9854 uts: add type for early boot properties
[unleashed.git] / usr / src / uts / i86pc / os / fakebop.c
blob2ee67b522b972c7d9e9b9494b516a9aa82b57c6a
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
29 * Copyright 2018 Joyent, Inc. All rights reserved.
33 * This file contains the functionality that mimics the boot operations
34 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
35 * The x86 kernel now does everything on its own.
38 #include <sys/types.h>
39 #include <sys/bootconf.h>
40 #include <sys/bootsvcs.h>
41 #include <sys/bootinfo.h>
42 #include <sys/multiboot.h>
43 #include <sys/multiboot2.h>
44 #include <sys/multiboot2_impl.h>
45 #include <sys/bootvfs.h>
46 #include <sys/bootprops.h>
47 #include <sys/varargs.h>
48 #include <sys/param.h>
49 #include <sys/machparam.h>
50 #include <sys/machsystm.h>
51 #include <sys/archsystm.h>
52 #include <sys/boot_console.h>
53 #include <sys/cmn_err.h>
54 #include <sys/systm.h>
55 #include <sys/promif.h>
56 #include <sys/archsystm.h>
57 #include <sys/x86_archext.h>
58 #include <sys/kobj.h>
59 #include <sys/privregs.h>
60 #include <sys/sysmacros.h>
61 #include <sys/ctype.h>
62 #include <sys/fastboot.h>
63 #ifdef __xpv
64 #include <sys/hypervisor.h>
65 #include <net/if.h>
66 #endif
67 #include <vm/kboot_mmu.h>
68 #include <vm/hat_pte.h>
69 #include <sys/kobj.h>
70 #include <sys/kobj_lex.h>
71 #include <sys/pci_cfgspace_impl.h>
72 #include <sys/fastboot_impl.h>
73 #include <sys/acpi/acconfig.h>
74 #include <sys/acpi/acpi.h>
75 #include <sys/ddipropdefs.h> /* For DDI prop types */
77 static int have_console = 0; /* set once primitive console is initialized */
78 static char *boot_args = "";
81 * Debugging macros
83 static uint_t kbm_debug = 0;
84 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); }
85 #define DBG(x) { if (kbm_debug) \
86 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \
89 #define PUT_STRING(s) { \
90 char *cp; \
91 for (cp = (s); *cp; ++cp) \
92 bcons_putchar(*cp); \
95 bootops_t bootop; /* simple bootops we'll pass on to kernel */
96 struct bsys_mem bm;
99 * Boot info from "glue" code in low memory. xbootp is used by:
100 * do_bop_phys_alloc(), do_bsys_alloc() and boot_prop_finish().
102 static struct xboot_info *xbootp;
103 static uintptr_t next_virt; /* next available virtual address */
104 static paddr_t next_phys; /* next available physical address from dboot */
105 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */
108 * buffer for vsnprintf for console I/O
110 #define BUFFERSIZE 512
111 static char buffer[BUFFERSIZE];
114 * stuff to store/report/manipulate boot property settings.
116 typedef struct bootprop {
117 struct bootprop *bp_next;
118 char *bp_name;
119 int bp_flags; /* DDI prop type */
120 uint_t bp_vlen; /* 0 for boolean */
121 char *bp_value;
122 } bootprop_t;
124 static bootprop_t *bprops = NULL;
125 static char *curr_page = NULL; /* ptr to avail bprop memory */
126 static int curr_space = 0; /* amount of memory at curr_page */
128 #ifdef __xpv
129 start_info_t *xen_info;
130 shared_info_t *HYPERVISOR_shared_info;
131 #endif
134 * some allocator statistics
136 static ulong_t total_bop_alloc_scratch = 0;
137 static ulong_t total_bop_alloc_kernel = 0;
139 static void build_firmware_properties(struct xboot_info *);
141 static int early_allocation = 1;
143 int force_fastreboot = 0;
144 volatile int fastreboot_onpanic = 0;
145 int post_fastreboot = 0;
146 #ifdef __xpv
147 volatile int fastreboot_capable = 0;
148 #else
149 volatile int fastreboot_capable = 1;
150 #endif
153 * Information saved from current boot for fast reboot.
154 * If the information size exceeds what we have allocated, fast reboot
155 * will not be supported.
157 multiboot_info_t saved_mbi;
158 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
159 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
160 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
161 int saved_cmdline_len = 0;
162 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
165 * Turn off fastreboot_onpanic to avoid panic loop.
167 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
168 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
171 * Pointers to where System Resource Affinity Table (SRAT), System Locality
172 * Information Table (SLIT) and Maximum System Capability Table (MSCT)
173 * are mapped into virtual memory
175 ACPI_TABLE_SRAT *srat_ptr = NULL;
176 ACPI_TABLE_SLIT *slit_ptr = NULL;
177 ACPI_TABLE_MSCT *msct_ptr = NULL;
180 * Arbitrary limit on number of localities we handle; if
181 * this limit is raised to more than UINT16_MAX, make sure
182 * process_slit() knows how to handle it.
184 #define SLIT_LOCALITIES_MAX (4096)
186 #define SLIT_NUM_PROPNAME "acpi-slit-localities"
187 #define SLIT_PROPNAME "acpi-slit"
190 * Allocate aligned physical memory at boot time. This allocator allocates
191 * from the highest possible addresses. This avoids exhausting memory that
192 * would be useful for DMA buffers.
194 paddr_t
195 do_bop_phys_alloc(uint64_t size, uint64_t align)
197 paddr_t pa = 0;
198 paddr_t start;
199 paddr_t end;
200 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install;
203 * Be careful if high memory usage is limited in startup.c
204 * Since there are holes in the low part of the physical address
205 * space we can treat physmem as a pfn (not just a pgcnt) and
206 * get a conservative upper limit.
208 if (physmem != 0 && high_phys > pfn_to_pa(physmem))
209 high_phys = pfn_to_pa(physmem);
212 * find the highest available memory in physinstalled
214 size = P2ROUNDUP(size, align);
215 for (; ml; ml = ml->ml_next) {
216 start = P2ROUNDUP(ml->ml_address, align);
217 end = P2ALIGN(ml->ml_address + ml->ml_size, align);
218 if (start < next_phys)
219 start = P2ROUNDUP(next_phys, align);
220 if (end > high_phys)
221 end = P2ALIGN(high_phys, align);
223 if (end <= start)
224 continue;
225 if (end - start < size)
226 continue;
229 * Early allocations need to use low memory, since
230 * physmem might be further limited by bootenv.rc
232 if (early_allocation) {
233 if (pa == 0 || start < pa)
234 pa = start;
235 } else {
236 if (end - size > pa)
237 pa = end - size;
240 if (pa != 0) {
241 if (early_allocation)
242 next_phys = pa + size;
243 else
244 high_phys = pa;
245 return (pa);
247 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
248 ") Out of memory\n", size, align);
249 /*NOTREACHED*/
252 uintptr_t
253 alloc_vaddr(size_t size, paddr_t align)
255 uintptr_t rv;
257 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
258 rv = (uintptr_t)next_virt;
259 next_virt += size;
260 return (rv);
264 * Allocate virtual memory. The size is always rounded up to a multiple
265 * of base pagesize.
268 /*ARGSUSED*/
269 static caddr_t
270 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
272 paddr_t a = align; /* same type as pa for masking */
273 uint_t pgsize;
274 paddr_t pa;
275 uintptr_t va;
276 ssize_t s; /* the aligned size */
277 uint_t level;
278 uint_t is_kernel = (virthint != 0);
280 if (a < MMU_PAGESIZE)
281 a = MMU_PAGESIZE;
282 else if (!ISP2(a))
283 prom_panic("do_bsys_alloc() incorrect alignment");
284 size = P2ROUNDUP(size, MMU_PAGESIZE);
287 * Use the next aligned virtual address if we weren't given one.
289 if (virthint == NULL) {
290 virthint = (caddr_t)alloc_vaddr(size, a);
291 total_bop_alloc_scratch += size;
292 } else {
293 total_bop_alloc_kernel += size;
297 * allocate the physical memory
299 pa = do_bop_phys_alloc(size, a);
302 * Add the mappings to the page tables, try large pages first.
304 va = (uintptr_t)virthint;
305 s = size;
306 level = 1;
307 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
308 if (xbootp->bi_use_largepage && a == pgsize) {
309 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
310 s >= pgsize) {
311 kbm_map(va, pa, level, is_kernel);
312 va += pgsize;
313 pa += pgsize;
314 s -= pgsize;
319 * Map remaining pages use small mappings
321 level = 0;
322 pgsize = MMU_PAGESIZE;
323 while (s > 0) {
324 kbm_map(va, pa, level, is_kernel);
325 va += pgsize;
326 pa += pgsize;
327 s -= pgsize;
329 return (virthint);
333 * Free virtual memory - we'll just ignore these.
335 /*ARGSUSED*/
336 static void
337 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
339 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
340 (void *)virt, size);
344 * Old interface
346 /*ARGSUSED*/
347 static caddr_t
348 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size,
349 int align, int flags)
351 prom_panic("unsupported call to BOP_EALLOC()\n");
352 return (0);
356 static void
357 bsetprop(int flags, char *name, int nlen, void *value, int vlen)
359 uint_t size;
360 uint_t need_size;
361 bootprop_t *b;
364 * align the size to 16 byte boundary
366 size = sizeof (bootprop_t) + nlen + 1 + vlen;
367 size = (size + 0xf) & ~0xf;
368 if (size > curr_space) {
369 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
370 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
371 curr_space = need_size;
375 * use a bootprop_t at curr_page and link into list
377 b = (bootprop_t *)curr_page;
378 curr_page += sizeof (bootprop_t);
379 curr_space -= sizeof (bootprop_t);
380 b->bp_next = bprops;
381 bprops = b;
384 * follow by name and ending zero byte
386 b->bp_name = curr_page;
387 bcopy(name, curr_page, nlen);
388 curr_page += nlen;
389 *curr_page++ = 0;
390 curr_space -= nlen + 1;
393 * set the property type
395 b->bp_flags = flags & DDI_PROP_TYPE_MASK;
398 * copy in value, but no ending zero byte
400 b->bp_value = curr_page;
401 b->bp_vlen = vlen;
402 if (vlen > 0) {
403 bcopy(value, curr_page, vlen);
404 curr_page += vlen;
405 curr_space -= vlen;
409 * align new values of curr_page, curr_space
411 while (curr_space & 0xf) {
412 ++curr_page;
413 --curr_space;
417 static void
418 bsetprops(char *name, char *value)
420 bsetprop(DDI_PROP_TYPE_STRING, name, strlen(name),
421 value, strlen(value) + 1);
424 static void
425 bsetprop32(char *name, uint32_t value)
427 bsetprop(DDI_PROP_TYPE_INT, name, strlen(name),
428 (void *)&value, sizeof (value));
431 static void
432 bsetprop64(char *name, uint64_t value)
434 bsetprop(DDI_PROP_TYPE_INT64, name, strlen(name),
435 (void *)&value, sizeof (value));
438 static void
439 bsetpropsi(char *name, int value)
441 char prop_val[32];
443 (void) snprintf(prop_val, sizeof (prop_val), "%d", value);
444 bsetprops(name, prop_val);
448 * to find the type of the value associated with this name
450 /*ARGSUSED*/
452 do_bsys_getproptype(bootops_t *bop, const char *name)
454 bootprop_t *b;
456 for (b = bprops; b != NULL; b = b->bp_next) {
457 if (strcmp(name, b->bp_name) != 0)
458 continue;
459 return (b->bp_flags);
461 return (-1);
465 * to find the size of the buffer to allocate
467 /*ARGSUSED*/
469 do_bsys_getproplen(bootops_t *bop, const char *name)
471 bootprop_t *b;
473 for (b = bprops; b; b = b->bp_next) {
474 if (strcmp(name, b->bp_name) != 0)
475 continue;
476 return (b->bp_vlen);
478 return (-1);
482 * get the value associated with this name
484 /*ARGSUSED*/
486 do_bsys_getprop(bootops_t *bop, const char *name, void *value)
488 bootprop_t *b;
490 for (b = bprops; b; b = b->bp_next) {
491 if (strcmp(name, b->bp_name) != 0)
492 continue;
493 bcopy(b->bp_value, value, b->bp_vlen);
494 return (0);
496 return (-1);
500 * get the name of the next property in succession from the standalone
502 /*ARGSUSED*/
503 static char *
504 do_bsys_nextprop(bootops_t *bop, char *name)
506 bootprop_t *b;
509 * A null name is a special signal for the 1st boot property
511 if (name == NULL || strlen(name) == 0) {
512 if (bprops == NULL)
513 return (NULL);
514 return (bprops->bp_name);
517 for (b = bprops; b; b = b->bp_next) {
518 if (name != b->bp_name)
519 continue;
520 b = b->bp_next;
521 if (b == NULL)
522 return (NULL);
523 return (b->bp_name);
525 return (NULL);
529 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
531 static int
532 parse_value(char *p, uint64_t *retval)
534 int adjust = 0;
535 uint64_t tmp = 0;
536 int digit;
537 int radix = 10;
539 *retval = 0;
540 if (*p == '-' || *p == '~')
541 adjust = *p++;
543 if (*p == '0') {
544 ++p;
545 if (*p == 0)
546 return (0);
547 if (*p == 'x' || *p == 'X') {
548 radix = 16;
549 ++p;
550 } else {
551 radix = 8;
552 ++p;
555 while (*p) {
556 if ('0' <= *p && *p <= '9')
557 digit = *p - '0';
558 else if ('a' <= *p && *p <= 'f')
559 digit = 10 + *p - 'a';
560 else if ('A' <= *p && *p <= 'F')
561 digit = 10 + *p - 'A';
562 else
563 return (-1);
564 if (digit >= radix)
565 return (-1);
566 tmp = tmp * radix + digit;
567 ++p;
569 if (adjust == '-')
570 tmp = -tmp;
571 else if (adjust == '~')
572 tmp = ~tmp;
573 *retval = tmp;
574 return (0);
577 static boolean_t
578 unprintable(char *value, int size)
580 int i;
582 if (size <= 0 || value[0] == '\0')
583 return (B_TRUE);
585 for (i = 0; i < size; i++) {
586 if (value[i] == '\0')
587 return (i != (size - 1));
589 if (!isprint(value[i]))
590 return (B_TRUE);
592 return (B_FALSE);
596 * Print out information about all boot properties.
597 * buffer is pointer to pre-allocated space to be used as temporary
598 * space for property values.
600 static void
601 boot_prop_display(char *buffer)
603 char *name = "";
604 int i, len, flags, *buf32;
605 int64_t *buf64;
607 bop_printf(NULL, "\nBoot properties:\n");
609 while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
610 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
611 (void) do_bsys_getprop(NULL, name, buffer);
612 len = do_bsys_getproplen(NULL, name);
613 flags = do_bsys_getproptype(NULL, name);
614 bop_printf(NULL, "len=%d ", len);
616 switch (flags) {
617 case DDI_PROP_TYPE_INT:
618 len = len / sizeof (int);
619 buf32 = (int *)buffer;
620 for (i = 0; i < len; i++) {
621 bop_printf(NULL, "%08x", buf32[i]);
622 if (i < len - 1)
623 bop_printf(NULL, ".");
625 break;
626 case DDI_PROP_TYPE_STRING:
627 bop_printf(NULL, "%s", buffer);
628 break;
629 case DDI_PROP_TYPE_INT64:
630 len = len / sizeof (int64_t);
631 buf64 = (int64_t *)buffer;
632 for (i = 0; i < len; i++) {
633 bop_printf(NULL, "%016" PRIx64, buf64[i]);
634 if (i < len - 1)
635 bop_printf(NULL, ".");
637 break;
638 default:
639 if (!unprintable(buffer, len)) {
640 buffer[len] = 0;
641 bop_printf(NULL, "%s", buffer);
642 break;
644 for (i = 0; i < len; i++) {
645 bop_printf(NULL, "%02x", buffer[i] & 0xff);
646 if (i < len - 1)
647 bop_printf(NULL, ".");
649 break;
651 bop_printf(NULL, "\n");
656 * 2nd part of building the table of boot properties. This includes:
657 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
659 * lines look like one of:
660 * ^$
661 * ^# comment till end of line
662 * setprop name 'value'
663 * setprop name value
664 * setprop name "value"
666 * we do single character I/O since this is really just looking at memory
668 void
669 boot_prop_finish(void)
671 int fd;
672 char *line;
673 int c;
674 int bytes_read;
675 char *name;
676 int n_len;
677 char *value;
678 int v_len;
679 char *inputdev; /* these override the command line if serial ports */
680 char *outputdev;
681 char *consoledev;
682 uint64_t lvalue;
683 int use_xencons = 0;
684 extern int bootrd_debug;
686 #ifdef __xpv
687 if (!DOMAIN_IS_INITDOMAIN(xen_info))
688 use_xencons = 1;
689 #endif /* __xpv */
691 DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
692 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
693 DBG(fd);
695 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
696 while (fd >= 0) {
699 * get a line
701 for (c = 0; ; ++c) {
702 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
703 if (bytes_read == 0) {
704 if (c == 0)
705 goto done;
706 break;
708 if (line[c] == '\n')
709 break;
711 line[c] = 0;
714 * ignore comment lines
716 c = 0;
717 while (ISSPACE(line[c]))
718 ++c;
719 if (line[c] == '#' || line[c] == 0)
720 continue;
723 * must have "setprop " or "setprop\t"
725 if (strncmp(line + c, "setprop ", 8) != 0 &&
726 strncmp(line + c, "setprop\t", 8) != 0)
727 continue;
728 c += 8;
729 while (ISSPACE(line[c]))
730 ++c;
731 if (line[c] == 0)
732 continue;
735 * gather up the property name
737 name = line + c;
738 n_len = 0;
739 while (line[c] && !ISSPACE(line[c]))
740 ++n_len, ++c;
743 * gather up the value, if any
745 value = "";
746 v_len = 0;
747 while (ISSPACE(line[c]))
748 ++c;
749 if (line[c] != 0) {
750 value = line + c;
751 while (line[c] && !ISSPACE(line[c]))
752 ++v_len, ++c;
755 if (v_len >= 2 && value[0] == value[v_len - 1] &&
756 (value[0] == '\'' || value[0] == '"')) {
757 ++value;
758 v_len -= 2;
760 name[n_len] = 0;
761 if (v_len > 0)
762 value[v_len] = 0;
763 else
764 continue;
767 * ignore "boot-file" property, it's now meaningless
769 if (strcmp(name, "boot-file") == 0)
770 continue;
771 if (strcmp(name, "boot-args") == 0 &&
772 strlen(boot_args) > 0)
773 continue;
776 * If a property was explicitly set on the command line
777 * it will override a setting in bootenv.rc
779 if (do_bsys_getproplen(NULL, name) >= 0)
780 continue;
782 bsetprops(name, value);
784 done:
785 if (fd >= 0)
786 (void) BRD_CLOSE(bfs_ops, fd);
789 * Check if we have to limit the boot time allocator
791 if (do_bsys_getproplen(NULL, "physmem") != -1 &&
792 do_bsys_getprop(NULL, "physmem", line) >= 0 &&
793 parse_value(line, &lvalue) != -1) {
794 if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
795 physmem = (pgcnt_t)lvalue;
796 DBG(physmem);
799 early_allocation = 0;
802 * Check for bootrd_debug.
804 if (find_boot_prop("bootrd_debug"))
805 bootrd_debug = 1;
808 * check to see if we have to override the default value of the console
810 if (!use_xencons) {
811 inputdev = line;
812 v_len = do_bsys_getproplen(NULL, "input-device");
813 if (v_len > 0)
814 (void) do_bsys_getprop(NULL, "input-device", inputdev);
815 else
816 v_len = 0;
817 inputdev[v_len] = 0;
819 outputdev = inputdev + v_len + 1;
820 v_len = do_bsys_getproplen(NULL, "output-device");
821 if (v_len > 0)
822 (void) do_bsys_getprop(NULL, "output-device",
823 outputdev);
824 else
825 v_len = 0;
826 outputdev[v_len] = 0;
828 consoledev = outputdev + v_len + 1;
829 v_len = do_bsys_getproplen(NULL, "console");
830 if (v_len > 0) {
831 (void) do_bsys_getprop(NULL, "console", consoledev);
832 if (post_fastreboot &&
833 strcmp(consoledev, "graphics") == 0) {
834 bsetprops("console", "text");
835 v_len = strlen("text");
836 bcopy("text", consoledev, v_len);
838 } else {
839 v_len = 0;
841 consoledev[v_len] = 0;
842 bcons_init2(inputdev, outputdev, consoledev);
843 } else {
845 * Ensure console property exists
846 * If not create it as "hypervisor"
848 v_len = do_bsys_getproplen(NULL, "console");
849 if (v_len < 0)
850 bsetprops("console", "hypervisor");
851 inputdev = outputdev = consoledev = "hypervisor";
852 bcons_init2(inputdev, outputdev, consoledev);
855 if (find_boot_prop("prom_debug") || kbm_debug)
856 boot_prop_display(line);
860 * print formatted output
862 /*PRINTFLIKE2*/
863 /*ARGSUSED*/
864 void
865 bop_printf(bootops_t *bop, const char *fmt, ...)
867 va_list ap;
869 if (have_console == 0)
870 return;
872 va_start(ap, fmt);
873 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
874 va_end(ap);
875 PUT_STRING(buffer);
879 * Another panic() variant; this one can be used even earlier during boot than
880 * prom_panic().
882 /*PRINTFLIKE1*/
883 void
884 bop_panic(const char *fmt, ...)
886 va_list ap;
888 va_start(ap, fmt);
889 bop_printf(NULL, fmt, ap);
890 va_end(ap);
892 bop_printf(NULL, "\nPress any key to reboot.\n");
893 (void) bcons_getchar();
894 bop_printf(NULL, "Resetting...\n");
895 pc_reset();
899 * Do a real mode interrupt BIOS call
901 typedef struct bios_regs {
902 unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
903 } bios_regs_t;
904 typedef int (*bios_func_t)(int, bios_regs_t *);
906 /*ARGSUSED*/
907 static void
908 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
910 #if defined(__xpv)
911 prom_panic("unsupported call to BOP_DOINT()\n");
912 #else /* __xpv */
913 static int firsttime = 1;
914 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
915 bios_regs_t br;
918 * We're about to disable paging; we shouldn't be PCID enabled.
920 if (getcr4() & CR4_PCIDE)
921 prom_panic("do_bsys_doint() with PCID enabled\n");
924 * The first time we do this, we have to copy the pre-packaged
925 * low memory bios call code image into place.
927 if (firsttime) {
928 extern char bios_image[];
929 extern uint32_t bios_size;
931 bcopy(bios_image, (void *)bios_func, bios_size);
932 firsttime = 0;
935 br.ax = rp->eax.word.ax;
936 br.bx = rp->ebx.word.bx;
937 br.cx = rp->ecx.word.cx;
938 br.dx = rp->edx.word.dx;
939 br.bp = rp->ebp.word.bp;
940 br.si = rp->esi.word.si;
941 br.di = rp->edi.word.di;
942 br.ds = rp->ds;
943 br.es = rp->es;
945 DBG_MSG("Doing BIOS call...");
946 DBG(br.ax);
947 DBG(br.bx);
948 DBG(br.dx);
949 rp->eflags = bios_func(intnum, &br);
950 DBG_MSG("done\n");
952 rp->eax.word.ax = br.ax;
953 rp->ebx.word.bx = br.bx;
954 rp->ecx.word.cx = br.cx;
955 rp->edx.word.dx = br.dx;
956 rp->ebp.word.bp = br.bp;
957 rp->esi.word.si = br.si;
958 rp->edi.word.di = br.di;
959 rp->ds = br.ds;
960 rp->es = br.es;
961 #endif /* __xpv */
964 static struct boot_syscalls bop_sysp = {
965 bcons_getchar,
966 bcons_putchar,
967 bcons_ischar,
970 static char *whoami;
972 #define BUFLEN 64
974 #if defined(__xpv)
976 static char namebuf[32];
978 static void
979 xen_parse_props(char *s, char *prop_map[], int n_prop)
981 char **prop_name = prop_map;
982 char *cp = s, *scp;
984 do {
985 scp = cp;
986 while ((*cp != NULL) && (*cp != ':'))
987 cp++;
989 if ((scp != cp) && (*prop_name != NULL)) {
990 *cp = NULL;
991 bsetprops(*prop_name, scp);
994 cp++;
995 prop_name++;
996 n_prop--;
997 } while (n_prop > 0);
1000 #define VBDPATHLEN 64
1003 * parse the 'xpv-root' property to create properties used by
1004 * ufs_mountroot.
1006 static void
1007 xen_vbdroot_props(char *s)
1009 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
1010 const char lnamefix[] = "/dev/dsk/c0d";
1011 char *pnp;
1012 char *prop_p;
1013 char mi;
1014 short minor;
1015 long addr = 0;
1017 pnp = vbdpath + strlen(vbdpath);
1018 prop_p = s + strlen(lnamefix);
1019 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
1020 addr = addr * 10 + *prop_p++ - '0';
1021 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
1022 pnp = vbdpath + strlen(vbdpath);
1023 if (*prop_p == 's')
1024 mi = 'a';
1025 else if (*prop_p == 'p')
1026 mi = 'q';
1027 else
1028 ASSERT(0); /* shouldn't be here */
1029 prop_p++;
1030 ASSERT(*prop_p != '\0');
1031 if (ISDIGIT(*prop_p)) {
1032 minor = *prop_p - '0';
1033 prop_p++;
1034 if (ISDIGIT(*prop_p)) {
1035 minor = minor * 10 + *prop_p - '0';
1037 } else {
1038 /* malformed root path, use 0 as default */
1039 minor = 0;
1041 ASSERT(minor < 16); /* at most 16 partitions */
1042 mi += minor;
1043 *pnp++ = ':';
1044 *pnp++ = mi;
1045 *pnp++ = '\0';
1046 bsetprops("fstype", "ufs");
1047 bsetprops("bootpath", vbdpath);
1049 DBG_MSG("VBD bootpath set to ");
1050 DBG_MSG(vbdpath);
1051 DBG_MSG("\n");
1055 * parse the xpv-nfsroot property to create properties used by
1056 * nfs_mountroot.
1058 static void
1059 xen_nfsroot_props(char *s)
1061 char *prop_map[] = {
1062 BP_SERVER_IP, /* server IP address */
1063 BP_SERVER_NAME, /* server hostname */
1064 BP_SERVER_PATH, /* root path */
1066 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1068 bsetprops("fstype", "nfs");
1070 xen_parse_props(s, prop_map, n_prop);
1073 * If a server name wasn't specified, use a default.
1075 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
1076 bsetprops(BP_SERVER_NAME, "unknown");
1080 * Extract our IP address, etc. from the "xpv-ip" property.
1082 static void
1083 xen_ip_props(char *s)
1085 char *prop_map[] = {
1086 BP_HOST_IP, /* IP address */
1087 NULL, /* NFS server IP address (ignored in */
1088 /* favour of xpv-nfsroot) */
1089 BP_ROUTER_IP, /* IP gateway */
1090 BP_SUBNET_MASK, /* IP subnet mask */
1091 "xpv-hostname", /* hostname (ignored) */
1092 BP_NETWORK_INTERFACE, /* interface name */
1093 "xpv-hcp", /* host configuration protocol */
1095 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1096 char ifname[IFNAMSIZ];
1098 xen_parse_props(s, prop_map, n_prop);
1101 * A Linux dom0 administrator expects all interfaces to be
1102 * called "ethX", which is not the case here.
1104 * If the interface name specified is "eth0", presume that
1105 * this is really intended to be "xnf0" (the first domU ->
1106 * dom0 interface for this domain).
1108 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
1109 (strcmp("eth0", ifname) == 0)) {
1110 bsetprops(BP_NETWORK_INTERFACE, "xnf0");
1111 bop_printf(NULL,
1112 "network interface name 'eth0' replaced with 'xnf0'\n");
1116 #else /* __xpv */
1118 static void
1119 setup_rarp_props(struct sol_netinfo *sip)
1121 char buf[BUFLEN]; /* to hold ip/mac addrs */
1122 uint8_t *val;
1124 val = (uint8_t *)&sip->sn_ciaddr;
1125 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1126 val[0], val[1], val[2], val[3]);
1127 bsetprops(BP_HOST_IP, buf);
1129 val = (uint8_t *)&sip->sn_siaddr;
1130 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1131 val[0], val[1], val[2], val[3]);
1132 bsetprops(BP_SERVER_IP, buf);
1134 if (sip->sn_giaddr != 0) {
1135 val = (uint8_t *)&sip->sn_giaddr;
1136 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1137 val[0], val[1], val[2], val[3]);
1138 bsetprops(BP_ROUTER_IP, buf);
1141 if (sip->sn_netmask != 0) {
1142 val = (uint8_t *)&sip->sn_netmask;
1143 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1144 val[0], val[1], val[2], val[3]);
1145 bsetprops(BP_SUBNET_MASK, buf);
1148 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1149 bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1150 sip->sn_mactype, sip->sn_maclen);
1151 } else {
1152 val = sip->sn_macaddr;
1153 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1154 val[0], val[1], val[2], val[3], val[4], val[5]);
1155 bsetprops(BP_BOOT_MAC, buf);
1159 #endif /* __xpv */
1161 static void
1162 build_panic_cmdline(const char *cmd, int cmdlen)
1164 int proplen;
1165 size_t arglen;
1167 arglen = sizeof (fastreboot_onpanic_args);
1169 * If we allready have fastreboot-onpanic set to zero,
1170 * don't add them again.
1172 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
1173 proplen <= sizeof (fastreboot_onpanic_cmdline)) {
1174 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
1175 fastreboot_onpanic_cmdline);
1176 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
1177 arglen = 1;
1181 * construct fastreboot_onpanic_cmdline
1183 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
1184 DBG_MSG("Command line too long: clearing "
1185 FASTREBOOT_ONPANIC "\n");
1186 fastreboot_onpanic = 0;
1187 } else {
1188 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
1189 if (arglen != 1)
1190 bcopy(fastreboot_onpanic_args,
1191 fastreboot_onpanic_cmdline + cmdlen, arglen);
1192 else
1193 fastreboot_onpanic_cmdline[cmdlen] = 0;
1198 #ifndef __xpv
1200 * Construct boot command line for Fast Reboot. The saved_cmdline
1201 * is also reported by "eeprom bootcmd".
1203 static void
1204 build_fastboot_cmdline(struct xboot_info *xbp)
1206 saved_cmdline_len = strlen(xbp->bi_cmdline) + 1;
1207 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1208 DBG(saved_cmdline_len);
1209 DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1210 fastreboot_capable = 0;
1211 } else {
1212 bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline,
1213 saved_cmdline_len);
1214 saved_cmdline[saved_cmdline_len - 1] = '\0';
1215 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
1220 * Save memory layout, disk drive information, unix and boot archive sizes for
1221 * Fast Reboot.
1223 static void
1224 save_boot_info(struct xboot_info *xbi)
1226 multiboot_info_t *mbi = xbi->bi_mb_info;
1227 struct boot_modules *modp;
1228 int i;
1230 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1231 if (mbi->mmap_length > sizeof (saved_mmap)) {
1232 DBG_MSG("mbi->mmap_length too big: clearing "
1233 "fastreboot_capable\n");
1234 fastreboot_capable = 0;
1235 } else {
1236 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1237 mbi->mmap_length);
1240 if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) {
1241 if (mbi->drives_length > sizeof (saved_drives)) {
1242 DBG(mbi->drives_length);
1243 DBG_MSG("mbi->drives_length too big: clearing "
1244 "fastreboot_capable\n");
1245 fastreboot_capable = 0;
1246 } else {
1247 bcopy((void *)(uintptr_t)mbi->drives_addr,
1248 (void *)saved_drives, mbi->drives_length);
1250 } else {
1251 saved_mbi.drives_length = 0;
1252 saved_mbi.drives_addr = NULL;
1256 * Current file sizes. Used by fastboot.c to figure out how much
1257 * memory to reserve for panic reboot.
1258 * Use the module list from the dboot-constructed xboot_info
1259 * instead of the list referenced by the multiboot structure
1260 * because that structure may not be addressable now.
1262 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
1263 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules;
1264 i < xbi->bi_module_cnt; i++, modp++) {
1265 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size;
1268 #endif /* __xpv */
1271 * Import boot environment module variables as properties, applying
1272 * blacklist filter for variables we know we will not use.
1274 * Since the environment can be relatively large, containing many variables
1275 * used only for boot loader purposes, we will use a blacklist based filter.
1276 * To keep the blacklist from growing too large, we use prefix based filtering.
1277 * This is possible because in many cases, the loader variable names are
1278 * using a structured layout.
1280 * We will not overwrite already set properties.
1282 static struct bop_blacklist {
1283 const char *bl_name;
1284 int bl_name_len;
1285 } bop_prop_blacklist[] = {
1286 { "ISADIR", sizeof ("ISADIR") },
1287 { "acpi", sizeof ("acpi") },
1288 { "autoboot_delay", sizeof ("autoboot_delay") },
1289 { "autoboot_delay", sizeof ("autoboot_delay") },
1290 { "beansi_", sizeof ("beansi_") },
1291 { "beastie", sizeof ("beastie") },
1292 { "bemenu", sizeof ("bemenu") },
1293 { "boot.", sizeof ("boot.") },
1294 { "bootenv", sizeof ("bootenv") },
1295 { "currdev", sizeof ("currdev") },
1296 { "dhcp.", sizeof ("dhcp.") },
1297 { "interpret", sizeof ("interpret") },
1298 { "kernel", sizeof ("kernel") },
1299 { "loaddev", sizeof ("loaddev") },
1300 { "loader_", sizeof ("loader_") },
1301 { "module_path", sizeof ("module_path") },
1302 { "nfs.", sizeof ("nfs.") },
1303 { "pcibios", sizeof ("pcibios") },
1304 { "prompt", sizeof ("prompt") },
1305 { "smbios", sizeof ("smbios") },
1306 { "tem", sizeof ("tem") },
1307 { "twiddle_divisor", sizeof ("twiddle_divisor") },
1308 { "zfs_be", sizeof ("zfs_be") },
1312 * Match the name against prefixes in above blacklist. If the match was
1313 * found, this name is blacklisted.
1315 static boolean_t
1316 name_is_blacklisted(const char *name)
1318 int i, n;
1320 n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]);
1321 for (i = 0; i < n; i++) {
1322 if (strncmp(bop_prop_blacklist[i].bl_name, name,
1323 bop_prop_blacklist[i].bl_name_len - 1) == 0) {
1324 return (B_TRUE);
1327 return (B_FALSE);
1330 static void
1331 process_boot_environment(struct boot_modules *benv)
1333 char *env, *ptr, *name, *value;
1334 uint32_t size, name_len, value_len;
1336 if (benv == NULL || benv->bm_type != BMT_ENV)
1337 return;
1338 ptr = env = benv->bm_addr;
1339 size = benv->bm_size;
1340 do {
1341 name = ptr;
1342 /* find '=' */
1343 while (*ptr != '=') {
1344 ptr++;
1345 if (ptr > env + size) /* Something is very wrong. */
1346 return;
1348 name_len = ptr - name;
1349 if (sizeof (buffer) <= name_len)
1350 continue;
1352 (void) strncpy(buffer, name, sizeof (buffer));
1353 buffer[name_len] = '\0';
1354 name = buffer;
1356 value_len = 0;
1357 value = ++ptr;
1358 while ((uintptr_t)ptr - (uintptr_t)env < size) {
1359 if (*ptr == '\0') {
1360 ptr++;
1361 value_len = (uintptr_t)ptr - (uintptr_t)env;
1362 break;
1364 ptr++;
1367 /* Did we reach the end of the module? */
1368 if (value_len == 0)
1369 return;
1371 if (*value == '\0')
1372 continue;
1374 /* Is this property already set? */
1375 if (do_bsys_getproplen(NULL, name) >= 0)
1376 continue;
1378 /* Translate netboot variables */
1379 if (strcmp(name, "boot.netif.gateway") == 0) {
1380 bsetprops(BP_ROUTER_IP, value);
1381 continue;
1383 if (strcmp(name, "boot.netif.hwaddr") == 0) {
1384 bsetprops(BP_BOOT_MAC, value);
1385 continue;
1387 if (strcmp(name, "boot.netif.ip") == 0) {
1388 bsetprops(BP_HOST_IP, value);
1389 continue;
1391 if (strcmp(name, "boot.netif.netmask") == 0) {
1392 bsetprops(BP_SUBNET_MASK, value);
1393 continue;
1395 if (strcmp(name, "boot.netif.server") == 0) {
1396 bsetprops(BP_SERVER_IP, value);
1397 continue;
1399 if (strcmp(name, "boot.netif.server") == 0) {
1400 if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0)
1401 bsetprops(BP_SERVER_IP, value);
1402 continue;
1404 if (strcmp(name, "boot.nfsroot.server") == 0) {
1405 if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0)
1406 bsetprops(BP_SERVER_IP, value);
1407 continue;
1409 if (strcmp(name, "boot.nfsroot.path") == 0) {
1410 bsetprops(BP_SERVER_PATH, value);
1411 continue;
1414 if (name_is_blacklisted(name) == B_TRUE)
1415 continue;
1417 /* Create new property. */
1418 bsetprops(name, value);
1420 /* Avoid reading past the module end. */
1421 if (size <= (uintptr_t)ptr - (uintptr_t)env)
1422 return;
1423 } while (*ptr != '\0');
1427 * 1st pass at building the table of boot properties. This includes:
1428 * - values set on the command line: -B a=x,b=y,c=z ....
1429 * - known values we just compute (ie. from xbp)
1430 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
1432 * the grub command line looked like:
1433 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1435 * whoami is the same as boot-file
1437 static void
1438 build_boot_properties(struct xboot_info *xbp)
1440 char *name;
1441 int name_len;
1442 char *value;
1443 int value_len;
1444 struct boot_modules *bm, *rdbm, *benv = NULL;
1445 char *propbuf;
1446 int quoted = 0;
1447 int boot_arg_len;
1448 uint_t i, midx;
1449 char modid[32];
1450 #ifndef __xpv
1451 static int stdout_val = 0;
1452 uchar_t boot_device;
1453 char str[3];
1454 #endif
1457 * These have to be done first, so that kobj_mount_root() works
1459 DBG_MSG("Building boot properties\n");
1460 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1461 DBG((uintptr_t)propbuf);
1462 if (xbp->bi_module_cnt > 0) {
1463 bm = xbp->bi_modules;
1464 rdbm = NULL;
1465 for (midx = i = 0; i < xbp->bi_module_cnt; i++) {
1466 if (bm[i].bm_type == BMT_ROOTFS) {
1467 rdbm = &bm[i];
1468 continue;
1470 if (bm[i].bm_type == BMT_HASH || bm[i].bm_name == NULL)
1471 continue;
1473 if (bm[i].bm_type == BMT_ENV) {
1474 if (benv == NULL)
1475 benv = &bm[i];
1476 else
1477 continue;
1480 (void) snprintf(modid, sizeof (modid),
1481 "module-name-%u", midx);
1482 bsetprops(modid, (char *)bm[i].bm_name);
1483 (void) snprintf(modid, sizeof (modid),
1484 "module-addr-%u", midx);
1485 bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr);
1486 (void) snprintf(modid, sizeof (modid),
1487 "module-size-%u", midx);
1488 bsetprop64(modid, (uint64_t)bm[i].bm_size);
1489 ++midx;
1491 if (rdbm != NULL) {
1492 bsetprop64("ramdisk_start",
1493 (uint64_t)(uintptr_t)rdbm->bm_addr);
1494 bsetprop64("ramdisk_end",
1495 (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size);
1500 * If there are any boot time modules or hashes present, then disable
1501 * fast reboot.
1503 if (xbp->bi_module_cnt > 1) {
1504 fastreboot_disable(FBNS_BOOTMOD);
1507 #ifndef __xpv
1509 * Disable fast reboot if we're using the Multiboot 2 boot protocol,
1510 * since we don't currently support MB2 info and module relocation.
1511 * Note that fast reboot will have already been disabled if multiple
1512 * modules are present, since the current implementation assumes that
1513 * we only have a single module, the boot_archive.
1515 if (xbp->bi_mb_version != 1) {
1516 fastreboot_disable(FBNS_MULTIBOOT2);
1518 #endif
1520 DBG_MSG("Parsing command line for boot properties\n");
1521 value = xbp->bi_cmdline;
1524 * allocate memory to collect boot_args into
1526 boot_arg_len = strlen(xbp->bi_cmdline) + 1;
1527 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1528 boot_args[0] = 0;
1529 boot_arg_len = 0;
1531 #ifdef __xpv
1533 * Xen puts a lot of device information in front of the kernel name
1534 * let's grab them and make them boot properties. The first
1535 * string w/o an "=" in it will be the boot-file property.
1537 (void) strcpy(namebuf, "xpv-");
1538 for (;;) {
1540 * get to next property
1542 while (ISSPACE(*value))
1543 ++value;
1544 name = value;
1546 * look for an "="
1548 while (*value && !ISSPACE(*value) && *value != '=') {
1549 value++;
1551 if (*value != '=') { /* no "=" in the property */
1552 value = name;
1553 break;
1555 name_len = value - name;
1556 value_len = 0;
1558 * skip over the "="
1560 value++;
1561 while (value[value_len] && !ISSPACE(value[value_len])) {
1562 ++value_len;
1565 * build property name with "xpv-" prefix
1567 if (name_len + 4 > 32) { /* skip if name too long */
1568 value += value_len;
1569 continue;
1571 bcopy(name, &namebuf[4], name_len);
1572 name_len += 4;
1573 namebuf[name_len] = 0;
1574 bcopy(value, propbuf, value_len);
1575 propbuf[value_len] = 0;
1576 bsetprops(namebuf, propbuf);
1579 * xpv-root is set to the logical disk name of the xen
1580 * VBD when booting from a disk-based filesystem.
1582 if (strcmp(namebuf, "xpv-root") == 0)
1583 xen_vbdroot_props(propbuf);
1585 * While we're here, if we have a "xpv-nfsroot" property
1586 * then we need to set "fstype" to "nfs" so we mount
1587 * our root from the nfs server. Also parse the xpv-nfsroot
1588 * property to create the properties that nfs_mountroot will
1589 * need to find the root and mount it.
1591 if (strcmp(namebuf, "xpv-nfsroot") == 0)
1592 xen_nfsroot_props(propbuf);
1594 if (strcmp(namebuf, "xpv-ip") == 0)
1595 xen_ip_props(propbuf);
1596 value += value_len;
1598 #endif
1600 while (ISSPACE(*value))
1601 ++value;
1603 * value now points at the boot-file
1605 value_len = 0;
1606 while (value[value_len] && !ISSPACE(value[value_len]))
1607 ++value_len;
1608 if (value_len > 0) {
1609 whoami = propbuf;
1610 bcopy(value, whoami, value_len);
1611 whoami[value_len] = 0;
1612 bsetprops("boot-file", whoami);
1614 * strip leading path stuff from whoami, so running from
1615 * PXE/miniroot makes sense.
1617 if (strstr(whoami, "/platform/") != NULL)
1618 whoami = strstr(whoami, "/platform/");
1619 bsetprops("whoami", whoami);
1623 * Values forcibly set boot properties on the command line via -B.
1624 * Allow use of quotes in values. Other stuff goes on kernel
1625 * command line.
1627 name = value + value_len;
1628 while (*name != 0) {
1630 * anything not " -B" is copied to the command line
1632 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1633 boot_args[boot_arg_len++] = *name;
1634 boot_args[boot_arg_len] = 0;
1635 ++name;
1636 continue;
1640 * skip the " -B" and following white space
1642 name += 3;
1643 while (ISSPACE(*name))
1644 ++name;
1645 while (*name && !ISSPACE(*name)) {
1646 value = strstr(name, "=");
1647 if (value == NULL)
1648 break;
1649 name_len = value - name;
1650 ++value;
1651 value_len = 0;
1652 quoted = 0;
1653 for (; ; ++value_len) {
1654 if (!value[value_len])
1655 break;
1658 * is this value quoted?
1660 if (value_len == 0 &&
1661 (value[0] == '\'' || value[0] == '"')) {
1662 quoted = value[0];
1663 ++value_len;
1667 * In the quote accept any character,
1668 * but look for ending quote.
1670 if (quoted) {
1671 if (value[value_len] == quoted)
1672 quoted = 0;
1673 continue;
1677 * a comma or white space ends the value
1679 if (value[value_len] == ',' ||
1680 ISSPACE(value[value_len]))
1681 break;
1684 if (value_len == 0) {
1685 bsetprop(DDI_PROP_TYPE_ANY, name, name_len,
1686 NULL, 0);
1687 } else {
1688 char *v = value;
1689 int l = value_len;
1690 if (v[0] == v[l - 1] &&
1691 (v[0] == '\'' || v[0] == '"')) {
1692 ++v;
1693 l -= 2;
1695 bcopy(v, propbuf, l);
1696 propbuf[l] = '\0';
1697 bsetprop(DDI_PROP_TYPE_STRING, name, name_len,
1698 propbuf, l + 1);
1700 name = value + value_len;
1701 while (*name == ',')
1702 ++name;
1707 * set boot-args property
1708 * 1275 name is bootargs, so set
1709 * that too
1711 bsetprops("boot-args", boot_args);
1712 bsetprops("bootargs", boot_args);
1714 process_boot_environment(benv);
1716 #ifndef __xpv
1718 * Build boot command line for Fast Reboot
1720 build_fastboot_cmdline(xbp);
1722 if (xbp->bi_mb_version == 1) {
1723 multiboot_info_t *mbi = xbp->bi_mb_info;
1724 int netboot;
1725 struct sol_netinfo *sip;
1728 * set the BIOS boot device from GRUB
1730 netboot = 0;
1733 * Save various boot information for Fast Reboot
1735 save_boot_info(xbp);
1737 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) {
1738 boot_device = mbi->boot_device >> 24;
1739 if (boot_device == 0x20)
1740 netboot++;
1741 str[0] = (boot_device >> 4) + '0';
1742 str[1] = (boot_device & 0xf) + '0';
1743 str[2] = 0;
1744 bsetprops("bios-boot-device", str);
1745 } else {
1746 netboot = 1;
1750 * In the netboot case, drives_info is overloaded with the
1751 * dhcp ack. This is not multiboot compliant and requires
1752 * special pxegrub!
1754 if (netboot && mbi->drives_length != 0) {
1755 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1756 if (sip->sn_infotype == SN_TYPE_BOOTP)
1757 bsetprop(DDI_PROP_TYPE_BYTE,
1758 "bootp-response",
1759 sizeof ("bootp-response"),
1760 (void *)(uintptr_t)mbi->drives_addr,
1761 mbi->drives_length);
1762 else if (sip->sn_infotype == SN_TYPE_RARP)
1763 setup_rarp_props(sip);
1765 } else {
1766 multiboot2_info_header_t *mbi = xbp->bi_mb_info;
1767 multiboot_tag_bootdev_t *bootdev = NULL;
1768 multiboot_tag_network_t *netdev = NULL;
1770 if (mbi != NULL) {
1771 bootdev = dboot_multiboot2_find_tag(mbi,
1772 MULTIBOOT_TAG_TYPE_BOOTDEV);
1773 netdev = dboot_multiboot2_find_tag(mbi,
1774 MULTIBOOT_TAG_TYPE_NETWORK);
1776 if (bootdev != NULL) {
1777 DBG(bootdev->mb_biosdev);
1778 boot_device = bootdev->mb_biosdev;
1779 str[0] = (boot_device >> 4) + '0';
1780 str[1] = (boot_device & 0xf) + '0';
1781 str[2] = 0;
1782 bsetprops("bios-boot-device", str);
1784 if (netdev != NULL) {
1785 bsetprop(DDI_PROP_TYPE_BYTE,
1786 "bootp-response", sizeof ("bootp-response"),
1787 (void *)(uintptr_t)netdev->mb_dhcpack,
1788 netdev->mb_size -
1789 sizeof (multiboot_tag_network_t));
1793 bsetprop32("stdout", stdout_val);
1794 #endif /* __xpv */
1797 * more conjured up values for made up things....
1799 #if defined(__xpv)
1800 bsetprops("mfg-name", "i86xpv");
1801 bsetprops("impl-arch-name", "i86xpv");
1802 #else
1803 bsetprops("mfg-name", "i86pc");
1804 bsetprops("impl-arch-name", "i86pc");
1805 #endif
1808 * Build firmware-provided system properties
1810 build_firmware_properties(xbp);
1813 * XXPV
1815 * Find out what these are:
1816 * - cpuid_feature_ecx_include
1817 * - cpuid_feature_ecx_exclude
1818 * - cpuid_feature_edx_include
1819 * - cpuid_feature_edx_exclude
1821 * Find out what these are in multiboot:
1822 * - netdev-path
1823 * - fstype
1827 #ifdef __xpv
1829 * Under the Hypervisor, memory usable for DMA may be scarce. One
1830 * very likely large pool of DMA friendly memory is occupied by
1831 * the boot_archive, as it was loaded by grub into low MFNs.
1833 * Here we free up that memory by copying the boot archive to what are
1834 * likely higher MFN pages and then swapping the mfn/pfn mappings.
1836 #define PFN_2GIG 0x80000
1837 static void
1838 relocate_boot_archive(struct xboot_info *xbp)
1840 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1841 struct boot_modules *bm = xbp->bi_modules;
1842 uintptr_t va;
1843 pfn_t va_pfn;
1844 mfn_t va_mfn;
1845 caddr_t copy;
1846 pfn_t copy_pfn;
1847 mfn_t copy_mfn;
1848 size_t len;
1849 int slop;
1850 int total = 0;
1851 int relocated = 0;
1852 int mmu_update_return;
1853 mmu_update_t t[2];
1854 x86pte_t pte;
1857 * If all MFN's are below 2Gig, don't bother doing this.
1859 if (max_mfn < PFN_2GIG)
1860 return;
1861 if (xbp->bi_module_cnt < 1) {
1862 DBG_MSG("no boot_archive!");
1863 return;
1866 DBG_MSG("moving boot_archive to high MFN memory\n");
1867 va = (uintptr_t)bm->bm_addr;
1868 len = bm->bm_size;
1869 slop = va & MMU_PAGEOFFSET;
1870 if (slop) {
1871 va += MMU_PAGESIZE - slop;
1872 len -= MMU_PAGESIZE - slop;
1874 len = P2ALIGN(len, MMU_PAGESIZE);
1877 * Go through all boot_archive pages, swapping any low MFN pages
1878 * with memory at next_phys.
1880 while (len != 0) {
1881 ++total;
1882 va_pfn = mmu_btop(va - ONE_GIG);
1883 va_mfn = mfn_list[va_pfn];
1884 if (mfn_list[va_pfn] < PFN_2GIG) {
1885 copy = kbm_remap_window(next_phys, 1);
1886 bcopy((void *)va, copy, MMU_PAGESIZE);
1887 copy_pfn = mmu_btop(next_phys);
1888 copy_mfn = mfn_list[copy_pfn];
1890 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1891 if (HYPERVISOR_update_va_mapping(va, pte,
1892 UVMF_INVLPG | UVMF_LOCAL))
1893 bop_panic("relocate_boot_archive(): "
1894 "HYPERVISOR_update_va_mapping() failed");
1896 mfn_list[va_pfn] = copy_mfn;
1897 mfn_list[copy_pfn] = va_mfn;
1899 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1900 t[0].val = va_pfn;
1901 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1902 t[1].val = copy_pfn;
1903 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1904 DOMID_SELF) != 0 || mmu_update_return != 2)
1905 bop_panic("relocate_boot_archive(): "
1906 "HYPERVISOR_mmu_update() failed");
1908 next_phys += MMU_PAGESIZE;
1909 ++relocated;
1911 len -= MMU_PAGESIZE;
1912 va += MMU_PAGESIZE;
1914 DBG_MSG("Relocated pages:\n");
1915 DBG(relocated);
1916 DBG_MSG("Out of total pages:\n");
1917 DBG(total);
1919 #endif /* __xpv */
1921 #if !defined(__xpv)
1923 * simple description of a stack frame (args are 32 bit only currently)
1925 typedef struct bop_frame {
1926 struct bop_frame *old_frame;
1927 pc_t retaddr;
1928 long arg[1];
1929 } bop_frame_t;
1931 void
1932 bop_traceback(bop_frame_t *frame)
1934 pc_t pc;
1935 int cnt;
1936 char *ksym;
1937 ulong_t off;
1939 bop_printf(NULL, "Stack traceback:\n");
1940 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */
1941 pc = frame->retaddr;
1942 if (pc == 0)
1943 break;
1944 ksym = kobj_getsymname(pc, &off);
1945 if (ksym)
1946 bop_printf(NULL, " %s+%lx", ksym, off);
1947 else
1948 bop_printf(NULL, " 0x%lx", pc);
1950 frame = frame->old_frame;
1951 if (frame == 0) {
1952 bop_printf(NULL, "\n");
1953 break;
1955 bop_printf(NULL, "\n");
1959 struct trapframe {
1960 ulong_t error_code; /* optional */
1961 ulong_t inst_ptr;
1962 ulong_t code_seg;
1963 ulong_t flags_reg;
1964 ulong_t stk_ptr;
1965 ulong_t stk_seg;
1968 void
1969 bop_trap(ulong_t *tfp)
1971 struct trapframe *tf = (struct trapframe *)tfp;
1972 bop_frame_t fakeframe;
1973 static int depth = 0;
1976 * Check for an infinite loop of traps.
1978 if (++depth > 2)
1979 bop_panic("Nested trap");
1981 bop_printf(NULL, "Unexpected trap\n");
1984 * adjust the tf for optional error_code by detecting the code selector
1986 if (tf->code_seg != B64CODE_SEL)
1987 tf = (struct trapframe *)(tfp - 1);
1988 else
1989 bop_printf(NULL, "error code 0x%lx\n",
1990 tf->error_code & 0xffffffff);
1992 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr);
1993 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff);
1994 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg);
1995 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr);
1996 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff);
1998 /* grab %[er]bp pushed by our code from the stack */
1999 fakeframe.old_frame = (bop_frame_t *)*(tfp - 3);
2000 fakeframe.retaddr = (pc_t)tf->inst_ptr;
2001 bop_printf(NULL, "Attempting stack backtrace:\n");
2002 bop_traceback(&fakeframe);
2003 bop_panic("unexpected trap in early boot");
2006 extern void bop_trap_handler(void);
2008 static gate_desc_t *bop_idt;
2010 static desctbr_t bop_idt_info;
2013 * Install a temporary IDT that lets us catch errors in the boot time code.
2014 * We shouldn't get any faults at all while this is installed, so we'll
2015 * just generate a traceback and exit.
2017 static void
2018 bop_idt_init(void)
2020 int t;
2022 bop_idt = (gate_desc_t *)
2023 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2024 bzero(bop_idt, MMU_PAGESIZE);
2025 for (t = 0; t < NIDT; ++t) {
2027 * Note that since boot runs without a TSS, the
2028 * double fault handler cannot use an alternate stack (64-bit).
2030 set_gatesegd(&bop_idt[t], &bop_trap_handler, B64CODE_SEL,
2031 SDT_SYSIGT, TRP_KPL, 0);
2033 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
2034 bop_idt_info.dtr_base = (uintptr_t)bop_idt;
2035 wr_idtr(&bop_idt_info);
2037 #endif /* !defined(__xpv) */
2040 * This is where we enter the kernel. It dummies up the boot_ops and
2041 * boot_syscalls vectors and jumps off to _kobj_boot()
2043 void
2044 _start(struct xboot_info *xbp)
2046 bootops_t *bops = &bootop;
2047 extern void _kobj_boot();
2050 * 1st off - initialize the console for any error messages
2052 xbootp = xbp;
2053 #ifdef __xpv
2054 HYPERVISOR_shared_info = (void *)xbp->bi_shared_info;
2055 xen_info = xbp->bi_xen_start_info;
2056 #endif
2058 #ifndef __xpv
2059 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
2060 FASTBOOT_MAGIC) {
2061 post_fastreboot = 1;
2062 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
2064 #endif
2066 bcons_init(xbp);
2067 have_console = 1;
2070 * enable debugging
2072 if (find_boot_prop("kbm_debug") != NULL)
2073 kbm_debug = 1;
2075 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
2076 DBG_MSG((char *)xbp->bi_cmdline);
2077 DBG_MSG("\n\n\n");
2080 * physavail is no longer used by startup
2082 bm.physinstalled = xbp->bi_phys_install;
2083 bm.pcimem = xbp->bi_pcimem;
2084 bm.rsvdmem = xbp->bi_rsvdmem;
2085 bm.physavail = NULL;
2088 * initialize the boot time allocator
2090 next_phys = xbp->bi_next_paddr;
2091 DBG(next_phys);
2092 next_virt = (uintptr_t)xbp->bi_next_vaddr;
2093 DBG(next_virt);
2094 DBG_MSG("Initializing boot time memory management...");
2095 #ifdef __xpv
2097 xen_platform_parameters_t p;
2099 /* This call shouldn't fail, dboot already did it once. */
2100 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
2101 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
2102 DBG(xen_virt_start);
2104 #endif
2105 kbm_init(xbp);
2106 DBG_MSG("done\n");
2109 * Fill in the bootops vector
2111 bops->bsys_version = BO_VERSION;
2112 bops->boot_mem = &bm;
2113 bops->bsys_alloc = do_bsys_alloc;
2114 bops->bsys_free = do_bsys_free;
2115 bops->bsys_getproplen = do_bsys_getproplen;
2116 bops->bsys_getprop = do_bsys_getprop;
2117 bops->bsys_nextprop = do_bsys_nextprop;
2118 bops->bsys_printf = bop_printf;
2119 bops->bsys_doint = do_bsys_doint;
2122 * BOP_EALLOC() is no longer needed
2124 bops->bsys_ealloc = do_bsys_ealloc;
2126 #ifdef __xpv
2128 * On domain 0 we need to free up some physical memory that is
2129 * usable for DMA. Since GRUB loaded the boot_archive, it is
2130 * sitting in low MFN memory. We'll relocated the boot archive
2131 * pages to high PFN memory.
2133 if (DOMAIN_IS_INITDOMAIN(xen_info))
2134 relocate_boot_archive(xbp);
2135 #endif
2137 #ifndef __xpv
2139 * Install an IDT to catch early pagefaults (shouldn't have any).
2140 * Also needed for kmdb.
2142 bop_idt_init();
2143 #endif
2146 * Start building the boot properties from the command line
2148 DBG_MSG("Initializing boot properties:\n");
2149 build_boot_properties(xbp);
2151 if (find_boot_prop("prom_debug") || kbm_debug) {
2152 char *value;
2154 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2155 boot_prop_display(value);
2159 * jump into krtld...
2161 _kobj_boot(&bop_sysp, NULL, bops, NULL);
2165 /*ARGSUSED*/
2166 static caddr_t
2167 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
2169 panic("Attempt to bsys_alloc() too late\n");
2170 return (NULL);
2173 /*ARGSUSED*/
2174 static void
2175 no_more_free(bootops_t *bop, caddr_t virt, size_t size)
2177 panic("Attempt to bsys_free() too late\n");
2180 void
2181 bop_no_more_mem(void)
2183 DBG(total_bop_alloc_scratch);
2184 DBG(total_bop_alloc_kernel);
2185 bootops->bsys_alloc = no_more_alloc;
2186 bootops->bsys_free = no_more_free;
2191 * Set ACPI firmware properties
2194 static caddr_t
2195 vmap_phys(size_t length, paddr_t pa)
2197 paddr_t start, end;
2198 caddr_t va;
2199 size_t len, page;
2201 #ifdef __xpv
2202 pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET);
2203 #endif
2204 start = P2ALIGN(pa, MMU_PAGESIZE);
2205 end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
2206 len = end - start;
2207 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
2208 for (page = 0; page < len; page += MMU_PAGESIZE)
2209 kbm_map((uintptr_t)va + page, start + page, 0, 0);
2210 return (va + (pa & MMU_PAGEOFFSET));
2213 static uint8_t
2214 checksum_table(uint8_t *tp, size_t len)
2216 uint8_t sum = 0;
2218 while (len-- > 0)
2219 sum += *tp++;
2221 return (sum);
2224 static int
2225 valid_rsdp(ACPI_TABLE_RSDP *rp)
2228 /* validate the V1.x checksum */
2229 if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0)
2230 return (0);
2232 /* If pre-ACPI 2.0, this is a valid RSDP */
2233 if (rp->Revision < 2)
2234 return (1);
2236 /* validate the V2.x checksum */
2237 if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0)
2238 return (0);
2240 return (1);
2244 * Scan memory range for an RSDP;
2245 * see ACPI 3.0 Spec, 5.2.5.1
2247 static ACPI_TABLE_RSDP *
2248 scan_rsdp(paddr_t start, paddr_t end)
2250 ssize_t len = end - start;
2251 caddr_t ptr;
2253 ptr = vmap_phys(len, start);
2254 while (len > 0) {
2255 if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 &&
2256 valid_rsdp((ACPI_TABLE_RSDP *)ptr))
2257 return ((ACPI_TABLE_RSDP *)ptr);
2259 ptr += ACPI_RSDP_SCAN_STEP;
2260 len -= ACPI_RSDP_SCAN_STEP;
2263 return (NULL);
2267 * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function
2269 static ACPI_TABLE_RSDP *
2270 find_rsdp()
2272 ACPI_TABLE_RSDP *rsdp;
2273 uint64_t rsdp_val = 0;
2274 uint16_t *ebda_seg;
2275 paddr_t ebda_addr;
2277 /* check for "acpi-root-tab" property */
2278 if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) {
2279 (void) do_bsys_getprop(NULL, "acpi-root-tab", &rsdp_val);
2280 if (rsdp_val != 0) {
2281 rsdp = scan_rsdp(rsdp_val, rsdp_val + sizeof (*rsdp));
2282 if (rsdp != NULL) {
2283 if (kbm_debug) {
2284 bop_printf(NULL,
2285 "Using RSDP from bootloader: "
2286 "0x%p\n", (void *)rsdp);
2288 return (rsdp);
2294 * Get the EBDA segment and scan the first 1K
2296 ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t),
2297 ACPI_EBDA_PTR_LOCATION);
2298 ebda_addr = *ebda_seg << 4;
2299 rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_WINDOW_SIZE);
2300 if (rsdp == NULL)
2301 /* if EBDA doesn't contain RSDP, look in BIOS memory */
2302 rsdp = scan_rsdp(ACPI_HI_RSDP_WINDOW_BASE,
2303 ACPI_HI_RSDP_WINDOW_BASE + ACPI_HI_RSDP_WINDOW_SIZE);
2304 return (rsdp);
2307 static ACPI_TABLE_HEADER *
2308 map_fw_table(paddr_t table_addr)
2310 ACPI_TABLE_HEADER *tp;
2311 size_t len = MAX(sizeof (*tp), MMU_PAGESIZE);
2314 * Map at least a page; if the table is larger than this, remap it
2316 tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr);
2317 if (tp->Length > len)
2318 tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr);
2319 return (tp);
2322 static ACPI_TABLE_HEADER *
2323 find_fw_table(char *signature)
2325 static int revision = 0;
2326 static ACPI_TABLE_XSDT *xsdt;
2327 static int len;
2328 paddr_t xsdt_addr;
2329 ACPI_TABLE_RSDP *rsdp;
2330 ACPI_TABLE_HEADER *tp;
2331 paddr_t table_addr;
2332 int n;
2334 if (strlen(signature) != ACPI_NAME_SIZE)
2335 return (NULL);
2338 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
2339 * understand this code. If we haven't already found the RSDT/XSDT,
2340 * revision will be 0. Find the RSDP and check the revision
2341 * to find out whether to use the RSDT or XSDT. If revision is
2342 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
2343 * use the XSDT. If the XSDT address is 0, though, fall back to
2344 * revision 1 and use the RSDT.
2346 if (revision == 0) {
2347 if ((rsdp = find_rsdp()) != NULL) {
2348 revision = rsdp->Revision;
2350 * ACPI 6.0 states that current revision is 2
2351 * from acpi_table_rsdp definition:
2352 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+
2354 if (revision > 2)
2355 revision = 2;
2356 switch (revision) {
2357 case 2:
2359 * Use the XSDT unless BIOS is buggy and
2360 * claims to be rev 2 but has a null XSDT
2361 * address
2363 xsdt_addr = rsdp->XsdtPhysicalAddress;
2364 if (xsdt_addr != 0)
2365 break;
2366 /* FALLTHROUGH */
2367 case 0:
2368 /* treat RSDP rev 0 as revision 1 internally */
2369 revision = 1;
2370 /* FALLTHROUGH */
2371 case 1:
2372 /* use the RSDT for rev 0/1 */
2373 xsdt_addr = rsdp->RsdtPhysicalAddress;
2374 break;
2375 default:
2376 /* unknown revision */
2377 revision = 0;
2378 break;
2381 if (revision == 0)
2382 return (NULL);
2384 /* cache the XSDT info */
2385 xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr);
2386 len = (xsdt->Header.Length - sizeof (xsdt->Header)) /
2387 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
2391 * Scan the table headers looking for a signature match
2393 for (n = 0; n < len; n++) {
2394 ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt;
2395 table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] :
2396 xsdt->TableOffsetEntry[n];
2398 if (table_addr == 0)
2399 continue;
2400 tp = map_fw_table(table_addr);
2401 if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) {
2402 return (tp);
2405 return (NULL);
2408 static void
2409 process_mcfg(ACPI_TABLE_MCFG *tp)
2411 ACPI_MCFG_ALLOCATION *cfg_baap;
2412 char *cfg_baa_endp;
2413 int64_t ecfginfo[4];
2415 cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp));
2416 cfg_baa_endp = ((char *)tp) + tp->Header.Length;
2417 while ((char *)cfg_baap < cfg_baa_endp) {
2418 if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) {
2419 ecfginfo[0] = cfg_baap->Address;
2420 ecfginfo[1] = cfg_baap->PciSegment;
2421 ecfginfo[2] = cfg_baap->StartBusNumber;
2422 ecfginfo[3] = cfg_baap->EndBusNumber;
2423 bsetprop(DDI_PROP_TYPE_INT64,
2424 MCFG_PROPNAME, strlen(MCFG_PROPNAME),
2425 ecfginfo, sizeof (ecfginfo));
2426 break;
2428 cfg_baap++;
2432 #ifndef __xpv
2433 static void
2434 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp,
2435 uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array)
2437 ACPI_SUBTABLE_HEADER *item, *end;
2438 uint32_t cpu_count = 0;
2439 uint32_t cpu_possible_count = 0;
2442 * Determine number of CPUs and keep track of "final" APIC ID
2443 * for each CPU by walking through ACPI MADT processor list
2445 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2446 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2448 while (item < end) {
2449 switch (item->Type) {
2450 case ACPI_MADT_TYPE_LOCAL_APIC: {
2451 ACPI_MADT_LOCAL_APIC *cpu =
2452 (ACPI_MADT_LOCAL_APIC *) item;
2454 if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2455 if (cpu_apicid_array != NULL)
2456 cpu_apicid_array[cpu_count] = cpu->Id;
2457 cpu_count++;
2459 cpu_possible_count++;
2460 break;
2462 case ACPI_MADT_TYPE_LOCAL_X2APIC: {
2463 ACPI_MADT_LOCAL_X2APIC *cpu =
2464 (ACPI_MADT_LOCAL_X2APIC *) item;
2466 if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2467 if (cpu_apicid_array != NULL)
2468 cpu_apicid_array[cpu_count] =
2469 cpu->LocalApicId;
2470 cpu_count++;
2472 cpu_possible_count++;
2473 break;
2475 default:
2476 if (kbm_debug)
2477 bop_printf(NULL, "MADT type %d\n", item->Type);
2478 break;
2481 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
2483 if (cpu_countp)
2484 *cpu_countp = cpu_count;
2485 if (cpu_possible_countp)
2486 *cpu_possible_countp = cpu_possible_count;
2489 static void
2490 process_madt(ACPI_TABLE_MADT *tp)
2492 uint32_t cpu_count = 0;
2493 uint32_t cpu_possible_count = 0;
2494 uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */
2496 if (tp != NULL) {
2497 /* count cpu's */
2498 process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL);
2500 cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL,
2501 cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE);
2502 if (cpu_apicid_array == NULL)
2503 bop_panic("Not enough memory for APIC ID array");
2505 /* copy IDs */
2506 process_madt_entries(tp, NULL, NULL, cpu_apicid_array);
2509 * Make boot property for array of "final" APIC IDs for each
2510 * CPU
2512 bsetprop(DDI_PROP_TYPE_INT,
2513 BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
2514 cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array));
2518 * Check whether property plat-max-ncpus is already set.
2520 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2522 * Set plat-max-ncpus to number of maximum possible CPUs given
2523 * in MADT if it hasn't been set.
2524 * There's no formal way to detect max possible CPUs supported
2525 * by platform according to ACPI spec3.0b. So current CPU
2526 * hotplug implementation expects that all possible CPUs will
2527 * have an entry in MADT table and set plat-max-ncpus to number
2528 * of entries in MADT.
2529 * With introducing of ACPI4.0, Maximum System Capability Table
2530 * (MSCT) provides maximum number of CPUs supported by platform.
2531 * If MSCT is unavailable, fall back to old way.
2533 if (tp != NULL)
2534 bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count);
2538 * Set boot property boot-max-ncpus to number of CPUs existing at
2539 * boot time. boot-max-ncpus is mainly used for optimization.
2541 if (tp != NULL)
2542 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count);
2545 * User-set boot-ncpus overrides firmware count
2547 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2548 return;
2551 * Set boot property boot-ncpus to number of active CPUs given in MADT
2552 * if it hasn't been set yet.
2554 if (tp != NULL)
2555 bsetpropsi(BOOT_NCPUS_NAME, cpu_count);
2558 static void
2559 process_srat(ACPI_TABLE_SRAT *tp)
2561 ACPI_SUBTABLE_HEADER *item, *end;
2562 int i;
2563 int proc_num, mem_num;
2564 #pragma pack(1)
2565 struct {
2566 uint32_t domain;
2567 uint32_t apic_id;
2568 uint32_t sapic_id;
2569 } processor;
2570 struct {
2571 uint32_t domain;
2572 uint32_t x2apic_id;
2573 } x2apic;
2574 struct {
2575 uint32_t domain;
2576 uint64_t addr;
2577 uint64_t length;
2578 uint32_t flags;
2579 } memory;
2580 #pragma pack()
2581 char prop_name[30];
2582 uint64_t maxmem = 0;
2584 if (tp == NULL)
2585 return;
2587 proc_num = mem_num = 0;
2588 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2589 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2590 while (item < end) {
2591 switch (item->Type) {
2592 case ACPI_SRAT_TYPE_CPU_AFFINITY: {
2593 ACPI_SRAT_CPU_AFFINITY *cpu =
2594 (ACPI_SRAT_CPU_AFFINITY *) item;
2596 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2597 break;
2598 processor.domain = cpu->ProximityDomainLo;
2599 for (i = 0; i < 3; i++)
2600 processor.domain +=
2601 cpu->ProximityDomainHi[i] << ((i + 1) * 8);
2602 processor.apic_id = cpu->ApicId;
2603 processor.sapic_id = cpu->LocalSapicEid;
2604 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2605 proc_num);
2606 bsetprop(DDI_PROP_TYPE_INT,
2607 prop_name, strlen(prop_name), &processor,
2608 sizeof (processor));
2609 proc_num++;
2610 break;
2612 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: {
2613 ACPI_SRAT_MEM_AFFINITY *mem =
2614 (ACPI_SRAT_MEM_AFFINITY *)item;
2616 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
2617 break;
2618 memory.domain = mem->ProximityDomain;
2619 memory.addr = mem->BaseAddress;
2620 memory.length = mem->Length;
2621 memory.flags = mem->Flags;
2622 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2623 mem_num);
2624 bsetprop(DDI_PROP_TYPE_INT,
2625 prop_name, strlen(prop_name), &memory,
2626 sizeof (memory));
2627 if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) &&
2628 (memory.addr + memory.length > maxmem)) {
2629 maxmem = memory.addr + memory.length;
2631 mem_num++;
2632 break;
2634 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: {
2635 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
2636 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
2638 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2639 break;
2640 x2apic.domain = x2cpu->ProximityDomain;
2641 x2apic.x2apic_id = x2cpu->ApicId;
2642 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2643 proc_num);
2644 bsetprop(DDI_PROP_TYPE_INT,
2645 prop_name, strlen(prop_name), &x2apic,
2646 sizeof (x2apic));
2647 proc_num++;
2648 break;
2650 default:
2651 if (kbm_debug)
2652 bop_printf(NULL, "SRAT type %d\n", item->Type);
2653 break;
2656 item = (ACPI_SUBTABLE_HEADER *)
2657 (item->Length + (uintptr_t)item);
2661 * The maximum physical address calculated from the SRAT table is more
2662 * accurate than that calculated from the MSCT table.
2664 if (maxmem != 0) {
2665 plat_dr_physmax = btop(maxmem);
2669 static void
2670 process_slit(ACPI_TABLE_SLIT *tp)
2674 * Check the number of localities; if it's too huge, we just
2675 * return and locality enumeration code will handle this later,
2676 * if possible.
2678 * Note that the size of the table is the square of the
2679 * number of localities; if the number of localities exceeds
2680 * UINT16_MAX, the table size may overflow an int when being
2681 * passed to bsetprop() below.
2683 if (tp->LocalityCount >= SLIT_LOCALITIES_MAX)
2684 return;
2686 bsetprop64(SLIT_NUM_PROPNAME, tp->LocalityCount);
2687 bsetprop(DDI_PROP_TYPE_BYTE,
2688 SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry,
2689 tp->LocalityCount * tp->LocalityCount);
2692 static ACPI_TABLE_MSCT *
2693 process_msct(ACPI_TABLE_MSCT *tp)
2695 int last_seen = 0;
2696 int proc_num = 0;
2697 ACPI_MSCT_PROXIMITY *item, *end;
2698 extern uint64_t plat_dr_options;
2700 ASSERT(tp != NULL);
2702 end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp);
2703 for (item = (void *)((uintptr_t)tp + tp->ProximityOffset);
2704 item < end;
2705 item = (void *)(item->Length + (uintptr_t)item)) {
2707 * Sanity check according to section 5.2.19.1 of ACPI 4.0.
2708 * Revision 1
2709 * Length 22
2711 if (item->Revision != 1 || item->Length != 22) {
2712 cmn_err(CE_CONT,
2713 "?boot: unknown proximity domain structure in MSCT "
2714 "with Revision(%d), Length(%d).\n",
2715 (int)item->Revision, (int)item->Length);
2716 return (NULL);
2717 } else if (item->RangeStart > item->RangeEnd) {
2718 cmn_err(CE_CONT,
2719 "?boot: invalid proximity domain structure in MSCT "
2720 "with RangeStart(%u), RangeEnd(%u).\n",
2721 item->RangeStart, item->RangeEnd);
2722 return (NULL);
2723 } else if (item->RangeStart != last_seen) {
2725 * Items must be organized in ascending order of the
2726 * proximity domain enumerations.
2728 cmn_err(CE_CONT,
2729 "?boot: invalid proximity domain structure in MSCT,"
2730 " items are not orginized in ascending order.\n");
2731 return (NULL);
2735 * If ProcessorCapacity is 0 then there would be no CPUs in this
2736 * domain.
2738 if (item->ProcessorCapacity != 0) {
2739 proc_num += (item->RangeEnd - item->RangeStart + 1) *
2740 item->ProcessorCapacity;
2743 last_seen = item->RangeEnd - item->RangeStart + 1;
2745 * Break out if all proximity domains have been processed.
2746 * Some BIOSes may have unused items at the end of MSCT table.
2748 if (last_seen > tp->MaxProximityDomains) {
2749 break;
2752 if (last_seen != tp->MaxProximityDomains + 1) {
2753 cmn_err(CE_CONT,
2754 "?boot: invalid proximity domain structure in MSCT, "
2755 "proximity domain count doesn't match.\n");
2756 return (NULL);
2760 * Set plat-max-ncpus property if it hasn't been set yet.
2762 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2763 if (proc_num != 0) {
2764 bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num);
2769 * Use Maximum Physical Address from the MSCT table as upper limit for
2770 * memory hot-adding by default. It may be overridden by value from
2771 * the SRAT table or the "plat-dr-physmax" boot option.
2773 plat_dr_physmax = btop(tp->MaxAddress + 1);
2776 * Existence of MSCT implies CPU/memory hotplug-capability for the
2777 * platform.
2779 plat_dr_options |= PLAT_DR_FEATURE_CPU;
2780 plat_dr_options |= PLAT_DR_FEATURE_MEMORY;
2782 return (tp);
2785 #else /* __xpv */
2786 static void
2787 enumerate_xen_cpus()
2789 processorid_t id, max_id;
2792 * User-set boot-ncpus overrides enumeration
2794 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2795 return;
2798 * Probe every possible virtual CPU id and remember the
2799 * highest id present; the count of CPUs is one greater
2800 * than this. This tacitly assumes at least cpu 0 is present.
2802 max_id = 0;
2803 for (id = 0; id < MAX_VIRT_CPUS; id++)
2804 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2805 max_id = id;
2807 bsetpropsi(BOOT_NCPUS_NAME, max_id+1);
2810 #endif /* __xpv */
2812 /*ARGSUSED*/
2813 static void
2814 build_firmware_properties(struct xboot_info *xbp)
2816 ACPI_TABLE_HEADER *tp = NULL;
2818 #ifndef __xpv
2819 if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_64) {
2820 bsetprops("efi-systype", "64");
2821 bsetprop64("efi-systab",
2822 (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2823 if (kbm_debug)
2824 bop_printf(NULL, "64-bit UEFI detected.\n");
2825 } else if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_32) {
2826 bsetprops("efi-systype", "32");
2827 bsetprop64("efi-systab",
2828 (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2829 if (kbm_debug)
2830 bop_printf(NULL, "32-bit UEFI detected.\n");
2833 if (xbp->bi_acpi_rsdp != NULL) {
2834 bsetprop64("acpi-root-tab",
2835 (uint64_t)(uintptr_t)xbp->bi_acpi_rsdp);
2838 if (xbp->bi_smbios != NULL) {
2839 bsetprop64("smbios-address",
2840 (uint64_t)(uintptr_t)xbp->bi_smbios);
2843 if ((tp = find_fw_table(ACPI_SIG_MSCT)) != NULL)
2844 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp);
2845 else
2846 msct_ptr = NULL;
2848 if ((tp = find_fw_table(ACPI_SIG_MADT)) != NULL)
2849 process_madt((ACPI_TABLE_MADT *)tp);
2851 if ((srat_ptr = (ACPI_TABLE_SRAT *)
2852 find_fw_table(ACPI_SIG_SRAT)) != NULL)
2853 process_srat(srat_ptr);
2855 if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(ACPI_SIG_SLIT))
2856 process_slit(slit_ptr);
2858 tp = find_fw_table(ACPI_SIG_MCFG);
2859 #else /* __xpv */
2860 enumerate_xen_cpus();
2861 if (DOMAIN_IS_INITDOMAIN(xen_info))
2862 tp = find_fw_table(ACPI_SIG_MCFG);
2863 #endif /* __xpv */
2864 if (tp != NULL)
2865 process_mcfg((ACPI_TABLE_MCFG *)tp);
2869 * fake up a boot property for deferred early console output
2870 * this is used by both graphical boot and the (developer only)
2871 * USB serial console
2873 void *
2874 defcons_init(size_t size)
2876 static char *p = NULL;
2878 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2879 *p = 0;
2880 bsetprop32("deferred-console-buf", (uint32_t)((uintptr_t)&p));
2881 return (p);
2884 /*ARGSUSED*/
2886 boot_compinfo(int fd, struct compinfo *cbp)
2888 cbp->iscmp = 0;
2889 cbp->blksize = MAXBSIZE;
2890 return (0);
2893 #define BP_MAX_STRLEN 32
2896 * Get value for given boot property
2899 bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
2901 int boot_prop_len;
2902 char str[BP_MAX_STRLEN];
2903 u_longlong_t value;
2905 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2906 if (boot_prop_len < 0 || boot_prop_len > sizeof (str) ||
2907 BOP_GETPROP(bootops, prop_name, str) < 0 ||
2908 kobj_getvalue(str, &value) == -1)
2909 return (-1);
2911 if (prop_value)
2912 *prop_value = value;
2914 return (0);