4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
26 * Virtual Device Labels
27 * ---------------------
29 * The vdev label serves several distinct purposes:
31 * 1. Uniquely identify this device as part of a ZFS pool and confirm its
32 * identity within the pool.
34 * 2. Verify that all the devices given in a configuration are present
37 * 3. Determine the uberblock for the pool.
39 * 4. In case of an import operation, determine the configuration of the
40 * toplevel vdev of which it is a part.
42 * 5. If an import operation cannot find all the devices in the pool,
43 * provide enough information to the administrator to determine which
44 * devices are missing.
46 * It is important to note that while the kernel is responsible for writing the
47 * label, it only consumes the information in the first three cases. The
48 * latter information is only consumed in userland when determining the
49 * configuration to import a pool.
55 * Before describing the contents of the label, it's important to understand how
56 * the labels are written and updated with respect to the uberblock.
58 * When the pool configuration is altered, either because it was newly created
59 * or a device was added, we want to update all the labels such that we can deal
60 * with fatal failure at any point. To this end, each disk has two labels which
61 * are updated before and after the uberblock is synced. Assuming we have
62 * labels and an uberblock with the following transaction groups:
65 * +------+ +------+ +------+
67 * | t10 | | t10 | | t10 |
69 * +------+ +------+ +------+
71 * In this stable state, the labels and the uberblock were all updated within
72 * the same transaction group (10). Each label is mirrored and checksummed, so
73 * that we can detect when we fail partway through writing the label.
75 * In order to identify which labels are valid, the labels are written in the
78 * 1. For each vdev, update 'L1' to the new label
79 * 2. Update the uberblock
80 * 3. For each vdev, update 'L2' to the new label
82 * Given arbitrary failure, we can determine the correct label to use based on
83 * the transaction group. If we fail after updating L1 but before updating the
84 * UB, we will notice that L1's transaction group is greater than the uberblock,
85 * so L2 must be valid. If we fail after writing the uberblock but before
86 * writing L2, we will notice that L2's transaction group is less than L1, and
87 * therefore L1 is valid.
89 * Another added complexity is that not every label is updated when the config
90 * is synced. If we add a single device, we do not want to have to re-write
91 * every label for every device in the pool. This means that both L1 and L2 may
92 * be older than the pool uberblock, because the necessary information is stored
99 * The vdev label consists of two distinct parts, and is wrapped within the
100 * vdev_label_t structure. The label includes 8k of padding to permit legacy
101 * VTOC disk labels, but is otherwise ignored.
103 * The first half of the label is a packed nvlist which contains pool wide
104 * properties, per-vdev properties, and configuration information. It is
105 * described in more detail below.
107 * The latter half of the label consists of a redundant array of uberblocks.
108 * These uberblocks are updated whenever a transaction group is committed,
109 * or when the configuration is updated. When a pool is loaded, we scan each
110 * vdev for the 'best' uberblock.
113 * Configuration Information
114 * -------------------------
116 * The nvlist describing the pool and vdev contains the following elements:
118 * version ZFS on-disk version
121 * txg Transaction group in which this label was written
122 * pool_guid Unique identifier for this pool
123 * vdev_tree An nvlist describing vdev tree.
125 * Each leaf device label also contains the following:
127 * top_guid Unique ID for top-level vdev in which this is contained
128 * guid Unique ID for the leaf vdev
130 * The 'vs' configuration follows the format described in 'spa_config.c'.
133 #include <sys/zfs_context.h>
135 #include <sys/spa_impl.h>
138 #include <sys/vdev.h>
139 #include <sys/vdev_impl.h>
140 #include <sys/uberblock_impl.h>
141 #include <sys/metaslab.h>
143 #include <sys/dsl_scan.h>
144 #include <sys/fs/zfs.h>
147 * Basic routines to read and write from a vdev label.
148 * Used throughout the rest of this file.
151 vdev_label_offset(uint64_t psize
, int l
, uint64_t offset
)
153 ASSERT(offset
< sizeof (vdev_label_t
));
154 ASSERT(P2PHASE_TYPED(psize
, sizeof (vdev_label_t
), uint64_t) == 0);
156 return (offset
+ l
* sizeof (vdev_label_t
) + (l
< VDEV_LABELS
/ 2 ?
157 0 : psize
- VDEV_LABELS
* sizeof (vdev_label_t
)));
161 * Returns back the vdev label associated with the passed in offset.
164 vdev_label_number(uint64_t psize
, uint64_t offset
)
168 if (offset
>= psize
- VDEV_LABEL_END_SIZE
) {
169 offset
-= psize
- VDEV_LABEL_END_SIZE
;
170 offset
+= (VDEV_LABELS
/ 2) * sizeof (vdev_label_t
);
172 l
= offset
/ sizeof (vdev_label_t
);
173 return (l
< VDEV_LABELS
? l
: -1);
177 vdev_label_read(zio_t
*zio
, vdev_t
*vd
, int l
, void *buf
, uint64_t offset
,
178 uint64_t size
, zio_done_func_t
*done
, void *private, int flags
)
180 ASSERT(spa_config_held(zio
->io_spa
, SCL_STATE_ALL
, RW_WRITER
) ==
182 ASSERT(flags
& ZIO_FLAG_CONFIG_WRITER
);
184 zio_nowait(zio_read_phys(zio
, vd
,
185 vdev_label_offset(vd
->vdev_psize
, l
, offset
),
186 size
, buf
, ZIO_CHECKSUM_LABEL
, done
, private,
187 ZIO_PRIORITY_SYNC_READ
, flags
, B_TRUE
));
191 vdev_label_write(zio_t
*zio
, vdev_t
*vd
, int l
, void *buf
, uint64_t offset
,
192 uint64_t size
, zio_done_func_t
*done
, void *private, int flags
)
194 ASSERT(spa_config_held(zio
->io_spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
||
195 (spa_config_held(zio
->io_spa
, SCL_CONFIG
| SCL_STATE
, RW_READER
) ==
196 (SCL_CONFIG
| SCL_STATE
) &&
197 dsl_pool_sync_context(spa_get_dsl(zio
->io_spa
))));
198 ASSERT(flags
& ZIO_FLAG_CONFIG_WRITER
);
200 zio_nowait(zio_write_phys(zio
, vd
,
201 vdev_label_offset(vd
->vdev_psize
, l
, offset
),
202 size
, buf
, ZIO_CHECKSUM_LABEL
, done
, private,
203 ZIO_PRIORITY_SYNC_WRITE
, flags
, B_TRUE
));
207 * Generate the nvlist representing this vdev's config.
210 vdev_config_generate(spa_t
*spa
, vdev_t
*vd
, boolean_t getstats
,
211 vdev_config_flag_t flags
)
215 VERIFY(nvlist_alloc(&nv
, NV_UNIQUE_NAME
, KM_SLEEP
) == 0);
217 VERIFY(nvlist_add_string(nv
, ZPOOL_CONFIG_TYPE
,
218 vd
->vdev_ops
->vdev_op_type
) == 0);
219 if (!(flags
& (VDEV_CONFIG_SPARE
| VDEV_CONFIG_L2CACHE
)))
220 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_ID
, vd
->vdev_id
)
222 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_GUID
, vd
->vdev_guid
) == 0);
224 if (vd
->vdev_path
!= NULL
)
225 VERIFY(nvlist_add_string(nv
, ZPOOL_CONFIG_PATH
,
226 vd
->vdev_path
) == 0);
228 if (vd
->vdev_devid
!= NULL
)
229 VERIFY(nvlist_add_string(nv
, ZPOOL_CONFIG_DEVID
,
230 vd
->vdev_devid
) == 0);
232 if (vd
->vdev_physpath
!= NULL
)
233 VERIFY(nvlist_add_string(nv
, ZPOOL_CONFIG_PHYS_PATH
,
234 vd
->vdev_physpath
) == 0);
236 if (vd
->vdev_fru
!= NULL
)
237 VERIFY(nvlist_add_string(nv
, ZPOOL_CONFIG_FRU
,
240 if (vd
->vdev_nparity
!= 0) {
241 ASSERT(strcmp(vd
->vdev_ops
->vdev_op_type
,
242 VDEV_TYPE_RAIDZ
) == 0);
245 * Make sure someone hasn't managed to sneak a fancy new vdev
246 * into a crufty old storage pool.
248 ASSERT(vd
->vdev_nparity
== 1 ||
249 (vd
->vdev_nparity
<= 2 &&
250 spa_version(spa
) >= SPA_VERSION_RAIDZ2
) ||
251 (vd
->vdev_nparity
<= 3 &&
252 spa_version(spa
) >= SPA_VERSION_RAIDZ3
));
255 * Note that we'll add the nparity tag even on storage pools
256 * that only support a single parity device -- older software
257 * will just ignore it.
259 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_NPARITY
,
260 vd
->vdev_nparity
) == 0);
263 if (vd
->vdev_wholedisk
!= -1ULL)
264 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_WHOLE_DISK
,
265 vd
->vdev_wholedisk
) == 0);
267 if (vd
->vdev_not_present
)
268 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_NOT_PRESENT
, 1) == 0);
270 if (vd
->vdev_isspare
)
271 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_IS_SPARE
, 1) == 0);
273 if (!(flags
& (VDEV_CONFIG_SPARE
| VDEV_CONFIG_L2CACHE
)) &&
274 vd
== vd
->vdev_top
) {
275 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_METASLAB_ARRAY
,
276 vd
->vdev_ms_array
) == 0);
277 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_METASLAB_SHIFT
,
278 vd
->vdev_ms_shift
) == 0);
279 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_ASHIFT
,
280 vd
->vdev_ashift
) == 0);
281 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_ASIZE
,
282 vd
->vdev_asize
) == 0);
283 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_IS_LOG
,
284 vd
->vdev_islog
) == 0);
285 if (vd
->vdev_removing
)
286 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_REMOVING
,
287 vd
->vdev_removing
) == 0);
290 if (vd
->vdev_dtl_smo
.smo_object
!= 0)
291 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_DTL
,
292 vd
->vdev_dtl_smo
.smo_object
) == 0);
295 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_CREATE_TXG
,
296 vd
->vdev_crtxg
) == 0);
302 vdev_get_stats(vd
, &vs
);
303 VERIFY(nvlist_add_uint64_array(nv
, ZPOOL_CONFIG_VDEV_STATS
,
304 (uint64_t *)&vs
, sizeof (vs
) / sizeof (uint64_t)) == 0);
306 /* provide either current or previous scan information */
307 if (spa_scan_get_stats(spa
, &ps
) == 0) {
308 VERIFY(nvlist_add_uint64_array(nv
,
309 ZPOOL_CONFIG_SCAN_STATS
, (uint64_t *)&ps
,
310 sizeof (pool_scan_stat_t
) / sizeof (uint64_t))
315 if (!vd
->vdev_ops
->vdev_op_leaf
) {
319 ASSERT(!vd
->vdev_ishole
);
321 child
= kmem_alloc(vd
->vdev_children
* sizeof (nvlist_t
*),
324 for (c
= 0, idx
= 0; c
< vd
->vdev_children
; c
++) {
325 vdev_t
*cvd
= vd
->vdev_child
[c
];
328 * If we're generating an nvlist of removing
329 * vdevs then skip over any device which is
332 if ((flags
& VDEV_CONFIG_REMOVING
) &&
336 child
[idx
++] = vdev_config_generate(spa
, cvd
,
341 VERIFY(nvlist_add_nvlist_array(nv
,
342 ZPOOL_CONFIG_CHILDREN
, child
, idx
) == 0);
345 for (c
= 0; c
< idx
; c
++)
346 nvlist_free(child
[c
]);
348 kmem_free(child
, vd
->vdev_children
* sizeof (nvlist_t
*));
351 const char *aux
= NULL
;
353 if (vd
->vdev_offline
&& !vd
->vdev_tmpoffline
)
354 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_OFFLINE
,
356 if (vd
->vdev_resilvering
)
357 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_RESILVERING
,
359 if (vd
->vdev_faulted
)
360 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_FAULTED
,
362 if (vd
->vdev_degraded
)
363 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_DEGRADED
,
365 if (vd
->vdev_removed
)
366 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_REMOVED
,
368 if (vd
->vdev_unspare
)
369 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_UNSPARE
,
372 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_IS_HOLE
,
375 switch (vd
->vdev_stat
.vs_aux
) {
376 case VDEV_AUX_ERR_EXCEEDED
:
377 aux
= "err_exceeded";
380 case VDEV_AUX_EXTERNAL
:
386 VERIFY(nvlist_add_string(nv
, ZPOOL_CONFIG_AUX_STATE
,
389 if (vd
->vdev_splitting
&& vd
->vdev_orig_guid
!= 0LL) {
390 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_ORIG_GUID
,
391 vd
->vdev_orig_guid
) == 0);
399 * Generate a view of the top-level vdevs. If we currently have holes
400 * in the namespace, then generate an array which contains a list of holey
401 * vdevs. Additionally, add the number of top-level children that currently
405 vdev_top_config_generate(spa_t
*spa
, nvlist_t
*config
)
407 vdev_t
*rvd
= spa
->spa_root_vdev
;
411 array
= kmem_alloc(rvd
->vdev_children
* sizeof (uint64_t), KM_SLEEP
);
413 for (c
= 0, idx
= 0; c
< rvd
->vdev_children
; c
++) {
414 vdev_t
*tvd
= rvd
->vdev_child
[c
];
416 if (tvd
->vdev_ishole
)
421 VERIFY(nvlist_add_uint64_array(config
, ZPOOL_CONFIG_HOLE_ARRAY
,
425 VERIFY(nvlist_add_uint64(config
, ZPOOL_CONFIG_VDEV_CHILDREN
,
426 rvd
->vdev_children
) == 0);
428 kmem_free(array
, rvd
->vdev_children
* sizeof (uint64_t));
432 vdev_label_read_config(vdev_t
*vd
)
434 spa_t
*spa
= vd
->vdev_spa
;
435 nvlist_t
*config
= NULL
;
438 int flags
= ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_CANFAIL
|
439 ZIO_FLAG_SPECULATIVE
;
441 ASSERT(spa_config_held(spa
, SCL_STATE_ALL
, RW_WRITER
) == SCL_STATE_ALL
);
443 if (!vdev_readable(vd
))
446 vp
= zio_buf_alloc(sizeof (vdev_phys_t
));
449 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
451 zio
= zio_root(spa
, NULL
, NULL
, flags
);
453 vdev_label_read(zio
, vd
, l
, vp
,
454 offsetof(vdev_label_t
, vl_vdev_phys
),
455 sizeof (vdev_phys_t
), NULL
, NULL
, flags
);
457 if (zio_wait(zio
) == 0 &&
458 nvlist_unpack(vp
->vp_nvlist
, sizeof (vp
->vp_nvlist
),
462 if (config
!= NULL
) {
468 if (config
== NULL
&& !(flags
& ZIO_FLAG_TRYHARD
)) {
469 flags
|= ZIO_FLAG_TRYHARD
;
473 zio_buf_free(vp
, sizeof (vdev_phys_t
));
479 * Determine if a device is in use. The 'spare_guid' parameter will be filled
480 * in with the device guid if this spare is active elsewhere on the system.
483 vdev_inuse(vdev_t
*vd
, uint64_t crtxg
, vdev_labeltype_t reason
,
484 uint64_t *spare_guid
, uint64_t *l2cache_guid
)
486 spa_t
*spa
= vd
->vdev_spa
;
487 uint64_t state
, pool_guid
, device_guid
, txg
, spare_pool
;
494 *l2cache_guid
= 0ULL;
497 * Read the label, if any, and perform some basic sanity checks.
499 if ((label
= vdev_label_read_config(vd
)) == NULL
)
502 (void) nvlist_lookup_uint64(label
, ZPOOL_CONFIG_CREATE_TXG
,
505 if (nvlist_lookup_uint64(label
, ZPOOL_CONFIG_POOL_STATE
,
507 nvlist_lookup_uint64(label
, ZPOOL_CONFIG_GUID
,
508 &device_guid
) != 0) {
513 if (state
!= POOL_STATE_SPARE
&& state
!= POOL_STATE_L2CACHE
&&
514 (nvlist_lookup_uint64(label
, ZPOOL_CONFIG_POOL_GUID
,
516 nvlist_lookup_uint64(label
, ZPOOL_CONFIG_POOL_TXG
,
525 * Check to see if this device indeed belongs to the pool it claims to
526 * be a part of. The only way this is allowed is if the device is a hot
527 * spare (which we check for later on).
529 if (state
!= POOL_STATE_SPARE
&& state
!= POOL_STATE_L2CACHE
&&
530 !spa_guid_exists(pool_guid
, device_guid
) &&
531 !spa_spare_exists(device_guid
, NULL
, NULL
) &&
532 !spa_l2cache_exists(device_guid
, NULL
))
536 * If the transaction group is zero, then this an initialized (but
537 * unused) label. This is only an error if the create transaction
538 * on-disk is the same as the one we're using now, in which case the
539 * user has attempted to add the same vdev multiple times in the same
542 if (state
!= POOL_STATE_SPARE
&& state
!= POOL_STATE_L2CACHE
&&
543 txg
== 0 && vdtxg
== crtxg
)
547 * Check to see if this is a spare device. We do an explicit check for
548 * spa_has_spare() here because it may be on our pending list of spares
549 * to add. We also check if it is an l2cache device.
551 if (spa_spare_exists(device_guid
, &spare_pool
, NULL
) ||
552 spa_has_spare(spa
, device_guid
)) {
554 *spare_guid
= device_guid
;
557 case VDEV_LABEL_CREATE
:
558 case VDEV_LABEL_L2CACHE
:
561 case VDEV_LABEL_REPLACE
:
562 return (!spa_has_spare(spa
, device_guid
) ||
565 case VDEV_LABEL_SPARE
:
566 return (spa_has_spare(spa
, device_guid
));
571 * Check to see if this is an l2cache device.
573 if (spa_l2cache_exists(device_guid
, NULL
))
577 * We can't rely on a pool's state if it's been imported
578 * read-only. Instead we look to see if the pools is marked
579 * read-only in the namespace and set the state to active.
581 if ((spa
= spa_by_guid(pool_guid
, device_guid
)) != NULL
&&
582 spa_mode(spa
) == FREAD
)
583 state
= POOL_STATE_ACTIVE
;
586 * If the device is marked ACTIVE, then this device is in use by another
587 * pool on the system.
589 return (state
== POOL_STATE_ACTIVE
);
593 * Initialize a vdev label. We check to make sure each leaf device is not in
594 * use, and writable. We put down an initial label which we will later
595 * overwrite with a complete label. Note that it's important to do this
596 * sequentially, not in parallel, so that we catch cases of multiple use of the
597 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
601 vdev_label_init(vdev_t
*vd
, uint64_t crtxg
, vdev_labeltype_t reason
)
603 spa_t
*spa
= vd
->vdev_spa
;
612 uint64_t spare_guid
, l2cache_guid
;
613 int flags
= ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_CANFAIL
;
615 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
617 for (int c
= 0; c
< vd
->vdev_children
; c
++)
618 if ((error
= vdev_label_init(vd
->vdev_child
[c
],
619 crtxg
, reason
)) != 0)
622 /* Track the creation time for this vdev */
623 vd
->vdev_crtxg
= crtxg
;
625 if (!vd
->vdev_ops
->vdev_op_leaf
)
629 * Dead vdevs cannot be initialized.
631 if (vdev_is_dead(vd
))
635 * Determine if the vdev is in use.
637 if (reason
!= VDEV_LABEL_REMOVE
&& reason
!= VDEV_LABEL_SPLIT
&&
638 vdev_inuse(vd
, crtxg
, reason
, &spare_guid
, &l2cache_guid
))
642 * If this is a request to add or replace a spare or l2cache device
643 * that is in use elsewhere on the system, then we must update the
644 * guid (which was initialized to a random value) to reflect the
645 * actual GUID (which is shared between multiple pools).
647 if (reason
!= VDEV_LABEL_REMOVE
&& reason
!= VDEV_LABEL_L2CACHE
&&
648 spare_guid
!= 0ULL) {
649 uint64_t guid_delta
= spare_guid
- vd
->vdev_guid
;
651 vd
->vdev_guid
+= guid_delta
;
653 for (vdev_t
*pvd
= vd
; pvd
!= NULL
; pvd
= pvd
->vdev_parent
)
654 pvd
->vdev_guid_sum
+= guid_delta
;
657 * If this is a replacement, then we want to fallthrough to the
658 * rest of the code. If we're adding a spare, then it's already
659 * labeled appropriately and we can just return.
661 if (reason
== VDEV_LABEL_SPARE
)
663 ASSERT(reason
== VDEV_LABEL_REPLACE
||
664 reason
== VDEV_LABEL_SPLIT
);
667 if (reason
!= VDEV_LABEL_REMOVE
&& reason
!= VDEV_LABEL_SPARE
&&
668 l2cache_guid
!= 0ULL) {
669 uint64_t guid_delta
= l2cache_guid
- vd
->vdev_guid
;
671 vd
->vdev_guid
+= guid_delta
;
673 for (vdev_t
*pvd
= vd
; pvd
!= NULL
; pvd
= pvd
->vdev_parent
)
674 pvd
->vdev_guid_sum
+= guid_delta
;
677 * If this is a replacement, then we want to fallthrough to the
678 * rest of the code. If we're adding an l2cache, then it's
679 * already labeled appropriately and we can just return.
681 if (reason
== VDEV_LABEL_L2CACHE
)
683 ASSERT(reason
== VDEV_LABEL_REPLACE
);
687 * Initialize its label.
689 vp
= zio_buf_alloc(sizeof (vdev_phys_t
));
690 bzero(vp
, sizeof (vdev_phys_t
));
693 * Generate a label describing the pool and our top-level vdev.
694 * We mark it as being from txg 0 to indicate that it's not
695 * really part of an active pool just yet. The labels will
696 * be written again with a meaningful txg by spa_sync().
698 if (reason
== VDEV_LABEL_SPARE
||
699 (reason
== VDEV_LABEL_REMOVE
&& vd
->vdev_isspare
)) {
701 * For inactive hot spares, we generate a special label that
702 * identifies as a mutually shared hot spare. We write the
703 * label if we are adding a hot spare, or if we are removing an
704 * active hot spare (in which case we want to revert the
707 VERIFY(nvlist_alloc(&label
, NV_UNIQUE_NAME
, KM_SLEEP
) == 0);
709 VERIFY(nvlist_add_uint64(label
, ZPOOL_CONFIG_VERSION
,
710 spa_version(spa
)) == 0);
711 VERIFY(nvlist_add_uint64(label
, ZPOOL_CONFIG_POOL_STATE
,
712 POOL_STATE_SPARE
) == 0);
713 VERIFY(nvlist_add_uint64(label
, ZPOOL_CONFIG_GUID
,
714 vd
->vdev_guid
) == 0);
715 } else if (reason
== VDEV_LABEL_L2CACHE
||
716 (reason
== VDEV_LABEL_REMOVE
&& vd
->vdev_isl2cache
)) {
718 * For level 2 ARC devices, add a special label.
720 VERIFY(nvlist_alloc(&label
, NV_UNIQUE_NAME
, KM_SLEEP
) == 0);
722 VERIFY(nvlist_add_uint64(label
, ZPOOL_CONFIG_VERSION
,
723 spa_version(spa
)) == 0);
724 VERIFY(nvlist_add_uint64(label
, ZPOOL_CONFIG_POOL_STATE
,
725 POOL_STATE_L2CACHE
) == 0);
726 VERIFY(nvlist_add_uint64(label
, ZPOOL_CONFIG_GUID
,
727 vd
->vdev_guid
) == 0);
731 if (reason
== VDEV_LABEL_SPLIT
)
732 txg
= spa
->spa_uberblock
.ub_txg
;
733 label
= spa_config_generate(spa
, vd
, txg
, B_FALSE
);
736 * Add our creation time. This allows us to detect multiple
737 * vdev uses as described above, and automatically expires if we
740 VERIFY(nvlist_add_uint64(label
, ZPOOL_CONFIG_CREATE_TXG
,
745 buflen
= sizeof (vp
->vp_nvlist
);
747 error
= nvlist_pack(label
, &buf
, &buflen
, NV_ENCODE_XDR
, KM_SLEEP
);
750 zio_buf_free(vp
, sizeof (vdev_phys_t
));
751 /* EFAULT means nvlist_pack ran out of room */
752 return (error
== EFAULT
? ENAMETOOLONG
: EINVAL
);
756 * Initialize uberblock template.
758 ub
= zio_buf_alloc(VDEV_UBERBLOCK_RING
);
759 bzero(ub
, VDEV_UBERBLOCK_RING
);
760 *ub
= spa
->spa_uberblock
;
763 /* Initialize the 2nd padding area. */
764 pad2
= zio_buf_alloc(VDEV_PAD_SIZE
);
765 bzero(pad2
, VDEV_PAD_SIZE
);
768 * Write everything in parallel.
771 zio
= zio_root(spa
, NULL
, NULL
, flags
);
773 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
775 vdev_label_write(zio
, vd
, l
, vp
,
776 offsetof(vdev_label_t
, vl_vdev_phys
),
777 sizeof (vdev_phys_t
), NULL
, NULL
, flags
);
780 * Skip the 1st padding area.
781 * Zero out the 2nd padding area where it might have
782 * left over data from previous filesystem format.
784 vdev_label_write(zio
, vd
, l
, pad2
,
785 offsetof(vdev_label_t
, vl_pad2
),
786 VDEV_PAD_SIZE
, NULL
, NULL
, flags
);
788 vdev_label_write(zio
, vd
, l
, ub
,
789 offsetof(vdev_label_t
, vl_uberblock
),
790 VDEV_UBERBLOCK_RING
, NULL
, NULL
, flags
);
793 error
= zio_wait(zio
);
795 if (error
!= 0 && !(flags
& ZIO_FLAG_TRYHARD
)) {
796 flags
|= ZIO_FLAG_TRYHARD
;
801 zio_buf_free(pad2
, VDEV_PAD_SIZE
);
802 zio_buf_free(ub
, VDEV_UBERBLOCK_RING
);
803 zio_buf_free(vp
, sizeof (vdev_phys_t
));
806 * If this vdev hasn't been previously identified as a spare, then we
807 * mark it as such only if a) we are labeling it as a spare, or b) it
808 * exists as a spare elsewhere in the system. Do the same for
809 * level 2 ARC devices.
811 if (error
== 0 && !vd
->vdev_isspare
&&
812 (reason
== VDEV_LABEL_SPARE
||
813 spa_spare_exists(vd
->vdev_guid
, NULL
, NULL
)))
816 if (error
== 0 && !vd
->vdev_isl2cache
&&
817 (reason
== VDEV_LABEL_L2CACHE
||
818 spa_l2cache_exists(vd
->vdev_guid
, NULL
)))
825 * ==========================================================================
826 * uberblock load/sync
827 * ==========================================================================
831 * Consider the following situation: txg is safely synced to disk. We've
832 * written the first uberblock for txg + 1, and then we lose power. When we
833 * come back up, we fail to see the uberblock for txg + 1 because, say,
834 * it was on a mirrored device and the replica to which we wrote txg + 1
835 * is now offline. If we then make some changes and sync txg + 1, and then
836 * the missing replica comes back, then for a new seconds we'll have two
837 * conflicting uberblocks on disk with the same txg. The solution is simple:
838 * among uberblocks with equal txg, choose the one with the latest timestamp.
841 vdev_uberblock_compare(uberblock_t
*ub1
, uberblock_t
*ub2
)
843 if (ub1
->ub_txg
< ub2
->ub_txg
)
845 if (ub1
->ub_txg
> ub2
->ub_txg
)
848 if (ub1
->ub_timestamp
< ub2
->ub_timestamp
)
850 if (ub1
->ub_timestamp
> ub2
->ub_timestamp
)
857 vdev_uberblock_load_done(zio_t
*zio
)
859 spa_t
*spa
= zio
->io_spa
;
860 zio_t
*rio
= zio
->io_private
;
861 uberblock_t
*ub
= zio
->io_data
;
862 uberblock_t
*ubbest
= rio
->io_private
;
864 ASSERT3U(zio
->io_size
, ==, VDEV_UBERBLOCK_SIZE(zio
->io_vd
));
866 if (zio
->io_error
== 0 && uberblock_verify(ub
) == 0) {
867 mutex_enter(&rio
->io_lock
);
868 if (ub
->ub_txg
<= spa
->spa_load_max_txg
&&
869 vdev_uberblock_compare(ub
, ubbest
) > 0)
871 mutex_exit(&rio
->io_lock
);
874 zio_buf_free(zio
->io_data
, zio
->io_size
);
878 vdev_uberblock_load(zio_t
*zio
, vdev_t
*vd
, uberblock_t
*ubbest
)
880 spa_t
*spa
= vd
->vdev_spa
;
881 vdev_t
*rvd
= spa
->spa_root_vdev
;
882 int flags
= ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_CANFAIL
|
883 ZIO_FLAG_SPECULATIVE
| ZIO_FLAG_TRYHARD
;
887 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_WRITER
);
888 zio
= zio_root(spa
, NULL
, ubbest
, flags
);
889 bzero(ubbest
, sizeof (uberblock_t
));
894 for (int c
= 0; c
< vd
->vdev_children
; c
++)
895 vdev_uberblock_load(zio
, vd
->vdev_child
[c
], ubbest
);
897 if (vd
->vdev_ops
->vdev_op_leaf
&& vdev_readable(vd
)) {
898 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
899 for (int n
= 0; n
< VDEV_UBERBLOCK_COUNT(vd
); n
++) {
900 vdev_label_read(zio
, vd
, l
,
901 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd
)),
902 VDEV_UBERBLOCK_OFFSET(vd
, n
),
903 VDEV_UBERBLOCK_SIZE(vd
),
904 vdev_uberblock_load_done
, zio
, flags
);
910 (void) zio_wait(zio
);
911 spa_config_exit(spa
, SCL_ALL
, FTAG
);
916 * On success, increment root zio's count of good writes.
917 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
920 vdev_uberblock_sync_done(zio_t
*zio
)
922 uint64_t *good_writes
= zio
->io_private
;
924 if (zio
->io_error
== 0 && zio
->io_vd
->vdev_top
->vdev_ms_array
!= 0)
925 atomic_add_64(good_writes
, 1);
929 * Write the uberblock to all labels of all leaves of the specified vdev.
932 vdev_uberblock_sync(zio_t
*zio
, uberblock_t
*ub
, vdev_t
*vd
, int flags
)
937 for (int c
= 0; c
< vd
->vdev_children
; c
++)
938 vdev_uberblock_sync(zio
, ub
, vd
->vdev_child
[c
], flags
);
940 if (!vd
->vdev_ops
->vdev_op_leaf
)
943 if (!vdev_writeable(vd
))
946 n
= ub
->ub_txg
& (VDEV_UBERBLOCK_COUNT(vd
) - 1);
948 ubbuf
= zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd
));
949 bzero(ubbuf
, VDEV_UBERBLOCK_SIZE(vd
));
952 for (int l
= 0; l
< VDEV_LABELS
; l
++)
953 vdev_label_write(zio
, vd
, l
, ubbuf
,
954 VDEV_UBERBLOCK_OFFSET(vd
, n
), VDEV_UBERBLOCK_SIZE(vd
),
955 vdev_uberblock_sync_done
, zio
->io_private
,
956 flags
| ZIO_FLAG_DONT_PROPAGATE
);
958 zio_buf_free(ubbuf
, VDEV_UBERBLOCK_SIZE(vd
));
962 vdev_uberblock_sync_list(vdev_t
**svd
, int svdcount
, uberblock_t
*ub
, int flags
)
964 spa_t
*spa
= svd
[0]->vdev_spa
;
966 uint64_t good_writes
= 0;
968 zio
= zio_root(spa
, NULL
, &good_writes
, flags
);
970 for (int v
= 0; v
< svdcount
; v
++)
971 vdev_uberblock_sync(zio
, ub
, svd
[v
], flags
);
973 (void) zio_wait(zio
);
976 * Flush the uberblocks to disk. This ensures that the odd labels
977 * are no longer needed (because the new uberblocks and the even
978 * labels are safely on disk), so it is safe to overwrite them.
980 zio
= zio_root(spa
, NULL
, NULL
, flags
);
982 for (int v
= 0; v
< svdcount
; v
++)
983 zio_flush(zio
, svd
[v
]);
985 (void) zio_wait(zio
);
987 return (good_writes
>= 1 ? 0 : EIO
);
991 * On success, increment the count of good writes for our top-level vdev.
994 vdev_label_sync_done(zio_t
*zio
)
996 uint64_t *good_writes
= zio
->io_private
;
998 if (zio
->io_error
== 0)
999 atomic_add_64(good_writes
, 1);
1003 * If there weren't enough good writes, indicate failure to the parent.
1006 vdev_label_sync_top_done(zio_t
*zio
)
1008 uint64_t *good_writes
= zio
->io_private
;
1010 if (*good_writes
== 0)
1011 zio
->io_error
= EIO
;
1013 kmem_free(good_writes
, sizeof (uint64_t));
1017 * We ignore errors for log and cache devices, simply free the private data.
1020 vdev_label_sync_ignore_done(zio_t
*zio
)
1022 kmem_free(zio
->io_private
, sizeof (uint64_t));
1026 * Write all even or odd labels to all leaves of the specified vdev.
1029 vdev_label_sync(zio_t
*zio
, vdev_t
*vd
, int l
, uint64_t txg
, int flags
)
1036 for (int c
= 0; c
< vd
->vdev_children
; c
++)
1037 vdev_label_sync(zio
, vd
->vdev_child
[c
], l
, txg
, flags
);
1039 if (!vd
->vdev_ops
->vdev_op_leaf
)
1042 if (!vdev_writeable(vd
))
1046 * Generate a label describing the top-level config to which we belong.
1048 label
= spa_config_generate(vd
->vdev_spa
, vd
, txg
, B_FALSE
);
1050 vp
= zio_buf_alloc(sizeof (vdev_phys_t
));
1051 bzero(vp
, sizeof (vdev_phys_t
));
1053 buf
= vp
->vp_nvlist
;
1054 buflen
= sizeof (vp
->vp_nvlist
);
1056 if (nvlist_pack(label
, &buf
, &buflen
, NV_ENCODE_XDR
, KM_SLEEP
) == 0) {
1057 for (; l
< VDEV_LABELS
; l
+= 2) {
1058 vdev_label_write(zio
, vd
, l
, vp
,
1059 offsetof(vdev_label_t
, vl_vdev_phys
),
1060 sizeof (vdev_phys_t
),
1061 vdev_label_sync_done
, zio
->io_private
,
1062 flags
| ZIO_FLAG_DONT_PROPAGATE
);
1066 zio_buf_free(vp
, sizeof (vdev_phys_t
));
1071 vdev_label_sync_list(spa_t
*spa
, int l
, uint64_t txg
, int flags
)
1073 list_t
*dl
= &spa
->spa_config_dirty_list
;
1079 * Write the new labels to disk.
1081 zio
= zio_root(spa
, NULL
, NULL
, flags
);
1083 for (vd
= list_head(dl
); vd
!= NULL
; vd
= list_next(dl
, vd
)) {
1084 uint64_t *good_writes
= kmem_zalloc(sizeof (uint64_t),
1087 ASSERT(!vd
->vdev_ishole
);
1089 zio_t
*vio
= zio_null(zio
, spa
, NULL
,
1090 (vd
->vdev_islog
|| vd
->vdev_aux
!= NULL
) ?
1091 vdev_label_sync_ignore_done
: vdev_label_sync_top_done
,
1092 good_writes
, flags
);
1093 vdev_label_sync(vio
, vd
, l
, txg
, flags
);
1097 error
= zio_wait(zio
);
1100 * Flush the new labels to disk.
1102 zio
= zio_root(spa
, NULL
, NULL
, flags
);
1104 for (vd
= list_head(dl
); vd
!= NULL
; vd
= list_next(dl
, vd
))
1107 (void) zio_wait(zio
);
1113 * Sync the uberblock and any changes to the vdev configuration.
1115 * The order of operations is carefully crafted to ensure that
1116 * if the system panics or loses power at any time, the state on disk
1117 * is still transactionally consistent. The in-line comments below
1118 * describe the failure semantics at each stage.
1120 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1121 * at any time, you can just call it again, and it will resume its work.
1124 vdev_config_sync(vdev_t
**svd
, int svdcount
, uint64_t txg
, boolean_t tryhard
)
1126 spa_t
*spa
= svd
[0]->vdev_spa
;
1127 uberblock_t
*ub
= &spa
->spa_uberblock
;
1131 int flags
= ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_CANFAIL
;
1134 * Normally, we don't want to try too hard to write every label and
1135 * uberblock. If there is a flaky disk, we don't want the rest of the
1136 * sync process to block while we retry. But if we can't write a
1137 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1138 * bailing out and declaring the pool faulted.
1141 flags
|= ZIO_FLAG_TRYHARD
;
1143 ASSERT(ub
->ub_txg
<= txg
);
1146 * If this isn't a resync due to I/O errors,
1147 * and nothing changed in this transaction group,
1148 * and the vdev configuration hasn't changed,
1149 * then there's nothing to do.
1151 if (ub
->ub_txg
< txg
&&
1152 uberblock_update(ub
, spa
->spa_root_vdev
, txg
) == B_FALSE
&&
1153 list_is_empty(&spa
->spa_config_dirty_list
))
1156 if (txg
> spa_freeze_txg(spa
))
1159 ASSERT(txg
<= spa
->spa_final_txg
);
1162 * Flush the write cache of every disk that's been written to
1163 * in this transaction group. This ensures that all blocks
1164 * written in this txg will be committed to stable storage
1165 * before any uberblock that references them.
1167 zio
= zio_root(spa
, NULL
, NULL
, flags
);
1169 for (vd
= txg_list_head(&spa
->spa_vdev_txg_list
, TXG_CLEAN(txg
)); vd
;
1170 vd
= txg_list_next(&spa
->spa_vdev_txg_list
, vd
, TXG_CLEAN(txg
)))
1173 (void) zio_wait(zio
);
1176 * Sync out the even labels (L0, L2) for every dirty vdev. If the
1177 * system dies in the middle of this process, that's OK: all of the
1178 * even labels that made it to disk will be newer than any uberblock,
1179 * and will therefore be considered invalid. The odd labels (L1, L3),
1180 * which have not yet been touched, will still be valid. We flush
1181 * the new labels to disk to ensure that all even-label updates
1182 * are committed to stable storage before the uberblock update.
1184 if ((error
= vdev_label_sync_list(spa
, 0, txg
, flags
)) != 0)
1188 * Sync the uberblocks to all vdevs in svd[].
1189 * If the system dies in the middle of this step, there are two cases
1190 * to consider, and the on-disk state is consistent either way:
1192 * (1) If none of the new uberblocks made it to disk, then the
1193 * previous uberblock will be the newest, and the odd labels
1194 * (which had not yet been touched) will be valid with respect
1195 * to that uberblock.
1197 * (2) If one or more new uberblocks made it to disk, then they
1198 * will be the newest, and the even labels (which had all
1199 * been successfully committed) will be valid with respect
1200 * to the new uberblocks.
1202 if ((error
= vdev_uberblock_sync_list(svd
, svdcount
, ub
, flags
)) != 0)
1206 * Sync out odd labels for every dirty vdev. If the system dies
1207 * in the middle of this process, the even labels and the new
1208 * uberblocks will suffice to open the pool. The next time
1209 * the pool is opened, the first thing we'll do -- before any
1210 * user data is modified -- is mark every vdev dirty so that
1211 * all labels will be brought up to date. We flush the new labels
1212 * to disk to ensure that all odd-label updates are committed to
1213 * stable storage before the next transaction group begins.
1215 return (vdev_label_sync_list(spa
, 1, txg
, flags
));