1949 crash during reguid causes stale config
[unleashed.git] / usr / src / uts / common / fs / zfs / zfs_vnops.c
blob0c39274caf1846372b452663a1b933f792a47ea7
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 /* Portions Copyright 2007 Jeremy Teo */
26 /* Portions Copyright 2010 Robert Milkowski */
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/time.h>
31 #include <sys/systm.h>
32 #include <sys/sysmacros.h>
33 #include <sys/resource.h>
34 #include <sys/vfs.h>
35 #include <sys/vfs_opreg.h>
36 #include <sys/vnode.h>
37 #include <sys/file.h>
38 #include <sys/stat.h>
39 #include <sys/kmem.h>
40 #include <sys/taskq.h>
41 #include <sys/uio.h>
42 #include <sys/vmsystm.h>
43 #include <sys/atomic.h>
44 #include <sys/vm.h>
45 #include <vm/seg_vn.h>
46 #include <vm/pvn.h>
47 #include <vm/as.h>
48 #include <vm/kpm.h>
49 #include <vm/seg_kpm.h>
50 #include <sys/mman.h>
51 #include <sys/pathname.h>
52 #include <sys/cmn_err.h>
53 #include <sys/errno.h>
54 #include <sys/unistd.h>
55 #include <sys/zfs_dir.h>
56 #include <sys/zfs_acl.h>
57 #include <sys/zfs_ioctl.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/dmu.h>
60 #include <sys/dmu_objset.h>
61 #include <sys/spa.h>
62 #include <sys/txg.h>
63 #include <sys/dbuf.h>
64 #include <sys/zap.h>
65 #include <sys/sa.h>
66 #include <sys/dirent.h>
67 #include <sys/policy.h>
68 #include <sys/sunddi.h>
69 #include <sys/filio.h>
70 #include <sys/sid.h>
71 #include "fs/fs_subr.h"
72 #include <sys/zfs_ctldir.h>
73 #include <sys/zfs_fuid.h>
74 #include <sys/zfs_sa.h>
75 #include <sys/dnlc.h>
76 #include <sys/zfs_rlock.h>
77 #include <sys/extdirent.h>
78 #include <sys/kidmap.h>
79 #include <sys/cred.h>
80 #include <sys/attr.h>
83 * Programming rules.
85 * Each vnode op performs some logical unit of work. To do this, the ZPL must
86 * properly lock its in-core state, create a DMU transaction, do the work,
87 * record this work in the intent log (ZIL), commit the DMU transaction,
88 * and wait for the intent log to commit if it is a synchronous operation.
89 * Moreover, the vnode ops must work in both normal and log replay context.
90 * The ordering of events is important to avoid deadlocks and references
91 * to freed memory. The example below illustrates the following Big Rules:
93 * (1) A check must be made in each zfs thread for a mounted file system.
94 * This is done avoiding races using ZFS_ENTER(zfsvfs).
95 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
96 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
97 * can return EIO from the calling function.
99 * (2) VN_RELE() should always be the last thing except for zil_commit()
100 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
101 * First, if it's the last reference, the vnode/znode
102 * can be freed, so the zp may point to freed memory. Second, the last
103 * reference will call zfs_zinactive(), which may induce a lot of work --
104 * pushing cached pages (which acquires range locks) and syncing out
105 * cached atime changes. Third, zfs_zinactive() may require a new tx,
106 * which could deadlock the system if you were already holding one.
107 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
109 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
110 * as they can span dmu_tx_assign() calls.
112 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign().
113 * This is critical because we don't want to block while holding locks.
114 * Note, in particular, that if a lock is sometimes acquired before
115 * the tx assigns, and sometimes after (e.g. z_lock), then failing to
116 * use a non-blocking assign can deadlock the system. The scenario:
118 * Thread A has grabbed a lock before calling dmu_tx_assign().
119 * Thread B is in an already-assigned tx, and blocks for this lock.
120 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
121 * forever, because the previous txg can't quiesce until B's tx commits.
123 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
124 * then drop all locks, call dmu_tx_wait(), and try again.
126 * (5) If the operation succeeded, generate the intent log entry for it
127 * before dropping locks. This ensures that the ordering of events
128 * in the intent log matches the order in which they actually occurred.
129 * During ZIL replay the zfs_log_* functions will update the sequence
130 * number to indicate the zil transaction has replayed.
132 * (6) At the end of each vnode op, the DMU tx must always commit,
133 * regardless of whether there were any errors.
135 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
136 * to ensure that synchronous semantics are provided when necessary.
138 * In general, this is how things should be ordered in each vnode op:
140 * ZFS_ENTER(zfsvfs); // exit if unmounted
141 * top:
142 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD())
143 * rw_enter(...); // grab any other locks you need
144 * tx = dmu_tx_create(...); // get DMU tx
145 * dmu_tx_hold_*(); // hold each object you might modify
146 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign
147 * if (error) {
148 * rw_exit(...); // drop locks
149 * zfs_dirent_unlock(dl); // unlock directory entry
150 * VN_RELE(...); // release held vnodes
151 * if (error == ERESTART) {
152 * dmu_tx_wait(tx);
153 * dmu_tx_abort(tx);
154 * goto top;
156 * dmu_tx_abort(tx); // abort DMU tx
157 * ZFS_EXIT(zfsvfs); // finished in zfs
158 * return (error); // really out of space
160 * error = do_real_work(); // do whatever this VOP does
161 * if (error == 0)
162 * zfs_log_*(...); // on success, make ZIL entry
163 * dmu_tx_commit(tx); // commit DMU tx -- error or not
164 * rw_exit(...); // drop locks
165 * zfs_dirent_unlock(dl); // unlock directory entry
166 * VN_RELE(...); // release held vnodes
167 * zil_commit(zilog, foid); // synchronous when necessary
168 * ZFS_EXIT(zfsvfs); // finished in zfs
169 * return (error); // done, report error
172 /* ARGSUSED */
173 static int
174 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
176 znode_t *zp = VTOZ(*vpp);
177 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
179 ZFS_ENTER(zfsvfs);
180 ZFS_VERIFY_ZP(zp);
182 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
183 ((flag & FAPPEND) == 0)) {
184 ZFS_EXIT(zfsvfs);
185 return (EPERM);
188 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
189 ZTOV(zp)->v_type == VREG &&
190 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
191 if (fs_vscan(*vpp, cr, 0) != 0) {
192 ZFS_EXIT(zfsvfs);
193 return (EACCES);
197 /* Keep a count of the synchronous opens in the znode */
198 if (flag & (FSYNC | FDSYNC))
199 atomic_inc_32(&zp->z_sync_cnt);
201 ZFS_EXIT(zfsvfs);
202 return (0);
205 /* ARGSUSED */
206 static int
207 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
208 caller_context_t *ct)
210 znode_t *zp = VTOZ(vp);
211 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
214 * Clean up any locks held by this process on the vp.
216 cleanlocks(vp, ddi_get_pid(), 0);
217 cleanshares(vp, ddi_get_pid());
219 ZFS_ENTER(zfsvfs);
220 ZFS_VERIFY_ZP(zp);
222 /* Decrement the synchronous opens in the znode */
223 if ((flag & (FSYNC | FDSYNC)) && (count == 1))
224 atomic_dec_32(&zp->z_sync_cnt);
226 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
227 ZTOV(zp)->v_type == VREG &&
228 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
229 VERIFY(fs_vscan(vp, cr, 1) == 0);
231 ZFS_EXIT(zfsvfs);
232 return (0);
236 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
237 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
239 static int
240 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
242 znode_t *zp = VTOZ(vp);
243 uint64_t noff = (uint64_t)*off; /* new offset */
244 uint64_t file_sz;
245 int error;
246 boolean_t hole;
248 file_sz = zp->z_size;
249 if (noff >= file_sz) {
250 return (ENXIO);
253 if (cmd == _FIO_SEEK_HOLE)
254 hole = B_TRUE;
255 else
256 hole = B_FALSE;
258 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
260 /* end of file? */
261 if ((error == ESRCH) || (noff > file_sz)) {
263 * Handle the virtual hole at the end of file.
265 if (hole) {
266 *off = file_sz;
267 return (0);
269 return (ENXIO);
272 if (noff < *off)
273 return (error);
274 *off = noff;
275 return (error);
278 /* ARGSUSED */
279 static int
280 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
281 int *rvalp, caller_context_t *ct)
283 offset_t off;
284 int error;
285 zfsvfs_t *zfsvfs;
286 znode_t *zp;
288 switch (com) {
289 case _FIOFFS:
290 return (zfs_sync(vp->v_vfsp, 0, cred));
293 * The following two ioctls are used by bfu. Faking out,
294 * necessary to avoid bfu errors.
296 case _FIOGDIO:
297 case _FIOSDIO:
298 return (0);
300 case _FIO_SEEK_DATA:
301 case _FIO_SEEK_HOLE:
302 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
303 return (EFAULT);
305 zp = VTOZ(vp);
306 zfsvfs = zp->z_zfsvfs;
307 ZFS_ENTER(zfsvfs);
308 ZFS_VERIFY_ZP(zp);
310 /* offset parameter is in/out */
311 error = zfs_holey(vp, com, &off);
312 ZFS_EXIT(zfsvfs);
313 if (error)
314 return (error);
315 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
316 return (EFAULT);
317 return (0);
319 return (ENOTTY);
323 * Utility functions to map and unmap a single physical page. These
324 * are used to manage the mappable copies of ZFS file data, and therefore
325 * do not update ref/mod bits.
327 caddr_t
328 zfs_map_page(page_t *pp, enum seg_rw rw)
330 if (kpm_enable)
331 return (hat_kpm_mapin(pp, 0));
332 ASSERT(rw == S_READ || rw == S_WRITE);
333 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
334 (caddr_t)-1));
337 void
338 zfs_unmap_page(page_t *pp, caddr_t addr)
340 if (kpm_enable) {
341 hat_kpm_mapout(pp, 0, addr);
342 } else {
343 ppmapout(addr);
348 * When a file is memory mapped, we must keep the IO data synchronized
349 * between the DMU cache and the memory mapped pages. What this means:
351 * On Write: If we find a memory mapped page, we write to *both*
352 * the page and the dmu buffer.
354 static void
355 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
357 int64_t off;
359 off = start & PAGEOFFSET;
360 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
361 page_t *pp;
362 uint64_t nbytes = MIN(PAGESIZE - off, len);
364 if (pp = page_lookup(vp, start, SE_SHARED)) {
365 caddr_t va;
367 va = zfs_map_page(pp, S_WRITE);
368 (void) dmu_read(os, oid, start+off, nbytes, va+off,
369 DMU_READ_PREFETCH);
370 zfs_unmap_page(pp, va);
371 page_unlock(pp);
373 len -= nbytes;
374 off = 0;
379 * When a file is memory mapped, we must keep the IO data synchronized
380 * between the DMU cache and the memory mapped pages. What this means:
382 * On Read: We "read" preferentially from memory mapped pages,
383 * else we default from the dmu buffer.
385 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
386 * the file is memory mapped.
388 static int
389 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
391 znode_t *zp = VTOZ(vp);
392 objset_t *os = zp->z_zfsvfs->z_os;
393 int64_t start, off;
394 int len = nbytes;
395 int error = 0;
397 start = uio->uio_loffset;
398 off = start & PAGEOFFSET;
399 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
400 page_t *pp;
401 uint64_t bytes = MIN(PAGESIZE - off, len);
403 if (pp = page_lookup(vp, start, SE_SHARED)) {
404 caddr_t va;
406 va = zfs_map_page(pp, S_READ);
407 error = uiomove(va + off, bytes, UIO_READ, uio);
408 zfs_unmap_page(pp, va);
409 page_unlock(pp);
410 } else {
411 error = dmu_read_uio(os, zp->z_id, uio, bytes);
413 len -= bytes;
414 off = 0;
415 if (error)
416 break;
418 return (error);
421 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
424 * Read bytes from specified file into supplied buffer.
426 * IN: vp - vnode of file to be read from.
427 * uio - structure supplying read location, range info,
428 * and return buffer.
429 * ioflag - SYNC flags; used to provide FRSYNC semantics.
430 * cr - credentials of caller.
431 * ct - caller context
433 * OUT: uio - updated offset and range, buffer filled.
435 * RETURN: 0 if success
436 * error code if failure
438 * Side Effects:
439 * vp - atime updated if byte count > 0
441 /* ARGSUSED */
442 static int
443 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
445 znode_t *zp = VTOZ(vp);
446 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
447 objset_t *os;
448 ssize_t n, nbytes;
449 int error;
450 rl_t *rl;
451 xuio_t *xuio = NULL;
453 ZFS_ENTER(zfsvfs);
454 ZFS_VERIFY_ZP(zp);
455 os = zfsvfs->z_os;
457 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
458 ZFS_EXIT(zfsvfs);
459 return (EACCES);
463 * Validate file offset
465 if (uio->uio_loffset < (offset_t)0) {
466 ZFS_EXIT(zfsvfs);
467 return (EINVAL);
471 * Fasttrack empty reads
473 if (uio->uio_resid == 0) {
474 ZFS_EXIT(zfsvfs);
475 return (0);
479 * Check for mandatory locks
481 if (MANDMODE(zp->z_mode)) {
482 if (error = chklock(vp, FREAD,
483 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
484 ZFS_EXIT(zfsvfs);
485 return (error);
490 * If we're in FRSYNC mode, sync out this znode before reading it.
492 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
493 zil_commit(zfsvfs->z_log, zp->z_id);
496 * Lock the range against changes.
498 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
501 * If we are reading past end-of-file we can skip
502 * to the end; but we might still need to set atime.
504 if (uio->uio_loffset >= zp->z_size) {
505 error = 0;
506 goto out;
509 ASSERT(uio->uio_loffset < zp->z_size);
510 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
512 if ((uio->uio_extflg == UIO_XUIO) &&
513 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
514 int nblk;
515 int blksz = zp->z_blksz;
516 uint64_t offset = uio->uio_loffset;
518 xuio = (xuio_t *)uio;
519 if ((ISP2(blksz))) {
520 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
521 blksz)) / blksz;
522 } else {
523 ASSERT(offset + n <= blksz);
524 nblk = 1;
526 (void) dmu_xuio_init(xuio, nblk);
528 if (vn_has_cached_data(vp)) {
530 * For simplicity, we always allocate a full buffer
531 * even if we only expect to read a portion of a block.
533 while (--nblk >= 0) {
534 (void) dmu_xuio_add(xuio,
535 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
536 blksz), 0, blksz);
541 while (n > 0) {
542 nbytes = MIN(n, zfs_read_chunk_size -
543 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
545 if (vn_has_cached_data(vp))
546 error = mappedread(vp, nbytes, uio);
547 else
548 error = dmu_read_uio(os, zp->z_id, uio, nbytes);
549 if (error) {
550 /* convert checksum errors into IO errors */
551 if (error == ECKSUM)
552 error = EIO;
553 break;
556 n -= nbytes;
558 out:
559 zfs_range_unlock(rl);
561 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
562 ZFS_EXIT(zfsvfs);
563 return (error);
567 * Write the bytes to a file.
569 * IN: vp - vnode of file to be written to.
570 * uio - structure supplying write location, range info,
571 * and data buffer.
572 * ioflag - FAPPEND flag set if in append mode.
573 * cr - credentials of caller.
574 * ct - caller context (NFS/CIFS fem monitor only)
576 * OUT: uio - updated offset and range.
578 * RETURN: 0 if success
579 * error code if failure
581 * Timestamps:
582 * vp - ctime|mtime updated if byte count > 0
585 /* ARGSUSED */
586 static int
587 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
589 znode_t *zp = VTOZ(vp);
590 rlim64_t limit = uio->uio_llimit;
591 ssize_t start_resid = uio->uio_resid;
592 ssize_t tx_bytes;
593 uint64_t end_size;
594 dmu_tx_t *tx;
595 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
596 zilog_t *zilog;
597 offset_t woff;
598 ssize_t n, nbytes;
599 rl_t *rl;
600 int max_blksz = zfsvfs->z_max_blksz;
601 int error;
602 arc_buf_t *abuf;
603 iovec_t *aiov;
604 xuio_t *xuio = NULL;
605 int i_iov = 0;
606 int iovcnt = uio->uio_iovcnt;
607 iovec_t *iovp = uio->uio_iov;
608 int write_eof;
609 int count = 0;
610 sa_bulk_attr_t bulk[4];
611 uint64_t mtime[2], ctime[2];
614 * Fasttrack empty write
616 n = start_resid;
617 if (n == 0)
618 return (0);
620 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
621 limit = MAXOFFSET_T;
623 ZFS_ENTER(zfsvfs);
624 ZFS_VERIFY_ZP(zp);
626 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
627 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
628 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
629 &zp->z_size, 8);
630 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
631 &zp->z_pflags, 8);
634 * If immutable or not appending then return EPERM
636 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
637 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
638 (uio->uio_loffset < zp->z_size))) {
639 ZFS_EXIT(zfsvfs);
640 return (EPERM);
643 zilog = zfsvfs->z_log;
646 * Validate file offset
648 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
649 if (woff < 0) {
650 ZFS_EXIT(zfsvfs);
651 return (EINVAL);
655 * Check for mandatory locks before calling zfs_range_lock()
656 * in order to prevent a deadlock with locks set via fcntl().
658 if (MANDMODE((mode_t)zp->z_mode) &&
659 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
660 ZFS_EXIT(zfsvfs);
661 return (error);
665 * Pre-fault the pages to ensure slow (eg NFS) pages
666 * don't hold up txg.
667 * Skip this if uio contains loaned arc_buf.
669 if ((uio->uio_extflg == UIO_XUIO) &&
670 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
671 xuio = (xuio_t *)uio;
672 else
673 uio_prefaultpages(MIN(n, max_blksz), uio);
676 * If in append mode, set the io offset pointer to eof.
678 if (ioflag & FAPPEND) {
680 * Obtain an appending range lock to guarantee file append
681 * semantics. We reset the write offset once we have the lock.
683 rl = zfs_range_lock(zp, 0, n, RL_APPEND);
684 woff = rl->r_off;
685 if (rl->r_len == UINT64_MAX) {
687 * We overlocked the file because this write will cause
688 * the file block size to increase.
689 * Note that zp_size cannot change with this lock held.
691 woff = zp->z_size;
693 uio->uio_loffset = woff;
694 } else {
696 * Note that if the file block size will change as a result of
697 * this write, then this range lock will lock the entire file
698 * so that we can re-write the block safely.
700 rl = zfs_range_lock(zp, woff, n, RL_WRITER);
703 if (woff >= limit) {
704 zfs_range_unlock(rl);
705 ZFS_EXIT(zfsvfs);
706 return (EFBIG);
709 if ((woff + n) > limit || woff > (limit - n))
710 n = limit - woff;
712 /* Will this write extend the file length? */
713 write_eof = (woff + n > zp->z_size);
715 end_size = MAX(zp->z_size, woff + n);
718 * Write the file in reasonable size chunks. Each chunk is written
719 * in a separate transaction; this keeps the intent log records small
720 * and allows us to do more fine-grained space accounting.
722 while (n > 0) {
723 abuf = NULL;
724 woff = uio->uio_loffset;
725 again:
726 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
727 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
728 if (abuf != NULL)
729 dmu_return_arcbuf(abuf);
730 error = EDQUOT;
731 break;
734 if (xuio && abuf == NULL) {
735 ASSERT(i_iov < iovcnt);
736 aiov = &iovp[i_iov];
737 abuf = dmu_xuio_arcbuf(xuio, i_iov);
738 dmu_xuio_clear(xuio, i_iov);
739 DTRACE_PROBE3(zfs_cp_write, int, i_iov,
740 iovec_t *, aiov, arc_buf_t *, abuf);
741 ASSERT((aiov->iov_base == abuf->b_data) ||
742 ((char *)aiov->iov_base - (char *)abuf->b_data +
743 aiov->iov_len == arc_buf_size(abuf)));
744 i_iov++;
745 } else if (abuf == NULL && n >= max_blksz &&
746 woff >= zp->z_size &&
747 P2PHASE(woff, max_blksz) == 0 &&
748 zp->z_blksz == max_blksz) {
750 * This write covers a full block. "Borrow" a buffer
751 * from the dmu so that we can fill it before we enter
752 * a transaction. This avoids the possibility of
753 * holding up the transaction if the data copy hangs
754 * up on a pagefault (e.g., from an NFS server mapping).
756 size_t cbytes;
758 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
759 max_blksz);
760 ASSERT(abuf != NULL);
761 ASSERT(arc_buf_size(abuf) == max_blksz);
762 if (error = uiocopy(abuf->b_data, max_blksz,
763 UIO_WRITE, uio, &cbytes)) {
764 dmu_return_arcbuf(abuf);
765 break;
767 ASSERT(cbytes == max_blksz);
771 * Start a transaction.
773 tx = dmu_tx_create(zfsvfs->z_os);
774 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
775 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
776 zfs_sa_upgrade_txholds(tx, zp);
777 error = dmu_tx_assign(tx, TXG_NOWAIT);
778 if (error) {
779 if (error == ERESTART) {
780 dmu_tx_wait(tx);
781 dmu_tx_abort(tx);
782 goto again;
784 dmu_tx_abort(tx);
785 if (abuf != NULL)
786 dmu_return_arcbuf(abuf);
787 break;
791 * If zfs_range_lock() over-locked we grow the blocksize
792 * and then reduce the lock range. This will only happen
793 * on the first iteration since zfs_range_reduce() will
794 * shrink down r_len to the appropriate size.
796 if (rl->r_len == UINT64_MAX) {
797 uint64_t new_blksz;
799 if (zp->z_blksz > max_blksz) {
800 ASSERT(!ISP2(zp->z_blksz));
801 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
802 } else {
803 new_blksz = MIN(end_size, max_blksz);
805 zfs_grow_blocksize(zp, new_blksz, tx);
806 zfs_range_reduce(rl, woff, n);
810 * XXX - should we really limit each write to z_max_blksz?
811 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
813 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
815 if (abuf == NULL) {
816 tx_bytes = uio->uio_resid;
817 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
818 uio, nbytes, tx);
819 tx_bytes -= uio->uio_resid;
820 } else {
821 tx_bytes = nbytes;
822 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
824 * If this is not a full block write, but we are
825 * extending the file past EOF and this data starts
826 * block-aligned, use assign_arcbuf(). Otherwise,
827 * write via dmu_write().
829 if (tx_bytes < max_blksz && (!write_eof ||
830 aiov->iov_base != abuf->b_data)) {
831 ASSERT(xuio);
832 dmu_write(zfsvfs->z_os, zp->z_id, woff,
833 aiov->iov_len, aiov->iov_base, tx);
834 dmu_return_arcbuf(abuf);
835 xuio_stat_wbuf_copied();
836 } else {
837 ASSERT(xuio || tx_bytes == max_blksz);
838 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
839 woff, abuf, tx);
841 ASSERT(tx_bytes <= uio->uio_resid);
842 uioskip(uio, tx_bytes);
844 if (tx_bytes && vn_has_cached_data(vp)) {
845 update_pages(vp, woff,
846 tx_bytes, zfsvfs->z_os, zp->z_id);
850 * If we made no progress, we're done. If we made even
851 * partial progress, update the znode and ZIL accordingly.
853 if (tx_bytes == 0) {
854 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
855 (void *)&zp->z_size, sizeof (uint64_t), tx);
856 dmu_tx_commit(tx);
857 ASSERT(error != 0);
858 break;
862 * Clear Set-UID/Set-GID bits on successful write if not
863 * privileged and at least one of the excute bits is set.
865 * It would be nice to to this after all writes have
866 * been done, but that would still expose the ISUID/ISGID
867 * to another app after the partial write is committed.
869 * Note: we don't call zfs_fuid_map_id() here because
870 * user 0 is not an ephemeral uid.
872 mutex_enter(&zp->z_acl_lock);
873 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
874 (S_IXUSR >> 6))) != 0 &&
875 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
876 secpolicy_vnode_setid_retain(cr,
877 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
878 uint64_t newmode;
879 zp->z_mode &= ~(S_ISUID | S_ISGID);
880 newmode = zp->z_mode;
881 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
882 (void *)&newmode, sizeof (uint64_t), tx);
884 mutex_exit(&zp->z_acl_lock);
886 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
887 B_TRUE);
890 * Update the file size (zp_size) if it has changed;
891 * account for possible concurrent updates.
893 while ((end_size = zp->z_size) < uio->uio_loffset) {
894 (void) atomic_cas_64(&zp->z_size, end_size,
895 uio->uio_loffset);
896 ASSERT(error == 0);
899 * If we are replaying and eof is non zero then force
900 * the file size to the specified eof. Note, there's no
901 * concurrency during replay.
903 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
904 zp->z_size = zfsvfs->z_replay_eof;
906 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
908 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
909 dmu_tx_commit(tx);
911 if (error != 0)
912 break;
913 ASSERT(tx_bytes == nbytes);
914 n -= nbytes;
916 if (!xuio && n > 0)
917 uio_prefaultpages(MIN(n, max_blksz), uio);
920 zfs_range_unlock(rl);
923 * If we're in replay mode, or we made no progress, return error.
924 * Otherwise, it's at least a partial write, so it's successful.
926 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
927 ZFS_EXIT(zfsvfs);
928 return (error);
931 if (ioflag & (FSYNC | FDSYNC) ||
932 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
933 zil_commit(zilog, zp->z_id);
935 ZFS_EXIT(zfsvfs);
936 return (0);
939 void
940 zfs_get_done(zgd_t *zgd, int error)
942 znode_t *zp = zgd->zgd_private;
943 objset_t *os = zp->z_zfsvfs->z_os;
945 if (zgd->zgd_db)
946 dmu_buf_rele(zgd->zgd_db, zgd);
948 zfs_range_unlock(zgd->zgd_rl);
951 * Release the vnode asynchronously as we currently have the
952 * txg stopped from syncing.
954 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
956 if (error == 0 && zgd->zgd_bp)
957 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
959 kmem_free(zgd, sizeof (zgd_t));
962 #ifdef DEBUG
963 static int zil_fault_io = 0;
964 #endif
967 * Get data to generate a TX_WRITE intent log record.
970 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
972 zfsvfs_t *zfsvfs = arg;
973 objset_t *os = zfsvfs->z_os;
974 znode_t *zp;
975 uint64_t object = lr->lr_foid;
976 uint64_t offset = lr->lr_offset;
977 uint64_t size = lr->lr_length;
978 blkptr_t *bp = &lr->lr_blkptr;
979 dmu_buf_t *db;
980 zgd_t *zgd;
981 int error = 0;
983 ASSERT(zio != NULL);
984 ASSERT(size != 0);
987 * Nothing to do if the file has been removed
989 if (zfs_zget(zfsvfs, object, &zp) != 0)
990 return (ENOENT);
991 if (zp->z_unlinked) {
993 * Release the vnode asynchronously as we currently have the
994 * txg stopped from syncing.
996 VN_RELE_ASYNC(ZTOV(zp),
997 dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
998 return (ENOENT);
1001 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1002 zgd->zgd_zilog = zfsvfs->z_log;
1003 zgd->zgd_private = zp;
1006 * Write records come in two flavors: immediate and indirect.
1007 * For small writes it's cheaper to store the data with the
1008 * log record (immediate); for large writes it's cheaper to
1009 * sync the data and get a pointer to it (indirect) so that
1010 * we don't have to write the data twice.
1012 if (buf != NULL) { /* immediate write */
1013 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1014 /* test for truncation needs to be done while range locked */
1015 if (offset >= zp->z_size) {
1016 error = ENOENT;
1017 } else {
1018 error = dmu_read(os, object, offset, size, buf,
1019 DMU_READ_NO_PREFETCH);
1021 ASSERT(error == 0 || error == ENOENT);
1022 } else { /* indirect write */
1024 * Have to lock the whole block to ensure when it's
1025 * written out and it's checksum is being calculated
1026 * that no one can change the data. We need to re-check
1027 * blocksize after we get the lock in case it's changed!
1029 for (;;) {
1030 uint64_t blkoff;
1031 size = zp->z_blksz;
1032 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1033 offset -= blkoff;
1034 zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1035 RL_READER);
1036 if (zp->z_blksz == size)
1037 break;
1038 offset += blkoff;
1039 zfs_range_unlock(zgd->zgd_rl);
1041 /* test for truncation needs to be done while range locked */
1042 if (lr->lr_offset >= zp->z_size)
1043 error = ENOENT;
1044 #ifdef DEBUG
1045 if (zil_fault_io) {
1046 error = EIO;
1047 zil_fault_io = 0;
1049 #endif
1050 if (error == 0)
1051 error = dmu_buf_hold(os, object, offset, zgd, &db,
1052 DMU_READ_NO_PREFETCH);
1054 if (error == 0) {
1055 zgd->zgd_db = db;
1056 zgd->zgd_bp = bp;
1058 ASSERT(db->db_offset == offset);
1059 ASSERT(db->db_size == size);
1061 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1062 zfs_get_done, zgd);
1063 ASSERT(error || lr->lr_length <= zp->z_blksz);
1066 * On success, we need to wait for the write I/O
1067 * initiated by dmu_sync() to complete before we can
1068 * release this dbuf. We will finish everything up
1069 * in the zfs_get_done() callback.
1071 if (error == 0)
1072 return (0);
1074 if (error == EALREADY) {
1075 lr->lr_common.lrc_txtype = TX_WRITE2;
1076 error = 0;
1081 zfs_get_done(zgd, error);
1083 return (error);
1086 /*ARGSUSED*/
1087 static int
1088 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1089 caller_context_t *ct)
1091 znode_t *zp = VTOZ(vp);
1092 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1093 int error;
1095 ZFS_ENTER(zfsvfs);
1096 ZFS_VERIFY_ZP(zp);
1098 if (flag & V_ACE_MASK)
1099 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1100 else
1101 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1103 ZFS_EXIT(zfsvfs);
1104 return (error);
1108 * If vnode is for a device return a specfs vnode instead.
1110 static int
1111 specvp_check(vnode_t **vpp, cred_t *cr)
1113 int error = 0;
1115 if (IS_DEVVP(*vpp)) {
1116 struct vnode *svp;
1118 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1119 VN_RELE(*vpp);
1120 if (svp == NULL)
1121 error = ENOSYS;
1122 *vpp = svp;
1124 return (error);
1129 * Lookup an entry in a directory, or an extended attribute directory.
1130 * If it exists, return a held vnode reference for it.
1132 * IN: dvp - vnode of directory to search.
1133 * nm - name of entry to lookup.
1134 * pnp - full pathname to lookup [UNUSED].
1135 * flags - LOOKUP_XATTR set if looking for an attribute.
1136 * rdir - root directory vnode [UNUSED].
1137 * cr - credentials of caller.
1138 * ct - caller context
1139 * direntflags - directory lookup flags
1140 * realpnp - returned pathname.
1142 * OUT: vpp - vnode of located entry, NULL if not found.
1144 * RETURN: 0 if success
1145 * error code if failure
1147 * Timestamps:
1148 * NA
1150 /* ARGSUSED */
1151 static int
1152 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1153 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1154 int *direntflags, pathname_t *realpnp)
1156 znode_t *zdp = VTOZ(dvp);
1157 zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1158 int error = 0;
1160 /* fast path */
1161 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1163 if (dvp->v_type != VDIR) {
1164 return (ENOTDIR);
1165 } else if (zdp->z_sa_hdl == NULL) {
1166 return (EIO);
1169 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1170 error = zfs_fastaccesschk_execute(zdp, cr);
1171 if (!error) {
1172 *vpp = dvp;
1173 VN_HOLD(*vpp);
1174 return (0);
1176 return (error);
1177 } else {
1178 vnode_t *tvp = dnlc_lookup(dvp, nm);
1180 if (tvp) {
1181 error = zfs_fastaccesschk_execute(zdp, cr);
1182 if (error) {
1183 VN_RELE(tvp);
1184 return (error);
1186 if (tvp == DNLC_NO_VNODE) {
1187 VN_RELE(tvp);
1188 return (ENOENT);
1189 } else {
1190 *vpp = tvp;
1191 return (specvp_check(vpp, cr));
1197 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1199 ZFS_ENTER(zfsvfs);
1200 ZFS_VERIFY_ZP(zdp);
1202 *vpp = NULL;
1204 if (flags & LOOKUP_XATTR) {
1206 * If the xattr property is off, refuse the lookup request.
1208 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1209 ZFS_EXIT(zfsvfs);
1210 return (EINVAL);
1214 * We don't allow recursive attributes..
1215 * Maybe someday we will.
1217 if (zdp->z_pflags & ZFS_XATTR) {
1218 ZFS_EXIT(zfsvfs);
1219 return (EINVAL);
1222 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1223 ZFS_EXIT(zfsvfs);
1224 return (error);
1228 * Do we have permission to get into attribute directory?
1231 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1232 B_FALSE, cr)) {
1233 VN_RELE(*vpp);
1234 *vpp = NULL;
1237 ZFS_EXIT(zfsvfs);
1238 return (error);
1241 if (dvp->v_type != VDIR) {
1242 ZFS_EXIT(zfsvfs);
1243 return (ENOTDIR);
1247 * Check accessibility of directory.
1250 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1251 ZFS_EXIT(zfsvfs);
1252 return (error);
1255 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1256 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1257 ZFS_EXIT(zfsvfs);
1258 return (EILSEQ);
1261 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1262 if (error == 0)
1263 error = specvp_check(vpp, cr);
1265 ZFS_EXIT(zfsvfs);
1266 return (error);
1270 * Attempt to create a new entry in a directory. If the entry
1271 * already exists, truncate the file if permissible, else return
1272 * an error. Return the vp of the created or trunc'd file.
1274 * IN: dvp - vnode of directory to put new file entry in.
1275 * name - name of new file entry.
1276 * vap - attributes of new file.
1277 * excl - flag indicating exclusive or non-exclusive mode.
1278 * mode - mode to open file with.
1279 * cr - credentials of caller.
1280 * flag - large file flag [UNUSED].
1281 * ct - caller context
1282 * vsecp - ACL to be set
1284 * OUT: vpp - vnode of created or trunc'd entry.
1286 * RETURN: 0 if success
1287 * error code if failure
1289 * Timestamps:
1290 * dvp - ctime|mtime updated if new entry created
1291 * vp - ctime|mtime always, atime if new
1294 /* ARGSUSED */
1295 static int
1296 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1297 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1298 vsecattr_t *vsecp)
1300 znode_t *zp, *dzp = VTOZ(dvp);
1301 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1302 zilog_t *zilog;
1303 objset_t *os;
1304 zfs_dirlock_t *dl;
1305 dmu_tx_t *tx;
1306 int error;
1307 ksid_t *ksid;
1308 uid_t uid;
1309 gid_t gid = crgetgid(cr);
1310 zfs_acl_ids_t acl_ids;
1311 boolean_t fuid_dirtied;
1312 boolean_t have_acl = B_FALSE;
1315 * If we have an ephemeral id, ACL, or XVATTR then
1316 * make sure file system is at proper version
1319 ksid = crgetsid(cr, KSID_OWNER);
1320 if (ksid)
1321 uid = ksid_getid(ksid);
1322 else
1323 uid = crgetuid(cr);
1325 if (zfsvfs->z_use_fuids == B_FALSE &&
1326 (vsecp || (vap->va_mask & AT_XVATTR) ||
1327 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1328 return (EINVAL);
1330 ZFS_ENTER(zfsvfs);
1331 ZFS_VERIFY_ZP(dzp);
1332 os = zfsvfs->z_os;
1333 zilog = zfsvfs->z_log;
1335 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1336 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1337 ZFS_EXIT(zfsvfs);
1338 return (EILSEQ);
1341 if (vap->va_mask & AT_XVATTR) {
1342 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1343 crgetuid(cr), cr, vap->va_type)) != 0) {
1344 ZFS_EXIT(zfsvfs);
1345 return (error);
1348 top:
1349 *vpp = NULL;
1351 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1352 vap->va_mode &= ~VSVTX;
1354 if (*name == '\0') {
1356 * Null component name refers to the directory itself.
1358 VN_HOLD(dvp);
1359 zp = dzp;
1360 dl = NULL;
1361 error = 0;
1362 } else {
1363 /* possible VN_HOLD(zp) */
1364 int zflg = 0;
1366 if (flag & FIGNORECASE)
1367 zflg |= ZCILOOK;
1369 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1370 NULL, NULL);
1371 if (error) {
1372 if (have_acl)
1373 zfs_acl_ids_free(&acl_ids);
1374 if (strcmp(name, "..") == 0)
1375 error = EISDIR;
1376 ZFS_EXIT(zfsvfs);
1377 return (error);
1381 if (zp == NULL) {
1382 uint64_t txtype;
1385 * Create a new file object and update the directory
1386 * to reference it.
1388 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1389 if (have_acl)
1390 zfs_acl_ids_free(&acl_ids);
1391 goto out;
1395 * We only support the creation of regular files in
1396 * extended attribute directories.
1399 if ((dzp->z_pflags & ZFS_XATTR) &&
1400 (vap->va_type != VREG)) {
1401 if (have_acl)
1402 zfs_acl_ids_free(&acl_ids);
1403 error = EINVAL;
1404 goto out;
1407 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1408 cr, vsecp, &acl_ids)) != 0)
1409 goto out;
1410 have_acl = B_TRUE;
1412 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1413 zfs_acl_ids_free(&acl_ids);
1414 error = EDQUOT;
1415 goto out;
1418 tx = dmu_tx_create(os);
1420 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1421 ZFS_SA_BASE_ATTR_SIZE);
1423 fuid_dirtied = zfsvfs->z_fuid_dirty;
1424 if (fuid_dirtied)
1425 zfs_fuid_txhold(zfsvfs, tx);
1426 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1427 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1428 if (!zfsvfs->z_use_sa &&
1429 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1430 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1431 0, acl_ids.z_aclp->z_acl_bytes);
1433 error = dmu_tx_assign(tx, TXG_NOWAIT);
1434 if (error) {
1435 zfs_dirent_unlock(dl);
1436 if (error == ERESTART) {
1437 dmu_tx_wait(tx);
1438 dmu_tx_abort(tx);
1439 goto top;
1441 zfs_acl_ids_free(&acl_ids);
1442 dmu_tx_abort(tx);
1443 ZFS_EXIT(zfsvfs);
1444 return (error);
1446 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1448 if (fuid_dirtied)
1449 zfs_fuid_sync(zfsvfs, tx);
1451 (void) zfs_link_create(dl, zp, tx, ZNEW);
1452 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1453 if (flag & FIGNORECASE)
1454 txtype |= TX_CI;
1455 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1456 vsecp, acl_ids.z_fuidp, vap);
1457 zfs_acl_ids_free(&acl_ids);
1458 dmu_tx_commit(tx);
1459 } else {
1460 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1462 if (have_acl)
1463 zfs_acl_ids_free(&acl_ids);
1464 have_acl = B_FALSE;
1467 * A directory entry already exists for this name.
1470 * Can't truncate an existing file if in exclusive mode.
1472 if (excl == EXCL) {
1473 error = EEXIST;
1474 goto out;
1477 * Can't open a directory for writing.
1479 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1480 error = EISDIR;
1481 goto out;
1484 * Verify requested access to file.
1486 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1487 goto out;
1490 mutex_enter(&dzp->z_lock);
1491 dzp->z_seq++;
1492 mutex_exit(&dzp->z_lock);
1495 * Truncate regular files if requested.
1497 if ((ZTOV(zp)->v_type == VREG) &&
1498 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1499 /* we can't hold any locks when calling zfs_freesp() */
1500 zfs_dirent_unlock(dl);
1501 dl = NULL;
1502 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1503 if (error == 0) {
1504 vnevent_create(ZTOV(zp), ct);
1508 out:
1510 if (dl)
1511 zfs_dirent_unlock(dl);
1513 if (error) {
1514 if (zp)
1515 VN_RELE(ZTOV(zp));
1516 } else {
1517 *vpp = ZTOV(zp);
1518 error = specvp_check(vpp, cr);
1521 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1522 zil_commit(zilog, 0);
1524 ZFS_EXIT(zfsvfs);
1525 return (error);
1529 * Remove an entry from a directory.
1531 * IN: dvp - vnode of directory to remove entry from.
1532 * name - name of entry to remove.
1533 * cr - credentials of caller.
1534 * ct - caller context
1535 * flags - case flags
1537 * RETURN: 0 if success
1538 * error code if failure
1540 * Timestamps:
1541 * dvp - ctime|mtime
1542 * vp - ctime (if nlink > 0)
1545 uint64_t null_xattr = 0;
1547 /*ARGSUSED*/
1548 static int
1549 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1550 int flags)
1552 znode_t *zp, *dzp = VTOZ(dvp);
1553 znode_t *xzp;
1554 vnode_t *vp;
1555 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1556 zilog_t *zilog;
1557 uint64_t acl_obj, xattr_obj;
1558 uint64_t xattr_obj_unlinked = 0;
1559 uint64_t obj = 0;
1560 zfs_dirlock_t *dl;
1561 dmu_tx_t *tx;
1562 boolean_t may_delete_now, delete_now = FALSE;
1563 boolean_t unlinked, toobig = FALSE;
1564 uint64_t txtype;
1565 pathname_t *realnmp = NULL;
1566 pathname_t realnm;
1567 int error;
1568 int zflg = ZEXISTS;
1570 ZFS_ENTER(zfsvfs);
1571 ZFS_VERIFY_ZP(dzp);
1572 zilog = zfsvfs->z_log;
1574 if (flags & FIGNORECASE) {
1575 zflg |= ZCILOOK;
1576 pn_alloc(&realnm);
1577 realnmp = &realnm;
1580 top:
1581 xattr_obj = 0;
1582 xzp = NULL;
1584 * Attempt to lock directory; fail if entry doesn't exist.
1586 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1587 NULL, realnmp)) {
1588 if (realnmp)
1589 pn_free(realnmp);
1590 ZFS_EXIT(zfsvfs);
1591 return (error);
1594 vp = ZTOV(zp);
1596 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1597 goto out;
1601 * Need to use rmdir for removing directories.
1603 if (vp->v_type == VDIR) {
1604 error = EPERM;
1605 goto out;
1608 vnevent_remove(vp, dvp, name, ct);
1610 if (realnmp)
1611 dnlc_remove(dvp, realnmp->pn_buf);
1612 else
1613 dnlc_remove(dvp, name);
1615 mutex_enter(&vp->v_lock);
1616 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1617 mutex_exit(&vp->v_lock);
1620 * We may delete the znode now, or we may put it in the unlinked set;
1621 * it depends on whether we're the last link, and on whether there are
1622 * other holds on the vnode. So we dmu_tx_hold() the right things to
1623 * allow for either case.
1625 obj = zp->z_id;
1626 tx = dmu_tx_create(zfsvfs->z_os);
1627 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1628 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1629 zfs_sa_upgrade_txholds(tx, zp);
1630 zfs_sa_upgrade_txholds(tx, dzp);
1631 if (may_delete_now) {
1632 toobig =
1633 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1634 /* if the file is too big, only hold_free a token amount */
1635 dmu_tx_hold_free(tx, zp->z_id, 0,
1636 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1639 /* are there any extended attributes? */
1640 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1641 &xattr_obj, sizeof (xattr_obj));
1642 if (error == 0 && xattr_obj) {
1643 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1644 ASSERT3U(error, ==, 0);
1645 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1646 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1649 mutex_enter(&zp->z_lock);
1650 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1651 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1652 mutex_exit(&zp->z_lock);
1654 /* charge as an update -- would be nice not to charge at all */
1655 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1657 error = dmu_tx_assign(tx, TXG_NOWAIT);
1658 if (error) {
1659 zfs_dirent_unlock(dl);
1660 VN_RELE(vp);
1661 if (xzp)
1662 VN_RELE(ZTOV(xzp));
1663 if (error == ERESTART) {
1664 dmu_tx_wait(tx);
1665 dmu_tx_abort(tx);
1666 goto top;
1668 if (realnmp)
1669 pn_free(realnmp);
1670 dmu_tx_abort(tx);
1671 ZFS_EXIT(zfsvfs);
1672 return (error);
1676 * Remove the directory entry.
1678 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1680 if (error) {
1681 dmu_tx_commit(tx);
1682 goto out;
1685 if (unlinked) {
1688 * Hold z_lock so that we can make sure that the ACL obj
1689 * hasn't changed. Could have been deleted due to
1690 * zfs_sa_upgrade().
1692 mutex_enter(&zp->z_lock);
1693 mutex_enter(&vp->v_lock);
1694 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1695 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1696 delete_now = may_delete_now && !toobig &&
1697 vp->v_count == 1 && !vn_has_cached_data(vp) &&
1698 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1699 acl_obj;
1700 mutex_exit(&vp->v_lock);
1703 if (delete_now) {
1704 if (xattr_obj_unlinked) {
1705 ASSERT3U(xzp->z_links, ==, 2);
1706 mutex_enter(&xzp->z_lock);
1707 xzp->z_unlinked = 1;
1708 xzp->z_links = 0;
1709 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1710 &xzp->z_links, sizeof (xzp->z_links), tx);
1711 ASSERT3U(error, ==, 0);
1712 mutex_exit(&xzp->z_lock);
1713 zfs_unlinked_add(xzp, tx);
1715 if (zp->z_is_sa)
1716 error = sa_remove(zp->z_sa_hdl,
1717 SA_ZPL_XATTR(zfsvfs), tx);
1718 else
1719 error = sa_update(zp->z_sa_hdl,
1720 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1721 sizeof (uint64_t), tx);
1722 ASSERT3U(error, ==, 0);
1724 mutex_enter(&vp->v_lock);
1725 vp->v_count--;
1726 ASSERT3U(vp->v_count, ==, 0);
1727 mutex_exit(&vp->v_lock);
1728 mutex_exit(&zp->z_lock);
1729 zfs_znode_delete(zp, tx);
1730 } else if (unlinked) {
1731 mutex_exit(&zp->z_lock);
1732 zfs_unlinked_add(zp, tx);
1735 txtype = TX_REMOVE;
1736 if (flags & FIGNORECASE)
1737 txtype |= TX_CI;
1738 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1740 dmu_tx_commit(tx);
1741 out:
1742 if (realnmp)
1743 pn_free(realnmp);
1745 zfs_dirent_unlock(dl);
1747 if (!delete_now)
1748 VN_RELE(vp);
1749 if (xzp)
1750 VN_RELE(ZTOV(xzp));
1752 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1753 zil_commit(zilog, 0);
1755 ZFS_EXIT(zfsvfs);
1756 return (error);
1760 * Create a new directory and insert it into dvp using the name
1761 * provided. Return a pointer to the inserted directory.
1763 * IN: dvp - vnode of directory to add subdir to.
1764 * dirname - name of new directory.
1765 * vap - attributes of new directory.
1766 * cr - credentials of caller.
1767 * ct - caller context
1768 * vsecp - ACL to be set
1770 * OUT: vpp - vnode of created directory.
1772 * RETURN: 0 if success
1773 * error code if failure
1775 * Timestamps:
1776 * dvp - ctime|mtime updated
1777 * vp - ctime|mtime|atime updated
1779 /*ARGSUSED*/
1780 static int
1781 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1782 caller_context_t *ct, int flags, vsecattr_t *vsecp)
1784 znode_t *zp, *dzp = VTOZ(dvp);
1785 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1786 zilog_t *zilog;
1787 zfs_dirlock_t *dl;
1788 uint64_t txtype;
1789 dmu_tx_t *tx;
1790 int error;
1791 int zf = ZNEW;
1792 ksid_t *ksid;
1793 uid_t uid;
1794 gid_t gid = crgetgid(cr);
1795 zfs_acl_ids_t acl_ids;
1796 boolean_t fuid_dirtied;
1798 ASSERT(vap->va_type == VDIR);
1801 * If we have an ephemeral id, ACL, or XVATTR then
1802 * make sure file system is at proper version
1805 ksid = crgetsid(cr, KSID_OWNER);
1806 if (ksid)
1807 uid = ksid_getid(ksid);
1808 else
1809 uid = crgetuid(cr);
1810 if (zfsvfs->z_use_fuids == B_FALSE &&
1811 (vsecp || (vap->va_mask & AT_XVATTR) ||
1812 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1813 return (EINVAL);
1815 ZFS_ENTER(zfsvfs);
1816 ZFS_VERIFY_ZP(dzp);
1817 zilog = zfsvfs->z_log;
1819 if (dzp->z_pflags & ZFS_XATTR) {
1820 ZFS_EXIT(zfsvfs);
1821 return (EINVAL);
1824 if (zfsvfs->z_utf8 && u8_validate(dirname,
1825 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1826 ZFS_EXIT(zfsvfs);
1827 return (EILSEQ);
1829 if (flags & FIGNORECASE)
1830 zf |= ZCILOOK;
1832 if (vap->va_mask & AT_XVATTR) {
1833 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1834 crgetuid(cr), cr, vap->va_type)) != 0) {
1835 ZFS_EXIT(zfsvfs);
1836 return (error);
1840 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1841 vsecp, &acl_ids)) != 0) {
1842 ZFS_EXIT(zfsvfs);
1843 return (error);
1846 * First make sure the new directory doesn't exist.
1848 * Existence is checked first to make sure we don't return
1849 * EACCES instead of EEXIST which can cause some applications
1850 * to fail.
1852 top:
1853 *vpp = NULL;
1855 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1856 NULL, NULL)) {
1857 zfs_acl_ids_free(&acl_ids);
1858 ZFS_EXIT(zfsvfs);
1859 return (error);
1862 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1863 zfs_acl_ids_free(&acl_ids);
1864 zfs_dirent_unlock(dl);
1865 ZFS_EXIT(zfsvfs);
1866 return (error);
1869 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1870 zfs_acl_ids_free(&acl_ids);
1871 zfs_dirent_unlock(dl);
1872 ZFS_EXIT(zfsvfs);
1873 return (EDQUOT);
1877 * Add a new entry to the directory.
1879 tx = dmu_tx_create(zfsvfs->z_os);
1880 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1881 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1882 fuid_dirtied = zfsvfs->z_fuid_dirty;
1883 if (fuid_dirtied)
1884 zfs_fuid_txhold(zfsvfs, tx);
1885 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1886 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1887 acl_ids.z_aclp->z_acl_bytes);
1890 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1891 ZFS_SA_BASE_ATTR_SIZE);
1893 error = dmu_tx_assign(tx, TXG_NOWAIT);
1894 if (error) {
1895 zfs_dirent_unlock(dl);
1896 if (error == ERESTART) {
1897 dmu_tx_wait(tx);
1898 dmu_tx_abort(tx);
1899 goto top;
1901 zfs_acl_ids_free(&acl_ids);
1902 dmu_tx_abort(tx);
1903 ZFS_EXIT(zfsvfs);
1904 return (error);
1908 * Create new node.
1910 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1912 if (fuid_dirtied)
1913 zfs_fuid_sync(zfsvfs, tx);
1916 * Now put new name in parent dir.
1918 (void) zfs_link_create(dl, zp, tx, ZNEW);
1920 *vpp = ZTOV(zp);
1922 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1923 if (flags & FIGNORECASE)
1924 txtype |= TX_CI;
1925 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1926 acl_ids.z_fuidp, vap);
1928 zfs_acl_ids_free(&acl_ids);
1930 dmu_tx_commit(tx);
1932 zfs_dirent_unlock(dl);
1934 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1935 zil_commit(zilog, 0);
1937 ZFS_EXIT(zfsvfs);
1938 return (0);
1942 * Remove a directory subdir entry. If the current working
1943 * directory is the same as the subdir to be removed, the
1944 * remove will fail.
1946 * IN: dvp - vnode of directory to remove from.
1947 * name - name of directory to be removed.
1948 * cwd - vnode of current working directory.
1949 * cr - credentials of caller.
1950 * ct - caller context
1951 * flags - case flags
1953 * RETURN: 0 if success
1954 * error code if failure
1956 * Timestamps:
1957 * dvp - ctime|mtime updated
1959 /*ARGSUSED*/
1960 static int
1961 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
1962 caller_context_t *ct, int flags)
1964 znode_t *dzp = VTOZ(dvp);
1965 znode_t *zp;
1966 vnode_t *vp;
1967 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1968 zilog_t *zilog;
1969 zfs_dirlock_t *dl;
1970 dmu_tx_t *tx;
1971 int error;
1972 int zflg = ZEXISTS;
1974 ZFS_ENTER(zfsvfs);
1975 ZFS_VERIFY_ZP(dzp);
1976 zilog = zfsvfs->z_log;
1978 if (flags & FIGNORECASE)
1979 zflg |= ZCILOOK;
1980 top:
1981 zp = NULL;
1984 * Attempt to lock directory; fail if entry doesn't exist.
1986 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1987 NULL, NULL)) {
1988 ZFS_EXIT(zfsvfs);
1989 return (error);
1992 vp = ZTOV(zp);
1994 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1995 goto out;
1998 if (vp->v_type != VDIR) {
1999 error = ENOTDIR;
2000 goto out;
2003 if (vp == cwd) {
2004 error = EINVAL;
2005 goto out;
2008 vnevent_rmdir(vp, dvp, name, ct);
2011 * Grab a lock on the directory to make sure that noone is
2012 * trying to add (or lookup) entries while we are removing it.
2014 rw_enter(&zp->z_name_lock, RW_WRITER);
2017 * Grab a lock on the parent pointer to make sure we play well
2018 * with the treewalk and directory rename code.
2020 rw_enter(&zp->z_parent_lock, RW_WRITER);
2022 tx = dmu_tx_create(zfsvfs->z_os);
2023 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2024 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2025 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2026 zfs_sa_upgrade_txholds(tx, zp);
2027 zfs_sa_upgrade_txholds(tx, dzp);
2028 error = dmu_tx_assign(tx, TXG_NOWAIT);
2029 if (error) {
2030 rw_exit(&zp->z_parent_lock);
2031 rw_exit(&zp->z_name_lock);
2032 zfs_dirent_unlock(dl);
2033 VN_RELE(vp);
2034 if (error == ERESTART) {
2035 dmu_tx_wait(tx);
2036 dmu_tx_abort(tx);
2037 goto top;
2039 dmu_tx_abort(tx);
2040 ZFS_EXIT(zfsvfs);
2041 return (error);
2044 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2046 if (error == 0) {
2047 uint64_t txtype = TX_RMDIR;
2048 if (flags & FIGNORECASE)
2049 txtype |= TX_CI;
2050 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2053 dmu_tx_commit(tx);
2055 rw_exit(&zp->z_parent_lock);
2056 rw_exit(&zp->z_name_lock);
2057 out:
2058 zfs_dirent_unlock(dl);
2060 VN_RELE(vp);
2062 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2063 zil_commit(zilog, 0);
2065 ZFS_EXIT(zfsvfs);
2066 return (error);
2070 * Read as many directory entries as will fit into the provided
2071 * buffer from the given directory cursor position (specified in
2072 * the uio structure.
2074 * IN: vp - vnode of directory to read.
2075 * uio - structure supplying read location, range info,
2076 * and return buffer.
2077 * cr - credentials of caller.
2078 * ct - caller context
2079 * flags - case flags
2081 * OUT: uio - updated offset and range, buffer filled.
2082 * eofp - set to true if end-of-file detected.
2084 * RETURN: 0 if success
2085 * error code if failure
2087 * Timestamps:
2088 * vp - atime updated
2090 * Note that the low 4 bits of the cookie returned by zap is always zero.
2091 * This allows us to use the low range for "special" directory entries:
2092 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2093 * we use the offset 2 for the '.zfs' directory.
2095 /* ARGSUSED */
2096 static int
2097 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2098 caller_context_t *ct, int flags)
2100 znode_t *zp = VTOZ(vp);
2101 iovec_t *iovp;
2102 edirent_t *eodp;
2103 dirent64_t *odp;
2104 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2105 objset_t *os;
2106 caddr_t outbuf;
2107 size_t bufsize;
2108 zap_cursor_t zc;
2109 zap_attribute_t zap;
2110 uint_t bytes_wanted;
2111 uint64_t offset; /* must be unsigned; checks for < 1 */
2112 uint64_t parent;
2113 int local_eof;
2114 int outcount;
2115 int error;
2116 uint8_t prefetch;
2117 boolean_t check_sysattrs;
2119 ZFS_ENTER(zfsvfs);
2120 ZFS_VERIFY_ZP(zp);
2122 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2123 &parent, sizeof (parent))) != 0) {
2124 ZFS_EXIT(zfsvfs);
2125 return (error);
2129 * If we are not given an eof variable,
2130 * use a local one.
2132 if (eofp == NULL)
2133 eofp = &local_eof;
2136 * Check for valid iov_len.
2138 if (uio->uio_iov->iov_len <= 0) {
2139 ZFS_EXIT(zfsvfs);
2140 return (EINVAL);
2144 * Quit if directory has been removed (posix)
2146 if ((*eofp = zp->z_unlinked) != 0) {
2147 ZFS_EXIT(zfsvfs);
2148 return (0);
2151 error = 0;
2152 os = zfsvfs->z_os;
2153 offset = uio->uio_loffset;
2154 prefetch = zp->z_zn_prefetch;
2157 * Initialize the iterator cursor.
2159 if (offset <= 3) {
2161 * Start iteration from the beginning of the directory.
2163 zap_cursor_init(&zc, os, zp->z_id);
2164 } else {
2166 * The offset is a serialized cursor.
2168 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2172 * Get space to change directory entries into fs independent format.
2174 iovp = uio->uio_iov;
2175 bytes_wanted = iovp->iov_len;
2176 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2177 bufsize = bytes_wanted;
2178 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2179 odp = (struct dirent64 *)outbuf;
2180 } else {
2181 bufsize = bytes_wanted;
2182 odp = (struct dirent64 *)iovp->iov_base;
2184 eodp = (struct edirent *)odp;
2187 * If this VFS supports the system attribute view interface; and
2188 * we're looking at an extended attribute directory; and we care
2189 * about normalization conflicts on this vfs; then we must check
2190 * for normalization conflicts with the sysattr name space.
2192 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2193 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2194 (flags & V_RDDIR_ENTFLAGS);
2197 * Transform to file-system independent format
2199 outcount = 0;
2200 while (outcount < bytes_wanted) {
2201 ino64_t objnum;
2202 ushort_t reclen;
2203 off64_t *next = NULL;
2206 * Special case `.', `..', and `.zfs'.
2208 if (offset == 0) {
2209 (void) strcpy(zap.za_name, ".");
2210 zap.za_normalization_conflict = 0;
2211 objnum = zp->z_id;
2212 } else if (offset == 1) {
2213 (void) strcpy(zap.za_name, "..");
2214 zap.za_normalization_conflict = 0;
2215 objnum = parent;
2216 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2217 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2218 zap.za_normalization_conflict = 0;
2219 objnum = ZFSCTL_INO_ROOT;
2220 } else {
2222 * Grab next entry.
2224 if (error = zap_cursor_retrieve(&zc, &zap)) {
2225 if ((*eofp = (error == ENOENT)) != 0)
2226 break;
2227 else
2228 goto update;
2231 if (zap.za_integer_length != 8 ||
2232 zap.za_num_integers != 1) {
2233 cmn_err(CE_WARN, "zap_readdir: bad directory "
2234 "entry, obj = %lld, offset = %lld\n",
2235 (u_longlong_t)zp->z_id,
2236 (u_longlong_t)offset);
2237 error = ENXIO;
2238 goto update;
2241 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2243 * MacOS X can extract the object type here such as:
2244 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2247 if (check_sysattrs && !zap.za_normalization_conflict) {
2248 zap.za_normalization_conflict =
2249 xattr_sysattr_casechk(zap.za_name);
2253 if (flags & V_RDDIR_ACCFILTER) {
2255 * If we have no access at all, don't include
2256 * this entry in the returned information
2258 znode_t *ezp;
2259 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2260 goto skip_entry;
2261 if (!zfs_has_access(ezp, cr)) {
2262 VN_RELE(ZTOV(ezp));
2263 goto skip_entry;
2265 VN_RELE(ZTOV(ezp));
2268 if (flags & V_RDDIR_ENTFLAGS)
2269 reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2270 else
2271 reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2274 * Will this entry fit in the buffer?
2276 if (outcount + reclen > bufsize) {
2278 * Did we manage to fit anything in the buffer?
2280 if (!outcount) {
2281 error = EINVAL;
2282 goto update;
2284 break;
2286 if (flags & V_RDDIR_ENTFLAGS) {
2288 * Add extended flag entry:
2290 eodp->ed_ino = objnum;
2291 eodp->ed_reclen = reclen;
2292 /* NOTE: ed_off is the offset for the *next* entry */
2293 next = &(eodp->ed_off);
2294 eodp->ed_eflags = zap.za_normalization_conflict ?
2295 ED_CASE_CONFLICT : 0;
2296 (void) strncpy(eodp->ed_name, zap.za_name,
2297 EDIRENT_NAMELEN(reclen));
2298 eodp = (edirent_t *)((intptr_t)eodp + reclen);
2299 } else {
2301 * Add normal entry:
2303 odp->d_ino = objnum;
2304 odp->d_reclen = reclen;
2305 /* NOTE: d_off is the offset for the *next* entry */
2306 next = &(odp->d_off);
2307 (void) strncpy(odp->d_name, zap.za_name,
2308 DIRENT64_NAMELEN(reclen));
2309 odp = (dirent64_t *)((intptr_t)odp + reclen);
2311 outcount += reclen;
2313 ASSERT(outcount <= bufsize);
2315 /* Prefetch znode */
2316 if (prefetch)
2317 dmu_prefetch(os, objnum, 0, 0);
2319 skip_entry:
2321 * Move to the next entry, fill in the previous offset.
2323 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2324 zap_cursor_advance(&zc);
2325 offset = zap_cursor_serialize(&zc);
2326 } else {
2327 offset += 1;
2329 if (next)
2330 *next = offset;
2332 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2334 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2335 iovp->iov_base += outcount;
2336 iovp->iov_len -= outcount;
2337 uio->uio_resid -= outcount;
2338 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2340 * Reset the pointer.
2342 offset = uio->uio_loffset;
2345 update:
2346 zap_cursor_fini(&zc);
2347 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2348 kmem_free(outbuf, bufsize);
2350 if (error == ENOENT)
2351 error = 0;
2353 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2355 uio->uio_loffset = offset;
2356 ZFS_EXIT(zfsvfs);
2357 return (error);
2360 ulong_t zfs_fsync_sync_cnt = 4;
2362 static int
2363 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2365 znode_t *zp = VTOZ(vp);
2366 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2369 * Regardless of whether this is required for standards conformance,
2370 * this is the logical behavior when fsync() is called on a file with
2371 * dirty pages. We use B_ASYNC since the ZIL transactions are already
2372 * going to be pushed out as part of the zil_commit().
2374 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2375 (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2376 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2378 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2380 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2381 ZFS_ENTER(zfsvfs);
2382 ZFS_VERIFY_ZP(zp);
2383 zil_commit(zfsvfs->z_log, zp->z_id);
2384 ZFS_EXIT(zfsvfs);
2386 return (0);
2391 * Get the requested file attributes and place them in the provided
2392 * vattr structure.
2394 * IN: vp - vnode of file.
2395 * vap - va_mask identifies requested attributes.
2396 * If AT_XVATTR set, then optional attrs are requested
2397 * flags - ATTR_NOACLCHECK (CIFS server context)
2398 * cr - credentials of caller.
2399 * ct - caller context
2401 * OUT: vap - attribute values.
2403 * RETURN: 0 (always succeeds)
2405 /* ARGSUSED */
2406 static int
2407 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2408 caller_context_t *ct)
2410 znode_t *zp = VTOZ(vp);
2411 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2412 int error = 0;
2413 uint64_t links;
2414 uint64_t mtime[2], ctime[2];
2415 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2416 xoptattr_t *xoap = NULL;
2417 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2418 sa_bulk_attr_t bulk[2];
2419 int count = 0;
2421 ZFS_ENTER(zfsvfs);
2422 ZFS_VERIFY_ZP(zp);
2424 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2426 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2427 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2429 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2430 ZFS_EXIT(zfsvfs);
2431 return (error);
2435 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2436 * Also, if we are the owner don't bother, since owner should
2437 * always be allowed to read basic attributes of file.
2439 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2440 (vap->va_uid != crgetuid(cr))) {
2441 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2442 skipaclchk, cr)) {
2443 ZFS_EXIT(zfsvfs);
2444 return (error);
2449 * Return all attributes. It's cheaper to provide the answer
2450 * than to determine whether we were asked the question.
2453 mutex_enter(&zp->z_lock);
2454 vap->va_type = vp->v_type;
2455 vap->va_mode = zp->z_mode & MODEMASK;
2456 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2457 vap->va_nodeid = zp->z_id;
2458 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2459 links = zp->z_links + 1;
2460 else
2461 links = zp->z_links;
2462 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */
2463 vap->va_size = zp->z_size;
2464 vap->va_rdev = vp->v_rdev;
2465 vap->va_seq = zp->z_seq;
2468 * Add in any requested optional attributes and the create time.
2469 * Also set the corresponding bits in the returned attribute bitmap.
2471 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2472 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2473 xoap->xoa_archive =
2474 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2475 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2478 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2479 xoap->xoa_readonly =
2480 ((zp->z_pflags & ZFS_READONLY) != 0);
2481 XVA_SET_RTN(xvap, XAT_READONLY);
2484 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2485 xoap->xoa_system =
2486 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2487 XVA_SET_RTN(xvap, XAT_SYSTEM);
2490 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2491 xoap->xoa_hidden =
2492 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2493 XVA_SET_RTN(xvap, XAT_HIDDEN);
2496 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2497 xoap->xoa_nounlink =
2498 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2499 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2502 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2503 xoap->xoa_immutable =
2504 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2505 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2508 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2509 xoap->xoa_appendonly =
2510 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2511 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2514 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2515 xoap->xoa_nodump =
2516 ((zp->z_pflags & ZFS_NODUMP) != 0);
2517 XVA_SET_RTN(xvap, XAT_NODUMP);
2520 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2521 xoap->xoa_opaque =
2522 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2523 XVA_SET_RTN(xvap, XAT_OPAQUE);
2526 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2527 xoap->xoa_av_quarantined =
2528 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2529 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2532 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2533 xoap->xoa_av_modified =
2534 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2535 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2538 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2539 vp->v_type == VREG) {
2540 zfs_sa_get_scanstamp(zp, xvap);
2543 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2544 uint64_t times[2];
2546 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2547 times, sizeof (times));
2548 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2549 XVA_SET_RTN(xvap, XAT_CREATETIME);
2552 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2553 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2554 XVA_SET_RTN(xvap, XAT_REPARSE);
2556 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2557 xoap->xoa_generation = zp->z_gen;
2558 XVA_SET_RTN(xvap, XAT_GEN);
2561 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2562 xoap->xoa_offline =
2563 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2564 XVA_SET_RTN(xvap, XAT_OFFLINE);
2567 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2568 xoap->xoa_sparse =
2569 ((zp->z_pflags & ZFS_SPARSE) != 0);
2570 XVA_SET_RTN(xvap, XAT_SPARSE);
2574 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2575 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2576 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2578 mutex_exit(&zp->z_lock);
2580 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2582 if (zp->z_blksz == 0) {
2584 * Block size hasn't been set; suggest maximal I/O transfers.
2586 vap->va_blksize = zfsvfs->z_max_blksz;
2589 ZFS_EXIT(zfsvfs);
2590 return (0);
2594 * Set the file attributes to the values contained in the
2595 * vattr structure.
2597 * IN: vp - vnode of file to be modified.
2598 * vap - new attribute values.
2599 * If AT_XVATTR set, then optional attrs are being set
2600 * flags - ATTR_UTIME set if non-default time values provided.
2601 * - ATTR_NOACLCHECK (CIFS context only).
2602 * cr - credentials of caller.
2603 * ct - caller context
2605 * RETURN: 0 if success
2606 * error code if failure
2608 * Timestamps:
2609 * vp - ctime updated, mtime updated if size changed.
2611 /* ARGSUSED */
2612 static int
2613 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2614 caller_context_t *ct)
2616 znode_t *zp = VTOZ(vp);
2617 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2618 zilog_t *zilog;
2619 dmu_tx_t *tx;
2620 vattr_t oldva;
2621 xvattr_t tmpxvattr;
2622 uint_t mask = vap->va_mask;
2623 uint_t saved_mask;
2624 int trim_mask = 0;
2625 uint64_t new_mode;
2626 uint64_t new_uid, new_gid;
2627 uint64_t xattr_obj;
2628 uint64_t mtime[2], ctime[2];
2629 znode_t *attrzp;
2630 int need_policy = FALSE;
2631 int err, err2;
2632 zfs_fuid_info_t *fuidp = NULL;
2633 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2634 xoptattr_t *xoap;
2635 zfs_acl_t *aclp;
2636 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2637 boolean_t fuid_dirtied = B_FALSE;
2638 sa_bulk_attr_t bulk[7], xattr_bulk[7];
2639 int count = 0, xattr_count = 0;
2641 if (mask == 0)
2642 return (0);
2644 if (mask & AT_NOSET)
2645 return (EINVAL);
2647 ZFS_ENTER(zfsvfs);
2648 ZFS_VERIFY_ZP(zp);
2650 zilog = zfsvfs->z_log;
2653 * Make sure that if we have ephemeral uid/gid or xvattr specified
2654 * that file system is at proper version level
2657 if (zfsvfs->z_use_fuids == B_FALSE &&
2658 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2659 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2660 (mask & AT_XVATTR))) {
2661 ZFS_EXIT(zfsvfs);
2662 return (EINVAL);
2665 if (mask & AT_SIZE && vp->v_type == VDIR) {
2666 ZFS_EXIT(zfsvfs);
2667 return (EISDIR);
2670 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2671 ZFS_EXIT(zfsvfs);
2672 return (EINVAL);
2676 * If this is an xvattr_t, then get a pointer to the structure of
2677 * optional attributes. If this is NULL, then we have a vattr_t.
2679 xoap = xva_getxoptattr(xvap);
2681 xva_init(&tmpxvattr);
2684 * Immutable files can only alter immutable bit and atime
2686 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2687 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2688 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2689 ZFS_EXIT(zfsvfs);
2690 return (EPERM);
2693 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2694 ZFS_EXIT(zfsvfs);
2695 return (EPERM);
2699 * Verify timestamps doesn't overflow 32 bits.
2700 * ZFS can handle large timestamps, but 32bit syscalls can't
2701 * handle times greater than 2039. This check should be removed
2702 * once large timestamps are fully supported.
2704 if (mask & (AT_ATIME | AT_MTIME)) {
2705 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2706 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2707 ZFS_EXIT(zfsvfs);
2708 return (EOVERFLOW);
2712 top:
2713 attrzp = NULL;
2714 aclp = NULL;
2716 /* Can this be moved to before the top label? */
2717 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2718 ZFS_EXIT(zfsvfs);
2719 return (EROFS);
2723 * First validate permissions
2726 if (mask & AT_SIZE) {
2727 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2728 if (err) {
2729 ZFS_EXIT(zfsvfs);
2730 return (err);
2733 * XXX - Note, we are not providing any open
2734 * mode flags here (like FNDELAY), so we may
2735 * block if there are locks present... this
2736 * should be addressed in openat().
2738 /* XXX - would it be OK to generate a log record here? */
2739 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2740 if (err) {
2741 ZFS_EXIT(zfsvfs);
2742 return (err);
2746 if (mask & (AT_ATIME|AT_MTIME) ||
2747 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2748 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2749 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2750 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2751 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2752 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2753 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2754 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2755 skipaclchk, cr);
2758 if (mask & (AT_UID|AT_GID)) {
2759 int idmask = (mask & (AT_UID|AT_GID));
2760 int take_owner;
2761 int take_group;
2764 * NOTE: even if a new mode is being set,
2765 * we may clear S_ISUID/S_ISGID bits.
2768 if (!(mask & AT_MODE))
2769 vap->va_mode = zp->z_mode;
2772 * Take ownership or chgrp to group we are a member of
2775 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2776 take_group = (mask & AT_GID) &&
2777 zfs_groupmember(zfsvfs, vap->va_gid, cr);
2780 * If both AT_UID and AT_GID are set then take_owner and
2781 * take_group must both be set in order to allow taking
2782 * ownership.
2784 * Otherwise, send the check through secpolicy_vnode_setattr()
2788 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2789 ((idmask == AT_UID) && take_owner) ||
2790 ((idmask == AT_GID) && take_group)) {
2791 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2792 skipaclchk, cr) == 0) {
2794 * Remove setuid/setgid for non-privileged users
2796 secpolicy_setid_clear(vap, cr);
2797 trim_mask = (mask & (AT_UID|AT_GID));
2798 } else {
2799 need_policy = TRUE;
2801 } else {
2802 need_policy = TRUE;
2806 mutex_enter(&zp->z_lock);
2807 oldva.va_mode = zp->z_mode;
2808 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2809 if (mask & AT_XVATTR) {
2811 * Update xvattr mask to include only those attributes
2812 * that are actually changing.
2814 * the bits will be restored prior to actually setting
2815 * the attributes so the caller thinks they were set.
2817 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2818 if (xoap->xoa_appendonly !=
2819 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2820 need_policy = TRUE;
2821 } else {
2822 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2823 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2827 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2828 if (xoap->xoa_nounlink !=
2829 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2830 need_policy = TRUE;
2831 } else {
2832 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2833 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2837 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2838 if (xoap->xoa_immutable !=
2839 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2840 need_policy = TRUE;
2841 } else {
2842 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2843 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2847 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2848 if (xoap->xoa_nodump !=
2849 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2850 need_policy = TRUE;
2851 } else {
2852 XVA_CLR_REQ(xvap, XAT_NODUMP);
2853 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2857 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2858 if (xoap->xoa_av_modified !=
2859 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2860 need_policy = TRUE;
2861 } else {
2862 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2863 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2867 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2868 if ((vp->v_type != VREG &&
2869 xoap->xoa_av_quarantined) ||
2870 xoap->xoa_av_quarantined !=
2871 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2872 need_policy = TRUE;
2873 } else {
2874 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2875 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2879 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2880 mutex_exit(&zp->z_lock);
2881 ZFS_EXIT(zfsvfs);
2882 return (EPERM);
2885 if (need_policy == FALSE &&
2886 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2887 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2888 need_policy = TRUE;
2892 mutex_exit(&zp->z_lock);
2894 if (mask & AT_MODE) {
2895 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2896 err = secpolicy_setid_setsticky_clear(vp, vap,
2897 &oldva, cr);
2898 if (err) {
2899 ZFS_EXIT(zfsvfs);
2900 return (err);
2902 trim_mask |= AT_MODE;
2903 } else {
2904 need_policy = TRUE;
2908 if (need_policy) {
2910 * If trim_mask is set then take ownership
2911 * has been granted or write_acl is present and user
2912 * has the ability to modify mode. In that case remove
2913 * UID|GID and or MODE from mask so that
2914 * secpolicy_vnode_setattr() doesn't revoke it.
2917 if (trim_mask) {
2918 saved_mask = vap->va_mask;
2919 vap->va_mask &= ~trim_mask;
2921 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2922 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2923 if (err) {
2924 ZFS_EXIT(zfsvfs);
2925 return (err);
2928 if (trim_mask)
2929 vap->va_mask |= saved_mask;
2933 * secpolicy_vnode_setattr, or take ownership may have
2934 * changed va_mask
2936 mask = vap->va_mask;
2938 if ((mask & (AT_UID | AT_GID))) {
2939 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2940 &xattr_obj, sizeof (xattr_obj));
2942 if (err == 0 && xattr_obj) {
2943 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
2944 if (err)
2945 goto out2;
2947 if (mask & AT_UID) {
2948 new_uid = zfs_fuid_create(zfsvfs,
2949 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2950 if (new_uid != zp->z_uid &&
2951 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
2952 if (attrzp)
2953 VN_RELE(ZTOV(attrzp));
2954 err = EDQUOT;
2955 goto out2;
2959 if (mask & AT_GID) {
2960 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
2961 cr, ZFS_GROUP, &fuidp);
2962 if (new_gid != zp->z_gid &&
2963 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
2964 if (attrzp)
2965 VN_RELE(ZTOV(attrzp));
2966 err = EDQUOT;
2967 goto out2;
2971 tx = dmu_tx_create(zfsvfs->z_os);
2973 if (mask & AT_MODE) {
2974 uint64_t pmode = zp->z_mode;
2975 uint64_t acl_obj;
2976 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2978 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
2979 goto out;
2981 mutex_enter(&zp->z_lock);
2982 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2984 * Are we upgrading ACL from old V0 format
2985 * to V1 format?
2987 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2988 zfs_znode_acl_version(zp) ==
2989 ZFS_ACL_VERSION_INITIAL) {
2990 dmu_tx_hold_free(tx, acl_obj, 0,
2991 DMU_OBJECT_END);
2992 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2993 0, aclp->z_acl_bytes);
2994 } else {
2995 dmu_tx_hold_write(tx, acl_obj, 0,
2996 aclp->z_acl_bytes);
2998 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2999 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3000 0, aclp->z_acl_bytes);
3002 mutex_exit(&zp->z_lock);
3003 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3004 } else {
3005 if ((mask & AT_XVATTR) &&
3006 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3007 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3008 else
3009 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3012 if (attrzp) {
3013 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3016 fuid_dirtied = zfsvfs->z_fuid_dirty;
3017 if (fuid_dirtied)
3018 zfs_fuid_txhold(zfsvfs, tx);
3020 zfs_sa_upgrade_txholds(tx, zp);
3022 err = dmu_tx_assign(tx, TXG_NOWAIT);
3023 if (err) {
3024 if (err == ERESTART)
3025 dmu_tx_wait(tx);
3026 goto out;
3029 count = 0;
3031 * Set each attribute requested.
3032 * We group settings according to the locks they need to acquire.
3034 * Note: you cannot set ctime directly, although it will be
3035 * updated as a side-effect of calling this function.
3039 if (mask & (AT_UID|AT_GID|AT_MODE))
3040 mutex_enter(&zp->z_acl_lock);
3041 mutex_enter(&zp->z_lock);
3043 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3044 &zp->z_pflags, sizeof (zp->z_pflags));
3046 if (attrzp) {
3047 if (mask & (AT_UID|AT_GID|AT_MODE))
3048 mutex_enter(&attrzp->z_acl_lock);
3049 mutex_enter(&attrzp->z_lock);
3050 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3051 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3052 sizeof (attrzp->z_pflags));
3055 if (mask & (AT_UID|AT_GID)) {
3057 if (mask & AT_UID) {
3058 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3059 &new_uid, sizeof (new_uid));
3060 zp->z_uid = new_uid;
3061 if (attrzp) {
3062 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3063 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3064 sizeof (new_uid));
3065 attrzp->z_uid = new_uid;
3069 if (mask & AT_GID) {
3070 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3071 NULL, &new_gid, sizeof (new_gid));
3072 zp->z_gid = new_gid;
3073 if (attrzp) {
3074 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3075 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3076 sizeof (new_gid));
3077 attrzp->z_gid = new_gid;
3080 if (!(mask & AT_MODE)) {
3081 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3082 NULL, &new_mode, sizeof (new_mode));
3083 new_mode = zp->z_mode;
3085 err = zfs_acl_chown_setattr(zp);
3086 ASSERT(err == 0);
3087 if (attrzp) {
3088 err = zfs_acl_chown_setattr(attrzp);
3089 ASSERT(err == 0);
3093 if (mask & AT_MODE) {
3094 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3095 &new_mode, sizeof (new_mode));
3096 zp->z_mode = new_mode;
3097 ASSERT3U((uintptr_t)aclp, !=, NULL);
3098 err = zfs_aclset_common(zp, aclp, cr, tx);
3099 ASSERT3U(err, ==, 0);
3100 if (zp->z_acl_cached)
3101 zfs_acl_free(zp->z_acl_cached);
3102 zp->z_acl_cached = aclp;
3103 aclp = NULL;
3107 if (mask & AT_ATIME) {
3108 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3109 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3110 &zp->z_atime, sizeof (zp->z_atime));
3113 if (mask & AT_MTIME) {
3114 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3115 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3116 mtime, sizeof (mtime));
3119 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3120 if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3121 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3122 NULL, mtime, sizeof (mtime));
3123 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3124 &ctime, sizeof (ctime));
3125 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3126 B_TRUE);
3127 } else if (mask != 0) {
3128 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3129 &ctime, sizeof (ctime));
3130 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3131 B_TRUE);
3132 if (attrzp) {
3133 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3134 SA_ZPL_CTIME(zfsvfs), NULL,
3135 &ctime, sizeof (ctime));
3136 zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3137 mtime, ctime, B_TRUE);
3141 * Do this after setting timestamps to prevent timestamp
3142 * update from toggling bit
3145 if (xoap && (mask & AT_XVATTR)) {
3148 * restore trimmed off masks
3149 * so that return masks can be set for caller.
3152 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3153 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3155 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3156 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3158 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3159 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3161 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3162 XVA_SET_REQ(xvap, XAT_NODUMP);
3164 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3165 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3167 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3168 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3171 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3172 ASSERT(vp->v_type == VREG);
3174 zfs_xvattr_set(zp, xvap, tx);
3177 if (fuid_dirtied)
3178 zfs_fuid_sync(zfsvfs, tx);
3180 if (mask != 0)
3181 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3183 mutex_exit(&zp->z_lock);
3184 if (mask & (AT_UID|AT_GID|AT_MODE))
3185 mutex_exit(&zp->z_acl_lock);
3187 if (attrzp) {
3188 if (mask & (AT_UID|AT_GID|AT_MODE))
3189 mutex_exit(&attrzp->z_acl_lock);
3190 mutex_exit(&attrzp->z_lock);
3192 out:
3193 if (err == 0 && attrzp) {
3194 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3195 xattr_count, tx);
3196 ASSERT(err2 == 0);
3199 if (attrzp)
3200 VN_RELE(ZTOV(attrzp));
3201 if (aclp)
3202 zfs_acl_free(aclp);
3204 if (fuidp) {
3205 zfs_fuid_info_free(fuidp);
3206 fuidp = NULL;
3209 if (err) {
3210 dmu_tx_abort(tx);
3211 if (err == ERESTART)
3212 goto top;
3213 } else {
3214 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3215 dmu_tx_commit(tx);
3218 out2:
3219 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3220 zil_commit(zilog, 0);
3222 ZFS_EXIT(zfsvfs);
3223 return (err);
3226 typedef struct zfs_zlock {
3227 krwlock_t *zl_rwlock; /* lock we acquired */
3228 znode_t *zl_znode; /* znode we held */
3229 struct zfs_zlock *zl_next; /* next in list */
3230 } zfs_zlock_t;
3233 * Drop locks and release vnodes that were held by zfs_rename_lock().
3235 static void
3236 zfs_rename_unlock(zfs_zlock_t **zlpp)
3238 zfs_zlock_t *zl;
3240 while ((zl = *zlpp) != NULL) {
3241 if (zl->zl_znode != NULL)
3242 VN_RELE(ZTOV(zl->zl_znode));
3243 rw_exit(zl->zl_rwlock);
3244 *zlpp = zl->zl_next;
3245 kmem_free(zl, sizeof (*zl));
3250 * Search back through the directory tree, using the ".." entries.
3251 * Lock each directory in the chain to prevent concurrent renames.
3252 * Fail any attempt to move a directory into one of its own descendants.
3253 * XXX - z_parent_lock can overlap with map or grow locks
3255 static int
3256 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3258 zfs_zlock_t *zl;
3259 znode_t *zp = tdzp;
3260 uint64_t rootid = zp->z_zfsvfs->z_root;
3261 uint64_t oidp = zp->z_id;
3262 krwlock_t *rwlp = &szp->z_parent_lock;
3263 krw_t rw = RW_WRITER;
3266 * First pass write-locks szp and compares to zp->z_id.
3267 * Later passes read-lock zp and compare to zp->z_parent.
3269 do {
3270 if (!rw_tryenter(rwlp, rw)) {
3272 * Another thread is renaming in this path.
3273 * Note that if we are a WRITER, we don't have any
3274 * parent_locks held yet.
3276 if (rw == RW_READER && zp->z_id > szp->z_id) {
3278 * Drop our locks and restart
3280 zfs_rename_unlock(&zl);
3281 *zlpp = NULL;
3282 zp = tdzp;
3283 oidp = zp->z_id;
3284 rwlp = &szp->z_parent_lock;
3285 rw = RW_WRITER;
3286 continue;
3287 } else {
3289 * Wait for other thread to drop its locks
3291 rw_enter(rwlp, rw);
3295 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3296 zl->zl_rwlock = rwlp;
3297 zl->zl_znode = NULL;
3298 zl->zl_next = *zlpp;
3299 *zlpp = zl;
3301 if (oidp == szp->z_id) /* We're a descendant of szp */
3302 return (EINVAL);
3304 if (oidp == rootid) /* We've hit the top */
3305 return (0);
3307 if (rw == RW_READER) { /* i.e. not the first pass */
3308 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3309 if (error)
3310 return (error);
3311 zl->zl_znode = zp;
3313 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3314 &oidp, sizeof (oidp));
3315 rwlp = &zp->z_parent_lock;
3316 rw = RW_READER;
3318 } while (zp->z_id != sdzp->z_id);
3320 return (0);
3324 * Move an entry from the provided source directory to the target
3325 * directory. Change the entry name as indicated.
3327 * IN: sdvp - Source directory containing the "old entry".
3328 * snm - Old entry name.
3329 * tdvp - Target directory to contain the "new entry".
3330 * tnm - New entry name.
3331 * cr - credentials of caller.
3332 * ct - caller context
3333 * flags - case flags
3335 * RETURN: 0 if success
3336 * error code if failure
3338 * Timestamps:
3339 * sdvp,tdvp - ctime|mtime updated
3341 /*ARGSUSED*/
3342 static int
3343 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3344 caller_context_t *ct, int flags)
3346 znode_t *tdzp, *szp, *tzp;
3347 znode_t *sdzp = VTOZ(sdvp);
3348 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs;
3349 zilog_t *zilog;
3350 vnode_t *realvp;
3351 zfs_dirlock_t *sdl, *tdl;
3352 dmu_tx_t *tx;
3353 zfs_zlock_t *zl;
3354 int cmp, serr, terr;
3355 int error = 0;
3356 int zflg = 0;
3358 ZFS_ENTER(zfsvfs);
3359 ZFS_VERIFY_ZP(sdzp);
3360 zilog = zfsvfs->z_log;
3363 * Make sure we have the real vp for the target directory.
3365 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3366 tdvp = realvp;
3368 if (tdvp->v_vfsp != sdvp->v_vfsp || zfsctl_is_node(tdvp)) {
3369 ZFS_EXIT(zfsvfs);
3370 return (EXDEV);
3373 tdzp = VTOZ(tdvp);
3374 ZFS_VERIFY_ZP(tdzp);
3375 if (zfsvfs->z_utf8 && u8_validate(tnm,
3376 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3377 ZFS_EXIT(zfsvfs);
3378 return (EILSEQ);
3381 if (flags & FIGNORECASE)
3382 zflg |= ZCILOOK;
3384 top:
3385 szp = NULL;
3386 tzp = NULL;
3387 zl = NULL;
3390 * This is to prevent the creation of links into attribute space
3391 * by renaming a linked file into/outof an attribute directory.
3392 * See the comment in zfs_link() for why this is considered bad.
3394 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3395 ZFS_EXIT(zfsvfs);
3396 return (EINVAL);
3400 * Lock source and target directory entries. To prevent deadlock,
3401 * a lock ordering must be defined. We lock the directory with
3402 * the smallest object id first, or if it's a tie, the one with
3403 * the lexically first name.
3405 if (sdzp->z_id < tdzp->z_id) {
3406 cmp = -1;
3407 } else if (sdzp->z_id > tdzp->z_id) {
3408 cmp = 1;
3409 } else {
3411 * First compare the two name arguments without
3412 * considering any case folding.
3414 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3416 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3417 ASSERT(error == 0 || !zfsvfs->z_utf8);
3418 if (cmp == 0) {
3420 * POSIX: "If the old argument and the new argument
3421 * both refer to links to the same existing file,
3422 * the rename() function shall return successfully
3423 * and perform no other action."
3425 ZFS_EXIT(zfsvfs);
3426 return (0);
3429 * If the file system is case-folding, then we may
3430 * have some more checking to do. A case-folding file
3431 * system is either supporting mixed case sensitivity
3432 * access or is completely case-insensitive. Note
3433 * that the file system is always case preserving.
3435 * In mixed sensitivity mode case sensitive behavior
3436 * is the default. FIGNORECASE must be used to
3437 * explicitly request case insensitive behavior.
3439 * If the source and target names provided differ only
3440 * by case (e.g., a request to rename 'tim' to 'Tim'),
3441 * we will treat this as a special case in the
3442 * case-insensitive mode: as long as the source name
3443 * is an exact match, we will allow this to proceed as
3444 * a name-change request.
3446 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3447 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3448 flags & FIGNORECASE)) &&
3449 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3450 &error) == 0) {
3452 * case preserving rename request, require exact
3453 * name matches
3455 zflg |= ZCIEXACT;
3456 zflg &= ~ZCILOOK;
3461 * If the source and destination directories are the same, we should
3462 * grab the z_name_lock of that directory only once.
3464 if (sdzp == tdzp) {
3465 zflg |= ZHAVELOCK;
3466 rw_enter(&sdzp->z_name_lock, RW_READER);
3469 if (cmp < 0) {
3470 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3471 ZEXISTS | zflg, NULL, NULL);
3472 terr = zfs_dirent_lock(&tdl,
3473 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3474 } else {
3475 terr = zfs_dirent_lock(&tdl,
3476 tdzp, tnm, &tzp, zflg, NULL, NULL);
3477 serr = zfs_dirent_lock(&sdl,
3478 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3479 NULL, NULL);
3482 if (serr) {
3484 * Source entry invalid or not there.
3486 if (!terr) {
3487 zfs_dirent_unlock(tdl);
3488 if (tzp)
3489 VN_RELE(ZTOV(tzp));
3492 if (sdzp == tdzp)
3493 rw_exit(&sdzp->z_name_lock);
3495 if (strcmp(snm, "..") == 0)
3496 serr = EINVAL;
3497 ZFS_EXIT(zfsvfs);
3498 return (serr);
3500 if (terr) {
3501 zfs_dirent_unlock(sdl);
3502 VN_RELE(ZTOV(szp));
3504 if (sdzp == tdzp)
3505 rw_exit(&sdzp->z_name_lock);
3507 if (strcmp(tnm, "..") == 0)
3508 terr = EINVAL;
3509 ZFS_EXIT(zfsvfs);
3510 return (terr);
3514 * Must have write access at the source to remove the old entry
3515 * and write access at the target to create the new entry.
3516 * Note that if target and source are the same, this can be
3517 * done in a single check.
3520 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3521 goto out;
3523 if (ZTOV(szp)->v_type == VDIR) {
3525 * Check to make sure rename is valid.
3526 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3528 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3529 goto out;
3533 * Does target exist?
3535 if (tzp) {
3537 * Source and target must be the same type.
3539 if (ZTOV(szp)->v_type == VDIR) {
3540 if (ZTOV(tzp)->v_type != VDIR) {
3541 error = ENOTDIR;
3542 goto out;
3544 } else {
3545 if (ZTOV(tzp)->v_type == VDIR) {
3546 error = EISDIR;
3547 goto out;
3551 * POSIX dictates that when the source and target
3552 * entries refer to the same file object, rename
3553 * must do nothing and exit without error.
3555 if (szp->z_id == tzp->z_id) {
3556 error = 0;
3557 goto out;
3561 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3562 if (tzp)
3563 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3566 * notify the target directory if it is not the same
3567 * as source directory.
3569 if (tdvp != sdvp) {
3570 vnevent_rename_dest_dir(tdvp, ct);
3573 tx = dmu_tx_create(zfsvfs->z_os);
3574 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3575 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3576 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3577 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3578 if (sdzp != tdzp) {
3579 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3580 zfs_sa_upgrade_txholds(tx, tdzp);
3582 if (tzp) {
3583 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3584 zfs_sa_upgrade_txholds(tx, tzp);
3587 zfs_sa_upgrade_txholds(tx, szp);
3588 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3589 error = dmu_tx_assign(tx, TXG_NOWAIT);
3590 if (error) {
3591 if (zl != NULL)
3592 zfs_rename_unlock(&zl);
3593 zfs_dirent_unlock(sdl);
3594 zfs_dirent_unlock(tdl);
3596 if (sdzp == tdzp)
3597 rw_exit(&sdzp->z_name_lock);
3599 VN_RELE(ZTOV(szp));
3600 if (tzp)
3601 VN_RELE(ZTOV(tzp));
3602 if (error == ERESTART) {
3603 dmu_tx_wait(tx);
3604 dmu_tx_abort(tx);
3605 goto top;
3607 dmu_tx_abort(tx);
3608 ZFS_EXIT(zfsvfs);
3609 return (error);
3612 if (tzp) /* Attempt to remove the existing target */
3613 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3615 if (error == 0) {
3616 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3617 if (error == 0) {
3618 szp->z_pflags |= ZFS_AV_MODIFIED;
3620 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3621 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3622 ASSERT3U(error, ==, 0);
3624 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3625 if (error == 0) {
3626 zfs_log_rename(zilog, tx, TX_RENAME |
3627 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3628 sdl->dl_name, tdzp, tdl->dl_name, szp);
3631 * Update path information for the target vnode
3633 vn_renamepath(tdvp, ZTOV(szp), tnm,
3634 strlen(tnm));
3635 } else {
3637 * At this point, we have successfully created
3638 * the target name, but have failed to remove
3639 * the source name. Since the create was done
3640 * with the ZRENAMING flag, there are
3641 * complications; for one, the link count is
3642 * wrong. The easiest way to deal with this
3643 * is to remove the newly created target, and
3644 * return the original error. This must
3645 * succeed; fortunately, it is very unlikely to
3646 * fail, since we just created it.
3648 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3649 ZRENAMING, NULL), ==, 0);
3654 dmu_tx_commit(tx);
3655 out:
3656 if (zl != NULL)
3657 zfs_rename_unlock(&zl);
3659 zfs_dirent_unlock(sdl);
3660 zfs_dirent_unlock(tdl);
3662 if (sdzp == tdzp)
3663 rw_exit(&sdzp->z_name_lock);
3666 VN_RELE(ZTOV(szp));
3667 if (tzp)
3668 VN_RELE(ZTOV(tzp));
3670 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3671 zil_commit(zilog, 0);
3673 ZFS_EXIT(zfsvfs);
3674 return (error);
3678 * Insert the indicated symbolic reference entry into the directory.
3680 * IN: dvp - Directory to contain new symbolic link.
3681 * link - Name for new symlink entry.
3682 * vap - Attributes of new entry.
3683 * target - Target path of new symlink.
3684 * cr - credentials of caller.
3685 * ct - caller context
3686 * flags - case flags
3688 * RETURN: 0 if success
3689 * error code if failure
3691 * Timestamps:
3692 * dvp - ctime|mtime updated
3694 /*ARGSUSED*/
3695 static int
3696 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3697 caller_context_t *ct, int flags)
3699 znode_t *zp, *dzp = VTOZ(dvp);
3700 zfs_dirlock_t *dl;
3701 dmu_tx_t *tx;
3702 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3703 zilog_t *zilog;
3704 uint64_t len = strlen(link);
3705 int error;
3706 int zflg = ZNEW;
3707 zfs_acl_ids_t acl_ids;
3708 boolean_t fuid_dirtied;
3709 uint64_t txtype = TX_SYMLINK;
3711 ASSERT(vap->va_type == VLNK);
3713 ZFS_ENTER(zfsvfs);
3714 ZFS_VERIFY_ZP(dzp);
3715 zilog = zfsvfs->z_log;
3717 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3718 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3719 ZFS_EXIT(zfsvfs);
3720 return (EILSEQ);
3722 if (flags & FIGNORECASE)
3723 zflg |= ZCILOOK;
3725 if (len > MAXPATHLEN) {
3726 ZFS_EXIT(zfsvfs);
3727 return (ENAMETOOLONG);
3730 if ((error = zfs_acl_ids_create(dzp, 0,
3731 vap, cr, NULL, &acl_ids)) != 0) {
3732 ZFS_EXIT(zfsvfs);
3733 return (error);
3735 top:
3737 * Attempt to lock directory; fail if entry already exists.
3739 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3740 if (error) {
3741 zfs_acl_ids_free(&acl_ids);
3742 ZFS_EXIT(zfsvfs);
3743 return (error);
3746 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3747 zfs_acl_ids_free(&acl_ids);
3748 zfs_dirent_unlock(dl);
3749 ZFS_EXIT(zfsvfs);
3750 return (error);
3753 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3754 zfs_acl_ids_free(&acl_ids);
3755 zfs_dirent_unlock(dl);
3756 ZFS_EXIT(zfsvfs);
3757 return (EDQUOT);
3759 tx = dmu_tx_create(zfsvfs->z_os);
3760 fuid_dirtied = zfsvfs->z_fuid_dirty;
3761 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3762 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3763 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3764 ZFS_SA_BASE_ATTR_SIZE + len);
3765 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3766 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3767 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3768 acl_ids.z_aclp->z_acl_bytes);
3770 if (fuid_dirtied)
3771 zfs_fuid_txhold(zfsvfs, tx);
3772 error = dmu_tx_assign(tx, TXG_NOWAIT);
3773 if (error) {
3774 zfs_dirent_unlock(dl);
3775 if (error == ERESTART) {
3776 dmu_tx_wait(tx);
3777 dmu_tx_abort(tx);
3778 goto top;
3780 zfs_acl_ids_free(&acl_ids);
3781 dmu_tx_abort(tx);
3782 ZFS_EXIT(zfsvfs);
3783 return (error);
3787 * Create a new object for the symlink.
3788 * for version 4 ZPL datsets the symlink will be an SA attribute
3790 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3792 if (fuid_dirtied)
3793 zfs_fuid_sync(zfsvfs, tx);
3795 mutex_enter(&zp->z_lock);
3796 if (zp->z_is_sa)
3797 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3798 link, len, tx);
3799 else
3800 zfs_sa_symlink(zp, link, len, tx);
3801 mutex_exit(&zp->z_lock);
3803 zp->z_size = len;
3804 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3805 &zp->z_size, sizeof (zp->z_size), tx);
3807 * Insert the new object into the directory.
3809 (void) zfs_link_create(dl, zp, tx, ZNEW);
3811 if (flags & FIGNORECASE)
3812 txtype |= TX_CI;
3813 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3815 zfs_acl_ids_free(&acl_ids);
3817 dmu_tx_commit(tx);
3819 zfs_dirent_unlock(dl);
3821 VN_RELE(ZTOV(zp));
3823 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3824 zil_commit(zilog, 0);
3826 ZFS_EXIT(zfsvfs);
3827 return (error);
3831 * Return, in the buffer contained in the provided uio structure,
3832 * the symbolic path referred to by vp.
3834 * IN: vp - vnode of symbolic link.
3835 * uoip - structure to contain the link path.
3836 * cr - credentials of caller.
3837 * ct - caller context
3839 * OUT: uio - structure to contain the link path.
3841 * RETURN: 0 if success
3842 * error code if failure
3844 * Timestamps:
3845 * vp - atime updated
3847 /* ARGSUSED */
3848 static int
3849 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3851 znode_t *zp = VTOZ(vp);
3852 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3853 int error;
3855 ZFS_ENTER(zfsvfs);
3856 ZFS_VERIFY_ZP(zp);
3858 mutex_enter(&zp->z_lock);
3859 if (zp->z_is_sa)
3860 error = sa_lookup_uio(zp->z_sa_hdl,
3861 SA_ZPL_SYMLINK(zfsvfs), uio);
3862 else
3863 error = zfs_sa_readlink(zp, uio);
3864 mutex_exit(&zp->z_lock);
3866 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3868 ZFS_EXIT(zfsvfs);
3869 return (error);
3873 * Insert a new entry into directory tdvp referencing svp.
3875 * IN: tdvp - Directory to contain new entry.
3876 * svp - vnode of new entry.
3877 * name - name of new entry.
3878 * cr - credentials of caller.
3879 * ct - caller context
3881 * RETURN: 0 if success
3882 * error code if failure
3884 * Timestamps:
3885 * tdvp - ctime|mtime updated
3886 * svp - ctime updated
3888 /* ARGSUSED */
3889 static int
3890 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3891 caller_context_t *ct, int flags)
3893 znode_t *dzp = VTOZ(tdvp);
3894 znode_t *tzp, *szp;
3895 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3896 zilog_t *zilog;
3897 zfs_dirlock_t *dl;
3898 dmu_tx_t *tx;
3899 vnode_t *realvp;
3900 int error;
3901 int zf = ZNEW;
3902 uint64_t parent;
3903 uid_t owner;
3905 ASSERT(tdvp->v_type == VDIR);
3907 ZFS_ENTER(zfsvfs);
3908 ZFS_VERIFY_ZP(dzp);
3909 zilog = zfsvfs->z_log;
3911 if (VOP_REALVP(svp, &realvp, ct) == 0)
3912 svp = realvp;
3915 * POSIX dictates that we return EPERM here.
3916 * Better choices include ENOTSUP or EISDIR.
3918 if (svp->v_type == VDIR) {
3919 ZFS_EXIT(zfsvfs);
3920 return (EPERM);
3923 if (svp->v_vfsp != tdvp->v_vfsp || zfsctl_is_node(svp)) {
3924 ZFS_EXIT(zfsvfs);
3925 return (EXDEV);
3928 szp = VTOZ(svp);
3929 ZFS_VERIFY_ZP(szp);
3931 /* Prevent links to .zfs/shares files */
3933 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3934 &parent, sizeof (uint64_t))) != 0) {
3935 ZFS_EXIT(zfsvfs);
3936 return (error);
3938 if (parent == zfsvfs->z_shares_dir) {
3939 ZFS_EXIT(zfsvfs);
3940 return (EPERM);
3943 if (zfsvfs->z_utf8 && u8_validate(name,
3944 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3945 ZFS_EXIT(zfsvfs);
3946 return (EILSEQ);
3948 if (flags & FIGNORECASE)
3949 zf |= ZCILOOK;
3952 * We do not support links between attributes and non-attributes
3953 * because of the potential security risk of creating links
3954 * into "normal" file space in order to circumvent restrictions
3955 * imposed in attribute space.
3957 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
3958 ZFS_EXIT(zfsvfs);
3959 return (EINVAL);
3963 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
3964 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3965 ZFS_EXIT(zfsvfs);
3966 return (EPERM);
3969 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3970 ZFS_EXIT(zfsvfs);
3971 return (error);
3974 top:
3976 * Attempt to lock directory; fail if entry already exists.
3978 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
3979 if (error) {
3980 ZFS_EXIT(zfsvfs);
3981 return (error);
3984 tx = dmu_tx_create(zfsvfs->z_os);
3985 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3986 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3987 zfs_sa_upgrade_txholds(tx, szp);
3988 zfs_sa_upgrade_txholds(tx, dzp);
3989 error = dmu_tx_assign(tx, TXG_NOWAIT);
3990 if (error) {
3991 zfs_dirent_unlock(dl);
3992 if (error == ERESTART) {
3993 dmu_tx_wait(tx);
3994 dmu_tx_abort(tx);
3995 goto top;
3997 dmu_tx_abort(tx);
3998 ZFS_EXIT(zfsvfs);
3999 return (error);
4002 error = zfs_link_create(dl, szp, tx, 0);
4004 if (error == 0) {
4005 uint64_t txtype = TX_LINK;
4006 if (flags & FIGNORECASE)
4007 txtype |= TX_CI;
4008 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4011 dmu_tx_commit(tx);
4013 zfs_dirent_unlock(dl);
4015 if (error == 0) {
4016 vnevent_link(svp, ct);
4019 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4020 zil_commit(zilog, 0);
4022 ZFS_EXIT(zfsvfs);
4023 return (error);
4027 * zfs_null_putapage() is used when the file system has been force
4028 * unmounted. It just drops the pages.
4030 /* ARGSUSED */
4031 static int
4032 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4033 size_t *lenp, int flags, cred_t *cr)
4035 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4036 return (0);
4040 * Push a page out to disk, klustering if possible.
4042 * IN: vp - file to push page to.
4043 * pp - page to push.
4044 * flags - additional flags.
4045 * cr - credentials of caller.
4047 * OUT: offp - start of range pushed.
4048 * lenp - len of range pushed.
4050 * RETURN: 0 if success
4051 * error code if failure
4053 * NOTE: callers must have locked the page to be pushed. On
4054 * exit, the page (and all other pages in the kluster) must be
4055 * unlocked.
4057 /* ARGSUSED */
4058 static int
4059 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4060 size_t *lenp, int flags, cred_t *cr)
4062 znode_t *zp = VTOZ(vp);
4063 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4064 dmu_tx_t *tx;
4065 u_offset_t off, koff;
4066 size_t len, klen;
4067 int err;
4069 off = pp->p_offset;
4070 len = PAGESIZE;
4072 * If our blocksize is bigger than the page size, try to kluster
4073 * multiple pages so that we write a full block (thus avoiding
4074 * a read-modify-write).
4076 if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4077 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4078 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4079 ASSERT(koff <= zp->z_size);
4080 if (koff + klen > zp->z_size)
4081 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4082 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4084 ASSERT3U(btop(len), ==, btopr(len));
4087 * Can't push pages past end-of-file.
4089 if (off >= zp->z_size) {
4090 /* ignore all pages */
4091 err = 0;
4092 goto out;
4093 } else if (off + len > zp->z_size) {
4094 int npages = btopr(zp->z_size - off);
4095 page_t *trunc;
4097 page_list_break(&pp, &trunc, npages);
4098 /* ignore pages past end of file */
4099 if (trunc)
4100 pvn_write_done(trunc, flags);
4101 len = zp->z_size - off;
4104 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4105 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4106 err = EDQUOT;
4107 goto out;
4109 top:
4110 tx = dmu_tx_create(zfsvfs->z_os);
4111 dmu_tx_hold_write(tx, zp->z_id, off, len);
4113 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4114 zfs_sa_upgrade_txholds(tx, zp);
4115 err = dmu_tx_assign(tx, TXG_NOWAIT);
4116 if (err != 0) {
4117 if (err == ERESTART) {
4118 dmu_tx_wait(tx);
4119 dmu_tx_abort(tx);
4120 goto top;
4122 dmu_tx_abort(tx);
4123 goto out;
4126 if (zp->z_blksz <= PAGESIZE) {
4127 caddr_t va = zfs_map_page(pp, S_READ);
4128 ASSERT3U(len, <=, PAGESIZE);
4129 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4130 zfs_unmap_page(pp, va);
4131 } else {
4132 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4135 if (err == 0) {
4136 uint64_t mtime[2], ctime[2];
4137 sa_bulk_attr_t bulk[3];
4138 int count = 0;
4140 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4141 &mtime, 16);
4142 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4143 &ctime, 16);
4144 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4145 &zp->z_pflags, 8);
4146 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4147 B_TRUE);
4148 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4150 dmu_tx_commit(tx);
4152 out:
4153 pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4154 if (offp)
4155 *offp = off;
4156 if (lenp)
4157 *lenp = len;
4159 return (err);
4163 * Copy the portion of the file indicated from pages into the file.
4164 * The pages are stored in a page list attached to the files vnode.
4166 * IN: vp - vnode of file to push page data to.
4167 * off - position in file to put data.
4168 * len - amount of data to write.
4169 * flags - flags to control the operation.
4170 * cr - credentials of caller.
4171 * ct - caller context.
4173 * RETURN: 0 if success
4174 * error code if failure
4176 * Timestamps:
4177 * vp - ctime|mtime updated
4179 /*ARGSUSED*/
4180 static int
4181 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4182 caller_context_t *ct)
4184 znode_t *zp = VTOZ(vp);
4185 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4186 page_t *pp;
4187 size_t io_len;
4188 u_offset_t io_off;
4189 uint_t blksz;
4190 rl_t *rl;
4191 int error = 0;
4193 ZFS_ENTER(zfsvfs);
4194 ZFS_VERIFY_ZP(zp);
4197 * There's nothing to do if no data is cached.
4199 if (!vn_has_cached_data(vp)) {
4200 ZFS_EXIT(zfsvfs);
4201 return (0);
4205 * Align this request to the file block size in case we kluster.
4206 * XXX - this can result in pretty aggresive locking, which can
4207 * impact simultanious read/write access. One option might be
4208 * to break up long requests (len == 0) into block-by-block
4209 * operations to get narrower locking.
4211 blksz = zp->z_blksz;
4212 if (ISP2(blksz))
4213 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4214 else
4215 io_off = 0;
4216 if (len > 0 && ISP2(blksz))
4217 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4218 else
4219 io_len = 0;
4221 if (io_len == 0) {
4223 * Search the entire vp list for pages >= io_off.
4225 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4226 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4227 goto out;
4229 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4231 if (off > zp->z_size) {
4232 /* past end of file */
4233 zfs_range_unlock(rl);
4234 ZFS_EXIT(zfsvfs);
4235 return (0);
4238 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4240 for (off = io_off; io_off < off + len; io_off += io_len) {
4241 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4242 pp = page_lookup(vp, io_off,
4243 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4244 } else {
4245 pp = page_lookup_nowait(vp, io_off,
4246 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4249 if (pp != NULL && pvn_getdirty(pp, flags)) {
4250 int err;
4253 * Found a dirty page to push
4255 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4256 if (err)
4257 error = err;
4258 } else {
4259 io_len = PAGESIZE;
4262 out:
4263 zfs_range_unlock(rl);
4264 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4265 zil_commit(zfsvfs->z_log, zp->z_id);
4266 ZFS_EXIT(zfsvfs);
4267 return (error);
4270 /*ARGSUSED*/
4271 void
4272 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4274 znode_t *zp = VTOZ(vp);
4275 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4276 int error;
4278 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4279 if (zp->z_sa_hdl == NULL) {
4281 * The fs has been unmounted, or we did a
4282 * suspend/resume and this file no longer exists.
4284 if (vn_has_cached_data(vp)) {
4285 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4286 B_INVAL, cr);
4289 mutex_enter(&zp->z_lock);
4290 mutex_enter(&vp->v_lock);
4291 ASSERT(vp->v_count == 1);
4292 vp->v_count = 0;
4293 mutex_exit(&vp->v_lock);
4294 mutex_exit(&zp->z_lock);
4295 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4296 zfs_znode_free(zp);
4297 return;
4301 * Attempt to push any data in the page cache. If this fails
4302 * we will get kicked out later in zfs_zinactive().
4304 if (vn_has_cached_data(vp)) {
4305 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4306 cr);
4309 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4310 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4312 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4313 zfs_sa_upgrade_txholds(tx, zp);
4314 error = dmu_tx_assign(tx, TXG_WAIT);
4315 if (error) {
4316 dmu_tx_abort(tx);
4317 } else {
4318 mutex_enter(&zp->z_lock);
4319 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4320 (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4321 zp->z_atime_dirty = 0;
4322 mutex_exit(&zp->z_lock);
4323 dmu_tx_commit(tx);
4327 zfs_zinactive(zp);
4328 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4332 * Bounds-check the seek operation.
4334 * IN: vp - vnode seeking within
4335 * ooff - old file offset
4336 * noffp - pointer to new file offset
4337 * ct - caller context
4339 * RETURN: 0 if success
4340 * EINVAL if new offset invalid
4342 /* ARGSUSED */
4343 static int
4344 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4345 caller_context_t *ct)
4347 if (vp->v_type == VDIR)
4348 return (0);
4349 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4353 * Pre-filter the generic locking function to trap attempts to place
4354 * a mandatory lock on a memory mapped file.
4356 static int
4357 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4358 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4360 znode_t *zp = VTOZ(vp);
4361 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4363 ZFS_ENTER(zfsvfs);
4364 ZFS_VERIFY_ZP(zp);
4367 * We are following the UFS semantics with respect to mapcnt
4368 * here: If we see that the file is mapped already, then we will
4369 * return an error, but we don't worry about races between this
4370 * function and zfs_map().
4372 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4373 ZFS_EXIT(zfsvfs);
4374 return (EAGAIN);
4376 ZFS_EXIT(zfsvfs);
4377 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4381 * If we can't find a page in the cache, we will create a new page
4382 * and fill it with file data. For efficiency, we may try to fill
4383 * multiple pages at once (klustering) to fill up the supplied page
4384 * list. Note that the pages to be filled are held with an exclusive
4385 * lock to prevent access by other threads while they are being filled.
4387 static int
4388 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4389 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4391 znode_t *zp = VTOZ(vp);
4392 page_t *pp, *cur_pp;
4393 objset_t *os = zp->z_zfsvfs->z_os;
4394 u_offset_t io_off, total;
4395 size_t io_len;
4396 int err;
4398 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4400 * We only have a single page, don't bother klustering
4402 io_off = off;
4403 io_len = PAGESIZE;
4404 pp = page_create_va(vp, io_off, io_len,
4405 PG_EXCL | PG_WAIT, seg, addr);
4406 } else {
4408 * Try to find enough pages to fill the page list
4410 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4411 &io_len, off, plsz, 0);
4413 if (pp == NULL) {
4415 * The page already exists, nothing to do here.
4417 *pl = NULL;
4418 return (0);
4422 * Fill the pages in the kluster.
4424 cur_pp = pp;
4425 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4426 caddr_t va;
4428 ASSERT3U(io_off, ==, cur_pp->p_offset);
4429 va = zfs_map_page(cur_pp, S_WRITE);
4430 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4431 DMU_READ_PREFETCH);
4432 zfs_unmap_page(cur_pp, va);
4433 if (err) {
4434 /* On error, toss the entire kluster */
4435 pvn_read_done(pp, B_ERROR);
4436 /* convert checksum errors into IO errors */
4437 if (err == ECKSUM)
4438 err = EIO;
4439 return (err);
4441 cur_pp = cur_pp->p_next;
4445 * Fill in the page list array from the kluster starting
4446 * from the desired offset `off'.
4447 * NOTE: the page list will always be null terminated.
4449 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4450 ASSERT(pl == NULL || (*pl)->p_offset == off);
4452 return (0);
4456 * Return pointers to the pages for the file region [off, off + len]
4457 * in the pl array. If plsz is greater than len, this function may
4458 * also return page pointers from after the specified region
4459 * (i.e. the region [off, off + plsz]). These additional pages are
4460 * only returned if they are already in the cache, or were created as
4461 * part of a klustered read.
4463 * IN: vp - vnode of file to get data from.
4464 * off - position in file to get data from.
4465 * len - amount of data to retrieve.
4466 * plsz - length of provided page list.
4467 * seg - segment to obtain pages for.
4468 * addr - virtual address of fault.
4469 * rw - mode of created pages.
4470 * cr - credentials of caller.
4471 * ct - caller context.
4473 * OUT: protp - protection mode of created pages.
4474 * pl - list of pages created.
4476 * RETURN: 0 if success
4477 * error code if failure
4479 * Timestamps:
4480 * vp - atime updated
4482 /* ARGSUSED */
4483 static int
4484 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4485 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4486 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4488 znode_t *zp = VTOZ(vp);
4489 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4490 page_t **pl0 = pl;
4491 int err = 0;
4493 /* we do our own caching, faultahead is unnecessary */
4494 if (pl == NULL)
4495 return (0);
4496 else if (len > plsz)
4497 len = plsz;
4498 else
4499 len = P2ROUNDUP(len, PAGESIZE);
4500 ASSERT(plsz >= len);
4502 ZFS_ENTER(zfsvfs);
4503 ZFS_VERIFY_ZP(zp);
4505 if (protp)
4506 *protp = PROT_ALL;
4509 * Loop through the requested range [off, off + len) looking
4510 * for pages. If we don't find a page, we will need to create
4511 * a new page and fill it with data from the file.
4513 while (len > 0) {
4514 if (*pl = page_lookup(vp, off, SE_SHARED))
4515 *(pl+1) = NULL;
4516 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4517 goto out;
4518 while (*pl) {
4519 ASSERT3U((*pl)->p_offset, ==, off);
4520 off += PAGESIZE;
4521 addr += PAGESIZE;
4522 if (len > 0) {
4523 ASSERT3U(len, >=, PAGESIZE);
4524 len -= PAGESIZE;
4526 ASSERT3U(plsz, >=, PAGESIZE);
4527 plsz -= PAGESIZE;
4528 pl++;
4533 * Fill out the page array with any pages already in the cache.
4535 while (plsz > 0 &&
4536 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4537 off += PAGESIZE;
4538 plsz -= PAGESIZE;
4540 out:
4541 if (err) {
4543 * Release any pages we have previously locked.
4545 while (pl > pl0)
4546 page_unlock(*--pl);
4547 } else {
4548 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4551 *pl = NULL;
4553 ZFS_EXIT(zfsvfs);
4554 return (err);
4558 * Request a memory map for a section of a file. This code interacts
4559 * with common code and the VM system as follows:
4561 * common code calls mmap(), which ends up in smmap_common()
4563 * this calls VOP_MAP(), which takes you into (say) zfs
4565 * zfs_map() calls as_map(), passing segvn_create() as the callback
4567 * segvn_create() creates the new segment and calls VOP_ADDMAP()
4569 * zfs_addmap() updates z_mapcnt
4571 /*ARGSUSED*/
4572 static int
4573 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4574 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4575 caller_context_t *ct)
4577 znode_t *zp = VTOZ(vp);
4578 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4579 segvn_crargs_t vn_a;
4580 int error;
4582 ZFS_ENTER(zfsvfs);
4583 ZFS_VERIFY_ZP(zp);
4585 if ((prot & PROT_WRITE) && (zp->z_pflags &
4586 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4587 ZFS_EXIT(zfsvfs);
4588 return (EPERM);
4591 if ((prot & (PROT_READ | PROT_EXEC)) &&
4592 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4593 ZFS_EXIT(zfsvfs);
4594 return (EACCES);
4597 if (vp->v_flag & VNOMAP) {
4598 ZFS_EXIT(zfsvfs);
4599 return (ENOSYS);
4602 if (off < 0 || len > MAXOFFSET_T - off) {
4603 ZFS_EXIT(zfsvfs);
4604 return (ENXIO);
4607 if (vp->v_type != VREG) {
4608 ZFS_EXIT(zfsvfs);
4609 return (ENODEV);
4613 * If file is locked, disallow mapping.
4615 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4616 ZFS_EXIT(zfsvfs);
4617 return (EAGAIN);
4620 as_rangelock(as);
4621 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4622 if (error != 0) {
4623 as_rangeunlock(as);
4624 ZFS_EXIT(zfsvfs);
4625 return (error);
4628 vn_a.vp = vp;
4629 vn_a.offset = (u_offset_t)off;
4630 vn_a.type = flags & MAP_TYPE;
4631 vn_a.prot = prot;
4632 vn_a.maxprot = maxprot;
4633 vn_a.cred = cr;
4634 vn_a.amp = NULL;
4635 vn_a.flags = flags & ~MAP_TYPE;
4636 vn_a.szc = 0;
4637 vn_a.lgrp_mem_policy_flags = 0;
4639 error = as_map(as, *addrp, len, segvn_create, &vn_a);
4641 as_rangeunlock(as);
4642 ZFS_EXIT(zfsvfs);
4643 return (error);
4646 /* ARGSUSED */
4647 static int
4648 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4649 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4650 caller_context_t *ct)
4652 uint64_t pages = btopr(len);
4654 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4655 return (0);
4659 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4660 * more accurate mtime for the associated file. Since we don't have a way of
4661 * detecting when the data was actually modified, we have to resort to
4662 * heuristics. If an explicit msync() is done, then we mark the mtime when the
4663 * last page is pushed. The problem occurs when the msync() call is omitted,
4664 * which by far the most common case:
4666 * open()
4667 * mmap()
4668 * <modify memory>
4669 * munmap()
4670 * close()
4671 * <time lapse>
4672 * putpage() via fsflush
4674 * If we wait until fsflush to come along, we can have a modification time that
4675 * is some arbitrary point in the future. In order to prevent this in the
4676 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4677 * torn down.
4679 /* ARGSUSED */
4680 static int
4681 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4682 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4683 caller_context_t *ct)
4685 uint64_t pages = btopr(len);
4687 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4688 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4690 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4691 vn_has_cached_data(vp))
4692 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4694 return (0);
4698 * Free or allocate space in a file. Currently, this function only
4699 * supports the `F_FREESP' command. However, this command is somewhat
4700 * misnamed, as its functionality includes the ability to allocate as
4701 * well as free space.
4703 * IN: vp - vnode of file to free data in.
4704 * cmd - action to take (only F_FREESP supported).
4705 * bfp - section of file to free/alloc.
4706 * flag - current file open mode flags.
4707 * offset - current file offset.
4708 * cr - credentials of caller [UNUSED].
4709 * ct - caller context.
4711 * RETURN: 0 if success
4712 * error code if failure
4714 * Timestamps:
4715 * vp - ctime|mtime updated
4717 /* ARGSUSED */
4718 static int
4719 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4720 offset_t offset, cred_t *cr, caller_context_t *ct)
4722 znode_t *zp = VTOZ(vp);
4723 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4724 uint64_t off, len;
4725 int error;
4727 ZFS_ENTER(zfsvfs);
4728 ZFS_VERIFY_ZP(zp);
4730 if (cmd != F_FREESP) {
4731 ZFS_EXIT(zfsvfs);
4732 return (EINVAL);
4735 if (error = convoff(vp, bfp, 0, offset)) {
4736 ZFS_EXIT(zfsvfs);
4737 return (error);
4740 if (bfp->l_len < 0) {
4741 ZFS_EXIT(zfsvfs);
4742 return (EINVAL);
4745 off = bfp->l_start;
4746 len = bfp->l_len; /* 0 means from off to end of file */
4748 error = zfs_freesp(zp, off, len, flag, TRUE);
4750 ZFS_EXIT(zfsvfs);
4751 return (error);
4754 /*ARGSUSED*/
4755 static int
4756 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4758 znode_t *zp = VTOZ(vp);
4759 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4760 uint32_t gen;
4761 uint64_t gen64;
4762 uint64_t object = zp->z_id;
4763 zfid_short_t *zfid;
4764 int size, i, error;
4766 ZFS_ENTER(zfsvfs);
4767 ZFS_VERIFY_ZP(zp);
4769 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4770 &gen64, sizeof (uint64_t))) != 0) {
4771 ZFS_EXIT(zfsvfs);
4772 return (error);
4775 gen = (uint32_t)gen64;
4777 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4778 if (fidp->fid_len < size) {
4779 fidp->fid_len = size;
4780 ZFS_EXIT(zfsvfs);
4781 return (ENOSPC);
4784 zfid = (zfid_short_t *)fidp;
4786 zfid->zf_len = size;
4788 for (i = 0; i < sizeof (zfid->zf_object); i++)
4789 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4791 /* Must have a non-zero generation number to distinguish from .zfs */
4792 if (gen == 0)
4793 gen = 1;
4794 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4795 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4797 if (size == LONG_FID_LEN) {
4798 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
4799 zfid_long_t *zlfid;
4801 zlfid = (zfid_long_t *)fidp;
4803 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4804 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4806 /* XXX - this should be the generation number for the objset */
4807 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4808 zlfid->zf_setgen[i] = 0;
4811 ZFS_EXIT(zfsvfs);
4812 return (0);
4815 static int
4816 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4817 caller_context_t *ct)
4819 znode_t *zp, *xzp;
4820 zfsvfs_t *zfsvfs;
4821 zfs_dirlock_t *dl;
4822 int error;
4824 switch (cmd) {
4825 case _PC_LINK_MAX:
4826 *valp = ULONG_MAX;
4827 return (0);
4829 case _PC_FILESIZEBITS:
4830 *valp = 64;
4831 return (0);
4833 case _PC_XATTR_EXISTS:
4834 zp = VTOZ(vp);
4835 zfsvfs = zp->z_zfsvfs;
4836 ZFS_ENTER(zfsvfs);
4837 ZFS_VERIFY_ZP(zp);
4838 *valp = 0;
4839 error = zfs_dirent_lock(&dl, zp, "", &xzp,
4840 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4841 if (error == 0) {
4842 zfs_dirent_unlock(dl);
4843 if (!zfs_dirempty(xzp))
4844 *valp = 1;
4845 VN_RELE(ZTOV(xzp));
4846 } else if (error == ENOENT) {
4848 * If there aren't extended attributes, it's the
4849 * same as having zero of them.
4851 error = 0;
4853 ZFS_EXIT(zfsvfs);
4854 return (error);
4856 case _PC_SATTR_ENABLED:
4857 case _PC_SATTR_EXISTS:
4858 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4859 (vp->v_type == VREG || vp->v_type == VDIR);
4860 return (0);
4862 case _PC_ACCESS_FILTERING:
4863 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4864 vp->v_type == VDIR;
4865 return (0);
4867 case _PC_ACL_ENABLED:
4868 *valp = _ACL_ACE_ENABLED;
4869 return (0);
4871 case _PC_MIN_HOLE_SIZE:
4872 *valp = (ulong_t)SPA_MINBLOCKSIZE;
4873 return (0);
4875 case _PC_TIMESTAMP_RESOLUTION:
4876 /* nanosecond timestamp resolution */
4877 *valp = 1L;
4878 return (0);
4880 default:
4881 return (fs_pathconf(vp, cmd, valp, cr, ct));
4885 /*ARGSUSED*/
4886 static int
4887 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4888 caller_context_t *ct)
4890 znode_t *zp = VTOZ(vp);
4891 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4892 int error;
4893 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4895 ZFS_ENTER(zfsvfs);
4896 ZFS_VERIFY_ZP(zp);
4897 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4898 ZFS_EXIT(zfsvfs);
4900 return (error);
4903 /*ARGSUSED*/
4904 static int
4905 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4906 caller_context_t *ct)
4908 znode_t *zp = VTOZ(vp);
4909 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4910 int error;
4911 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4912 zilog_t *zilog = zfsvfs->z_log;
4914 ZFS_ENTER(zfsvfs);
4915 ZFS_VERIFY_ZP(zp);
4917 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4919 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4920 zil_commit(zilog, 0);
4922 ZFS_EXIT(zfsvfs);
4923 return (error);
4927 * Tunable, both must be a power of 2.
4929 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
4930 * zcr_blksz_max: if set to less than the file block size, allow loaning out of
4931 * an arcbuf for a partial block read
4933 int zcr_blksz_min = (1 << 10); /* 1K */
4934 int zcr_blksz_max = (1 << 17); /* 128K */
4936 /*ARGSUSED*/
4937 static int
4938 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
4939 caller_context_t *ct)
4941 znode_t *zp = VTOZ(vp);
4942 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4943 int max_blksz = zfsvfs->z_max_blksz;
4944 uio_t *uio = &xuio->xu_uio;
4945 ssize_t size = uio->uio_resid;
4946 offset_t offset = uio->uio_loffset;
4947 int blksz;
4948 int fullblk, i;
4949 arc_buf_t *abuf;
4950 ssize_t maxsize;
4951 int preamble, postamble;
4953 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
4954 return (EINVAL);
4956 ZFS_ENTER(zfsvfs);
4957 ZFS_VERIFY_ZP(zp);
4958 switch (ioflag) {
4959 case UIO_WRITE:
4961 * Loan out an arc_buf for write if write size is bigger than
4962 * max_blksz, and the file's block size is also max_blksz.
4964 blksz = max_blksz;
4965 if (size < blksz || zp->z_blksz != blksz) {
4966 ZFS_EXIT(zfsvfs);
4967 return (EINVAL);
4970 * Caller requests buffers for write before knowing where the
4971 * write offset might be (e.g. NFS TCP write).
4973 if (offset == -1) {
4974 preamble = 0;
4975 } else {
4976 preamble = P2PHASE(offset, blksz);
4977 if (preamble) {
4978 preamble = blksz - preamble;
4979 size -= preamble;
4983 postamble = P2PHASE(size, blksz);
4984 size -= postamble;
4986 fullblk = size / blksz;
4987 (void) dmu_xuio_init(xuio,
4988 (preamble != 0) + fullblk + (postamble != 0));
4989 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
4990 int, postamble, int,
4991 (preamble != 0) + fullblk + (postamble != 0));
4994 * Have to fix iov base/len for partial buffers. They
4995 * currently represent full arc_buf's.
4997 if (preamble) {
4998 /* data begins in the middle of the arc_buf */
4999 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5000 blksz);
5001 ASSERT(abuf);
5002 (void) dmu_xuio_add(xuio, abuf,
5003 blksz - preamble, preamble);
5006 for (i = 0; i < fullblk; i++) {
5007 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5008 blksz);
5009 ASSERT(abuf);
5010 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5013 if (postamble) {
5014 /* data ends in the middle of the arc_buf */
5015 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5016 blksz);
5017 ASSERT(abuf);
5018 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5020 break;
5021 case UIO_READ:
5023 * Loan out an arc_buf for read if the read size is larger than
5024 * the current file block size. Block alignment is not
5025 * considered. Partial arc_buf will be loaned out for read.
5027 blksz = zp->z_blksz;
5028 if (blksz < zcr_blksz_min)
5029 blksz = zcr_blksz_min;
5030 if (blksz > zcr_blksz_max)
5031 blksz = zcr_blksz_max;
5032 /* avoid potential complexity of dealing with it */
5033 if (blksz > max_blksz) {
5034 ZFS_EXIT(zfsvfs);
5035 return (EINVAL);
5038 maxsize = zp->z_size - uio->uio_loffset;
5039 if (size > maxsize)
5040 size = maxsize;
5042 if (size < blksz || vn_has_cached_data(vp)) {
5043 ZFS_EXIT(zfsvfs);
5044 return (EINVAL);
5046 break;
5047 default:
5048 ZFS_EXIT(zfsvfs);
5049 return (EINVAL);
5052 uio->uio_extflg = UIO_XUIO;
5053 XUIO_XUZC_RW(xuio) = ioflag;
5054 ZFS_EXIT(zfsvfs);
5055 return (0);
5058 /*ARGSUSED*/
5059 static int
5060 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5062 int i;
5063 arc_buf_t *abuf;
5064 int ioflag = XUIO_XUZC_RW(xuio);
5066 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5068 i = dmu_xuio_cnt(xuio);
5069 while (i-- > 0) {
5070 abuf = dmu_xuio_arcbuf(xuio, i);
5072 * if abuf == NULL, it must be a write buffer
5073 * that has been returned in zfs_write().
5075 if (abuf)
5076 dmu_return_arcbuf(abuf);
5077 ASSERT(abuf || ioflag == UIO_WRITE);
5080 dmu_xuio_fini(xuio);
5081 return (0);
5085 * Predeclare these here so that the compiler assumes that
5086 * this is an "old style" function declaration that does
5087 * not include arguments => we won't get type mismatch errors
5088 * in the initializations that follow.
5090 static int zfs_inval();
5091 static int zfs_isdir();
5093 static int
5094 zfs_inval()
5096 return (EINVAL);
5099 static int
5100 zfs_isdir()
5102 return (EISDIR);
5105 * Directory vnode operations template
5107 vnodeops_t *zfs_dvnodeops;
5108 const fs_operation_def_t zfs_dvnodeops_template[] = {
5109 VOPNAME_OPEN, { .vop_open = zfs_open },
5110 VOPNAME_CLOSE, { .vop_close = zfs_close },
5111 VOPNAME_READ, { .error = zfs_isdir },
5112 VOPNAME_WRITE, { .error = zfs_isdir },
5113 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5114 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5115 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5116 VOPNAME_ACCESS, { .vop_access = zfs_access },
5117 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5118 VOPNAME_CREATE, { .vop_create = zfs_create },
5119 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5120 VOPNAME_LINK, { .vop_link = zfs_link },
5121 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5122 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir },
5123 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5124 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5125 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink },
5126 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5127 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5128 VOPNAME_FID, { .vop_fid = zfs_fid },
5129 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5130 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5131 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5132 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5133 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5134 NULL, NULL
5138 * Regular file vnode operations template
5140 vnodeops_t *zfs_fvnodeops;
5141 const fs_operation_def_t zfs_fvnodeops_template[] = {
5142 VOPNAME_OPEN, { .vop_open = zfs_open },
5143 VOPNAME_CLOSE, { .vop_close = zfs_close },
5144 VOPNAME_READ, { .vop_read = zfs_read },
5145 VOPNAME_WRITE, { .vop_write = zfs_write },
5146 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5147 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5148 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5149 VOPNAME_ACCESS, { .vop_access = zfs_access },
5150 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5151 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5152 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5153 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5154 VOPNAME_FID, { .vop_fid = zfs_fid },
5155 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5156 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock },
5157 VOPNAME_SPACE, { .vop_space = zfs_space },
5158 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage },
5159 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage },
5160 VOPNAME_MAP, { .vop_map = zfs_map },
5161 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap },
5162 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap },
5163 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5164 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5165 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5166 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5167 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf },
5168 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf },
5169 NULL, NULL
5173 * Symbolic link vnode operations template
5175 vnodeops_t *zfs_symvnodeops;
5176 const fs_operation_def_t zfs_symvnodeops_template[] = {
5177 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5178 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5179 VOPNAME_ACCESS, { .vop_access = zfs_access },
5180 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5181 VOPNAME_READLINK, { .vop_readlink = zfs_readlink },
5182 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5183 VOPNAME_FID, { .vop_fid = zfs_fid },
5184 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5185 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5186 NULL, NULL
5190 * special share hidden files vnode operations template
5192 vnodeops_t *zfs_sharevnodeops;
5193 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5194 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5195 VOPNAME_ACCESS, { .vop_access = zfs_access },
5196 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5197 VOPNAME_FID, { .vop_fid = zfs_fid },
5198 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5199 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5200 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5201 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5202 NULL, NULL
5206 * Extended attribute directory vnode operations template
5207 * This template is identical to the directory vnodes
5208 * operation template except for restricted operations:
5209 * VOP_MKDIR()
5210 * VOP_SYMLINK()
5211 * Note that there are other restrictions embedded in:
5212 * zfs_create() - restrict type to VREG
5213 * zfs_link() - no links into/out of attribute space
5214 * zfs_rename() - no moves into/out of attribute space
5216 vnodeops_t *zfs_xdvnodeops;
5217 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5218 VOPNAME_OPEN, { .vop_open = zfs_open },
5219 VOPNAME_CLOSE, { .vop_close = zfs_close },
5220 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5221 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5222 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5223 VOPNAME_ACCESS, { .vop_access = zfs_access },
5224 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5225 VOPNAME_CREATE, { .vop_create = zfs_create },
5226 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5227 VOPNAME_LINK, { .vop_link = zfs_link },
5228 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5229 VOPNAME_MKDIR, { .error = zfs_inval },
5230 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5231 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5232 VOPNAME_SYMLINK, { .error = zfs_inval },
5233 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5234 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5235 VOPNAME_FID, { .vop_fid = zfs_fid },
5236 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5237 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5238 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5239 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5240 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5241 NULL, NULL
5245 * Error vnode operations template
5247 vnodeops_t *zfs_evnodeops;
5248 const fs_operation_def_t zfs_evnodeops_template[] = {
5249 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5250 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5251 NULL, NULL