1949 crash during reguid causes stale config
[unleashed.git] / usr / src / uts / common / fs / zfs / zfs_vfsops.c
blob14b888b29e0335a75eacad53beb735362f22869f
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 /* Portions Copyright 2010 Robert Milkowski */
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/sysmacros.h>
31 #include <sys/kmem.h>
32 #include <sys/pathname.h>
33 #include <sys/vnode.h>
34 #include <sys/vfs.h>
35 #include <sys/vfs_opreg.h>
36 #include <sys/mntent.h>
37 #include <sys/mount.h>
38 #include <sys/cmn_err.h>
39 #include "fs/fs_subr.h"
40 #include <sys/zfs_znode.h>
41 #include <sys/zfs_dir.h>
42 #include <sys/zil.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/dmu.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/dsl_dataset.h>
47 #include <sys/dsl_deleg.h>
48 #include <sys/spa.h>
49 #include <sys/zap.h>
50 #include <sys/sa.h>
51 #include <sys/varargs.h>
52 #include <sys/policy.h>
53 #include <sys/atomic.h>
54 #include <sys/mkdev.h>
55 #include <sys/modctl.h>
56 #include <sys/refstr.h>
57 #include <sys/zfs_ioctl.h>
58 #include <sys/zfs_ctldir.h>
59 #include <sys/zfs_fuid.h>
60 #include <sys/bootconf.h>
61 #include <sys/sunddi.h>
62 #include <sys/dnlc.h>
63 #include <sys/dmu_objset.h>
64 #include <sys/spa_boot.h>
65 #include <sys/sa.h>
66 #include "zfs_comutil.h"
68 int zfsfstype;
69 vfsops_t *zfs_vfsops = NULL;
70 static major_t zfs_major;
71 static minor_t zfs_minor;
72 static kmutex_t zfs_dev_mtx;
74 extern int sys_shutdown;
76 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
77 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
78 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
79 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
80 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
81 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
82 static void zfs_freevfs(vfs_t *vfsp);
84 static const fs_operation_def_t zfs_vfsops_template[] = {
85 VFSNAME_MOUNT, { .vfs_mount = zfs_mount },
86 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot },
87 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount },
88 VFSNAME_ROOT, { .vfs_root = zfs_root },
89 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs },
90 VFSNAME_SYNC, { .vfs_sync = zfs_sync },
91 VFSNAME_VGET, { .vfs_vget = zfs_vget },
92 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs },
93 NULL, NULL
96 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
97 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs },
98 NULL, NULL
102 * We need to keep a count of active fs's.
103 * This is necessary to prevent our module
104 * from being unloaded after a umount -f
106 static uint32_t zfs_active_fs_count = 0;
108 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
109 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
110 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
111 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
114 * MO_DEFAULT is not used since the default value is determined
115 * by the equivalent property.
117 static mntopt_t mntopts[] = {
118 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
119 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
120 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
121 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
124 static mntopts_t zfs_mntopts = {
125 sizeof (mntopts) / sizeof (mntopt_t),
126 mntopts
129 /*ARGSUSED*/
131 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
134 * Data integrity is job one. We don't want a compromised kernel
135 * writing to the storage pool, so we never sync during panic.
137 if (panicstr)
138 return (0);
141 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
142 * to sync metadata, which they would otherwise cache indefinitely.
143 * Semantically, the only requirement is that the sync be initiated.
144 * The DMU syncs out txgs frequently, so there's nothing to do.
146 if (flag & SYNC_ATTR)
147 return (0);
149 if (vfsp != NULL) {
151 * Sync a specific filesystem.
153 zfsvfs_t *zfsvfs = vfsp->vfs_data;
154 dsl_pool_t *dp;
156 ZFS_ENTER(zfsvfs);
157 dp = dmu_objset_pool(zfsvfs->z_os);
160 * If the system is shutting down, then skip any
161 * filesystems which may exist on a suspended pool.
163 if (sys_shutdown && spa_suspended(dp->dp_spa)) {
164 ZFS_EXIT(zfsvfs);
165 return (0);
168 if (zfsvfs->z_log != NULL)
169 zil_commit(zfsvfs->z_log, 0);
171 ZFS_EXIT(zfsvfs);
172 } else {
174 * Sync all ZFS filesystems. This is what happens when you
175 * run sync(1M). Unlike other filesystems, ZFS honors the
176 * request by waiting for all pools to commit all dirty data.
178 spa_sync_allpools();
181 return (0);
184 static int
185 zfs_create_unique_device(dev_t *dev)
187 major_t new_major;
189 do {
190 ASSERT3U(zfs_minor, <=, MAXMIN32);
191 minor_t start = zfs_minor;
192 do {
193 mutex_enter(&zfs_dev_mtx);
194 if (zfs_minor >= MAXMIN32) {
196 * If we're still using the real major
197 * keep out of /dev/zfs and /dev/zvol minor
198 * number space. If we're using a getudev()'ed
199 * major number, we can use all of its minors.
201 if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
202 zfs_minor = ZFS_MIN_MINOR;
203 else
204 zfs_minor = 0;
205 } else {
206 zfs_minor++;
208 *dev = makedevice(zfs_major, zfs_minor);
209 mutex_exit(&zfs_dev_mtx);
210 } while (vfs_devismounted(*dev) && zfs_minor != start);
211 if (zfs_minor == start) {
213 * We are using all ~262,000 minor numbers for the
214 * current major number. Create a new major number.
216 if ((new_major = getudev()) == (major_t)-1) {
217 cmn_err(CE_WARN,
218 "zfs_mount: Can't get unique major "
219 "device number.");
220 return (-1);
222 mutex_enter(&zfs_dev_mtx);
223 zfs_major = new_major;
224 zfs_minor = 0;
226 mutex_exit(&zfs_dev_mtx);
227 } else {
228 break;
230 /* CONSTANTCONDITION */
231 } while (1);
233 return (0);
236 static void
237 atime_changed_cb(void *arg, uint64_t newval)
239 zfsvfs_t *zfsvfs = arg;
241 if (newval == TRUE) {
242 zfsvfs->z_atime = TRUE;
243 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
244 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
245 } else {
246 zfsvfs->z_atime = FALSE;
247 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
248 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
252 static void
253 xattr_changed_cb(void *arg, uint64_t newval)
255 zfsvfs_t *zfsvfs = arg;
257 if (newval == TRUE) {
258 /* XXX locking on vfs_flag? */
259 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
260 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
261 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
262 } else {
263 /* XXX locking on vfs_flag? */
264 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
265 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
266 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
270 static void
271 blksz_changed_cb(void *arg, uint64_t newval)
273 zfsvfs_t *zfsvfs = arg;
275 if (newval < SPA_MINBLOCKSIZE ||
276 newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
277 newval = SPA_MAXBLOCKSIZE;
279 zfsvfs->z_max_blksz = newval;
280 zfsvfs->z_vfs->vfs_bsize = newval;
283 static void
284 readonly_changed_cb(void *arg, uint64_t newval)
286 zfsvfs_t *zfsvfs = arg;
288 if (newval) {
289 /* XXX locking on vfs_flag? */
290 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
291 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
292 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
293 } else {
294 /* XXX locking on vfs_flag? */
295 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
296 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
297 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
301 static void
302 devices_changed_cb(void *arg, uint64_t newval)
304 zfsvfs_t *zfsvfs = arg;
306 if (newval == FALSE) {
307 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
308 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
309 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
310 } else {
311 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
312 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
313 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
317 static void
318 setuid_changed_cb(void *arg, uint64_t newval)
320 zfsvfs_t *zfsvfs = arg;
322 if (newval == FALSE) {
323 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
324 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
325 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
326 } else {
327 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
328 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
329 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
333 static void
334 exec_changed_cb(void *arg, uint64_t newval)
336 zfsvfs_t *zfsvfs = arg;
338 if (newval == FALSE) {
339 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
340 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
341 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
342 } else {
343 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
344 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
345 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
350 * The nbmand mount option can be changed at mount time.
351 * We can't allow it to be toggled on live file systems or incorrect
352 * behavior may be seen from cifs clients
354 * This property isn't registered via dsl_prop_register(), but this callback
355 * will be called when a file system is first mounted
357 static void
358 nbmand_changed_cb(void *arg, uint64_t newval)
360 zfsvfs_t *zfsvfs = arg;
361 if (newval == FALSE) {
362 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
363 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
364 } else {
365 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
366 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
370 static void
371 snapdir_changed_cb(void *arg, uint64_t newval)
373 zfsvfs_t *zfsvfs = arg;
375 zfsvfs->z_show_ctldir = newval;
378 static void
379 vscan_changed_cb(void *arg, uint64_t newval)
381 zfsvfs_t *zfsvfs = arg;
383 zfsvfs->z_vscan = newval;
386 static void
387 acl_mode_changed_cb(void *arg, uint64_t newval)
389 zfsvfs_t *zfsvfs = arg;
391 zfsvfs->z_acl_mode = newval;
394 static void
395 acl_inherit_changed_cb(void *arg, uint64_t newval)
397 zfsvfs_t *zfsvfs = arg;
399 zfsvfs->z_acl_inherit = newval;
402 static int
403 zfs_register_callbacks(vfs_t *vfsp)
405 struct dsl_dataset *ds = NULL;
406 objset_t *os = NULL;
407 zfsvfs_t *zfsvfs = NULL;
408 uint64_t nbmand;
409 int readonly, do_readonly = B_FALSE;
410 int setuid, do_setuid = B_FALSE;
411 int exec, do_exec = B_FALSE;
412 int devices, do_devices = B_FALSE;
413 int xattr, do_xattr = B_FALSE;
414 int atime, do_atime = B_FALSE;
415 int error = 0;
417 ASSERT(vfsp);
418 zfsvfs = vfsp->vfs_data;
419 ASSERT(zfsvfs);
420 os = zfsvfs->z_os;
423 * The act of registering our callbacks will destroy any mount
424 * options we may have. In order to enable temporary overrides
425 * of mount options, we stash away the current values and
426 * restore them after we register the callbacks.
428 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
429 !spa_writeable(dmu_objset_spa(os))) {
430 readonly = B_TRUE;
431 do_readonly = B_TRUE;
432 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
433 readonly = B_FALSE;
434 do_readonly = B_TRUE;
436 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
437 devices = B_FALSE;
438 setuid = B_FALSE;
439 do_devices = B_TRUE;
440 do_setuid = B_TRUE;
441 } else {
442 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
443 devices = B_FALSE;
444 do_devices = B_TRUE;
445 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
446 devices = B_TRUE;
447 do_devices = B_TRUE;
450 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
451 setuid = B_FALSE;
452 do_setuid = B_TRUE;
453 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
454 setuid = B_TRUE;
455 do_setuid = B_TRUE;
458 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
459 exec = B_FALSE;
460 do_exec = B_TRUE;
461 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
462 exec = B_TRUE;
463 do_exec = B_TRUE;
465 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
466 xattr = B_FALSE;
467 do_xattr = B_TRUE;
468 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
469 xattr = B_TRUE;
470 do_xattr = B_TRUE;
472 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
473 atime = B_FALSE;
474 do_atime = B_TRUE;
475 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
476 atime = B_TRUE;
477 do_atime = B_TRUE;
481 * nbmand is a special property. It can only be changed at
482 * mount time.
484 * This is weird, but it is documented to only be changeable
485 * at mount time.
487 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
488 nbmand = B_FALSE;
489 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
490 nbmand = B_TRUE;
491 } else {
492 char osname[MAXNAMELEN];
494 dmu_objset_name(os, osname);
495 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
496 NULL)) {
497 return (error);
502 * Register property callbacks.
504 * It would probably be fine to just check for i/o error from
505 * the first prop_register(), but I guess I like to go
506 * overboard...
508 ds = dmu_objset_ds(os);
509 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
510 error = error ? error : dsl_prop_register(ds,
511 "xattr", xattr_changed_cb, zfsvfs);
512 error = error ? error : dsl_prop_register(ds,
513 "recordsize", blksz_changed_cb, zfsvfs);
514 error = error ? error : dsl_prop_register(ds,
515 "readonly", readonly_changed_cb, zfsvfs);
516 error = error ? error : dsl_prop_register(ds,
517 "devices", devices_changed_cb, zfsvfs);
518 error = error ? error : dsl_prop_register(ds,
519 "setuid", setuid_changed_cb, zfsvfs);
520 error = error ? error : dsl_prop_register(ds,
521 "exec", exec_changed_cb, zfsvfs);
522 error = error ? error : dsl_prop_register(ds,
523 "snapdir", snapdir_changed_cb, zfsvfs);
524 error = error ? error : dsl_prop_register(ds,
525 "aclmode", acl_mode_changed_cb, zfsvfs);
526 error = error ? error : dsl_prop_register(ds,
527 "aclinherit", acl_inherit_changed_cb, zfsvfs);
528 error = error ? error : dsl_prop_register(ds,
529 "vscan", vscan_changed_cb, zfsvfs);
530 if (error)
531 goto unregister;
534 * Invoke our callbacks to restore temporary mount options.
536 if (do_readonly)
537 readonly_changed_cb(zfsvfs, readonly);
538 if (do_setuid)
539 setuid_changed_cb(zfsvfs, setuid);
540 if (do_exec)
541 exec_changed_cb(zfsvfs, exec);
542 if (do_devices)
543 devices_changed_cb(zfsvfs, devices);
544 if (do_xattr)
545 xattr_changed_cb(zfsvfs, xattr);
546 if (do_atime)
547 atime_changed_cb(zfsvfs, atime);
549 nbmand_changed_cb(zfsvfs, nbmand);
551 return (0);
553 unregister:
555 * We may attempt to unregister some callbacks that are not
556 * registered, but this is OK; it will simply return ENOMSG,
557 * which we will ignore.
559 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
560 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
561 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
562 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
563 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
564 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
565 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
566 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
567 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
568 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
569 zfsvfs);
570 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
571 return (error);
575 static int
576 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
577 uint64_t *userp, uint64_t *groupp)
579 znode_phys_t *znp = data;
580 int error = 0;
583 * Is it a valid type of object to track?
585 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
586 return (ENOENT);
589 * If we have a NULL data pointer
590 * then assume the id's aren't changing and
591 * return EEXIST to the dmu to let it know to
592 * use the same ids
594 if (data == NULL)
595 return (EEXIST);
597 if (bonustype == DMU_OT_ZNODE) {
598 *userp = znp->zp_uid;
599 *groupp = znp->zp_gid;
600 } else {
601 int hdrsize;
603 ASSERT(bonustype == DMU_OT_SA);
604 hdrsize = sa_hdrsize(data);
606 if (hdrsize != 0) {
607 *userp = *((uint64_t *)((uintptr_t)data + hdrsize +
608 SA_UID_OFFSET));
609 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
610 SA_GID_OFFSET));
611 } else {
613 * This should only happen for newly created
614 * files that haven't had the znode data filled
615 * in yet.
617 *userp = 0;
618 *groupp = 0;
621 return (error);
624 static void
625 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
626 char *domainbuf, int buflen, uid_t *ridp)
628 uint64_t fuid;
629 const char *domain;
631 fuid = strtonum(fuidstr, NULL);
633 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
634 if (domain)
635 (void) strlcpy(domainbuf, domain, buflen);
636 else
637 domainbuf[0] = '\0';
638 *ridp = FUID_RID(fuid);
641 static uint64_t
642 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
644 switch (type) {
645 case ZFS_PROP_USERUSED:
646 return (DMU_USERUSED_OBJECT);
647 case ZFS_PROP_GROUPUSED:
648 return (DMU_GROUPUSED_OBJECT);
649 case ZFS_PROP_USERQUOTA:
650 return (zfsvfs->z_userquota_obj);
651 case ZFS_PROP_GROUPQUOTA:
652 return (zfsvfs->z_groupquota_obj);
654 return (0);
658 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
659 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
661 int error;
662 zap_cursor_t zc;
663 zap_attribute_t za;
664 zfs_useracct_t *buf = vbuf;
665 uint64_t obj;
667 if (!dmu_objset_userspace_present(zfsvfs->z_os))
668 return (ENOTSUP);
670 obj = zfs_userquota_prop_to_obj(zfsvfs, type);
671 if (obj == 0) {
672 *bufsizep = 0;
673 return (0);
676 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
677 (error = zap_cursor_retrieve(&zc, &za)) == 0;
678 zap_cursor_advance(&zc)) {
679 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
680 *bufsizep)
681 break;
683 fuidstr_to_sid(zfsvfs, za.za_name,
684 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
686 buf->zu_space = za.za_first_integer;
687 buf++;
689 if (error == ENOENT)
690 error = 0;
692 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
693 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
694 *cookiep = zap_cursor_serialize(&zc);
695 zap_cursor_fini(&zc);
696 return (error);
700 * buf must be big enough (eg, 32 bytes)
702 static int
703 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
704 char *buf, boolean_t addok)
706 uint64_t fuid;
707 int domainid = 0;
709 if (domain && domain[0]) {
710 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
711 if (domainid == -1)
712 return (ENOENT);
714 fuid = FUID_ENCODE(domainid, rid);
715 (void) sprintf(buf, "%llx", (longlong_t)fuid);
716 return (0);
720 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
721 const char *domain, uint64_t rid, uint64_t *valp)
723 char buf[32];
724 int err;
725 uint64_t obj;
727 *valp = 0;
729 if (!dmu_objset_userspace_present(zfsvfs->z_os))
730 return (ENOTSUP);
732 obj = zfs_userquota_prop_to_obj(zfsvfs, type);
733 if (obj == 0)
734 return (0);
736 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
737 if (err)
738 return (err);
740 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
741 if (err == ENOENT)
742 err = 0;
743 return (err);
747 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
748 const char *domain, uint64_t rid, uint64_t quota)
750 char buf[32];
751 int err;
752 dmu_tx_t *tx;
753 uint64_t *objp;
754 boolean_t fuid_dirtied;
756 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
757 return (EINVAL);
759 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
760 return (ENOTSUP);
762 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
763 &zfsvfs->z_groupquota_obj;
765 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
766 if (err)
767 return (err);
768 fuid_dirtied = zfsvfs->z_fuid_dirty;
770 tx = dmu_tx_create(zfsvfs->z_os);
771 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
772 if (*objp == 0) {
773 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
774 zfs_userquota_prop_prefixes[type]);
776 if (fuid_dirtied)
777 zfs_fuid_txhold(zfsvfs, tx);
778 err = dmu_tx_assign(tx, TXG_WAIT);
779 if (err) {
780 dmu_tx_abort(tx);
781 return (err);
784 mutex_enter(&zfsvfs->z_lock);
785 if (*objp == 0) {
786 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
787 DMU_OT_NONE, 0, tx);
788 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
789 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
791 mutex_exit(&zfsvfs->z_lock);
793 if (quota == 0) {
794 err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
795 if (err == ENOENT)
796 err = 0;
797 } else {
798 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
800 ASSERT(err == 0);
801 if (fuid_dirtied)
802 zfs_fuid_sync(zfsvfs, tx);
803 dmu_tx_commit(tx);
804 return (err);
807 boolean_t
808 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
810 char buf[32];
811 uint64_t used, quota, usedobj, quotaobj;
812 int err;
814 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
815 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
817 if (quotaobj == 0 || zfsvfs->z_replay)
818 return (B_FALSE);
820 (void) sprintf(buf, "%llx", (longlong_t)fuid);
821 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
822 if (err != 0)
823 return (B_FALSE);
825 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
826 if (err != 0)
827 return (B_FALSE);
828 return (used >= quota);
831 boolean_t
832 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
834 uint64_t fuid;
835 uint64_t quotaobj;
837 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
839 fuid = isgroup ? zp->z_gid : zp->z_uid;
841 if (quotaobj == 0 || zfsvfs->z_replay)
842 return (B_FALSE);
844 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
848 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
850 objset_t *os;
851 zfsvfs_t *zfsvfs;
852 uint64_t zval;
853 int i, error;
854 uint64_t sa_obj;
856 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
859 * We claim to always be readonly so we can open snapshots;
860 * other ZPL code will prevent us from writing to snapshots.
862 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
863 if (error) {
864 kmem_free(zfsvfs, sizeof (zfsvfs_t));
865 return (error);
869 * Initialize the zfs-specific filesystem structure.
870 * Should probably make this a kmem cache, shuffle fields,
871 * and just bzero up to z_hold_mtx[].
873 zfsvfs->z_vfs = NULL;
874 zfsvfs->z_parent = zfsvfs;
875 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
876 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
877 zfsvfs->z_os = os;
879 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
880 if (error) {
881 goto out;
882 } else if (zfsvfs->z_version >
883 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
884 (void) printf("Can't mount a version %lld file system "
885 "on a version %lld pool\n. Pool must be upgraded to mount "
886 "this file system.", (u_longlong_t)zfsvfs->z_version,
887 (u_longlong_t)spa_version(dmu_objset_spa(os)));
888 error = ENOTSUP;
889 goto out;
891 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
892 goto out;
893 zfsvfs->z_norm = (int)zval;
895 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
896 goto out;
897 zfsvfs->z_utf8 = (zval != 0);
899 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
900 goto out;
901 zfsvfs->z_case = (uint_t)zval;
904 * Fold case on file systems that are always or sometimes case
905 * insensitive.
907 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
908 zfsvfs->z_case == ZFS_CASE_MIXED)
909 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
911 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
912 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
914 if (zfsvfs->z_use_sa) {
915 /* should either have both of these objects or none */
916 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
917 &sa_obj);
918 if (error)
919 return (error);
920 } else {
922 * Pre SA versions file systems should never touch
923 * either the attribute registration or layout objects.
925 sa_obj = 0;
928 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
929 &zfsvfs->z_attr_table);
930 if (error)
931 goto out;
933 if (zfsvfs->z_version >= ZPL_VERSION_SA)
934 sa_register_update_callback(os, zfs_sa_upgrade);
936 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
937 &zfsvfs->z_root);
938 if (error)
939 goto out;
940 ASSERT(zfsvfs->z_root != 0);
942 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
943 &zfsvfs->z_unlinkedobj);
944 if (error)
945 goto out;
947 error = zap_lookup(os, MASTER_NODE_OBJ,
948 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
949 8, 1, &zfsvfs->z_userquota_obj);
950 if (error && error != ENOENT)
951 goto out;
953 error = zap_lookup(os, MASTER_NODE_OBJ,
954 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
955 8, 1, &zfsvfs->z_groupquota_obj);
956 if (error && error != ENOENT)
957 goto out;
959 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
960 &zfsvfs->z_fuid_obj);
961 if (error && error != ENOENT)
962 goto out;
964 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
965 &zfsvfs->z_shares_dir);
966 if (error && error != ENOENT)
967 goto out;
969 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
970 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
971 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
972 offsetof(znode_t, z_link_node));
973 rrw_init(&zfsvfs->z_teardown_lock);
974 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
975 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
976 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
977 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
979 *zfvp = zfsvfs;
980 return (0);
982 out:
983 dmu_objset_disown(os, zfsvfs);
984 *zfvp = NULL;
985 kmem_free(zfsvfs, sizeof (zfsvfs_t));
986 return (error);
989 static int
990 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
992 int error;
994 error = zfs_register_callbacks(zfsvfs->z_vfs);
995 if (error)
996 return (error);
999 * Set the objset user_ptr to track its zfsvfs.
1001 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1002 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1003 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1005 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1008 * If we are not mounting (ie: online recv), then we don't
1009 * have to worry about replaying the log as we blocked all
1010 * operations out since we closed the ZIL.
1012 if (mounting) {
1013 boolean_t readonly;
1016 * During replay we remove the read only flag to
1017 * allow replays to succeed.
1019 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1020 if (readonly != 0)
1021 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1022 else
1023 zfs_unlinked_drain(zfsvfs);
1026 * Parse and replay the intent log.
1028 * Because of ziltest, this must be done after
1029 * zfs_unlinked_drain(). (Further note: ziltest
1030 * doesn't use readonly mounts, where
1031 * zfs_unlinked_drain() isn't called.) This is because
1032 * ziltest causes spa_sync() to think it's committed,
1033 * but actually it is not, so the intent log contains
1034 * many txg's worth of changes.
1036 * In particular, if object N is in the unlinked set in
1037 * the last txg to actually sync, then it could be
1038 * actually freed in a later txg and then reallocated
1039 * in a yet later txg. This would write a "create
1040 * object N" record to the intent log. Normally, this
1041 * would be fine because the spa_sync() would have
1042 * written out the fact that object N is free, before
1043 * we could write the "create object N" intent log
1044 * record.
1046 * But when we are in ziltest mode, we advance the "open
1047 * txg" without actually spa_sync()-ing the changes to
1048 * disk. So we would see that object N is still
1049 * allocated and in the unlinked set, and there is an
1050 * intent log record saying to allocate it.
1052 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1053 if (zil_replay_disable) {
1054 zil_destroy(zfsvfs->z_log, B_FALSE);
1055 } else {
1056 zfsvfs->z_replay = B_TRUE;
1057 zil_replay(zfsvfs->z_os, zfsvfs,
1058 zfs_replay_vector);
1059 zfsvfs->z_replay = B_FALSE;
1062 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1065 return (0);
1068 void
1069 zfsvfs_free(zfsvfs_t *zfsvfs)
1071 int i;
1072 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1075 * This is a barrier to prevent the filesystem from going away in
1076 * zfs_znode_move() until we can safely ensure that the filesystem is
1077 * not unmounted. We consider the filesystem valid before the barrier
1078 * and invalid after the barrier.
1080 rw_enter(&zfsvfs_lock, RW_READER);
1081 rw_exit(&zfsvfs_lock);
1083 zfs_fuid_destroy(zfsvfs);
1085 mutex_destroy(&zfsvfs->z_znodes_lock);
1086 mutex_destroy(&zfsvfs->z_lock);
1087 list_destroy(&zfsvfs->z_all_znodes);
1088 rrw_destroy(&zfsvfs->z_teardown_lock);
1089 rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1090 rw_destroy(&zfsvfs->z_fuid_lock);
1091 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1092 mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1093 kmem_free(zfsvfs, sizeof (zfsvfs_t));
1096 static void
1097 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1099 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1100 if (zfsvfs->z_vfs) {
1101 if (zfsvfs->z_use_fuids) {
1102 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1103 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1104 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1105 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1106 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1107 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1108 } else {
1109 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1110 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1111 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1112 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1113 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1114 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1117 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1120 static int
1121 zfs_domount(vfs_t *vfsp, char *osname)
1123 dev_t mount_dev;
1124 uint64_t recordsize, fsid_guid;
1125 int error = 0;
1126 zfsvfs_t *zfsvfs;
1128 ASSERT(vfsp);
1129 ASSERT(osname);
1131 error = zfsvfs_create(osname, &zfsvfs);
1132 if (error)
1133 return (error);
1134 zfsvfs->z_vfs = vfsp;
1136 /* Initialize the generic filesystem structure. */
1137 vfsp->vfs_bcount = 0;
1138 vfsp->vfs_data = NULL;
1140 if (zfs_create_unique_device(&mount_dev) == -1) {
1141 error = ENODEV;
1142 goto out;
1144 ASSERT(vfs_devismounted(mount_dev) == 0);
1146 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1147 NULL))
1148 goto out;
1150 vfsp->vfs_dev = mount_dev;
1151 vfsp->vfs_fstype = zfsfstype;
1152 vfsp->vfs_bsize = recordsize;
1153 vfsp->vfs_flag |= VFS_NOTRUNC;
1154 vfsp->vfs_data = zfsvfs;
1157 * The fsid is 64 bits, composed of an 8-bit fs type, which
1158 * separates our fsid from any other filesystem types, and a
1159 * 56-bit objset unique ID. The objset unique ID is unique to
1160 * all objsets open on this system, provided by unique_create().
1161 * The 8-bit fs type must be put in the low bits of fsid[1]
1162 * because that's where other Solaris filesystems put it.
1164 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1165 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1166 vfsp->vfs_fsid.val[0] = fsid_guid;
1167 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1168 zfsfstype & 0xFF;
1171 * Set features for file system.
1173 zfs_set_fuid_feature(zfsvfs);
1174 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1175 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1176 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1177 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1178 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1179 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1180 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1182 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1184 if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1185 uint64_t pval;
1187 atime_changed_cb(zfsvfs, B_FALSE);
1188 readonly_changed_cb(zfsvfs, B_TRUE);
1189 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1190 goto out;
1191 xattr_changed_cb(zfsvfs, pval);
1192 zfsvfs->z_issnap = B_TRUE;
1193 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1195 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1196 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1197 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1198 } else {
1199 error = zfsvfs_setup(zfsvfs, B_TRUE);
1202 if (!zfsvfs->z_issnap)
1203 zfsctl_create(zfsvfs);
1204 out:
1205 if (error) {
1206 dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1207 zfsvfs_free(zfsvfs);
1208 } else {
1209 atomic_add_32(&zfs_active_fs_count, 1);
1212 return (error);
1215 void
1216 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1218 objset_t *os = zfsvfs->z_os;
1219 struct dsl_dataset *ds;
1222 * Unregister properties.
1224 if (!dmu_objset_is_snapshot(os)) {
1225 ds = dmu_objset_ds(os);
1226 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1227 zfsvfs) == 0);
1229 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1230 zfsvfs) == 0);
1232 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1233 zfsvfs) == 0);
1235 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1236 zfsvfs) == 0);
1238 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1239 zfsvfs) == 0);
1241 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1242 zfsvfs) == 0);
1244 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1245 zfsvfs) == 0);
1247 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1248 zfsvfs) == 0);
1250 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1251 zfsvfs) == 0);
1253 VERIFY(dsl_prop_unregister(ds, "aclinherit",
1254 acl_inherit_changed_cb, zfsvfs) == 0);
1256 VERIFY(dsl_prop_unregister(ds, "vscan",
1257 vscan_changed_cb, zfsvfs) == 0);
1262 * Convert a decimal digit string to a uint64_t integer.
1264 static int
1265 str_to_uint64(char *str, uint64_t *objnum)
1267 uint64_t num = 0;
1269 while (*str) {
1270 if (*str < '0' || *str > '9')
1271 return (EINVAL);
1273 num = num*10 + *str++ - '0';
1276 *objnum = num;
1277 return (0);
1281 * The boot path passed from the boot loader is in the form of
1282 * "rootpool-name/root-filesystem-object-number'. Convert this
1283 * string to a dataset name: "rootpool-name/root-filesystem-name".
1285 static int
1286 zfs_parse_bootfs(char *bpath, char *outpath)
1288 char *slashp;
1289 uint64_t objnum;
1290 int error;
1292 if (*bpath == 0 || *bpath == '/')
1293 return (EINVAL);
1295 (void) strcpy(outpath, bpath);
1297 slashp = strchr(bpath, '/');
1299 /* if no '/', just return the pool name */
1300 if (slashp == NULL) {
1301 return (0);
1304 /* if not a number, just return the root dataset name */
1305 if (str_to_uint64(slashp+1, &objnum)) {
1306 return (0);
1309 *slashp = '\0';
1310 error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1311 *slashp = '/';
1313 return (error);
1317 * zfs_check_global_label:
1318 * Check that the hex label string is appropriate for the dataset
1319 * being mounted into the global_zone proper.
1321 * Return an error if the hex label string is not default or
1322 * admin_low/admin_high. For admin_low labels, the corresponding
1323 * dataset must be readonly.
1326 zfs_check_global_label(const char *dsname, const char *hexsl)
1328 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1329 return (0);
1330 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1331 return (0);
1332 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1333 /* must be readonly */
1334 uint64_t rdonly;
1336 if (dsl_prop_get_integer(dsname,
1337 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1338 return (EACCES);
1339 return (rdonly ? 0 : EACCES);
1341 return (EACCES);
1345 * zfs_mount_label_policy:
1346 * Determine whether the mount is allowed according to MAC check.
1347 * by comparing (where appropriate) label of the dataset against
1348 * the label of the zone being mounted into. If the dataset has
1349 * no label, create one.
1351 * Returns:
1352 * 0 : access allowed
1353 * >0 : error code, such as EACCES
1355 static int
1356 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1358 int error, retv;
1359 zone_t *mntzone = NULL;
1360 ts_label_t *mnt_tsl;
1361 bslabel_t *mnt_sl;
1362 bslabel_t ds_sl;
1363 char ds_hexsl[MAXNAMELEN];
1365 retv = EACCES; /* assume the worst */
1368 * Start by getting the dataset label if it exists.
1370 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1371 1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1372 if (error)
1373 return (EACCES);
1376 * If labeling is NOT enabled, then disallow the mount of datasets
1377 * which have a non-default label already. No other label checks
1378 * are needed.
1380 if (!is_system_labeled()) {
1381 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1382 return (0);
1383 return (EACCES);
1387 * Get the label of the mountpoint. If mounting into the global
1388 * zone (i.e. mountpoint is not within an active zone and the
1389 * zoned property is off), the label must be default or
1390 * admin_low/admin_high only; no other checks are needed.
1392 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1393 if (mntzone->zone_id == GLOBAL_ZONEID) {
1394 uint64_t zoned;
1396 zone_rele(mntzone);
1398 if (dsl_prop_get_integer(osname,
1399 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1400 return (EACCES);
1401 if (!zoned)
1402 return (zfs_check_global_label(osname, ds_hexsl));
1403 else
1405 * This is the case of a zone dataset being mounted
1406 * initially, before the zone has been fully created;
1407 * allow this mount into global zone.
1409 return (0);
1412 mnt_tsl = mntzone->zone_slabel;
1413 ASSERT(mnt_tsl != NULL);
1414 label_hold(mnt_tsl);
1415 mnt_sl = label2bslabel(mnt_tsl);
1417 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1419 * The dataset doesn't have a real label, so fabricate one.
1421 char *str = NULL;
1423 if (l_to_str_internal(mnt_sl, &str) == 0 &&
1424 dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1425 ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
1426 retv = 0;
1427 if (str != NULL)
1428 kmem_free(str, strlen(str) + 1);
1429 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1431 * Now compare labels to complete the MAC check. If the
1432 * labels are equal then allow access. If the mountpoint
1433 * label dominates the dataset label, allow readonly access.
1434 * Otherwise, access is denied.
1436 if (blequal(mnt_sl, &ds_sl))
1437 retv = 0;
1438 else if (bldominates(mnt_sl, &ds_sl)) {
1439 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1440 retv = 0;
1444 label_rele(mnt_tsl);
1445 zone_rele(mntzone);
1446 return (retv);
1449 static int
1450 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1452 int error = 0;
1453 static int zfsrootdone = 0;
1454 zfsvfs_t *zfsvfs = NULL;
1455 znode_t *zp = NULL;
1456 vnode_t *vp = NULL;
1457 char *zfs_bootfs;
1458 char *zfs_devid;
1460 ASSERT(vfsp);
1463 * The filesystem that we mount as root is defined in the
1464 * boot property "zfs-bootfs" with a format of
1465 * "poolname/root-dataset-objnum".
1467 if (why == ROOT_INIT) {
1468 if (zfsrootdone++)
1469 return (EBUSY);
1471 * the process of doing a spa_load will require the
1472 * clock to be set before we could (for example) do
1473 * something better by looking at the timestamp on
1474 * an uberblock, so just set it to -1.
1476 clkset(-1);
1478 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1479 cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1480 "bootfs name");
1481 return (EINVAL);
1483 zfs_devid = spa_get_bootprop("diskdevid");
1484 error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1485 if (zfs_devid)
1486 spa_free_bootprop(zfs_devid);
1487 if (error) {
1488 spa_free_bootprop(zfs_bootfs);
1489 cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1490 error);
1491 return (error);
1493 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1494 spa_free_bootprop(zfs_bootfs);
1495 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1496 error);
1497 return (error);
1500 spa_free_bootprop(zfs_bootfs);
1502 if (error = vfs_lock(vfsp))
1503 return (error);
1505 if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1506 cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1507 goto out;
1510 zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1511 ASSERT(zfsvfs);
1512 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1513 cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1514 goto out;
1517 vp = ZTOV(zp);
1518 mutex_enter(&vp->v_lock);
1519 vp->v_flag |= VROOT;
1520 mutex_exit(&vp->v_lock);
1521 rootvp = vp;
1524 * Leave rootvp held. The root file system is never unmounted.
1527 vfs_add((struct vnode *)0, vfsp,
1528 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1529 out:
1530 vfs_unlock(vfsp);
1531 return (error);
1532 } else if (why == ROOT_REMOUNT) {
1533 readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1534 vfsp->vfs_flag |= VFS_REMOUNT;
1536 /* refresh mount options */
1537 zfs_unregister_callbacks(vfsp->vfs_data);
1538 return (zfs_register_callbacks(vfsp));
1540 } else if (why == ROOT_UNMOUNT) {
1541 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1542 (void) zfs_sync(vfsp, 0, 0);
1543 return (0);
1547 * if "why" is equal to anything else other than ROOT_INIT,
1548 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1550 return (ENOTSUP);
1553 /*ARGSUSED*/
1554 static int
1555 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1557 char *osname;
1558 pathname_t spn;
1559 int error = 0;
1560 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ?
1561 UIO_SYSSPACE : UIO_USERSPACE;
1562 int canwrite;
1564 if (mvp->v_type != VDIR)
1565 return (ENOTDIR);
1567 mutex_enter(&mvp->v_lock);
1568 if ((uap->flags & MS_REMOUNT) == 0 &&
1569 (uap->flags & MS_OVERLAY) == 0 &&
1570 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1571 mutex_exit(&mvp->v_lock);
1572 return (EBUSY);
1574 mutex_exit(&mvp->v_lock);
1577 * ZFS does not support passing unparsed data in via MS_DATA.
1578 * Users should use the MS_OPTIONSTR interface; this means
1579 * that all option parsing is already done and the options struct
1580 * can be interrogated.
1582 if ((uap->flags & MS_DATA) && uap->datalen > 0)
1583 return (EINVAL);
1586 * Get the objset name (the "special" mount argument).
1588 if (error = pn_get(uap->spec, fromspace, &spn))
1589 return (error);
1591 osname = spn.pn_path;
1594 * Check for mount privilege?
1596 * If we don't have privilege then see if
1597 * we have local permission to allow it
1599 error = secpolicy_fs_mount(cr, mvp, vfsp);
1600 if (error) {
1601 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
1602 vattr_t vattr;
1605 * Make sure user is the owner of the mount point
1606 * or has sufficient privileges.
1609 vattr.va_mask = AT_UID;
1611 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1612 goto out;
1615 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1616 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1617 goto out;
1619 secpolicy_fs_mount_clearopts(cr, vfsp);
1620 } else {
1621 goto out;
1626 * Refuse to mount a filesystem if we are in a local zone and the
1627 * dataset is not visible.
1629 if (!INGLOBALZONE(curproc) &&
1630 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1631 error = EPERM;
1632 goto out;
1635 error = zfs_mount_label_policy(vfsp, osname);
1636 if (error)
1637 goto out;
1640 * When doing a remount, we simply refresh our temporary properties
1641 * according to those options set in the current VFS options.
1643 if (uap->flags & MS_REMOUNT) {
1644 /* refresh mount options */
1645 zfs_unregister_callbacks(vfsp->vfs_data);
1646 error = zfs_register_callbacks(vfsp);
1647 goto out;
1650 error = zfs_domount(vfsp, osname);
1653 * Add an extra VFS_HOLD on our parent vfs so that it can't
1654 * disappear due to a forced unmount.
1656 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1657 VFS_HOLD(mvp->v_vfsp);
1659 out:
1660 pn_free(&spn);
1661 return (error);
1664 static int
1665 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1667 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1668 dev32_t d32;
1669 uint64_t refdbytes, availbytes, usedobjs, availobjs;
1671 ZFS_ENTER(zfsvfs);
1673 dmu_objset_space(zfsvfs->z_os,
1674 &refdbytes, &availbytes, &usedobjs, &availobjs);
1677 * The underlying storage pool actually uses multiple block sizes.
1678 * We report the fragsize as the smallest block size we support,
1679 * and we report our blocksize as the filesystem's maximum blocksize.
1681 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1682 statp->f_bsize = zfsvfs->z_max_blksz;
1685 * The following report "total" blocks of various kinds in the
1686 * file system, but reported in terms of f_frsize - the
1687 * "fragment" size.
1690 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1691 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1692 statp->f_bavail = statp->f_bfree; /* no root reservation */
1695 * statvfs() should really be called statufs(), because it assumes
1696 * static metadata. ZFS doesn't preallocate files, so the best
1697 * we can do is report the max that could possibly fit in f_files,
1698 * and that minus the number actually used in f_ffree.
1699 * For f_ffree, report the smaller of the number of object available
1700 * and the number of blocks (each object will take at least a block).
1702 statp->f_ffree = MIN(availobjs, statp->f_bfree);
1703 statp->f_favail = statp->f_ffree; /* no "root reservation" */
1704 statp->f_files = statp->f_ffree + usedobjs;
1706 (void) cmpldev(&d32, vfsp->vfs_dev);
1707 statp->f_fsid = d32;
1710 * We're a zfs filesystem.
1712 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1714 statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1716 statp->f_namemax = ZFS_MAXNAMELEN;
1719 * We have all of 32 characters to stuff a string here.
1720 * Is there anything useful we could/should provide?
1722 bzero(statp->f_fstr, sizeof (statp->f_fstr));
1724 ZFS_EXIT(zfsvfs);
1725 return (0);
1728 static int
1729 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1731 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1732 znode_t *rootzp;
1733 int error;
1735 ZFS_ENTER(zfsvfs);
1737 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1738 if (error == 0)
1739 *vpp = ZTOV(rootzp);
1741 ZFS_EXIT(zfsvfs);
1742 return (error);
1746 * Teardown the zfsvfs::z_os.
1748 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1749 * and 'z_teardown_inactive_lock' held.
1751 static int
1752 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1754 znode_t *zp;
1756 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1758 if (!unmounting) {
1760 * We purge the parent filesystem's vfsp as the parent
1761 * filesystem and all of its snapshots have their vnode's
1762 * v_vfsp set to the parent's filesystem's vfsp. Note,
1763 * 'z_parent' is self referential for non-snapshots.
1765 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1769 * Close the zil. NB: Can't close the zil while zfs_inactive
1770 * threads are blocked as zil_close can call zfs_inactive.
1772 if (zfsvfs->z_log) {
1773 zil_close(zfsvfs->z_log);
1774 zfsvfs->z_log = NULL;
1777 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1780 * If we are not unmounting (ie: online recv) and someone already
1781 * unmounted this file system while we were doing the switcheroo,
1782 * or a reopen of z_os failed then just bail out now.
1784 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1785 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1786 rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1787 return (EIO);
1791 * At this point there are no vops active, and any new vops will
1792 * fail with EIO since we have z_teardown_lock for writer (only
1793 * relavent for forced unmount).
1795 * Release all holds on dbufs.
1797 mutex_enter(&zfsvfs->z_znodes_lock);
1798 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1799 zp = list_next(&zfsvfs->z_all_znodes, zp))
1800 if (zp->z_sa_hdl) {
1801 ASSERT(ZTOV(zp)->v_count > 0);
1802 zfs_znode_dmu_fini(zp);
1804 mutex_exit(&zfsvfs->z_znodes_lock);
1807 * If we are unmounting, set the unmounted flag and let new vops
1808 * unblock. zfs_inactive will have the unmounted behavior, and all
1809 * other vops will fail with EIO.
1811 if (unmounting) {
1812 zfsvfs->z_unmounted = B_TRUE;
1813 rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1814 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1818 * z_os will be NULL if there was an error in attempting to reopen
1819 * zfsvfs, so just return as the properties had already been
1820 * unregistered and cached data had been evicted before.
1822 if (zfsvfs->z_os == NULL)
1823 return (0);
1826 * Unregister properties.
1828 zfs_unregister_callbacks(zfsvfs);
1831 * Evict cached data
1833 if (dmu_objset_is_dirty_anywhere(zfsvfs->z_os))
1834 if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1835 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1836 (void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1838 return (0);
1841 /*ARGSUSED*/
1842 static int
1843 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1845 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1846 objset_t *os;
1847 int ret;
1849 ret = secpolicy_fs_unmount(cr, vfsp);
1850 if (ret) {
1851 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1852 ZFS_DELEG_PERM_MOUNT, cr))
1853 return (ret);
1857 * We purge the parent filesystem's vfsp as the parent filesystem
1858 * and all of its snapshots have their vnode's v_vfsp set to the
1859 * parent's filesystem's vfsp. Note, 'z_parent' is self
1860 * referential for non-snapshots.
1862 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1865 * Unmount any snapshots mounted under .zfs before unmounting the
1866 * dataset itself.
1868 if (zfsvfs->z_ctldir != NULL &&
1869 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1870 return (ret);
1873 if (!(fflag & MS_FORCE)) {
1875 * Check the number of active vnodes in the file system.
1876 * Our count is maintained in the vfs structure, but the
1877 * number is off by 1 to indicate a hold on the vfs
1878 * structure itself.
1880 * The '.zfs' directory maintains a reference of its
1881 * own, and any active references underneath are
1882 * reflected in the vnode count.
1884 if (zfsvfs->z_ctldir == NULL) {
1885 if (vfsp->vfs_count > 1)
1886 return (EBUSY);
1887 } else {
1888 if (vfsp->vfs_count > 2 ||
1889 zfsvfs->z_ctldir->v_count > 1)
1890 return (EBUSY);
1894 vfsp->vfs_flag |= VFS_UNMOUNTED;
1896 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1897 os = zfsvfs->z_os;
1900 * z_os will be NULL if there was an error in
1901 * attempting to reopen zfsvfs.
1903 if (os != NULL) {
1905 * Unset the objset user_ptr.
1907 mutex_enter(&os->os_user_ptr_lock);
1908 dmu_objset_set_user(os, NULL);
1909 mutex_exit(&os->os_user_ptr_lock);
1912 * Finally release the objset
1914 dmu_objset_disown(os, zfsvfs);
1918 * We can now safely destroy the '.zfs' directory node.
1920 if (zfsvfs->z_ctldir != NULL)
1921 zfsctl_destroy(zfsvfs);
1923 return (0);
1926 static int
1927 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1929 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1930 znode_t *zp;
1931 uint64_t object = 0;
1932 uint64_t fid_gen = 0;
1933 uint64_t gen_mask;
1934 uint64_t zp_gen;
1935 int i, err;
1937 *vpp = NULL;
1939 ZFS_ENTER(zfsvfs);
1941 if (fidp->fid_len == LONG_FID_LEN) {
1942 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1943 uint64_t objsetid = 0;
1944 uint64_t setgen = 0;
1946 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1947 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1949 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1950 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1952 ZFS_EXIT(zfsvfs);
1954 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1955 if (err)
1956 return (EINVAL);
1957 ZFS_ENTER(zfsvfs);
1960 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1961 zfid_short_t *zfid = (zfid_short_t *)fidp;
1963 for (i = 0; i < sizeof (zfid->zf_object); i++)
1964 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1966 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1967 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1968 } else {
1969 ZFS_EXIT(zfsvfs);
1970 return (EINVAL);
1973 /* A zero fid_gen means we are in the .zfs control directories */
1974 if (fid_gen == 0 &&
1975 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1976 *vpp = zfsvfs->z_ctldir;
1977 ASSERT(*vpp != NULL);
1978 if (object == ZFSCTL_INO_SNAPDIR) {
1979 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1980 0, NULL, NULL, NULL, NULL, NULL) == 0);
1981 } else {
1982 VN_HOLD(*vpp);
1984 ZFS_EXIT(zfsvfs);
1985 return (0);
1988 gen_mask = -1ULL >> (64 - 8 * i);
1990 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1991 if (err = zfs_zget(zfsvfs, object, &zp)) {
1992 ZFS_EXIT(zfsvfs);
1993 return (err);
1995 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1996 sizeof (uint64_t));
1997 zp_gen = zp_gen & gen_mask;
1998 if (zp_gen == 0)
1999 zp_gen = 1;
2000 if (zp->z_unlinked || zp_gen != fid_gen) {
2001 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2002 VN_RELE(ZTOV(zp));
2003 ZFS_EXIT(zfsvfs);
2004 return (EINVAL);
2007 *vpp = ZTOV(zp);
2008 ZFS_EXIT(zfsvfs);
2009 return (0);
2013 * Block out VOPs and close zfsvfs_t::z_os
2015 * Note, if successful, then we return with the 'z_teardown_lock' and
2016 * 'z_teardown_inactive_lock' write held.
2019 zfs_suspend_fs(zfsvfs_t *zfsvfs)
2021 int error;
2023 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2024 return (error);
2025 dmu_objset_disown(zfsvfs->z_os, zfsvfs);
2027 return (0);
2031 * Reopen zfsvfs_t::z_os and release VOPs.
2034 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2036 int err;
2038 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2039 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2041 err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
2042 &zfsvfs->z_os);
2043 if (err) {
2044 zfsvfs->z_os = NULL;
2045 } else {
2046 znode_t *zp;
2047 uint64_t sa_obj = 0;
2050 * Make sure version hasn't changed
2053 err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2054 &zfsvfs->z_version);
2056 if (err)
2057 goto bail;
2059 err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2060 ZFS_SA_ATTRS, 8, 1, &sa_obj);
2062 if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2063 goto bail;
2065 if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2066 zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table)) != 0)
2067 goto bail;
2069 if (zfsvfs->z_version >= ZPL_VERSION_SA)
2070 sa_register_update_callback(zfsvfs->z_os,
2071 zfs_sa_upgrade);
2073 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2075 zfs_set_fuid_feature(zfsvfs);
2078 * Attempt to re-establish all the active znodes with
2079 * their dbufs. If a zfs_rezget() fails, then we'll let
2080 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2081 * when they try to use their znode.
2083 mutex_enter(&zfsvfs->z_znodes_lock);
2084 for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2085 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2086 (void) zfs_rezget(zp);
2088 mutex_exit(&zfsvfs->z_znodes_lock);
2091 bail:
2092 /* release the VOPs */
2093 rw_exit(&zfsvfs->z_teardown_inactive_lock);
2094 rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2096 if (err) {
2098 * Since we couldn't reopen zfsvfs::z_os, or
2099 * setup the sa framework force unmount this file system.
2101 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2102 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2104 return (err);
2107 static void
2108 zfs_freevfs(vfs_t *vfsp)
2110 zfsvfs_t *zfsvfs = vfsp->vfs_data;
2113 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2114 * from zfs_mount(). Release it here. If we came through
2115 * zfs_mountroot() instead, we didn't grab an extra hold, so
2116 * skip the VFS_RELE for rootvfs.
2118 if (zfsvfs->z_issnap && (vfsp != rootvfs))
2119 VFS_RELE(zfsvfs->z_parent->z_vfs);
2121 zfsvfs_free(zfsvfs);
2123 atomic_add_32(&zfs_active_fs_count, -1);
2127 * VFS_INIT() initialization. Note that there is no VFS_FINI(),
2128 * so we can't safely do any non-idempotent initialization here.
2129 * Leave that to zfs_init() and zfs_fini(), which are called
2130 * from the module's _init() and _fini() entry points.
2132 /*ARGSUSED*/
2133 static int
2134 zfs_vfsinit(int fstype, char *name)
2136 int error;
2138 zfsfstype = fstype;
2141 * Setup vfsops and vnodeops tables.
2143 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2144 if (error != 0) {
2145 cmn_err(CE_WARN, "zfs: bad vfs ops template");
2148 error = zfs_create_op_tables();
2149 if (error) {
2150 zfs_remove_op_tables();
2151 cmn_err(CE_WARN, "zfs: bad vnode ops template");
2152 (void) vfs_freevfsops_by_type(zfsfstype);
2153 return (error);
2156 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2159 * Unique major number for all zfs mounts.
2160 * If we run out of 32-bit minors, we'll getudev() another major.
2162 zfs_major = ddi_name_to_major(ZFS_DRIVER);
2163 zfs_minor = ZFS_MIN_MINOR;
2165 return (0);
2168 void
2169 zfs_init(void)
2172 * Initialize .zfs directory structures
2174 zfsctl_init();
2177 * Initialize znode cache, vnode ops, etc...
2179 zfs_znode_init();
2181 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2184 void
2185 zfs_fini(void)
2187 zfsctl_fini();
2188 zfs_znode_fini();
2192 zfs_busy(void)
2194 return (zfs_active_fs_count != 0);
2198 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2200 int error;
2201 objset_t *os = zfsvfs->z_os;
2202 dmu_tx_t *tx;
2204 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2205 return (EINVAL);
2207 if (newvers < zfsvfs->z_version)
2208 return (EINVAL);
2210 if (zfs_spa_version_map(newvers) >
2211 spa_version(dmu_objset_spa(zfsvfs->z_os)))
2212 return (ENOTSUP);
2214 tx = dmu_tx_create(os);
2215 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2216 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2217 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2218 ZFS_SA_ATTRS);
2219 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2221 error = dmu_tx_assign(tx, TXG_WAIT);
2222 if (error) {
2223 dmu_tx_abort(tx);
2224 return (error);
2227 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2228 8, 1, &newvers, tx);
2230 if (error) {
2231 dmu_tx_commit(tx);
2232 return (error);
2235 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2236 uint64_t sa_obj;
2238 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2239 SPA_VERSION_SA);
2240 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2241 DMU_OT_NONE, 0, tx);
2243 error = zap_add(os, MASTER_NODE_OBJ,
2244 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2245 ASSERT3U(error, ==, 0);
2247 VERIFY(0 == sa_set_sa_object(os, sa_obj));
2248 sa_register_update_callback(os, zfs_sa_upgrade);
2251 spa_history_log_internal(LOG_DS_UPGRADE,
2252 dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu",
2253 zfsvfs->z_version, newvers, dmu_objset_id(os));
2255 dmu_tx_commit(tx);
2257 zfsvfs->z_version = newvers;
2259 zfs_set_fuid_feature(zfsvfs);
2261 return (0);
2265 * Read a property stored within the master node.
2268 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2270 const char *pname;
2271 int error = ENOENT;
2274 * Look up the file system's value for the property. For the
2275 * version property, we look up a slightly different string.
2277 if (prop == ZFS_PROP_VERSION)
2278 pname = ZPL_VERSION_STR;
2279 else
2280 pname = zfs_prop_to_name(prop);
2282 if (os != NULL)
2283 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2285 if (error == ENOENT) {
2286 /* No value set, use the default value */
2287 switch (prop) {
2288 case ZFS_PROP_VERSION:
2289 *value = ZPL_VERSION;
2290 break;
2291 case ZFS_PROP_NORMALIZE:
2292 case ZFS_PROP_UTF8ONLY:
2293 *value = 0;
2294 break;
2295 case ZFS_PROP_CASE:
2296 *value = ZFS_CASE_SENSITIVE;
2297 break;
2298 default:
2299 return (error);
2301 error = 0;
2303 return (error);
2306 static vfsdef_t vfw = {
2307 VFSDEF_VERSION,
2308 MNTTYPE_ZFS,
2309 zfs_vfsinit,
2310 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2311 VSW_XID|VSW_ZMOUNT,
2312 &zfs_mntopts
2315 struct modlfs zfs_modlfs = {
2316 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw