4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 #include <sys/spa_impl.h>
29 #include <sys/vdev_impl.h>
31 #include <sys/zio_checksum.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/fm/protocol.h>
35 #include <sys/fm/util.h>
36 #include <sys/sysevent.h>
39 * This general routine is responsible for generating all the different ZFS
40 * ereports. The payload is dependent on the class, and which arguments are
41 * supplied to the function:
43 * EREPORT POOL VDEV IO
49 * If we are in a loading state, all errors are chained together by the same
50 * SPA-wide ENA (Error Numeric Association).
52 * For isolated I/O requests, we get the ENA from the zio_t. The propagation
53 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want
54 * to chain together all ereports associated with a logical piece of data. For
55 * read I/Os, there are basically three 'types' of I/O, which form a roughly
59 * | Aggregate I/O | No associated logical data or device
63 * +---------------+ Reads associated with a piece of logical data.
64 * | Read I/O | This includes reads on behalf of RAID-Z,
65 * +---------------+ mirrors, gang blocks, retries, etc.
68 * +---------------+ Reads associated with a particular device, but
69 * | Physical I/O | no logical data. Issued as part of vdev caching
70 * +---------------+ and I/O aggregation.
72 * Note that 'physical I/O' here is not the same terminology as used in the rest
73 * of ZIO. Typically, 'physical I/O' simply means that there is no attached
74 * blockpointer. But I/O with no associated block pointer can still be related
75 * to a logical piece of data (i.e. RAID-Z requests).
77 * Purely physical I/O always have unique ENAs. They are not related to a
78 * particular piece of logical data, and therefore cannot be chained together.
79 * We still generate an ereport, but the DE doesn't correlate it with any
80 * logical piece of data. When such an I/O fails, the delegated I/O requests
81 * will issue a retry, which will trigger the 'real' ereport with the correct
84 * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
85 * When a new logical I/O is issued, we set this to point to itself. Child I/Os
86 * then inherit this pointer, so that when it is first set subsequent failures
87 * will use the same ENA. For vdev cache fill and queue aggregation I/O,
88 * this pointer is set to NULL, and no ereport will be generated (since it
89 * doesn't actually correspond to any particular device or piece of data,
90 * and the caller will always retry without caching or queueing anyway).
92 * For checksum errors, we want to include more information about the actual
93 * error which occurs. Accordingly, we build an ereport when the error is
94 * noticed, but instead of sending it in immediately, we hang it off of the
95 * io_cksum_report field of the logical IO. When the logical IO completes
96 * (successfully or not), zfs_ereport_finish_checksum() is called with the
97 * good and bad versions of the buffer (if available), and we annotate the
98 * ereport with information about the differences.
102 zfs_ereport_start(nvlist_t
**ereport_out
, nvlist_t
**detector_out
,
103 const char *subclass
, spa_t
*spa
, vdev_t
*vd
, zio_t
*zio
,
104 uint64_t stateoroffset
, uint64_t size
)
106 nvlist_t
*ereport
, *detector
;
112 * If we are doing a spa_tryimport() or in recovery mode,
115 if (spa_load_state(spa
) == SPA_LOAD_TRYIMPORT
||
116 spa_load_state(spa
) == SPA_LOAD_RECOVER
)
120 * If we are in the middle of opening a pool, and the previous attempt
121 * failed, don't bother logging any new ereports - we're just going to
122 * get the same diagnosis anyway.
124 if (spa_load_state(spa
) != SPA_LOAD_NONE
&&
125 spa
->spa_last_open_failed
)
130 * If this is not a read or write zio, ignore the error. This
131 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
133 if (zio
->io_type
!= ZIO_TYPE_READ
&&
134 zio
->io_type
!= ZIO_TYPE_WRITE
)
138 * Ignore any errors from speculative I/Os, as failure is an
141 if (zio
->io_flags
& ZIO_FLAG_SPECULATIVE
)
145 * If this I/O is not a retry I/O, don't post an ereport.
146 * Otherwise, we risk making bad diagnoses based on B_FAILFAST
149 if (zio
->io_error
== EIO
&&
150 !(zio
->io_flags
& ZIO_FLAG_IO_RETRY
))
155 * If the vdev has already been marked as failing due
156 * to a failed probe, then ignore any subsequent I/O
157 * errors, as the DE will automatically fault the vdev
158 * on the first such failure. This also catches cases
159 * where vdev_remove_wanted is set and the device has
160 * not yet been asynchronously placed into the REMOVED
163 if (zio
->io_vd
== vd
&& !vdev_accessible(vd
, zio
))
167 * Ignore checksum errors for reads from DTL regions of
170 if (zio
->io_type
== ZIO_TYPE_READ
&&
171 zio
->io_error
== ECKSUM
&&
172 vd
->vdev_ops
->vdev_op_leaf
&&
173 vdev_dtl_contains(vd
, DTL_MISSING
, zio
->io_txg
, 1))
179 * For probe failure, we want to avoid posting ereports if we've
180 * already removed the device in the meantime.
183 strcmp(subclass
, FM_EREPORT_ZFS_PROBE_FAILURE
) == 0 &&
184 (vd
->vdev_remove_wanted
|| vd
->vdev_state
== VDEV_STATE_REMOVED
))
187 if ((ereport
= fm_nvlist_create(NULL
)) == NULL
)
190 if ((detector
= fm_nvlist_create(NULL
)) == NULL
) {
191 fm_nvlist_destroy(ereport
, FM_NVA_FREE
);
196 * Serialize ereport generation
198 mutex_enter(&spa
->spa_errlist_lock
);
201 * Determine the ENA to use for this event. If we are in a loading
202 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use
203 * a root zio-wide ENA. Otherwise, simply use a unique ENA.
205 if (spa_load_state(spa
) != SPA_LOAD_NONE
) {
206 if (spa
->spa_ena
== 0)
207 spa
->spa_ena
= fm_ena_generate(0, FM_ENA_FMT1
);
209 } else if (zio
!= NULL
&& zio
->io_logical
!= NULL
) {
210 if (zio
->io_logical
->io_ena
== 0)
211 zio
->io_logical
->io_ena
=
212 fm_ena_generate(0, FM_ENA_FMT1
);
213 ena
= zio
->io_logical
->io_ena
;
215 ena
= fm_ena_generate(0, FM_ENA_FMT1
);
219 * Construct the full class, detector, and other standard FMA fields.
221 (void) snprintf(class, sizeof (class), "%s.%s",
222 ZFS_ERROR_CLASS
, subclass
);
224 fm_fmri_zfs_set(detector
, FM_ZFS_SCHEME_VERSION
, spa_guid(spa
),
225 vd
!= NULL
? vd
->vdev_guid
: 0);
227 fm_ereport_set(ereport
, FM_EREPORT_VERSION
, class, ena
, detector
, NULL
);
230 * Construct the per-ereport payload, depending on which parameters are
235 * Generic payload members common to all ereports.
237 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_POOL
,
238 DATA_TYPE_STRING
, spa_name(spa
), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID
,
239 DATA_TYPE_UINT64
, spa_guid(spa
),
240 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT
, DATA_TYPE_INT32
,
241 spa_load_state(spa
), NULL
);
244 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE
,
246 spa_get_failmode(spa
) == ZIO_FAILURE_MODE_WAIT
?
247 FM_EREPORT_FAILMODE_WAIT
:
248 spa_get_failmode(spa
) == ZIO_FAILURE_MODE_CONTINUE
?
249 FM_EREPORT_FAILMODE_CONTINUE
: FM_EREPORT_FAILMODE_PANIC
,
254 vdev_t
*pvd
= vd
->vdev_parent
;
256 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID
,
257 DATA_TYPE_UINT64
, vd
->vdev_guid
,
258 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE
,
259 DATA_TYPE_STRING
, vd
->vdev_ops
->vdev_op_type
, NULL
);
260 if (vd
->vdev_path
!= NULL
)
261 fm_payload_set(ereport
,
262 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH
,
263 DATA_TYPE_STRING
, vd
->vdev_path
, NULL
);
264 if (vd
->vdev_devid
!= NULL
)
265 fm_payload_set(ereport
,
266 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID
,
267 DATA_TYPE_STRING
, vd
->vdev_devid
, NULL
);
268 if (vd
->vdev_fru
!= NULL
)
269 fm_payload_set(ereport
,
270 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU
,
271 DATA_TYPE_STRING
, vd
->vdev_fru
, NULL
);
274 fm_payload_set(ereport
,
275 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID
,
276 DATA_TYPE_UINT64
, pvd
->vdev_guid
,
277 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE
,
278 DATA_TYPE_STRING
, pvd
->vdev_ops
->vdev_op_type
,
281 fm_payload_set(ereport
,
282 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH
,
283 DATA_TYPE_STRING
, pvd
->vdev_path
, NULL
);
285 fm_payload_set(ereport
,
286 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID
,
287 DATA_TYPE_STRING
, pvd
->vdev_devid
, NULL
);
293 * Payload common to all I/Os.
295 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR
,
296 DATA_TYPE_INT32
, zio
->io_error
, NULL
);
299 * If the 'size' parameter is non-zero, it indicates this is a
300 * RAID-Z or other I/O where the physical offset and length are
301 * provided for us, instead of within the zio_t.
305 fm_payload_set(ereport
,
306 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET
,
307 DATA_TYPE_UINT64
, stateoroffset
,
308 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE
,
309 DATA_TYPE_UINT64
, size
, NULL
);
311 fm_payload_set(ereport
,
312 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET
,
313 DATA_TYPE_UINT64
, zio
->io_offset
,
314 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE
,
315 DATA_TYPE_UINT64
, zio
->io_size
, NULL
);
319 * Payload for I/Os with corresponding logical information.
321 if (zio
->io_logical
!= NULL
)
322 fm_payload_set(ereport
,
323 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET
,
325 zio
->io_logical
->io_bookmark
.zb_objset
,
326 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT
,
328 zio
->io_logical
->io_bookmark
.zb_object
,
329 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL
,
331 zio
->io_logical
->io_bookmark
.zb_level
,
332 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID
,
334 zio
->io_logical
->io_bookmark
.zb_blkid
, NULL
);
335 } else if (vd
!= NULL
) {
337 * If we have a vdev but no zio, this is a device fault, and the
338 * 'stateoroffset' parameter indicates the previous state of the
341 fm_payload_set(ereport
,
342 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE
,
343 DATA_TYPE_UINT64
, stateoroffset
, NULL
);
346 mutex_exit(&spa
->spa_errlist_lock
);
348 *ereport_out
= ereport
;
349 *detector_out
= detector
;
352 /* if it's <= 128 bytes, save the corruption directly */
353 #define ZFM_MAX_INLINE (128 / sizeof (uint64_t))
355 #define MAX_RANGES 16
357 typedef struct zfs_ecksum_info
{
358 /* histograms of set and cleared bits by bit number in a 64-bit word */
359 uint16_t zei_histogram_set
[sizeof (uint64_t) * NBBY
];
360 uint16_t zei_histogram_cleared
[sizeof (uint64_t) * NBBY
];
362 /* inline arrays of bits set and cleared. */
363 uint64_t zei_bits_set
[ZFM_MAX_INLINE
];
364 uint64_t zei_bits_cleared
[ZFM_MAX_INLINE
];
367 * for each range, the number of bits set and cleared. The Hamming
368 * distance between the good and bad buffers is the sum of them all.
370 uint32_t zei_range_sets
[MAX_RANGES
];
371 uint32_t zei_range_clears
[MAX_RANGES
];
376 } zei_ranges
[MAX_RANGES
];
378 size_t zei_range_count
;
380 uint32_t zei_allowed_mingap
;
385 update_histogram(uint64_t value_arg
, uint16_t *hist
, uint32_t *count
)
389 uint64_t value
= BE_64(value_arg
);
391 /* We store the bits in big-endian (largest-first) order */
392 for (i
= 0; i
< 64; i
++) {
393 if (value
& (1ull << i
)) {
398 /* update the count of bits changed */
403 * We've now filled up the range array, and need to increase "mingap" and
404 * shrink the range list accordingly. zei_mingap is always the smallest
405 * distance between array entries, so we set the new_allowed_gap to be
406 * one greater than that. We then go through the list, joining together
407 * any ranges which are closer than the new_allowed_gap.
409 * By construction, there will be at least one. We also update zei_mingap
410 * to the new smallest gap, to prepare for our next invocation.
413 shrink_ranges(zfs_ecksum_info_t
*eip
)
415 uint32_t mingap
= UINT32_MAX
;
416 uint32_t new_allowed_gap
= eip
->zei_mingap
+ 1;
419 size_t max
= eip
->zei_range_count
;
421 struct zei_ranges
*r
= eip
->zei_ranges
;
423 ASSERT3U(eip
->zei_range_count
, >, 0);
424 ASSERT3U(eip
->zei_range_count
, <=, MAX_RANGES
);
427 while (idx
< max
- 1) {
428 uint32_t start
= r
[idx
].zr_start
;
429 uint32_t end
= r
[idx
].zr_end
;
431 while (idx
< max
- 1) {
434 uint32_t nstart
= r
[idx
].zr_start
;
435 uint32_t nend
= r
[idx
].zr_end
;
437 uint32_t gap
= nstart
- end
;
438 if (gap
< new_allowed_gap
) {
446 r
[output
].zr_start
= start
;
447 r
[output
].zr_end
= end
;
450 ASSERT3U(output
, <, eip
->zei_range_count
);
451 eip
->zei_range_count
= output
;
452 eip
->zei_mingap
= mingap
;
453 eip
->zei_allowed_mingap
= new_allowed_gap
;
457 add_range(zfs_ecksum_info_t
*eip
, int start
, int end
)
459 struct zei_ranges
*r
= eip
->zei_ranges
;
460 size_t count
= eip
->zei_range_count
;
462 if (count
>= MAX_RANGES
) {
464 count
= eip
->zei_range_count
;
467 eip
->zei_mingap
= UINT32_MAX
;
468 eip
->zei_allowed_mingap
= 1;
470 int gap
= start
- r
[count
- 1].zr_end
;
472 if (gap
< eip
->zei_allowed_mingap
) {
473 r
[count
- 1].zr_end
= end
;
476 if (gap
< eip
->zei_mingap
)
477 eip
->zei_mingap
= gap
;
479 r
[count
].zr_start
= start
;
480 r
[count
].zr_end
= end
;
481 eip
->zei_range_count
++;
485 range_total_size(zfs_ecksum_info_t
*eip
)
487 struct zei_ranges
*r
= eip
->zei_ranges
;
488 size_t count
= eip
->zei_range_count
;
492 for (idx
= 0; idx
< count
; idx
++)
493 result
+= (r
[idx
].zr_end
- r
[idx
].zr_start
);
498 static zfs_ecksum_info_t
*
499 annotate_ecksum(nvlist_t
*ereport
, zio_bad_cksum_t
*info
,
500 const uint8_t *goodbuf
, const uint8_t *badbuf
, size_t size
,
501 boolean_t drop_if_identical
)
503 const uint64_t *good
= (const uint64_t *)goodbuf
;
504 const uint64_t *bad
= (const uint64_t *)badbuf
;
507 uint64_t allcleared
= 0;
509 size_t nui64s
= size
/ sizeof (uint64_t);
519 zfs_ecksum_info_t
*eip
= kmem_zalloc(sizeof (*eip
), KM_SLEEP
);
521 /* don't do any annotation for injected checksum errors */
522 if (info
!= NULL
&& info
->zbc_injected
)
525 if (info
!= NULL
&& info
->zbc_has_cksum
) {
526 fm_payload_set(ereport
,
527 FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED
,
528 DATA_TYPE_UINT64_ARRAY
,
529 sizeof (info
->zbc_expected
) / sizeof (uint64_t),
530 (uint64_t *)&info
->zbc_expected
,
531 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL
,
532 DATA_TYPE_UINT64_ARRAY
,
533 sizeof (info
->zbc_actual
) / sizeof (uint64_t),
534 (uint64_t *)&info
->zbc_actual
,
535 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO
,
537 info
->zbc_checksum_name
,
540 if (info
->zbc_byteswapped
) {
541 fm_payload_set(ereport
,
542 FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP
,
543 DATA_TYPE_BOOLEAN
, 1,
548 if (badbuf
== NULL
|| goodbuf
== NULL
)
551 ASSERT3U(nui64s
, <=, UINT16_MAX
);
552 ASSERT3U(size
, ==, nui64s
* sizeof (uint64_t));
553 ASSERT3U(size
, <=, SPA_MAXBLOCKSIZE
);
554 ASSERT3U(size
, <=, UINT32_MAX
);
556 /* build up the range list by comparing the two buffers. */
557 for (idx
= 0; idx
< nui64s
; idx
++) {
558 if (good
[idx
] == bad
[idx
]) {
562 add_range(eip
, start
, idx
);
572 add_range(eip
, start
, idx
);
574 /* See if it will fit in our inline buffers */
575 inline_size
= range_total_size(eip
);
576 if (inline_size
> ZFM_MAX_INLINE
)
580 * If there is no change and we want to drop if the buffers are
583 if (inline_size
== 0 && drop_if_identical
) {
584 kmem_free(eip
, sizeof (*eip
));
589 * Now walk through the ranges, filling in the details of the
590 * differences. Also convert our uint64_t-array offsets to byte
593 for (range
= 0; range
< eip
->zei_range_count
; range
++) {
594 size_t start
= eip
->zei_ranges
[range
].zr_start
;
595 size_t end
= eip
->zei_ranges
[range
].zr_end
;
597 for (idx
= start
; idx
< end
; idx
++) {
598 uint64_t set
, cleared
;
600 // bits set in bad, but not in good
601 set
= ((~good
[idx
]) & bad
[idx
]);
602 // bits set in good, but not in bad
603 cleared
= (good
[idx
] & (~bad
[idx
]));
606 allcleared
|= cleared
;
609 ASSERT3U(offset
, <, inline_size
);
610 eip
->zei_bits_set
[offset
] = set
;
611 eip
->zei_bits_cleared
[offset
] = cleared
;
615 update_histogram(set
, eip
->zei_histogram_set
,
616 &eip
->zei_range_sets
[range
]);
617 update_histogram(cleared
, eip
->zei_histogram_cleared
,
618 &eip
->zei_range_clears
[range
]);
621 /* convert to byte offsets */
622 eip
->zei_ranges
[range
].zr_start
*= sizeof (uint64_t);
623 eip
->zei_ranges
[range
].zr_end
*= sizeof (uint64_t);
625 eip
->zei_allowed_mingap
*= sizeof (uint64_t);
626 inline_size
*= sizeof (uint64_t);
628 /* fill in ereport */
629 fm_payload_set(ereport
,
630 FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES
,
631 DATA_TYPE_UINT32_ARRAY
, 2 * eip
->zei_range_count
,
632 (uint32_t *)eip
->zei_ranges
,
633 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP
,
634 DATA_TYPE_UINT32
, eip
->zei_allowed_mingap
,
635 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS
,
636 DATA_TYPE_UINT32_ARRAY
, eip
->zei_range_count
, eip
->zei_range_sets
,
637 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS
,
638 DATA_TYPE_UINT32_ARRAY
, eip
->zei_range_count
, eip
->zei_range_clears
,
642 fm_payload_set(ereport
,
643 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS
,
644 DATA_TYPE_UINT8_ARRAY
,
645 inline_size
, (uint8_t *)eip
->zei_bits_set
,
646 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS
,
647 DATA_TYPE_UINT8_ARRAY
,
648 inline_size
, (uint8_t *)eip
->zei_bits_cleared
,
651 fm_payload_set(ereport
,
652 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM
,
653 DATA_TYPE_UINT16_ARRAY
,
654 NBBY
* sizeof (uint64_t), eip
->zei_histogram_set
,
655 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM
,
656 DATA_TYPE_UINT16_ARRAY
,
657 NBBY
* sizeof (uint64_t), eip
->zei_histogram_cleared
,
665 zfs_ereport_post(const char *subclass
, spa_t
*spa
, vdev_t
*vd
, zio_t
*zio
,
666 uint64_t stateoroffset
, uint64_t size
)
669 nvlist_t
*ereport
= NULL
;
670 nvlist_t
*detector
= NULL
;
672 zfs_ereport_start(&ereport
, &detector
,
673 subclass
, spa
, vd
, zio
, stateoroffset
, size
);
678 fm_ereport_post(ereport
, EVCH_SLEEP
);
680 fm_nvlist_destroy(ereport
, FM_NVA_FREE
);
681 fm_nvlist_destroy(detector
, FM_NVA_FREE
);
686 zfs_ereport_start_checksum(spa_t
*spa
, vdev_t
*vd
,
687 struct zio
*zio
, uint64_t offset
, uint64_t length
, void *arg
,
688 zio_bad_cksum_t
*info
)
690 zio_cksum_report_t
*report
= kmem_zalloc(sizeof (*report
), KM_SLEEP
);
692 if (zio
->io_vsd
!= NULL
)
693 zio
->io_vsd_ops
->vsd_cksum_report(zio
, report
, arg
);
695 zio_vsd_default_cksum_report(zio
, report
, arg
);
697 /* copy the checksum failure information if it was provided */
699 report
->zcr_ckinfo
= kmem_zalloc(sizeof (*info
), KM_SLEEP
);
700 bcopy(info
, report
->zcr_ckinfo
, sizeof (*info
));
703 report
->zcr_align
= 1ULL << vd
->vdev_top
->vdev_ashift
;
704 report
->zcr_length
= length
;
707 zfs_ereport_start(&report
->zcr_ereport
, &report
->zcr_detector
,
708 FM_EREPORT_ZFS_CHECKSUM
, spa
, vd
, zio
, offset
, length
);
710 if (report
->zcr_ereport
== NULL
) {
711 report
->zcr_free(report
->zcr_cbdata
, report
->zcr_cbinfo
);
712 kmem_free(report
, sizeof (*report
));
717 mutex_enter(&spa
->spa_errlist_lock
);
718 report
->zcr_next
= zio
->io_logical
->io_cksum_report
;
719 zio
->io_logical
->io_cksum_report
= report
;
720 mutex_exit(&spa
->spa_errlist_lock
);
724 zfs_ereport_finish_checksum(zio_cksum_report_t
*report
,
725 const void *good_data
, const void *bad_data
, boolean_t drop_if_identical
)
728 zfs_ecksum_info_t
*info
= NULL
;
729 info
= annotate_ecksum(report
->zcr_ereport
, report
->zcr_ckinfo
,
730 good_data
, bad_data
, report
->zcr_length
, drop_if_identical
);
733 fm_ereport_post(report
->zcr_ereport
, EVCH_SLEEP
);
735 fm_nvlist_destroy(report
->zcr_ereport
, FM_NVA_FREE
);
736 fm_nvlist_destroy(report
->zcr_detector
, FM_NVA_FREE
);
737 report
->zcr_ereport
= report
->zcr_detector
= NULL
;
740 kmem_free(info
, sizeof (*info
));
745 zfs_ereport_free_checksum(zio_cksum_report_t
*rpt
)
748 if (rpt
->zcr_ereport
!= NULL
) {
749 fm_nvlist_destroy(rpt
->zcr_ereport
,
751 fm_nvlist_destroy(rpt
->zcr_detector
,
755 rpt
->zcr_free(rpt
->zcr_cbdata
, rpt
->zcr_cbinfo
);
757 if (rpt
->zcr_ckinfo
!= NULL
)
758 kmem_free(rpt
->zcr_ckinfo
, sizeof (*rpt
->zcr_ckinfo
));
760 kmem_free(rpt
, sizeof (*rpt
));
764 zfs_ereport_send_interim_checksum(zio_cksum_report_t
*report
)
767 fm_ereport_post(report
->zcr_ereport
, EVCH_SLEEP
);
772 zfs_ereport_post_checksum(spa_t
*spa
, vdev_t
*vd
,
773 struct zio
*zio
, uint64_t offset
, uint64_t length
,
774 const void *good_data
, const void *bad_data
, zio_bad_cksum_t
*zbc
)
777 nvlist_t
*ereport
= NULL
;
778 nvlist_t
*detector
= NULL
;
779 zfs_ecksum_info_t
*info
;
781 zfs_ereport_start(&ereport
, &detector
,
782 FM_EREPORT_ZFS_CHECKSUM
, spa
, vd
, zio
, offset
, length
);
787 info
= annotate_ecksum(ereport
, zbc
, good_data
, bad_data
, length
,
791 fm_ereport_post(ereport
, EVCH_SLEEP
);
793 fm_nvlist_destroy(ereport
, FM_NVA_FREE
);
794 fm_nvlist_destroy(detector
, FM_NVA_FREE
);
797 kmem_free(info
, sizeof (*info
));
802 zfs_post_common(spa_t
*spa
, vdev_t
*vd
, const char *name
)
808 if (spa_load_state(spa
) == SPA_LOAD_TRYIMPORT
)
811 if ((resource
= fm_nvlist_create(NULL
)) == NULL
)
814 (void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE
,
815 ZFS_ERROR_CLASS
, name
);
816 VERIFY(nvlist_add_uint8(resource
, FM_VERSION
, FM_RSRC_VERSION
) == 0);
817 VERIFY(nvlist_add_string(resource
, FM_CLASS
, class) == 0);
818 VERIFY(nvlist_add_uint64(resource
,
819 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID
, spa_guid(spa
)) == 0);
821 VERIFY(nvlist_add_uint64(resource
,
822 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID
, vd
->vdev_guid
) == 0);
824 fm_ereport_post(resource
, EVCH_SLEEP
);
826 fm_nvlist_destroy(resource
, FM_NVA_FREE
);
831 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
832 * has been removed from the system. This will cause the DE to ignore any
833 * recent I/O errors, inferring that they are due to the asynchronous device
837 zfs_post_remove(spa_t
*spa
, vdev_t
*vd
)
839 zfs_post_common(spa
, vd
, FM_RESOURCE_REMOVED
);
843 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
844 * has the 'autoreplace' property set, and therefore any broken vdevs will be
845 * handled by higher level logic, and no vdev fault should be generated.
848 zfs_post_autoreplace(spa_t
*spa
, vdev_t
*vd
)
850 zfs_post_common(spa
, vd
, FM_RESOURCE_AUTOREPLACE
);
854 * The 'resource.fs.zfs.statechange' event is an internal signal that the
855 * given vdev has transitioned its state to DEGRADED or HEALTHY. This will
856 * cause the retire agent to repair any outstanding fault management cases
857 * open because the device was not found (fault.fs.zfs.device).
860 zfs_post_state_change(spa_t
*spa
, vdev_t
*vd
)
862 zfs_post_common(spa
, vd
, FM_RESOURCE_STATECHANGE
);