 return (logged);
839 * Drain all error queues - called only from panic context. Some drain
840 * functions may enqueue errors to ERRORQ_NVLIST error queues so that
841 * they may be written out in the panic dump - so ERRORQ_NVLIST queues
842 * must be drained last. Drain ERRORQ_VITAL queues before nonvital queues
843 * so that vital errors get to fill the ERRORQ_NVLIST queues first, and
844 * do not drain the nonvital queues if there are many vital errors.
846 void
847 errorq_panic(void)
849 ASSERT(panicstr != NULL);
851 if (errorq_panic_drain(ERRORQ_VITAL) <= errorq_vitalmin)
852 (void) errorq_panic_drain(0);
853 (void) errorq_panic_drain(ERRORQ_VITAL | ERRORQ_NVLIST);
854 (void) errorq_panic_drain(ERRORQ_NVLIST);
858 * Reserve an error queue element for later processing and dispatching. The
859 * element is returned to the caller who may add error-specific data to
860 * element. The element is retured to the free pool when either
861 * errorq_commit() is called and the element asynchronously processed
862 * or immediately when errorq_cancel() is called.
864 errorq_elem_t *
865 errorq_reserve(errorq_t *eqp)
867 errorq_elem_t *eqep;
869 if (eqp == NULL || !(eqp->eq_flags & ERRORQ_ACTIVE)) {
870 atomic_inc_64(&errorq_lost);
871 return (NULL);
874 for (;;) {
875 int i, rval;
877 if ((i = errorq_availbit(eqp->eq_bitmap, eqp->eq_qlen,
878 eqp->eq_rotor)) == -1) {
879 atomic_inc_64(&eqp->eq_kstat.eqk_dropped.value.ui64);
880 return (NULL);
882 BT_ATOMIC_SET_EXCL(eqp->eq_bitmap, i, rval);
883 if (rval == 0) {
884 eqp->eq_rotor = i;
885 eqep = &eqp->eq_elems[i];
886 break;
890 if (eqp->eq_flags & ERRORQ_NVLIST) {
891 errorq_nvelem_t *eqnp = eqep->eqe_data;
892 nv_alloc_reset(eqnp->eqn_nva);
893 eqnp->eqn_nvl = fm_nvlist_create(eqnp->eqn_nva);
896 atomic_inc_64(&eqp->eq_kstat.eqk_reserved.value.ui64);
897 return (eqep);
901 * Commit an errorq element (eqep) for dispatching.
902 * This function may be called from any context subject
903 * to the Platform Considerations described above.
905 void
906 errorq_commit(errorq_t *eqp, errorq_elem_t *eqep, uint_t flag)
908 errorq_elem_t *old;
910 if (eqep == NULL || !(eqp->eq_flags & ERRORQ_ACTIVE)) {
911 atomic_inc_64(&eqp->eq_kstat.eqk_commit_fail.value.ui64);
912 return;
915 for (;;) {
916 old = eqp->eq_pend;
917 eqep->eqe_prev = old;
918 membar_producer();
920 if (atomic_cas_ptr(&eqp->eq_pend, old, eqep) == old)
921 break;
924 atomic_inc_64(&eqp->eq_kstat.eqk_committed.value.ui64);
926 if (flag == ERRORQ_ASYNC && eqp->eq_id != NULL)
927 ddi_trigger_softintr(eqp->eq_id);
931 * Cancel an errorq element reservation by returning the specified element
932 * to the free pool. Duplicate or invalid frees are not supported.
934 void
935 errorq_cancel(errorq_t *eqp, errorq_elem_t *eqep)
937 if (eqep == NULL || !(eqp->eq_flags & ERRORQ_ACTIVE))
938 return;
940 BT_ATOMIC_CLEAR(eqp->eq_bitmap, eqep - eqp->eq_elems);
942 atomic_inc_64(&eqp->eq_kstat.eqk_cancelled.value.ui64);
946 * Write elements on the dump list of each nvlist errorq to the dump device.
947 * Upon reboot, fmd(8) will extract and replay them for diagnosis.
949 void
950 errorq_dump(void)
952 errorq_elem_t *eep;
953 errorq_t *eqp;
955 if (ereport_dumpbuf == NULL)
956 return; /* reboot or panic before errorq is even set up */
958 for (eqp = errorq_list; eqp != NULL; eqp = eqp->eq_next) {
959 if (!(eqp->eq_flags & ERRORQ_NVLIST) ||
960 !(eqp->eq_flags & ERRORQ_ACTIVE))
961 continue; /* do not dump this queue on panic */
963 for (eep = eqp->eq_dump; eep != NULL; eep = eep->eqe_dump) {
964 errorq_nvelem_t *eqnp = eep->eqe_data;
965 size_t len = 0;
966 erpt_dump_t ed;
967 int err;
969 (void) nvlist_size(eqnp->eqn_nvl,
970 &len, NV_ENCODE_NATIVE);
972 if (len > ereport_dumplen || len == 0) {
973 cmn_err(CE_WARN, "%s: unable to save error "
974 "report %p due to size %lu\n",
975 eqp->eq_name, (void *)eep, len);
976 continue;
979 if ((err = nvlist_pack(eqnp->eqn_nvl,
980 (char **)&ereport_dumpbuf, &ereport_dumplen,
981 NV_ENCODE_NATIVE, KM_NOSLEEP)) != 0) {
982 cmn_err(CE_WARN, "%s: unable to save error "
983 "report %p due to pack error %d\n",
984 eqp->eq_name, (void *)eep, err);
985 continue;
988 ed.ed_magic = ERPT_MAGIC;
989 ed.ed_chksum = checksum32(ereport_dumpbuf, len);
990 ed.ed_size = (uint32_t)len;
991 ed.ed_pad = 0;
992 ed.ed_hrt_nsec = 0;
993 ed.ed_hrt_base = panic_hrtime;
994 ed.ed_tod_base.sec = panic_hrestime.tv_sec;
995 ed.ed_tod_base.nsec = panic_hrestime.tv_nsec;
997 dumpvp_write(&ed, sizeof (ed));
998 dumpvp_write(ereport_dumpbuf, len);
1003 nvlist_t *
1004 errorq_elem_nvl(errorq_t *eqp, const errorq_elem_t *eqep)
1006 errorq_nvelem_t *eqnp = eqep->eqe_data;
1008 ASSERT(eqp->eq_flags & ERRORQ_ACTIVE && eqp->eq_flags & ERRORQ_NVLIST);
1010 return (eqnp->eqn_nvl);
1013 nv_alloc_t *
1014 errorq_elem_nva(errorq_t *eqp, const errorq_elem_t *eqep)
1016 errorq_nvelem_t *eqnp = eqep->eqe_data;
1018 ASSERT(eqp->eq_flags & ERRORQ_ACTIVE && eqp->eq_flags & ERRORQ_NVLIST);
1020 return (eqnp->eqn_nva);
1024 * Reserve a new element and duplicate the data of the original into it.
1026 void *
1027 errorq_elem_dup(errorq_t *eqp, const errorq_elem_t *eqep, errorq_elem_t **neqep)
1029 ASSERT(eqp->eq_flags & ERRORQ_ACTIVE);
1030 ASSERT(!(eqp->eq_flags & ERRORQ_NVLIST));
1032 if ((*neqep = errorq_reserve(eqp)) == NULL)
1033 return (NULL);
1035 bcopy(eqep->eqe_data, (*neqep)->eqe_data, eqp->eq_size);
1036 return ((*neqep)->eqe_data);