4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Portions Copyright 2011 Martin Matuska
26 #include <sys/zfs_context.h>
27 #include <sys/txg_impl.h>
28 #include <sys/dmu_impl.h>
29 #include <sys/dmu_tx.h>
30 #include <sys/dsl_pool.h>
31 #include <sys/dsl_scan.h>
32 #include <sys/callb.h>
35 * Pool-wide transaction groups.
38 static void txg_sync_thread(dsl_pool_t
*dp
);
39 static void txg_quiesce_thread(dsl_pool_t
*dp
);
41 int zfs_txg_timeout
= 5; /* max seconds worth of delta per txg */
44 * Prepare the txg subsystem.
47 txg_init(dsl_pool_t
*dp
, uint64_t txg
)
49 tx_state_t
*tx
= &dp
->dp_tx
;
51 bzero(tx
, sizeof (tx_state_t
));
53 tx
->tx_cpu
= kmem_zalloc(max_ncpus
* sizeof (tx_cpu_t
), KM_SLEEP
);
55 for (c
= 0; c
< max_ncpus
; c
++) {
58 mutex_init(&tx
->tx_cpu
[c
].tc_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
59 for (i
= 0; i
< TXG_SIZE
; i
++) {
60 cv_init(&tx
->tx_cpu
[c
].tc_cv
[i
], NULL
, CV_DEFAULT
,
62 list_create(&tx
->tx_cpu
[c
].tc_callbacks
[i
],
63 sizeof (dmu_tx_callback_t
),
64 offsetof(dmu_tx_callback_t
, dcb_node
));
68 mutex_init(&tx
->tx_sync_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
70 cv_init(&tx
->tx_sync_more_cv
, NULL
, CV_DEFAULT
, NULL
);
71 cv_init(&tx
->tx_sync_done_cv
, NULL
, CV_DEFAULT
, NULL
);
72 cv_init(&tx
->tx_quiesce_more_cv
, NULL
, CV_DEFAULT
, NULL
);
73 cv_init(&tx
->tx_quiesce_done_cv
, NULL
, CV_DEFAULT
, NULL
);
74 cv_init(&tx
->tx_exit_cv
, NULL
, CV_DEFAULT
, NULL
);
76 tx
->tx_open_txg
= txg
;
80 * Close down the txg subsystem.
83 txg_fini(dsl_pool_t
*dp
)
85 tx_state_t
*tx
= &dp
->dp_tx
;
88 ASSERT(tx
->tx_threads
== 0);
90 mutex_destroy(&tx
->tx_sync_lock
);
92 cv_destroy(&tx
->tx_sync_more_cv
);
93 cv_destroy(&tx
->tx_sync_done_cv
);
94 cv_destroy(&tx
->tx_quiesce_more_cv
);
95 cv_destroy(&tx
->tx_quiesce_done_cv
);
96 cv_destroy(&tx
->tx_exit_cv
);
98 for (c
= 0; c
< max_ncpus
; c
++) {
101 mutex_destroy(&tx
->tx_cpu
[c
].tc_lock
);
102 for (i
= 0; i
< TXG_SIZE
; i
++) {
103 cv_destroy(&tx
->tx_cpu
[c
].tc_cv
[i
]);
104 list_destroy(&tx
->tx_cpu
[c
].tc_callbacks
[i
]);
108 if (tx
->tx_commit_cb_taskq
!= NULL
)
109 taskq_destroy(tx
->tx_commit_cb_taskq
);
111 kmem_free(tx
->tx_cpu
, max_ncpus
* sizeof (tx_cpu_t
));
113 bzero(tx
, sizeof (tx_state_t
));
117 * Start syncing transaction groups.
120 txg_sync_start(dsl_pool_t
*dp
)
122 tx_state_t
*tx
= &dp
->dp_tx
;
124 mutex_enter(&tx
->tx_sync_lock
);
126 dprintf("pool %p\n", dp
);
128 ASSERT(tx
->tx_threads
== 0);
132 tx
->tx_quiesce_thread
= thread_create(NULL
, 0, txg_quiesce_thread
,
133 dp
, 0, &p0
, TS_RUN
, minclsyspri
);
136 * The sync thread can need a larger-than-default stack size on
137 * 32-bit x86. This is due in part to nested pools and
138 * scrub_visitbp() recursion.
140 tx
->tx_sync_thread
= thread_create(NULL
, 32<<10, txg_sync_thread
,
141 dp
, 0, &p0
, TS_RUN
, minclsyspri
);
143 mutex_exit(&tx
->tx_sync_lock
);
147 txg_thread_enter(tx_state_t
*tx
, callb_cpr_t
*cpr
)
149 CALLB_CPR_INIT(cpr
, &tx
->tx_sync_lock
, callb_generic_cpr
, FTAG
);
150 mutex_enter(&tx
->tx_sync_lock
);
154 txg_thread_exit(tx_state_t
*tx
, callb_cpr_t
*cpr
, kthread_t
**tpp
)
156 ASSERT(*tpp
!= NULL
);
159 cv_broadcast(&tx
->tx_exit_cv
);
160 CALLB_CPR_EXIT(cpr
); /* drops &tx->tx_sync_lock */
165 txg_thread_wait(tx_state_t
*tx
, callb_cpr_t
*cpr
, kcondvar_t
*cv
, uint64_t time
)
167 CALLB_CPR_SAFE_BEGIN(cpr
);
170 (void) cv_timedwait(cv
, &tx
->tx_sync_lock
,
171 ddi_get_lbolt() + time
);
173 cv_wait(cv
, &tx
->tx_sync_lock
);
175 CALLB_CPR_SAFE_END(cpr
, &tx
->tx_sync_lock
);
179 * Stop syncing transaction groups.
182 txg_sync_stop(dsl_pool_t
*dp
)
184 tx_state_t
*tx
= &dp
->dp_tx
;
186 dprintf("pool %p\n", dp
);
188 * Finish off any work in progress.
190 ASSERT(tx
->tx_threads
== 2);
193 * We need to ensure that we've vacated the deferred space_maps.
195 txg_wait_synced(dp
, tx
->tx_open_txg
+ TXG_DEFER_SIZE
);
198 * Wake all sync threads and wait for them to die.
200 mutex_enter(&tx
->tx_sync_lock
);
202 ASSERT(tx
->tx_threads
== 2);
206 cv_broadcast(&tx
->tx_quiesce_more_cv
);
207 cv_broadcast(&tx
->tx_quiesce_done_cv
);
208 cv_broadcast(&tx
->tx_sync_more_cv
);
210 while (tx
->tx_threads
!= 0)
211 cv_wait(&tx
->tx_exit_cv
, &tx
->tx_sync_lock
);
215 mutex_exit(&tx
->tx_sync_lock
);
219 txg_hold_open(dsl_pool_t
*dp
, txg_handle_t
*th
)
221 tx_state_t
*tx
= &dp
->dp_tx
;
222 tx_cpu_t
*tc
= &tx
->tx_cpu
[CPU_SEQID
];
225 mutex_enter(&tc
->tc_lock
);
227 txg
= tx
->tx_open_txg
;
228 tc
->tc_count
[txg
& TXG_MASK
]++;
237 txg_rele_to_quiesce(txg_handle_t
*th
)
239 tx_cpu_t
*tc
= th
->th_cpu
;
241 mutex_exit(&tc
->tc_lock
);
245 txg_register_callbacks(txg_handle_t
*th
, list_t
*tx_callbacks
)
247 tx_cpu_t
*tc
= th
->th_cpu
;
248 int g
= th
->th_txg
& TXG_MASK
;
250 mutex_enter(&tc
->tc_lock
);
251 list_move_tail(&tc
->tc_callbacks
[g
], tx_callbacks
);
252 mutex_exit(&tc
->tc_lock
);
256 txg_rele_to_sync(txg_handle_t
*th
)
258 tx_cpu_t
*tc
= th
->th_cpu
;
259 int g
= th
->th_txg
& TXG_MASK
;
261 mutex_enter(&tc
->tc_lock
);
262 ASSERT(tc
->tc_count
[g
] != 0);
263 if (--tc
->tc_count
[g
] == 0)
264 cv_broadcast(&tc
->tc_cv
[g
]);
265 mutex_exit(&tc
->tc_lock
);
267 th
->th_cpu
= NULL
; /* defensive */
271 txg_quiesce(dsl_pool_t
*dp
, uint64_t txg
)
273 tx_state_t
*tx
= &dp
->dp_tx
;
274 int g
= txg
& TXG_MASK
;
278 * Grab all tx_cpu locks so nobody else can get into this txg.
280 for (c
= 0; c
< max_ncpus
; c
++)
281 mutex_enter(&tx
->tx_cpu
[c
].tc_lock
);
283 ASSERT(txg
== tx
->tx_open_txg
);
287 * Now that we've incremented tx_open_txg, we can let threads
288 * enter the next transaction group.
290 for (c
= 0; c
< max_ncpus
; c
++)
291 mutex_exit(&tx
->tx_cpu
[c
].tc_lock
);
294 * Quiesce the transaction group by waiting for everyone to txg_exit().
296 for (c
= 0; c
< max_ncpus
; c
++) {
297 tx_cpu_t
*tc
= &tx
->tx_cpu
[c
];
298 mutex_enter(&tc
->tc_lock
);
299 while (tc
->tc_count
[g
] != 0)
300 cv_wait(&tc
->tc_cv
[g
], &tc
->tc_lock
);
301 mutex_exit(&tc
->tc_lock
);
306 txg_do_callbacks(list_t
*cb_list
)
308 dmu_tx_do_callbacks(cb_list
, 0);
310 list_destroy(cb_list
);
312 kmem_free(cb_list
, sizeof (list_t
));
316 * Dispatch the commit callbacks registered on this txg to worker threads.
319 txg_dispatch_callbacks(dsl_pool_t
*dp
, uint64_t txg
)
322 tx_state_t
*tx
= &dp
->dp_tx
;
325 for (c
= 0; c
< max_ncpus
; c
++) {
326 tx_cpu_t
*tc
= &tx
->tx_cpu
[c
];
327 /* No need to lock tx_cpu_t at this point */
329 int g
= txg
& TXG_MASK
;
331 if (list_is_empty(&tc
->tc_callbacks
[g
]))
334 if (tx
->tx_commit_cb_taskq
== NULL
) {
336 * Commit callback taskq hasn't been created yet.
338 tx
->tx_commit_cb_taskq
= taskq_create("tx_commit_cb",
339 max_ncpus
, minclsyspri
, max_ncpus
, max_ncpus
* 2,
343 cb_list
= kmem_alloc(sizeof (list_t
), KM_SLEEP
);
344 list_create(cb_list
, sizeof (dmu_tx_callback_t
),
345 offsetof(dmu_tx_callback_t
, dcb_node
));
347 list_move_tail(&tc
->tc_callbacks
[g
], cb_list
);
349 (void) taskq_dispatch(tx
->tx_commit_cb_taskq
, (task_func_t
*)
350 txg_do_callbacks
, cb_list
, TQ_SLEEP
);
355 txg_sync_thread(dsl_pool_t
*dp
)
357 spa_t
*spa
= dp
->dp_spa
;
358 tx_state_t
*tx
= &dp
->dp_tx
;
360 uint64_t start
, delta
;
362 txg_thread_enter(tx
, &cpr
);
366 uint64_t timer
, timeout
= zfs_txg_timeout
* hz
;
370 * We sync when we're scanning, there's someone waiting
371 * on us, or the quiesce thread has handed off a txg to
372 * us, or we have reached our timeout.
374 timer
= (delta
>= timeout
? 0 : timeout
- delta
);
375 while (!dsl_scan_active(dp
->dp_scan
) &&
376 !tx
->tx_exiting
&& timer
> 0 &&
377 tx
->tx_synced_txg
>= tx
->tx_sync_txg_waiting
&&
378 tx
->tx_quiesced_txg
== 0) {
379 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
380 tx
->tx_synced_txg
, tx
->tx_sync_txg_waiting
, dp
);
381 txg_thread_wait(tx
, &cpr
, &tx
->tx_sync_more_cv
, timer
);
382 delta
= ddi_get_lbolt() - start
;
383 timer
= (delta
> timeout
? 0 : timeout
- delta
);
387 * Wait until the quiesce thread hands off a txg to us,
388 * prompting it to do so if necessary.
390 while (!tx
->tx_exiting
&& tx
->tx_quiesced_txg
== 0) {
391 if (tx
->tx_quiesce_txg_waiting
< tx
->tx_open_txg
+1)
392 tx
->tx_quiesce_txg_waiting
= tx
->tx_open_txg
+1;
393 cv_broadcast(&tx
->tx_quiesce_more_cv
);
394 txg_thread_wait(tx
, &cpr
, &tx
->tx_quiesce_done_cv
, 0);
398 txg_thread_exit(tx
, &cpr
, &tx
->tx_sync_thread
);
401 * Consume the quiesced txg which has been handed off to
402 * us. This may cause the quiescing thread to now be
403 * able to quiesce another txg, so we must signal it.
405 txg
= tx
->tx_quiesced_txg
;
406 tx
->tx_quiesced_txg
= 0;
407 tx
->tx_syncing_txg
= txg
;
408 cv_broadcast(&tx
->tx_quiesce_more_cv
);
410 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
411 txg
, tx
->tx_quiesce_txg_waiting
, tx
->tx_sync_txg_waiting
);
412 mutex_exit(&tx
->tx_sync_lock
);
414 start
= ddi_get_lbolt();
416 delta
= ddi_get_lbolt() - start
;
418 mutex_enter(&tx
->tx_sync_lock
);
419 tx
->tx_synced_txg
= txg
;
420 tx
->tx_syncing_txg
= 0;
421 cv_broadcast(&tx
->tx_sync_done_cv
);
424 * Dispatch commit callbacks to worker threads.
426 txg_dispatch_callbacks(dp
, txg
);
431 txg_quiesce_thread(dsl_pool_t
*dp
)
433 tx_state_t
*tx
= &dp
->dp_tx
;
436 txg_thread_enter(tx
, &cpr
);
442 * We quiesce when there's someone waiting on us.
443 * However, we can only have one txg in "quiescing" or
444 * "quiesced, waiting to sync" state. So we wait until
445 * the "quiesced, waiting to sync" txg has been consumed
446 * by the sync thread.
448 while (!tx
->tx_exiting
&&
449 (tx
->tx_open_txg
>= tx
->tx_quiesce_txg_waiting
||
450 tx
->tx_quiesced_txg
!= 0))
451 txg_thread_wait(tx
, &cpr
, &tx
->tx_quiesce_more_cv
, 0);
454 txg_thread_exit(tx
, &cpr
, &tx
->tx_quiesce_thread
);
456 txg
= tx
->tx_open_txg
;
457 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
458 txg
, tx
->tx_quiesce_txg_waiting
,
459 tx
->tx_sync_txg_waiting
);
460 mutex_exit(&tx
->tx_sync_lock
);
461 txg_quiesce(dp
, txg
);
462 mutex_enter(&tx
->tx_sync_lock
);
465 * Hand this txg off to the sync thread.
467 dprintf("quiesce done, handing off txg %llu\n", txg
);
468 tx
->tx_quiesced_txg
= txg
;
469 cv_broadcast(&tx
->tx_sync_more_cv
);
470 cv_broadcast(&tx
->tx_quiesce_done_cv
);
475 * Delay this thread by 'ticks' if we are still in the open transaction
476 * group and there is already a waiting txg quiesing or quiesced. Abort
477 * the delay if this txg stalls or enters the quiesing state.
480 txg_delay(dsl_pool_t
*dp
, uint64_t txg
, int ticks
)
482 tx_state_t
*tx
= &dp
->dp_tx
;
483 clock_t timeout
= ddi_get_lbolt() + ticks
;
485 /* don't delay if this txg could transition to quiesing immediately */
486 if (tx
->tx_open_txg
> txg
||
487 tx
->tx_syncing_txg
== txg
-1 || tx
->tx_synced_txg
== txg
-1)
490 mutex_enter(&tx
->tx_sync_lock
);
491 if (tx
->tx_open_txg
> txg
|| tx
->tx_synced_txg
== txg
-1) {
492 mutex_exit(&tx
->tx_sync_lock
);
496 while (ddi_get_lbolt() < timeout
&&
497 tx
->tx_syncing_txg
< txg
-1 && !txg_stalled(dp
))
498 (void) cv_timedwait(&tx
->tx_quiesce_more_cv
, &tx
->tx_sync_lock
,
501 mutex_exit(&tx
->tx_sync_lock
);
505 txg_wait_synced(dsl_pool_t
*dp
, uint64_t txg
)
507 tx_state_t
*tx
= &dp
->dp_tx
;
509 mutex_enter(&tx
->tx_sync_lock
);
510 ASSERT(tx
->tx_threads
== 2);
512 txg
= tx
->tx_open_txg
+ TXG_DEFER_SIZE
;
513 if (tx
->tx_sync_txg_waiting
< txg
)
514 tx
->tx_sync_txg_waiting
= txg
;
515 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
516 txg
, tx
->tx_quiesce_txg_waiting
, tx
->tx_sync_txg_waiting
);
517 while (tx
->tx_synced_txg
< txg
) {
518 dprintf("broadcasting sync more "
519 "tx_synced=%llu waiting=%llu dp=%p\n",
520 tx
->tx_synced_txg
, tx
->tx_sync_txg_waiting
, dp
);
521 cv_broadcast(&tx
->tx_sync_more_cv
);
522 cv_wait(&tx
->tx_sync_done_cv
, &tx
->tx_sync_lock
);
524 mutex_exit(&tx
->tx_sync_lock
);
528 txg_wait_open(dsl_pool_t
*dp
, uint64_t txg
)
530 tx_state_t
*tx
= &dp
->dp_tx
;
532 mutex_enter(&tx
->tx_sync_lock
);
533 ASSERT(tx
->tx_threads
== 2);
535 txg
= tx
->tx_open_txg
+ 1;
536 if (tx
->tx_quiesce_txg_waiting
< txg
)
537 tx
->tx_quiesce_txg_waiting
= txg
;
538 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
539 txg
, tx
->tx_quiesce_txg_waiting
, tx
->tx_sync_txg_waiting
);
540 while (tx
->tx_open_txg
< txg
) {
541 cv_broadcast(&tx
->tx_quiesce_more_cv
);
542 cv_wait(&tx
->tx_quiesce_done_cv
, &tx
->tx_sync_lock
);
544 mutex_exit(&tx
->tx_sync_lock
);
548 txg_stalled(dsl_pool_t
*dp
)
550 tx_state_t
*tx
= &dp
->dp_tx
;
551 return (tx
->tx_quiesce_txg_waiting
> tx
->tx_open_txg
);
555 txg_sync_waiting(dsl_pool_t
*dp
)
557 tx_state_t
*tx
= &dp
->dp_tx
;
559 return (tx
->tx_syncing_txg
<= tx
->tx_sync_txg_waiting
||
560 tx
->tx_quiesced_txg
!= 0);
564 * Per-txg object lists.
567 txg_list_create(txg_list_t
*tl
, size_t offset
)
571 mutex_init(&tl
->tl_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
573 tl
->tl_offset
= offset
;
575 for (t
= 0; t
< TXG_SIZE
; t
++)
576 tl
->tl_head
[t
] = NULL
;
580 txg_list_destroy(txg_list_t
*tl
)
584 for (t
= 0; t
< TXG_SIZE
; t
++)
585 ASSERT(txg_list_empty(tl
, t
));
587 mutex_destroy(&tl
->tl_lock
);
591 txg_list_empty(txg_list_t
*tl
, uint64_t txg
)
593 return (tl
->tl_head
[txg
& TXG_MASK
] == NULL
);
597 * Add an entry to the list.
598 * Returns 0 if it's a new entry, 1 if it's already there.
601 txg_list_add(txg_list_t
*tl
, void *p
, uint64_t txg
)
603 int t
= txg
& TXG_MASK
;
604 txg_node_t
*tn
= (txg_node_t
*)((char *)p
+ tl
->tl_offset
);
607 mutex_enter(&tl
->tl_lock
);
608 already_on_list
= tn
->tn_member
[t
];
609 if (!already_on_list
) {
610 tn
->tn_member
[t
] = 1;
611 tn
->tn_next
[t
] = tl
->tl_head
[t
];
614 mutex_exit(&tl
->tl_lock
);
616 return (already_on_list
);
620 * Add an entry to the end of the list (walks list to find end).
621 * Returns 0 if it's a new entry, 1 if it's already there.
624 txg_list_add_tail(txg_list_t
*tl
, void *p
, uint64_t txg
)
626 int t
= txg
& TXG_MASK
;
627 txg_node_t
*tn
= (txg_node_t
*)((char *)p
+ tl
->tl_offset
);
630 mutex_enter(&tl
->tl_lock
);
631 already_on_list
= tn
->tn_member
[t
];
632 if (!already_on_list
) {
635 for (tp
= &tl
->tl_head
[t
]; *tp
!= NULL
; tp
= &(*tp
)->tn_next
[t
])
638 tn
->tn_member
[t
] = 1;
639 tn
->tn_next
[t
] = NULL
;
642 mutex_exit(&tl
->tl_lock
);
644 return (already_on_list
);
648 * Remove the head of the list and return it.
651 txg_list_remove(txg_list_t
*tl
, uint64_t txg
)
653 int t
= txg
& TXG_MASK
;
657 mutex_enter(&tl
->tl_lock
);
658 if ((tn
= tl
->tl_head
[t
]) != NULL
) {
659 p
= (char *)tn
- tl
->tl_offset
;
660 tl
->tl_head
[t
] = tn
->tn_next
[t
];
661 tn
->tn_next
[t
] = NULL
;
662 tn
->tn_member
[t
] = 0;
664 mutex_exit(&tl
->tl_lock
);
670 * Remove a specific item from the list and return it.
673 txg_list_remove_this(txg_list_t
*tl
, void *p
, uint64_t txg
)
675 int t
= txg
& TXG_MASK
;
676 txg_node_t
*tn
, **tp
;
678 mutex_enter(&tl
->tl_lock
);
680 for (tp
= &tl
->tl_head
[t
]; (tn
= *tp
) != NULL
; tp
= &tn
->tn_next
[t
]) {
681 if ((char *)tn
- tl
->tl_offset
== p
) {
682 *tp
= tn
->tn_next
[t
];
683 tn
->tn_next
[t
] = NULL
;
684 tn
->tn_member
[t
] = 0;
685 mutex_exit(&tl
->tl_lock
);
690 mutex_exit(&tl
->tl_lock
);
696 txg_list_member(txg_list_t
*tl
, void *p
, uint64_t txg
)
698 int t
= txg
& TXG_MASK
;
699 txg_node_t
*tn
= (txg_node_t
*)((char *)p
+ tl
->tl_offset
);
701 return (tn
->tn_member
[t
]);
705 * Walk a txg list -- only safe if you know it's not changing.
708 txg_list_head(txg_list_t
*tl
, uint64_t txg
)
710 int t
= txg
& TXG_MASK
;
711 txg_node_t
*tn
= tl
->tl_head
[t
];
713 return (tn
== NULL
? NULL
: (char *)tn
- tl
->tl_offset
);
717 txg_list_next(txg_list_t
*tl
, void *p
, uint64_t txg
)
719 int t
= txg
& TXG_MASK
;
720 txg_node_t
*tn
= (txg_node_t
*)((char *)p
+ tl
->tl_offset
);
724 return (tn
== NULL
? NULL
: (char *)tn
- tl
->tl_offset
);