1949 crash during reguid causes stale config
[unleashed.git] / usr / src / uts / common / fs / zfs / spa_misc.c
blobcc77f1bc1803723dae62f85d47d5160a3a31d59f
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/zio.h>
30 #include <sys/zio_checksum.h>
31 #include <sys/zio_compress.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/zap.h>
35 #include <sys/zil.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/uberblock_impl.h>
39 #include <sys/txg.h>
40 #include <sys/avl.h>
41 #include <sys/unique.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/dsl_prop.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/fs/zfs.h>
47 #include <sys/metaslab_impl.h>
48 #include <sys/arc.h>
49 #include <sys/ddt.h>
50 #include "zfs_prop.h"
53 * SPA locking
55 * There are four basic locks for managing spa_t structures:
57 * spa_namespace_lock (global mutex)
59 * This lock must be acquired to do any of the following:
61 * - Lookup a spa_t by name
62 * - Add or remove a spa_t from the namespace
63 * - Increase spa_refcount from non-zero
64 * - Check if spa_refcount is zero
65 * - Rename a spa_t
66 * - add/remove/attach/detach devices
67 * - Held for the duration of create/destroy/import/export
69 * It does not need to handle recursion. A create or destroy may
70 * reference objects (files or zvols) in other pools, but by
71 * definition they must have an existing reference, and will never need
72 * to lookup a spa_t by name.
74 * spa_refcount (per-spa refcount_t protected by mutex)
76 * This reference count keep track of any active users of the spa_t. The
77 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
78 * the refcount is never really 'zero' - opening a pool implicitly keeps
79 * some references in the DMU. Internally we check against spa_minref, but
80 * present the image of a zero/non-zero value to consumers.
82 * spa_config_lock[] (per-spa array of rwlocks)
84 * This protects the spa_t from config changes, and must be held in
85 * the following circumstances:
87 * - RW_READER to perform I/O to the spa
88 * - RW_WRITER to change the vdev config
90 * The locking order is fairly straightforward:
92 * spa_namespace_lock -> spa_refcount
94 * The namespace lock must be acquired to increase the refcount from 0
95 * or to check if it is zero.
97 * spa_refcount -> spa_config_lock[]
99 * There must be at least one valid reference on the spa_t to acquire
100 * the config lock.
102 * spa_namespace_lock -> spa_config_lock[]
104 * The namespace lock must always be taken before the config lock.
107 * The spa_namespace_lock can be acquired directly and is globally visible.
109 * The namespace is manipulated using the following functions, all of which
110 * require the spa_namespace_lock to be held.
112 * spa_lookup() Lookup a spa_t by name.
114 * spa_add() Create a new spa_t in the namespace.
116 * spa_remove() Remove a spa_t from the namespace. This also
117 * frees up any memory associated with the spa_t.
119 * spa_next() Returns the next spa_t in the system, or the
120 * first if NULL is passed.
122 * spa_evict_all() Shutdown and remove all spa_t structures in
123 * the system.
125 * spa_guid_exists() Determine whether a pool/device guid exists.
127 * The spa_refcount is manipulated using the following functions:
129 * spa_open_ref() Adds a reference to the given spa_t. Must be
130 * called with spa_namespace_lock held if the
131 * refcount is currently zero.
133 * spa_close() Remove a reference from the spa_t. This will
134 * not free the spa_t or remove it from the
135 * namespace. No locking is required.
137 * spa_refcount_zero() Returns true if the refcount is currently
138 * zero. Must be called with spa_namespace_lock
139 * held.
141 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
142 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
143 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
145 * To read the configuration, it suffices to hold one of these locks as reader.
146 * To modify the configuration, you must hold all locks as writer. To modify
147 * vdev state without altering the vdev tree's topology (e.g. online/offline),
148 * you must hold SCL_STATE and SCL_ZIO as writer.
150 * We use these distinct config locks to avoid recursive lock entry.
151 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
152 * block allocations (SCL_ALLOC), which may require reading space maps
153 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
155 * The spa config locks cannot be normal rwlocks because we need the
156 * ability to hand off ownership. For example, SCL_ZIO is acquired
157 * by the issuing thread and later released by an interrupt thread.
158 * They do, however, obey the usual write-wanted semantics to prevent
159 * writer (i.e. system administrator) starvation.
161 * The lock acquisition rules are as follows:
163 * SCL_CONFIG
164 * Protects changes to the vdev tree topology, such as vdev
165 * add/remove/attach/detach. Protects the dirty config list
166 * (spa_config_dirty_list) and the set of spares and l2arc devices.
168 * SCL_STATE
169 * Protects changes to pool state and vdev state, such as vdev
170 * online/offline/fault/degrade/clear. Protects the dirty state list
171 * (spa_state_dirty_list) and global pool state (spa_state).
173 * SCL_ALLOC
174 * Protects changes to metaslab groups and classes.
175 * Held as reader by metaslab_alloc() and metaslab_claim().
177 * SCL_ZIO
178 * Held by bp-level zios (those which have no io_vd upon entry)
179 * to prevent changes to the vdev tree. The bp-level zio implicitly
180 * protects all of its vdev child zios, which do not hold SCL_ZIO.
182 * SCL_FREE
183 * Protects changes to metaslab groups and classes.
184 * Held as reader by metaslab_free(). SCL_FREE is distinct from
185 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
186 * blocks in zio_done() while another i/o that holds either
187 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
189 * SCL_VDEV
190 * Held as reader to prevent changes to the vdev tree during trivial
191 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
192 * other locks, and lower than all of them, to ensure that it's safe
193 * to acquire regardless of caller context.
195 * In addition, the following rules apply:
197 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
198 * The lock ordering is SCL_CONFIG > spa_props_lock.
200 * (b) I/O operations on leaf vdevs. For any zio operation that takes
201 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
202 * or zio_write_phys() -- the caller must ensure that the config cannot
203 * cannot change in the interim, and that the vdev cannot be reopened.
204 * SCL_STATE as reader suffices for both.
206 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
208 * spa_vdev_enter() Acquire the namespace lock and the config lock
209 * for writing.
211 * spa_vdev_exit() Release the config lock, wait for all I/O
212 * to complete, sync the updated configs to the
213 * cache, and release the namespace lock.
215 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
216 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
217 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
219 * spa_rename() is also implemented within this file since is requires
220 * manipulation of the namespace.
223 static avl_tree_t spa_namespace_avl;
224 kmutex_t spa_namespace_lock;
225 static kcondvar_t spa_namespace_cv;
226 static int spa_active_count;
227 int spa_max_replication_override = SPA_DVAS_PER_BP;
229 static kmutex_t spa_spare_lock;
230 static avl_tree_t spa_spare_avl;
231 static kmutex_t spa_l2cache_lock;
232 static avl_tree_t spa_l2cache_avl;
234 kmem_cache_t *spa_buffer_pool;
235 int spa_mode_global;
237 #ifdef ZFS_DEBUG
238 /* Everything except dprintf is on by default in debug builds */
239 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
240 #else
241 int zfs_flags = 0;
242 #endif
245 * zfs_recover can be set to nonzero to attempt to recover from
246 * otherwise-fatal errors, typically caused by on-disk corruption. When
247 * set, calls to zfs_panic_recover() will turn into warning messages.
249 int zfs_recover = 0;
253 * ==========================================================================
254 * SPA config locking
255 * ==========================================================================
257 static void
258 spa_config_lock_init(spa_t *spa)
260 for (int i = 0; i < SCL_LOCKS; i++) {
261 spa_config_lock_t *scl = &spa->spa_config_lock[i];
262 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
263 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
264 refcount_create(&scl->scl_count);
265 scl->scl_writer = NULL;
266 scl->scl_write_wanted = 0;
270 static void
271 spa_config_lock_destroy(spa_t *spa)
273 for (int i = 0; i < SCL_LOCKS; i++) {
274 spa_config_lock_t *scl = &spa->spa_config_lock[i];
275 mutex_destroy(&scl->scl_lock);
276 cv_destroy(&scl->scl_cv);
277 refcount_destroy(&scl->scl_count);
278 ASSERT(scl->scl_writer == NULL);
279 ASSERT(scl->scl_write_wanted == 0);
284 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
286 for (int i = 0; i < SCL_LOCKS; i++) {
287 spa_config_lock_t *scl = &spa->spa_config_lock[i];
288 if (!(locks & (1 << i)))
289 continue;
290 mutex_enter(&scl->scl_lock);
291 if (rw == RW_READER) {
292 if (scl->scl_writer || scl->scl_write_wanted) {
293 mutex_exit(&scl->scl_lock);
294 spa_config_exit(spa, locks ^ (1 << i), tag);
295 return (0);
297 } else {
298 ASSERT(scl->scl_writer != curthread);
299 if (!refcount_is_zero(&scl->scl_count)) {
300 mutex_exit(&scl->scl_lock);
301 spa_config_exit(spa, locks ^ (1 << i), tag);
302 return (0);
304 scl->scl_writer = curthread;
306 (void) refcount_add(&scl->scl_count, tag);
307 mutex_exit(&scl->scl_lock);
309 return (1);
312 void
313 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
315 int wlocks_held = 0;
317 for (int i = 0; i < SCL_LOCKS; i++) {
318 spa_config_lock_t *scl = &spa->spa_config_lock[i];
319 if (scl->scl_writer == curthread)
320 wlocks_held |= (1 << i);
321 if (!(locks & (1 << i)))
322 continue;
323 mutex_enter(&scl->scl_lock);
324 if (rw == RW_READER) {
325 while (scl->scl_writer || scl->scl_write_wanted) {
326 cv_wait(&scl->scl_cv, &scl->scl_lock);
328 } else {
329 ASSERT(scl->scl_writer != curthread);
330 while (!refcount_is_zero(&scl->scl_count)) {
331 scl->scl_write_wanted++;
332 cv_wait(&scl->scl_cv, &scl->scl_lock);
333 scl->scl_write_wanted--;
335 scl->scl_writer = curthread;
337 (void) refcount_add(&scl->scl_count, tag);
338 mutex_exit(&scl->scl_lock);
340 ASSERT(wlocks_held <= locks);
343 void
344 spa_config_exit(spa_t *spa, int locks, void *tag)
346 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
347 spa_config_lock_t *scl = &spa->spa_config_lock[i];
348 if (!(locks & (1 << i)))
349 continue;
350 mutex_enter(&scl->scl_lock);
351 ASSERT(!refcount_is_zero(&scl->scl_count));
352 if (refcount_remove(&scl->scl_count, tag) == 0) {
353 ASSERT(scl->scl_writer == NULL ||
354 scl->scl_writer == curthread);
355 scl->scl_writer = NULL; /* OK in either case */
356 cv_broadcast(&scl->scl_cv);
358 mutex_exit(&scl->scl_lock);
363 spa_config_held(spa_t *spa, int locks, krw_t rw)
365 int locks_held = 0;
367 for (int i = 0; i < SCL_LOCKS; i++) {
368 spa_config_lock_t *scl = &spa->spa_config_lock[i];
369 if (!(locks & (1 << i)))
370 continue;
371 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
372 (rw == RW_WRITER && scl->scl_writer == curthread))
373 locks_held |= 1 << i;
376 return (locks_held);
380 * ==========================================================================
381 * SPA namespace functions
382 * ==========================================================================
386 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
387 * Returns NULL if no matching spa_t is found.
389 spa_t *
390 spa_lookup(const char *name)
392 static spa_t search; /* spa_t is large; don't allocate on stack */
393 spa_t *spa;
394 avl_index_t where;
395 char c;
396 char *cp;
398 ASSERT(MUTEX_HELD(&spa_namespace_lock));
401 * If it's a full dataset name, figure out the pool name and
402 * just use that.
404 cp = strpbrk(name, "/@");
405 if (cp) {
406 c = *cp;
407 *cp = '\0';
410 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
411 spa = avl_find(&spa_namespace_avl, &search, &where);
413 if (cp)
414 *cp = c;
416 return (spa);
420 * Create an uninitialized spa_t with the given name. Requires
421 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
422 * exist by calling spa_lookup() first.
424 spa_t *
425 spa_add(const char *name, nvlist_t *config, const char *altroot)
427 spa_t *spa;
428 spa_config_dirent_t *dp;
430 ASSERT(MUTEX_HELD(&spa_namespace_lock));
432 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
434 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
435 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
436 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
437 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
438 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
439 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
440 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
441 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
442 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
444 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
445 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
446 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
447 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
449 for (int t = 0; t < TXG_SIZE; t++)
450 bplist_create(&spa->spa_free_bplist[t]);
452 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
453 spa->spa_state = POOL_STATE_UNINITIALIZED;
454 spa->spa_freeze_txg = UINT64_MAX;
455 spa->spa_final_txg = UINT64_MAX;
456 spa->spa_load_max_txg = UINT64_MAX;
457 spa->spa_proc = &p0;
458 spa->spa_proc_state = SPA_PROC_NONE;
460 refcount_create(&spa->spa_refcount);
461 spa_config_lock_init(spa);
463 avl_add(&spa_namespace_avl, spa);
466 * Set the alternate root, if there is one.
468 if (altroot) {
469 spa->spa_root = spa_strdup(altroot);
470 spa_active_count++;
474 * Every pool starts with the default cachefile
476 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
477 offsetof(spa_config_dirent_t, scd_link));
479 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
480 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
481 list_insert_head(&spa->spa_config_list, dp);
483 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
484 KM_SLEEP) == 0);
486 if (config != NULL)
487 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
489 return (spa);
493 * Removes a spa_t from the namespace, freeing up any memory used. Requires
494 * spa_namespace_lock. This is called only after the spa_t has been closed and
495 * deactivated.
497 void
498 spa_remove(spa_t *spa)
500 spa_config_dirent_t *dp;
502 ASSERT(MUTEX_HELD(&spa_namespace_lock));
503 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
505 nvlist_free(spa->spa_config_splitting);
507 avl_remove(&spa_namespace_avl, spa);
508 cv_broadcast(&spa_namespace_cv);
510 if (spa->spa_root) {
511 spa_strfree(spa->spa_root);
512 spa_active_count--;
515 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
516 list_remove(&spa->spa_config_list, dp);
517 if (dp->scd_path != NULL)
518 spa_strfree(dp->scd_path);
519 kmem_free(dp, sizeof (spa_config_dirent_t));
522 list_destroy(&spa->spa_config_list);
524 nvlist_free(spa->spa_load_info);
525 spa_config_set(spa, NULL);
527 refcount_destroy(&spa->spa_refcount);
529 spa_config_lock_destroy(spa);
531 for (int t = 0; t < TXG_SIZE; t++)
532 bplist_destroy(&spa->spa_free_bplist[t]);
534 cv_destroy(&spa->spa_async_cv);
535 cv_destroy(&spa->spa_proc_cv);
536 cv_destroy(&spa->spa_scrub_io_cv);
537 cv_destroy(&spa->spa_suspend_cv);
539 mutex_destroy(&spa->spa_async_lock);
540 mutex_destroy(&spa->spa_errlist_lock);
541 mutex_destroy(&spa->spa_errlog_lock);
542 mutex_destroy(&spa->spa_history_lock);
543 mutex_destroy(&spa->spa_proc_lock);
544 mutex_destroy(&spa->spa_props_lock);
545 mutex_destroy(&spa->spa_scrub_lock);
546 mutex_destroy(&spa->spa_suspend_lock);
547 mutex_destroy(&spa->spa_vdev_top_lock);
549 kmem_free(spa, sizeof (spa_t));
553 * Given a pool, return the next pool in the namespace, or NULL if there is
554 * none. If 'prev' is NULL, return the first pool.
556 spa_t *
557 spa_next(spa_t *prev)
559 ASSERT(MUTEX_HELD(&spa_namespace_lock));
561 if (prev)
562 return (AVL_NEXT(&spa_namespace_avl, prev));
563 else
564 return (avl_first(&spa_namespace_avl));
568 * ==========================================================================
569 * SPA refcount functions
570 * ==========================================================================
574 * Add a reference to the given spa_t. Must have at least one reference, or
575 * have the namespace lock held.
577 void
578 spa_open_ref(spa_t *spa, void *tag)
580 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
581 MUTEX_HELD(&spa_namespace_lock));
582 (void) refcount_add(&spa->spa_refcount, tag);
586 * Remove a reference to the given spa_t. Must have at least one reference, or
587 * have the namespace lock held.
589 void
590 spa_close(spa_t *spa, void *tag)
592 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
593 MUTEX_HELD(&spa_namespace_lock));
594 (void) refcount_remove(&spa->spa_refcount, tag);
598 * Check to see if the spa refcount is zero. Must be called with
599 * spa_namespace_lock held. We really compare against spa_minref, which is the
600 * number of references acquired when opening a pool
602 boolean_t
603 spa_refcount_zero(spa_t *spa)
605 ASSERT(MUTEX_HELD(&spa_namespace_lock));
607 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
611 * ==========================================================================
612 * SPA spare and l2cache tracking
613 * ==========================================================================
617 * Hot spares and cache devices are tracked using the same code below,
618 * for 'auxiliary' devices.
621 typedef struct spa_aux {
622 uint64_t aux_guid;
623 uint64_t aux_pool;
624 avl_node_t aux_avl;
625 int aux_count;
626 } spa_aux_t;
628 static int
629 spa_aux_compare(const void *a, const void *b)
631 const spa_aux_t *sa = a;
632 const spa_aux_t *sb = b;
634 if (sa->aux_guid < sb->aux_guid)
635 return (-1);
636 else if (sa->aux_guid > sb->aux_guid)
637 return (1);
638 else
639 return (0);
642 void
643 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
645 avl_index_t where;
646 spa_aux_t search;
647 spa_aux_t *aux;
649 search.aux_guid = vd->vdev_guid;
650 if ((aux = avl_find(avl, &search, &where)) != NULL) {
651 aux->aux_count++;
652 } else {
653 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
654 aux->aux_guid = vd->vdev_guid;
655 aux->aux_count = 1;
656 avl_insert(avl, aux, where);
660 void
661 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
663 spa_aux_t search;
664 spa_aux_t *aux;
665 avl_index_t where;
667 search.aux_guid = vd->vdev_guid;
668 aux = avl_find(avl, &search, &where);
670 ASSERT(aux != NULL);
672 if (--aux->aux_count == 0) {
673 avl_remove(avl, aux);
674 kmem_free(aux, sizeof (spa_aux_t));
675 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
676 aux->aux_pool = 0ULL;
680 boolean_t
681 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
683 spa_aux_t search, *found;
685 search.aux_guid = guid;
686 found = avl_find(avl, &search, NULL);
688 if (pool) {
689 if (found)
690 *pool = found->aux_pool;
691 else
692 *pool = 0ULL;
695 if (refcnt) {
696 if (found)
697 *refcnt = found->aux_count;
698 else
699 *refcnt = 0;
702 return (found != NULL);
705 void
706 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
708 spa_aux_t search, *found;
709 avl_index_t where;
711 search.aux_guid = vd->vdev_guid;
712 found = avl_find(avl, &search, &where);
713 ASSERT(found != NULL);
714 ASSERT(found->aux_pool == 0ULL);
716 found->aux_pool = spa_guid(vd->vdev_spa);
720 * Spares are tracked globally due to the following constraints:
722 * - A spare may be part of multiple pools.
723 * - A spare may be added to a pool even if it's actively in use within
724 * another pool.
725 * - A spare in use in any pool can only be the source of a replacement if
726 * the target is a spare in the same pool.
728 * We keep track of all spares on the system through the use of a reference
729 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
730 * spare, then we bump the reference count in the AVL tree. In addition, we set
731 * the 'vdev_isspare' member to indicate that the device is a spare (active or
732 * inactive). When a spare is made active (used to replace a device in the
733 * pool), we also keep track of which pool its been made a part of.
735 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
736 * called under the spa_namespace lock as part of vdev reconfiguration. The
737 * separate spare lock exists for the status query path, which does not need to
738 * be completely consistent with respect to other vdev configuration changes.
741 static int
742 spa_spare_compare(const void *a, const void *b)
744 return (spa_aux_compare(a, b));
747 void
748 spa_spare_add(vdev_t *vd)
750 mutex_enter(&spa_spare_lock);
751 ASSERT(!vd->vdev_isspare);
752 spa_aux_add(vd, &spa_spare_avl);
753 vd->vdev_isspare = B_TRUE;
754 mutex_exit(&spa_spare_lock);
757 void
758 spa_spare_remove(vdev_t *vd)
760 mutex_enter(&spa_spare_lock);
761 ASSERT(vd->vdev_isspare);
762 spa_aux_remove(vd, &spa_spare_avl);
763 vd->vdev_isspare = B_FALSE;
764 mutex_exit(&spa_spare_lock);
767 boolean_t
768 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
770 boolean_t found;
772 mutex_enter(&spa_spare_lock);
773 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
774 mutex_exit(&spa_spare_lock);
776 return (found);
779 void
780 spa_spare_activate(vdev_t *vd)
782 mutex_enter(&spa_spare_lock);
783 ASSERT(vd->vdev_isspare);
784 spa_aux_activate(vd, &spa_spare_avl);
785 mutex_exit(&spa_spare_lock);
789 * Level 2 ARC devices are tracked globally for the same reasons as spares.
790 * Cache devices currently only support one pool per cache device, and so
791 * for these devices the aux reference count is currently unused beyond 1.
794 static int
795 spa_l2cache_compare(const void *a, const void *b)
797 return (spa_aux_compare(a, b));
800 void
801 spa_l2cache_add(vdev_t *vd)
803 mutex_enter(&spa_l2cache_lock);
804 ASSERT(!vd->vdev_isl2cache);
805 spa_aux_add(vd, &spa_l2cache_avl);
806 vd->vdev_isl2cache = B_TRUE;
807 mutex_exit(&spa_l2cache_lock);
810 void
811 spa_l2cache_remove(vdev_t *vd)
813 mutex_enter(&spa_l2cache_lock);
814 ASSERT(vd->vdev_isl2cache);
815 spa_aux_remove(vd, &spa_l2cache_avl);
816 vd->vdev_isl2cache = B_FALSE;
817 mutex_exit(&spa_l2cache_lock);
820 boolean_t
821 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
823 boolean_t found;
825 mutex_enter(&spa_l2cache_lock);
826 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
827 mutex_exit(&spa_l2cache_lock);
829 return (found);
832 void
833 spa_l2cache_activate(vdev_t *vd)
835 mutex_enter(&spa_l2cache_lock);
836 ASSERT(vd->vdev_isl2cache);
837 spa_aux_activate(vd, &spa_l2cache_avl);
838 mutex_exit(&spa_l2cache_lock);
842 * ==========================================================================
843 * SPA vdev locking
844 * ==========================================================================
848 * Lock the given spa_t for the purpose of adding or removing a vdev.
849 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
850 * It returns the next transaction group for the spa_t.
852 uint64_t
853 spa_vdev_enter(spa_t *spa)
855 mutex_enter(&spa->spa_vdev_top_lock);
856 mutex_enter(&spa_namespace_lock);
857 return (spa_vdev_config_enter(spa));
861 * Internal implementation for spa_vdev_enter(). Used when a vdev
862 * operation requires multiple syncs (i.e. removing a device) while
863 * keeping the spa_namespace_lock held.
865 uint64_t
866 spa_vdev_config_enter(spa_t *spa)
868 ASSERT(MUTEX_HELD(&spa_namespace_lock));
870 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
872 return (spa_last_synced_txg(spa) + 1);
876 * Used in combination with spa_vdev_config_enter() to allow the syncing
877 * of multiple transactions without releasing the spa_namespace_lock.
879 void
880 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
882 ASSERT(MUTEX_HELD(&spa_namespace_lock));
884 int config_changed = B_FALSE;
886 ASSERT(txg > spa_last_synced_txg(spa));
888 spa->spa_pending_vdev = NULL;
891 * Reassess the DTLs.
893 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
895 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
896 config_changed = B_TRUE;
897 spa->spa_config_generation++;
901 * Verify the metaslab classes.
903 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
904 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
906 spa_config_exit(spa, SCL_ALL, spa);
909 * Panic the system if the specified tag requires it. This
910 * is useful for ensuring that configurations are updated
911 * transactionally.
913 if (zio_injection_enabled)
914 zio_handle_panic_injection(spa, tag, 0);
917 * Note: this txg_wait_synced() is important because it ensures
918 * that there won't be more than one config change per txg.
919 * This allows us to use the txg as the generation number.
921 if (error == 0)
922 txg_wait_synced(spa->spa_dsl_pool, txg);
924 if (vd != NULL) {
925 ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
926 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
927 vdev_free(vd);
928 spa_config_exit(spa, SCL_ALL, spa);
932 * If the config changed, update the config cache.
934 if (config_changed)
935 spa_config_sync(spa, B_FALSE, B_TRUE);
939 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
940 * locking of spa_vdev_enter(), we also want make sure the transactions have
941 * synced to disk, and then update the global configuration cache with the new
942 * information.
945 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
947 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
948 mutex_exit(&spa_namespace_lock);
949 mutex_exit(&spa->spa_vdev_top_lock);
951 return (error);
955 * Lock the given spa_t for the purpose of changing vdev state.
957 void
958 spa_vdev_state_enter(spa_t *spa, int oplocks)
960 int locks = SCL_STATE_ALL | oplocks;
963 * Root pools may need to read of the underlying devfs filesystem
964 * when opening up a vdev. Unfortunately if we're holding the
965 * SCL_ZIO lock it will result in a deadlock when we try to issue
966 * the read from the root filesystem. Instead we "prefetch"
967 * the associated vnodes that we need prior to opening the
968 * underlying devices and cache them so that we can prevent
969 * any I/O when we are doing the actual open.
971 if (spa_is_root(spa)) {
972 int low = locks & ~(SCL_ZIO - 1);
973 int high = locks & ~low;
975 spa_config_enter(spa, high, spa, RW_WRITER);
976 vdev_hold(spa->spa_root_vdev);
977 spa_config_enter(spa, low, spa, RW_WRITER);
978 } else {
979 spa_config_enter(spa, locks, spa, RW_WRITER);
981 spa->spa_vdev_locks = locks;
985 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
987 boolean_t config_changed = B_FALSE;
989 if (vd != NULL || error == 0)
990 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
991 0, 0, B_FALSE);
993 if (vd != NULL) {
994 vdev_state_dirty(vd->vdev_top);
995 config_changed = B_TRUE;
996 spa->spa_config_generation++;
999 if (spa_is_root(spa))
1000 vdev_rele(spa->spa_root_vdev);
1002 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1003 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1006 * If anything changed, wait for it to sync. This ensures that,
1007 * from the system administrator's perspective, zpool(1M) commands
1008 * are synchronous. This is important for things like zpool offline:
1009 * when the command completes, you expect no further I/O from ZFS.
1011 if (vd != NULL)
1012 txg_wait_synced(spa->spa_dsl_pool, 0);
1015 * If the config changed, update the config cache.
1017 if (config_changed) {
1018 mutex_enter(&spa_namespace_lock);
1019 spa_config_sync(spa, B_FALSE, B_TRUE);
1020 mutex_exit(&spa_namespace_lock);
1023 return (error);
1027 * ==========================================================================
1028 * Miscellaneous functions
1029 * ==========================================================================
1033 * Rename a spa_t.
1036 spa_rename(const char *name, const char *newname)
1038 spa_t *spa;
1039 int err;
1042 * Lookup the spa_t and grab the config lock for writing. We need to
1043 * actually open the pool so that we can sync out the necessary labels.
1044 * It's OK to call spa_open() with the namespace lock held because we
1045 * allow recursive calls for other reasons.
1047 mutex_enter(&spa_namespace_lock);
1048 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1049 mutex_exit(&spa_namespace_lock);
1050 return (err);
1053 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1055 avl_remove(&spa_namespace_avl, spa);
1056 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1057 avl_add(&spa_namespace_avl, spa);
1060 * Sync all labels to disk with the new names by marking the root vdev
1061 * dirty and waiting for it to sync. It will pick up the new pool name
1062 * during the sync.
1064 vdev_config_dirty(spa->spa_root_vdev);
1066 spa_config_exit(spa, SCL_ALL, FTAG);
1068 txg_wait_synced(spa->spa_dsl_pool, 0);
1071 * Sync the updated config cache.
1073 spa_config_sync(spa, B_FALSE, B_TRUE);
1075 spa_close(spa, FTAG);
1077 mutex_exit(&spa_namespace_lock);
1079 return (0);
1083 * Return the spa_t associated with given pool_guid, if it exists. If
1084 * device_guid is non-zero, determine whether the pool exists *and* contains
1085 * a device with the specified device_guid.
1087 spa_t *
1088 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1090 spa_t *spa;
1091 avl_tree_t *t = &spa_namespace_avl;
1093 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1095 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1096 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1097 continue;
1098 if (spa->spa_root_vdev == NULL)
1099 continue;
1100 if (spa_guid(spa) == pool_guid) {
1101 if (device_guid == 0)
1102 break;
1104 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1105 device_guid) != NULL)
1106 break;
1109 * Check any devices we may be in the process of adding.
1111 if (spa->spa_pending_vdev) {
1112 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1113 device_guid) != NULL)
1114 break;
1119 return (spa);
1123 * Determine whether a pool with the given pool_guid exists.
1125 boolean_t
1126 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1128 return (spa_by_guid(pool_guid, device_guid) != NULL);
1131 char *
1132 spa_strdup(const char *s)
1134 size_t len;
1135 char *new;
1137 len = strlen(s);
1138 new = kmem_alloc(len + 1, KM_SLEEP);
1139 bcopy(s, new, len);
1140 new[len] = '\0';
1142 return (new);
1145 void
1146 spa_strfree(char *s)
1148 kmem_free(s, strlen(s) + 1);
1151 uint64_t
1152 spa_get_random(uint64_t range)
1154 uint64_t r;
1156 ASSERT(range != 0);
1158 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1160 return (r % range);
1163 uint64_t
1164 spa_generate_guid(spa_t *spa)
1166 uint64_t guid = spa_get_random(-1ULL);
1168 if (spa != NULL) {
1169 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1170 guid = spa_get_random(-1ULL);
1171 } else {
1172 while (guid == 0 || spa_guid_exists(guid, 0))
1173 guid = spa_get_random(-1ULL);
1176 return (guid);
1179 void
1180 sprintf_blkptr(char *buf, const blkptr_t *bp)
1182 char *type = NULL;
1183 char *checksum = NULL;
1184 char *compress = NULL;
1186 if (bp != NULL) {
1187 type = dmu_ot[BP_GET_TYPE(bp)].ot_name;
1188 checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1189 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1192 SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1195 void
1196 spa_freeze(spa_t *spa)
1198 uint64_t freeze_txg = 0;
1200 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1201 if (spa->spa_freeze_txg == UINT64_MAX) {
1202 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1203 spa->spa_freeze_txg = freeze_txg;
1205 spa_config_exit(spa, SCL_ALL, FTAG);
1206 if (freeze_txg != 0)
1207 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1210 void
1211 zfs_panic_recover(const char *fmt, ...)
1213 va_list adx;
1215 va_start(adx, fmt);
1216 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1217 va_end(adx);
1221 * This is a stripped-down version of strtoull, suitable only for converting
1222 * lowercase hexidecimal numbers that don't overflow.
1224 uint64_t
1225 strtonum(const char *str, char **nptr)
1227 uint64_t val = 0;
1228 char c;
1229 int digit;
1231 while ((c = *str) != '\0') {
1232 if (c >= '0' && c <= '9')
1233 digit = c - '0';
1234 else if (c >= 'a' && c <= 'f')
1235 digit = 10 + c - 'a';
1236 else
1237 break;
1239 val *= 16;
1240 val += digit;
1242 str++;
1245 if (nptr)
1246 *nptr = (char *)str;
1248 return (val);
1252 * ==========================================================================
1253 * Accessor functions
1254 * ==========================================================================
1257 boolean_t
1258 spa_shutting_down(spa_t *spa)
1260 return (spa->spa_async_suspended);
1263 dsl_pool_t *
1264 spa_get_dsl(spa_t *spa)
1266 return (spa->spa_dsl_pool);
1269 blkptr_t *
1270 spa_get_rootblkptr(spa_t *spa)
1272 return (&spa->spa_ubsync.ub_rootbp);
1275 void
1276 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1278 spa->spa_uberblock.ub_rootbp = *bp;
1281 void
1282 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1284 if (spa->spa_root == NULL)
1285 buf[0] = '\0';
1286 else
1287 (void) strncpy(buf, spa->spa_root, buflen);
1291 spa_sync_pass(spa_t *spa)
1293 return (spa->spa_sync_pass);
1296 char *
1297 spa_name(spa_t *spa)
1299 return (spa->spa_name);
1302 uint64_t
1303 spa_guid(spa_t *spa)
1306 * If we fail to parse the config during spa_load(), we can go through
1307 * the error path (which posts an ereport) and end up here with no root
1308 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1309 * this case.
1311 if (spa->spa_root_vdev != NULL)
1312 return (spa->spa_root_vdev->vdev_guid);
1313 else
1314 return (spa->spa_config_guid);
1317 uint64_t
1318 spa_load_guid(spa_t *spa)
1321 * This is a GUID that exists solely as a reference for the
1322 * purposes of the arc. It is generated at load time, and
1323 * is never written to persistent storage.
1325 return (spa->spa_load_guid);
1328 uint64_t
1329 spa_last_synced_txg(spa_t *spa)
1331 return (spa->spa_ubsync.ub_txg);
1334 uint64_t
1335 spa_first_txg(spa_t *spa)
1337 return (spa->spa_first_txg);
1340 uint64_t
1341 spa_syncing_txg(spa_t *spa)
1343 return (spa->spa_syncing_txg);
1346 pool_state_t
1347 spa_state(spa_t *spa)
1349 return (spa->spa_state);
1352 spa_load_state_t
1353 spa_load_state(spa_t *spa)
1355 return (spa->spa_load_state);
1358 uint64_t
1359 spa_freeze_txg(spa_t *spa)
1361 return (spa->spa_freeze_txg);
1364 /* ARGSUSED */
1365 uint64_t
1366 spa_get_asize(spa_t *spa, uint64_t lsize)
1369 * The worst case is single-sector max-parity RAID-Z blocks, in which
1370 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
1371 * times the size; so just assume that. Add to this the fact that
1372 * we can have up to 3 DVAs per bp, and one more factor of 2 because
1373 * the block may be dittoed with up to 3 DVAs by ddt_sync().
1375 return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2);
1378 uint64_t
1379 spa_get_dspace(spa_t *spa)
1381 return (spa->spa_dspace);
1384 void
1385 spa_update_dspace(spa_t *spa)
1387 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1388 ddt_get_dedup_dspace(spa);
1392 * Return the failure mode that has been set to this pool. The default
1393 * behavior will be to block all I/Os when a complete failure occurs.
1395 uint8_t
1396 spa_get_failmode(spa_t *spa)
1398 return (spa->spa_failmode);
1401 boolean_t
1402 spa_suspended(spa_t *spa)
1404 return (spa->spa_suspended);
1407 uint64_t
1408 spa_version(spa_t *spa)
1410 return (spa->spa_ubsync.ub_version);
1413 boolean_t
1414 spa_deflate(spa_t *spa)
1416 return (spa->spa_deflate);
1419 metaslab_class_t *
1420 spa_normal_class(spa_t *spa)
1422 return (spa->spa_normal_class);
1425 metaslab_class_t *
1426 spa_log_class(spa_t *spa)
1428 return (spa->spa_log_class);
1432 spa_max_replication(spa_t *spa)
1435 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1436 * handle BPs with more than one DVA allocated. Set our max
1437 * replication level accordingly.
1439 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1440 return (1);
1441 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1445 spa_prev_software_version(spa_t *spa)
1447 return (spa->spa_prev_software_version);
1450 uint64_t
1451 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1453 uint64_t asize = DVA_GET_ASIZE(dva);
1454 uint64_t dsize = asize;
1456 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1458 if (asize != 0 && spa->spa_deflate) {
1459 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1460 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1463 return (dsize);
1466 uint64_t
1467 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1469 uint64_t dsize = 0;
1471 for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1472 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1474 return (dsize);
1477 uint64_t
1478 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1480 uint64_t dsize = 0;
1482 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1484 for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1485 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1487 spa_config_exit(spa, SCL_VDEV, FTAG);
1489 return (dsize);
1493 * ==========================================================================
1494 * Initialization and Termination
1495 * ==========================================================================
1498 static int
1499 spa_name_compare(const void *a1, const void *a2)
1501 const spa_t *s1 = a1;
1502 const spa_t *s2 = a2;
1503 int s;
1505 s = strcmp(s1->spa_name, s2->spa_name);
1506 if (s > 0)
1507 return (1);
1508 if (s < 0)
1509 return (-1);
1510 return (0);
1514 spa_busy(void)
1516 return (spa_active_count);
1519 void
1520 spa_boot_init()
1522 spa_config_load();
1525 void
1526 spa_init(int mode)
1528 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1529 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1530 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1531 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1533 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1534 offsetof(spa_t, spa_avl));
1536 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1537 offsetof(spa_aux_t, aux_avl));
1539 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1540 offsetof(spa_aux_t, aux_avl));
1542 spa_mode_global = mode;
1544 refcount_init();
1545 unique_init();
1546 zio_init();
1547 dmu_init();
1548 zil_init();
1549 vdev_cache_stat_init();
1550 zfs_prop_init();
1551 zpool_prop_init();
1552 spa_config_load();
1553 l2arc_start();
1556 void
1557 spa_fini(void)
1559 l2arc_stop();
1561 spa_evict_all();
1563 vdev_cache_stat_fini();
1564 zil_fini();
1565 dmu_fini();
1566 zio_fini();
1567 unique_fini();
1568 refcount_fini();
1570 avl_destroy(&spa_namespace_avl);
1571 avl_destroy(&spa_spare_avl);
1572 avl_destroy(&spa_l2cache_avl);
1574 cv_destroy(&spa_namespace_cv);
1575 mutex_destroy(&spa_namespace_lock);
1576 mutex_destroy(&spa_spare_lock);
1577 mutex_destroy(&spa_l2cache_lock);
1581 * Return whether this pool has slogs. No locking needed.
1582 * It's not a problem if the wrong answer is returned as it's only for
1583 * performance and not correctness
1585 boolean_t
1586 spa_has_slogs(spa_t *spa)
1588 return (spa->spa_log_class->mc_rotor != NULL);
1591 spa_log_state_t
1592 spa_get_log_state(spa_t *spa)
1594 return (spa->spa_log_state);
1597 void
1598 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1600 spa->spa_log_state = state;
1603 boolean_t
1604 spa_is_root(spa_t *spa)
1606 return (spa->spa_is_root);
1609 boolean_t
1610 spa_writeable(spa_t *spa)
1612 return (!!(spa->spa_mode & FWRITE));
1616 spa_mode(spa_t *spa)
1618 return (spa->spa_mode);
1621 uint64_t
1622 spa_bootfs(spa_t *spa)
1624 return (spa->spa_bootfs);
1627 uint64_t
1628 spa_delegation(spa_t *spa)
1630 return (spa->spa_delegation);
1633 objset_t *
1634 spa_meta_objset(spa_t *spa)
1636 return (spa->spa_meta_objset);
1639 enum zio_checksum
1640 spa_dedup_checksum(spa_t *spa)
1642 return (spa->spa_dedup_checksum);
1646 * Reset pool scan stat per scan pass (or reboot).
1648 void
1649 spa_scan_stat_init(spa_t *spa)
1651 /* data not stored on disk */
1652 spa->spa_scan_pass_start = gethrestime_sec();
1653 spa->spa_scan_pass_exam = 0;
1654 vdev_scan_stat_init(spa->spa_root_vdev);
1658 * Get scan stats for zpool status reports
1661 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1663 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1665 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1666 return (ENOENT);
1667 bzero(ps, sizeof (pool_scan_stat_t));
1669 /* data stored on disk */
1670 ps->pss_func = scn->scn_phys.scn_func;
1671 ps->pss_start_time = scn->scn_phys.scn_start_time;
1672 ps->pss_end_time = scn->scn_phys.scn_end_time;
1673 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1674 ps->pss_examined = scn->scn_phys.scn_examined;
1675 ps->pss_to_process = scn->scn_phys.scn_to_process;
1676 ps->pss_processed = scn->scn_phys.scn_processed;
1677 ps->pss_errors = scn->scn_phys.scn_errors;
1678 ps->pss_state = scn->scn_phys.scn_state;
1680 /* data not stored on disk */
1681 ps->pss_pass_start = spa->spa_scan_pass_start;
1682 ps->pss_pass_exam = spa->spa_scan_pass_exam;
1684 return (0);
1687 boolean_t
1688 spa_debug_enabled(spa_t *spa)
1690 return (spa->spa_debug);