1949 crash during reguid causes stale config
[unleashed.git] / usr / src / uts / common / fs / zfs / spa.c
blob7b7754f9e0b79bd6384161ed76e5bb50ab2c0df6
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
29 * This file contains all the routines used when modifying on-disk SPA state.
30 * This includes opening, importing, destroying, exporting a pool, and syncing a
31 * pool.
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/ddt.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/metaslab.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/dmu_objset.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dataset.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_synctask.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/arc.h>
60 #include <sys/callb.h>
61 #include <sys/systeminfo.h>
62 #include <sys/spa_boot.h>
63 #include <sys/zfs_ioctl.h>
64 #include <sys/dsl_scan.h>
66 #ifdef _KERNEL
67 #include <sys/bootprops.h>
68 #include <sys/callb.h>
69 #include <sys/cpupart.h>
70 #include <sys/pool.h>
71 #include <sys/sysdc.h>
72 #include <sys/zone.h>
73 #endif /* _KERNEL */
75 #include "zfs_prop.h"
76 #include "zfs_comutil.h"
78 typedef enum zti_modes {
79 zti_mode_fixed, /* value is # of threads (min 1) */
80 zti_mode_online_percent, /* value is % of online CPUs */
81 zti_mode_batch, /* cpu-intensive; value is ignored */
82 zti_mode_null, /* don't create a taskq */
83 zti_nmodes
84 } zti_modes_t;
86 #define ZTI_FIX(n) { zti_mode_fixed, (n) }
87 #define ZTI_PCT(n) { zti_mode_online_percent, (n) }
88 #define ZTI_BATCH { zti_mode_batch, 0 }
89 #define ZTI_NULL { zti_mode_null, 0 }
91 #define ZTI_ONE ZTI_FIX(1)
93 typedef struct zio_taskq_info {
94 enum zti_modes zti_mode;
95 uint_t zti_value;
96 } zio_taskq_info_t;
98 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
99 "issue", "issue_high", "intr", "intr_high"
103 * Define the taskq threads for the following I/O types:
104 * NULL, READ, WRITE, FREE, CLAIM, and IOCTL
106 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
107 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
108 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL },
109 { ZTI_FIX(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL },
110 { ZTI_BATCH, ZTI_FIX(5), ZTI_FIX(8), ZTI_FIX(5) },
111 { ZTI_FIX(100), ZTI_NULL, ZTI_ONE, ZTI_NULL },
112 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL },
113 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL },
116 static dsl_syncfunc_t spa_sync_props;
117 static boolean_t spa_has_active_shared_spare(spa_t *spa);
118 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
119 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
120 char **ereport);
121 static void spa_vdev_resilver_done(spa_t *spa);
123 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */
124 id_t zio_taskq_psrset_bind = PS_NONE;
125 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
126 uint_t zio_taskq_basedc = 80; /* base duty cycle */
128 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
131 * This (illegal) pool name is used when temporarily importing a spa_t in order
132 * to get the vdev stats associated with the imported devices.
134 #define TRYIMPORT_NAME "$import"
137 * ==========================================================================
138 * SPA properties routines
139 * ==========================================================================
143 * Add a (source=src, propname=propval) list to an nvlist.
145 static void
146 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
147 uint64_t intval, zprop_source_t src)
149 const char *propname = zpool_prop_to_name(prop);
150 nvlist_t *propval;
152 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
153 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
155 if (strval != NULL)
156 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
157 else
158 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
160 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
161 nvlist_free(propval);
165 * Get property values from the spa configuration.
167 static void
168 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
170 vdev_t *rvd = spa->spa_root_vdev;
171 uint64_t size;
172 uint64_t alloc;
173 uint64_t space;
174 uint64_t cap, version;
175 zprop_source_t src = ZPROP_SRC_NONE;
176 spa_config_dirent_t *dp;
178 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
180 if (rvd != NULL) {
181 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
182 size = metaslab_class_get_space(spa_normal_class(spa));
183 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
184 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
185 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
186 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
187 size - alloc, src);
189 space = 0;
190 for (int c = 0; c < rvd->vdev_children; c++) {
191 vdev_t *tvd = rvd->vdev_child[c];
192 space += tvd->vdev_max_asize - tvd->vdev_asize;
194 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
195 src);
197 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
198 (spa_mode(spa) == FREAD), src);
200 cap = (size == 0) ? 0 : (alloc * 100 / size);
201 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
203 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
204 ddt_get_pool_dedup_ratio(spa), src);
206 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
207 rvd->vdev_state, src);
209 version = spa_version(spa);
210 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
211 src = ZPROP_SRC_DEFAULT;
212 else
213 src = ZPROP_SRC_LOCAL;
214 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
217 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
219 if (spa->spa_comment != NULL) {
220 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
221 0, ZPROP_SRC_LOCAL);
224 if (spa->spa_root != NULL)
225 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
226 0, ZPROP_SRC_LOCAL);
228 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
229 if (dp->scd_path == NULL) {
230 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
231 "none", 0, ZPROP_SRC_LOCAL);
232 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
233 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
234 dp->scd_path, 0, ZPROP_SRC_LOCAL);
240 * Get zpool property values.
243 spa_prop_get(spa_t *spa, nvlist_t **nvp)
245 objset_t *mos = spa->spa_meta_objset;
246 zap_cursor_t zc;
247 zap_attribute_t za;
248 int err;
250 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
252 mutex_enter(&spa->spa_props_lock);
255 * Get properties from the spa config.
257 spa_prop_get_config(spa, nvp);
259 /* If no pool property object, no more prop to get. */
260 if (mos == NULL || spa->spa_pool_props_object == 0) {
261 mutex_exit(&spa->spa_props_lock);
262 return (0);
266 * Get properties from the MOS pool property object.
268 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
269 (err = zap_cursor_retrieve(&zc, &za)) == 0;
270 zap_cursor_advance(&zc)) {
271 uint64_t intval = 0;
272 char *strval = NULL;
273 zprop_source_t src = ZPROP_SRC_DEFAULT;
274 zpool_prop_t prop;
276 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
277 continue;
279 switch (za.za_integer_length) {
280 case 8:
281 /* integer property */
282 if (za.za_first_integer !=
283 zpool_prop_default_numeric(prop))
284 src = ZPROP_SRC_LOCAL;
286 if (prop == ZPOOL_PROP_BOOTFS) {
287 dsl_pool_t *dp;
288 dsl_dataset_t *ds = NULL;
290 dp = spa_get_dsl(spa);
291 rw_enter(&dp->dp_config_rwlock, RW_READER);
292 if (err = dsl_dataset_hold_obj(dp,
293 za.za_first_integer, FTAG, &ds)) {
294 rw_exit(&dp->dp_config_rwlock);
295 break;
298 strval = kmem_alloc(
299 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
300 KM_SLEEP);
301 dsl_dataset_name(ds, strval);
302 dsl_dataset_rele(ds, FTAG);
303 rw_exit(&dp->dp_config_rwlock);
304 } else {
305 strval = NULL;
306 intval = za.za_first_integer;
309 spa_prop_add_list(*nvp, prop, strval, intval, src);
311 if (strval != NULL)
312 kmem_free(strval,
313 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
315 break;
317 case 1:
318 /* string property */
319 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
320 err = zap_lookup(mos, spa->spa_pool_props_object,
321 za.za_name, 1, za.za_num_integers, strval);
322 if (err) {
323 kmem_free(strval, za.za_num_integers);
324 break;
326 spa_prop_add_list(*nvp, prop, strval, 0, src);
327 kmem_free(strval, za.za_num_integers);
328 break;
330 default:
331 break;
334 zap_cursor_fini(&zc);
335 mutex_exit(&spa->spa_props_lock);
336 out:
337 if (err && err != ENOENT) {
338 nvlist_free(*nvp);
339 *nvp = NULL;
340 return (err);
343 return (0);
347 * Validate the given pool properties nvlist and modify the list
348 * for the property values to be set.
350 static int
351 spa_prop_validate(spa_t *spa, nvlist_t *props)
353 nvpair_t *elem;
354 int error = 0, reset_bootfs = 0;
355 uint64_t objnum;
357 elem = NULL;
358 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
359 zpool_prop_t prop;
360 char *propname, *strval;
361 uint64_t intval;
362 objset_t *os;
363 char *slash, *check;
365 propname = nvpair_name(elem);
367 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
368 return (EINVAL);
370 switch (prop) {
371 case ZPOOL_PROP_VERSION:
372 error = nvpair_value_uint64(elem, &intval);
373 if (!error &&
374 (intval < spa_version(spa) || intval > SPA_VERSION))
375 error = EINVAL;
376 break;
378 case ZPOOL_PROP_DELEGATION:
379 case ZPOOL_PROP_AUTOREPLACE:
380 case ZPOOL_PROP_LISTSNAPS:
381 case ZPOOL_PROP_AUTOEXPAND:
382 error = nvpair_value_uint64(elem, &intval);
383 if (!error && intval > 1)
384 error = EINVAL;
385 break;
387 case ZPOOL_PROP_BOOTFS:
389 * If the pool version is less than SPA_VERSION_BOOTFS,
390 * or the pool is still being created (version == 0),
391 * the bootfs property cannot be set.
393 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
394 error = ENOTSUP;
395 break;
399 * Make sure the vdev config is bootable
401 if (!vdev_is_bootable(spa->spa_root_vdev)) {
402 error = ENOTSUP;
403 break;
406 reset_bootfs = 1;
408 error = nvpair_value_string(elem, &strval);
410 if (!error) {
411 uint64_t compress;
413 if (strval == NULL || strval[0] == '\0') {
414 objnum = zpool_prop_default_numeric(
415 ZPOOL_PROP_BOOTFS);
416 break;
419 if (error = dmu_objset_hold(strval, FTAG, &os))
420 break;
422 /* Must be ZPL and not gzip compressed. */
424 if (dmu_objset_type(os) != DMU_OST_ZFS) {
425 error = ENOTSUP;
426 } else if ((error = dsl_prop_get_integer(strval,
427 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
428 &compress, NULL)) == 0 &&
429 !BOOTFS_COMPRESS_VALID(compress)) {
430 error = ENOTSUP;
431 } else {
432 objnum = dmu_objset_id(os);
434 dmu_objset_rele(os, FTAG);
436 break;
438 case ZPOOL_PROP_FAILUREMODE:
439 error = nvpair_value_uint64(elem, &intval);
440 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
441 intval > ZIO_FAILURE_MODE_PANIC))
442 error = EINVAL;
445 * This is a special case which only occurs when
446 * the pool has completely failed. This allows
447 * the user to change the in-core failmode property
448 * without syncing it out to disk (I/Os might
449 * currently be blocked). We do this by returning
450 * EIO to the caller (spa_prop_set) to trick it
451 * into thinking we encountered a property validation
452 * error.
454 if (!error && spa_suspended(spa)) {
455 spa->spa_failmode = intval;
456 error = EIO;
458 break;
460 case ZPOOL_PROP_CACHEFILE:
461 if ((error = nvpair_value_string(elem, &strval)) != 0)
462 break;
464 if (strval[0] == '\0')
465 break;
467 if (strcmp(strval, "none") == 0)
468 break;
470 if (strval[0] != '/') {
471 error = EINVAL;
472 break;
475 slash = strrchr(strval, '/');
476 ASSERT(slash != NULL);
478 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
479 strcmp(slash, "/..") == 0)
480 error = EINVAL;
481 break;
483 case ZPOOL_PROP_COMMENT:
484 if ((error = nvpair_value_string(elem, &strval)) != 0)
485 break;
486 for (check = strval; *check != '\0'; check++) {
488 * The kernel doesn't have an easy isprint()
489 * check. For this kernel check, we merely
490 * check ASCII apart from DEL. Fix this if
491 * there is an easy-to-use kernel isprint().
493 if (*check >= 0x7f) {
494 error = EINVAL;
495 break;
497 check++;
499 if (strlen(strval) > ZPROP_MAX_COMMENT)
500 error = E2BIG;
501 break;
503 case ZPOOL_PROP_DEDUPDITTO:
504 if (spa_version(spa) < SPA_VERSION_DEDUP)
505 error = ENOTSUP;
506 else
507 error = nvpair_value_uint64(elem, &intval);
508 if (error == 0 &&
509 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
510 error = EINVAL;
511 break;
514 if (error)
515 break;
518 if (!error && reset_bootfs) {
519 error = nvlist_remove(props,
520 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
522 if (!error) {
523 error = nvlist_add_uint64(props,
524 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
528 return (error);
531 void
532 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
534 char *cachefile;
535 spa_config_dirent_t *dp;
537 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
538 &cachefile) != 0)
539 return;
541 dp = kmem_alloc(sizeof (spa_config_dirent_t),
542 KM_SLEEP);
544 if (cachefile[0] == '\0')
545 dp->scd_path = spa_strdup(spa_config_path);
546 else if (strcmp(cachefile, "none") == 0)
547 dp->scd_path = NULL;
548 else
549 dp->scd_path = spa_strdup(cachefile);
551 list_insert_head(&spa->spa_config_list, dp);
552 if (need_sync)
553 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
557 spa_prop_set(spa_t *spa, nvlist_t *nvp)
559 int error;
560 nvpair_t *elem;
561 boolean_t need_sync = B_FALSE;
562 zpool_prop_t prop;
564 if ((error = spa_prop_validate(spa, nvp)) != 0)
565 return (error);
567 elem = NULL;
568 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
569 if ((prop = zpool_name_to_prop(
570 nvpair_name(elem))) == ZPROP_INVAL)
571 return (EINVAL);
573 if (prop == ZPOOL_PROP_CACHEFILE ||
574 prop == ZPOOL_PROP_ALTROOT ||
575 prop == ZPOOL_PROP_READONLY)
576 continue;
578 need_sync = B_TRUE;
579 break;
582 if (need_sync)
583 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
584 spa, nvp, 3));
585 else
586 return (0);
590 * If the bootfs property value is dsobj, clear it.
592 void
593 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
595 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
596 VERIFY(zap_remove(spa->spa_meta_objset,
597 spa->spa_pool_props_object,
598 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
599 spa->spa_bootfs = 0;
604 * Change the GUID for the pool. This is done so that we can later
605 * re-import a pool built from a clone of our own vdevs. We will modify
606 * the root vdev's guid, our own pool guid, and then mark all of our
607 * vdevs dirty. Note that we must make sure that all our vdevs are
608 * online when we do this, or else any vdevs that weren't present
609 * would be orphaned from our pool. We are also going to issue a
610 * sysevent to update any watchers.
613 spa_change_guid(spa_t *spa)
615 uint64_t oldguid, newguid;
616 uint64_t txg;
618 if (!(spa_mode_global & FWRITE))
619 return (EROFS);
621 txg = spa_vdev_enter(spa);
623 if (spa->spa_root_vdev->vdev_state != VDEV_STATE_HEALTHY)
624 return (spa_vdev_exit(spa, NULL, txg, ENXIO));
626 oldguid = spa_guid(spa);
627 newguid = spa_generate_guid(NULL);
628 ASSERT3U(oldguid, !=, newguid);
630 spa->spa_root_vdev->vdev_guid = newguid;
631 spa->spa_root_vdev->vdev_guid_sum += (newguid - oldguid);
633 vdev_config_dirty(spa->spa_root_vdev);
635 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
637 return (spa_vdev_exit(spa, NULL, txg, 0));
641 * ==========================================================================
642 * SPA state manipulation (open/create/destroy/import/export)
643 * ==========================================================================
646 static int
647 spa_error_entry_compare(const void *a, const void *b)
649 spa_error_entry_t *sa = (spa_error_entry_t *)a;
650 spa_error_entry_t *sb = (spa_error_entry_t *)b;
651 int ret;
653 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
654 sizeof (zbookmark_t));
656 if (ret < 0)
657 return (-1);
658 else if (ret > 0)
659 return (1);
660 else
661 return (0);
665 * Utility function which retrieves copies of the current logs and
666 * re-initializes them in the process.
668 void
669 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
671 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
673 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
674 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
676 avl_create(&spa->spa_errlist_scrub,
677 spa_error_entry_compare, sizeof (spa_error_entry_t),
678 offsetof(spa_error_entry_t, se_avl));
679 avl_create(&spa->spa_errlist_last,
680 spa_error_entry_compare, sizeof (spa_error_entry_t),
681 offsetof(spa_error_entry_t, se_avl));
684 static taskq_t *
685 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
686 uint_t value)
688 uint_t flags = 0;
689 boolean_t batch = B_FALSE;
691 switch (mode) {
692 case zti_mode_null:
693 return (NULL); /* no taskq needed */
695 case zti_mode_fixed:
696 ASSERT3U(value, >=, 1);
697 value = MAX(value, 1);
698 break;
700 case zti_mode_batch:
701 batch = B_TRUE;
702 flags |= TASKQ_THREADS_CPU_PCT;
703 value = zio_taskq_batch_pct;
704 break;
706 case zti_mode_online_percent:
707 flags |= TASKQ_THREADS_CPU_PCT;
708 break;
710 default:
711 panic("unrecognized mode for %s taskq (%u:%u) in "
712 "spa_activate()",
713 name, mode, value);
714 break;
717 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
718 if (batch)
719 flags |= TASKQ_DC_BATCH;
721 return (taskq_create_sysdc(name, value, 50, INT_MAX,
722 spa->spa_proc, zio_taskq_basedc, flags));
724 return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
725 spa->spa_proc, flags));
728 static void
729 spa_create_zio_taskqs(spa_t *spa)
731 for (int t = 0; t < ZIO_TYPES; t++) {
732 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
733 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
734 enum zti_modes mode = ztip->zti_mode;
735 uint_t value = ztip->zti_value;
736 char name[32];
738 (void) snprintf(name, sizeof (name),
739 "%s_%s", zio_type_name[t], zio_taskq_types[q]);
741 spa->spa_zio_taskq[t][q] =
742 spa_taskq_create(spa, name, mode, value);
747 #ifdef _KERNEL
748 static void
749 spa_thread(void *arg)
751 callb_cpr_t cprinfo;
753 spa_t *spa = arg;
754 user_t *pu = PTOU(curproc);
756 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
757 spa->spa_name);
759 ASSERT(curproc != &p0);
760 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
761 "zpool-%s", spa->spa_name);
762 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
764 /* bind this thread to the requested psrset */
765 if (zio_taskq_psrset_bind != PS_NONE) {
766 pool_lock();
767 mutex_enter(&cpu_lock);
768 mutex_enter(&pidlock);
769 mutex_enter(&curproc->p_lock);
771 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
772 0, NULL, NULL) == 0) {
773 curthread->t_bind_pset = zio_taskq_psrset_bind;
774 } else {
775 cmn_err(CE_WARN,
776 "Couldn't bind process for zfs pool \"%s\" to "
777 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
780 mutex_exit(&curproc->p_lock);
781 mutex_exit(&pidlock);
782 mutex_exit(&cpu_lock);
783 pool_unlock();
786 if (zio_taskq_sysdc) {
787 sysdc_thread_enter(curthread, 100, 0);
790 spa->spa_proc = curproc;
791 spa->spa_did = curthread->t_did;
793 spa_create_zio_taskqs(spa);
795 mutex_enter(&spa->spa_proc_lock);
796 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
798 spa->spa_proc_state = SPA_PROC_ACTIVE;
799 cv_broadcast(&spa->spa_proc_cv);
801 CALLB_CPR_SAFE_BEGIN(&cprinfo);
802 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
803 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
804 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
806 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
807 spa->spa_proc_state = SPA_PROC_GONE;
808 spa->spa_proc = &p0;
809 cv_broadcast(&spa->spa_proc_cv);
810 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
812 mutex_enter(&curproc->p_lock);
813 lwp_exit();
815 #endif
818 * Activate an uninitialized pool.
820 static void
821 spa_activate(spa_t *spa, int mode)
823 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
825 spa->spa_state = POOL_STATE_ACTIVE;
826 spa->spa_mode = mode;
828 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
829 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
831 /* Try to create a covering process */
832 mutex_enter(&spa->spa_proc_lock);
833 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
834 ASSERT(spa->spa_proc == &p0);
835 spa->spa_did = 0;
837 /* Only create a process if we're going to be around a while. */
838 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
839 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
840 NULL, 0) == 0) {
841 spa->spa_proc_state = SPA_PROC_CREATED;
842 while (spa->spa_proc_state == SPA_PROC_CREATED) {
843 cv_wait(&spa->spa_proc_cv,
844 &spa->spa_proc_lock);
846 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
847 ASSERT(spa->spa_proc != &p0);
848 ASSERT(spa->spa_did != 0);
849 } else {
850 #ifdef _KERNEL
851 cmn_err(CE_WARN,
852 "Couldn't create process for zfs pool \"%s\"\n",
853 spa->spa_name);
854 #endif
857 mutex_exit(&spa->spa_proc_lock);
859 /* If we didn't create a process, we need to create our taskqs. */
860 if (spa->spa_proc == &p0) {
861 spa_create_zio_taskqs(spa);
864 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
865 offsetof(vdev_t, vdev_config_dirty_node));
866 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
867 offsetof(vdev_t, vdev_state_dirty_node));
869 txg_list_create(&spa->spa_vdev_txg_list,
870 offsetof(struct vdev, vdev_txg_node));
872 avl_create(&spa->spa_errlist_scrub,
873 spa_error_entry_compare, sizeof (spa_error_entry_t),
874 offsetof(spa_error_entry_t, se_avl));
875 avl_create(&spa->spa_errlist_last,
876 spa_error_entry_compare, sizeof (spa_error_entry_t),
877 offsetof(spa_error_entry_t, se_avl));
881 * Opposite of spa_activate().
883 static void
884 spa_deactivate(spa_t *spa)
886 ASSERT(spa->spa_sync_on == B_FALSE);
887 ASSERT(spa->spa_dsl_pool == NULL);
888 ASSERT(spa->spa_root_vdev == NULL);
889 ASSERT(spa->spa_async_zio_root == NULL);
890 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
892 txg_list_destroy(&spa->spa_vdev_txg_list);
894 list_destroy(&spa->spa_config_dirty_list);
895 list_destroy(&spa->spa_state_dirty_list);
897 for (int t = 0; t < ZIO_TYPES; t++) {
898 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
899 if (spa->spa_zio_taskq[t][q] != NULL)
900 taskq_destroy(spa->spa_zio_taskq[t][q]);
901 spa->spa_zio_taskq[t][q] = NULL;
905 metaslab_class_destroy(spa->spa_normal_class);
906 spa->spa_normal_class = NULL;
908 metaslab_class_destroy(spa->spa_log_class);
909 spa->spa_log_class = NULL;
912 * If this was part of an import or the open otherwise failed, we may
913 * still have errors left in the queues. Empty them just in case.
915 spa_errlog_drain(spa);
917 avl_destroy(&spa->spa_errlist_scrub);
918 avl_destroy(&spa->spa_errlist_last);
920 spa->spa_state = POOL_STATE_UNINITIALIZED;
922 mutex_enter(&spa->spa_proc_lock);
923 if (spa->spa_proc_state != SPA_PROC_NONE) {
924 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
925 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
926 cv_broadcast(&spa->spa_proc_cv);
927 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
928 ASSERT(spa->spa_proc != &p0);
929 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
931 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
932 spa->spa_proc_state = SPA_PROC_NONE;
934 ASSERT(spa->spa_proc == &p0);
935 mutex_exit(&spa->spa_proc_lock);
938 * We want to make sure spa_thread() has actually exited the ZFS
939 * module, so that the module can't be unloaded out from underneath
940 * it.
942 if (spa->spa_did != 0) {
943 thread_join(spa->spa_did);
944 spa->spa_did = 0;
949 * Verify a pool configuration, and construct the vdev tree appropriately. This
950 * will create all the necessary vdevs in the appropriate layout, with each vdev
951 * in the CLOSED state. This will prep the pool before open/creation/import.
952 * All vdev validation is done by the vdev_alloc() routine.
954 static int
955 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
956 uint_t id, int atype)
958 nvlist_t **child;
959 uint_t children;
960 int error;
962 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
963 return (error);
965 if ((*vdp)->vdev_ops->vdev_op_leaf)
966 return (0);
968 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
969 &child, &children);
971 if (error == ENOENT)
972 return (0);
974 if (error) {
975 vdev_free(*vdp);
976 *vdp = NULL;
977 return (EINVAL);
980 for (int c = 0; c < children; c++) {
981 vdev_t *vd;
982 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
983 atype)) != 0) {
984 vdev_free(*vdp);
985 *vdp = NULL;
986 return (error);
990 ASSERT(*vdp != NULL);
992 return (0);
996 * Opposite of spa_load().
998 static void
999 spa_unload(spa_t *spa)
1001 int i;
1003 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1006 * Stop async tasks.
1008 spa_async_suspend(spa);
1011 * Stop syncing.
1013 if (spa->spa_sync_on) {
1014 txg_sync_stop(spa->spa_dsl_pool);
1015 spa->spa_sync_on = B_FALSE;
1019 * Wait for any outstanding async I/O to complete.
1021 if (spa->spa_async_zio_root != NULL) {
1022 (void) zio_wait(spa->spa_async_zio_root);
1023 spa->spa_async_zio_root = NULL;
1026 bpobj_close(&spa->spa_deferred_bpobj);
1029 * Close the dsl pool.
1031 if (spa->spa_dsl_pool) {
1032 dsl_pool_close(spa->spa_dsl_pool);
1033 spa->spa_dsl_pool = NULL;
1034 spa->spa_meta_objset = NULL;
1037 ddt_unload(spa);
1039 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1042 * Drop and purge level 2 cache
1044 spa_l2cache_drop(spa);
1047 * Close all vdevs.
1049 if (spa->spa_root_vdev)
1050 vdev_free(spa->spa_root_vdev);
1051 ASSERT(spa->spa_root_vdev == NULL);
1053 for (i = 0; i < spa->spa_spares.sav_count; i++)
1054 vdev_free(spa->spa_spares.sav_vdevs[i]);
1055 if (spa->spa_spares.sav_vdevs) {
1056 kmem_free(spa->spa_spares.sav_vdevs,
1057 spa->spa_spares.sav_count * sizeof (void *));
1058 spa->spa_spares.sav_vdevs = NULL;
1060 if (spa->spa_spares.sav_config) {
1061 nvlist_free(spa->spa_spares.sav_config);
1062 spa->spa_spares.sav_config = NULL;
1064 spa->spa_spares.sav_count = 0;
1066 for (i = 0; i < spa->spa_l2cache.sav_count; i++)
1067 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1068 if (spa->spa_l2cache.sav_vdevs) {
1069 kmem_free(spa->spa_l2cache.sav_vdevs,
1070 spa->spa_l2cache.sav_count * sizeof (void *));
1071 spa->spa_l2cache.sav_vdevs = NULL;
1073 if (spa->spa_l2cache.sav_config) {
1074 nvlist_free(spa->spa_l2cache.sav_config);
1075 spa->spa_l2cache.sav_config = NULL;
1077 spa->spa_l2cache.sav_count = 0;
1079 spa->spa_async_suspended = 0;
1081 if (spa->spa_comment != NULL) {
1082 spa_strfree(spa->spa_comment);
1083 spa->spa_comment = NULL;
1086 spa_config_exit(spa, SCL_ALL, FTAG);
1090 * Load (or re-load) the current list of vdevs describing the active spares for
1091 * this pool. When this is called, we have some form of basic information in
1092 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1093 * then re-generate a more complete list including status information.
1095 static void
1096 spa_load_spares(spa_t *spa)
1098 nvlist_t **spares;
1099 uint_t nspares;
1100 int i;
1101 vdev_t *vd, *tvd;
1103 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1106 * First, close and free any existing spare vdevs.
1108 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1109 vd = spa->spa_spares.sav_vdevs[i];
1111 /* Undo the call to spa_activate() below */
1112 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1113 B_FALSE)) != NULL && tvd->vdev_isspare)
1114 spa_spare_remove(tvd);
1115 vdev_close(vd);
1116 vdev_free(vd);
1119 if (spa->spa_spares.sav_vdevs)
1120 kmem_free(spa->spa_spares.sav_vdevs,
1121 spa->spa_spares.sav_count * sizeof (void *));
1123 if (spa->spa_spares.sav_config == NULL)
1124 nspares = 0;
1125 else
1126 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1127 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1129 spa->spa_spares.sav_count = (int)nspares;
1130 spa->spa_spares.sav_vdevs = NULL;
1132 if (nspares == 0)
1133 return;
1136 * Construct the array of vdevs, opening them to get status in the
1137 * process. For each spare, there is potentially two different vdev_t
1138 * structures associated with it: one in the list of spares (used only
1139 * for basic validation purposes) and one in the active vdev
1140 * configuration (if it's spared in). During this phase we open and
1141 * validate each vdev on the spare list. If the vdev also exists in the
1142 * active configuration, then we also mark this vdev as an active spare.
1144 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1145 KM_SLEEP);
1146 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1147 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1148 VDEV_ALLOC_SPARE) == 0);
1149 ASSERT(vd != NULL);
1151 spa->spa_spares.sav_vdevs[i] = vd;
1153 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1154 B_FALSE)) != NULL) {
1155 if (!tvd->vdev_isspare)
1156 spa_spare_add(tvd);
1159 * We only mark the spare active if we were successfully
1160 * able to load the vdev. Otherwise, importing a pool
1161 * with a bad active spare would result in strange
1162 * behavior, because multiple pool would think the spare
1163 * is actively in use.
1165 * There is a vulnerability here to an equally bizarre
1166 * circumstance, where a dead active spare is later
1167 * brought back to life (onlined or otherwise). Given
1168 * the rarity of this scenario, and the extra complexity
1169 * it adds, we ignore the possibility.
1171 if (!vdev_is_dead(tvd))
1172 spa_spare_activate(tvd);
1175 vd->vdev_top = vd;
1176 vd->vdev_aux = &spa->spa_spares;
1178 if (vdev_open(vd) != 0)
1179 continue;
1181 if (vdev_validate_aux(vd) == 0)
1182 spa_spare_add(vd);
1186 * Recompute the stashed list of spares, with status information
1187 * this time.
1189 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1190 DATA_TYPE_NVLIST_ARRAY) == 0);
1192 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1193 KM_SLEEP);
1194 for (i = 0; i < spa->spa_spares.sav_count; i++)
1195 spares[i] = vdev_config_generate(spa,
1196 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1197 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1198 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1199 for (i = 0; i < spa->spa_spares.sav_count; i++)
1200 nvlist_free(spares[i]);
1201 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1205 * Load (or re-load) the current list of vdevs describing the active l2cache for
1206 * this pool. When this is called, we have some form of basic information in
1207 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1208 * then re-generate a more complete list including status information.
1209 * Devices which are already active have their details maintained, and are
1210 * not re-opened.
1212 static void
1213 spa_load_l2cache(spa_t *spa)
1215 nvlist_t **l2cache;
1216 uint_t nl2cache;
1217 int i, j, oldnvdevs;
1218 uint64_t guid;
1219 vdev_t *vd, **oldvdevs, **newvdevs;
1220 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1222 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1224 if (sav->sav_config != NULL) {
1225 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1226 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1227 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1228 } else {
1229 nl2cache = 0;
1232 oldvdevs = sav->sav_vdevs;
1233 oldnvdevs = sav->sav_count;
1234 sav->sav_vdevs = NULL;
1235 sav->sav_count = 0;
1238 * Process new nvlist of vdevs.
1240 for (i = 0; i < nl2cache; i++) {
1241 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1242 &guid) == 0);
1244 newvdevs[i] = NULL;
1245 for (j = 0; j < oldnvdevs; j++) {
1246 vd = oldvdevs[j];
1247 if (vd != NULL && guid == vd->vdev_guid) {
1249 * Retain previous vdev for add/remove ops.
1251 newvdevs[i] = vd;
1252 oldvdevs[j] = NULL;
1253 break;
1257 if (newvdevs[i] == NULL) {
1259 * Create new vdev
1261 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1262 VDEV_ALLOC_L2CACHE) == 0);
1263 ASSERT(vd != NULL);
1264 newvdevs[i] = vd;
1267 * Commit this vdev as an l2cache device,
1268 * even if it fails to open.
1270 spa_l2cache_add(vd);
1272 vd->vdev_top = vd;
1273 vd->vdev_aux = sav;
1275 spa_l2cache_activate(vd);
1277 if (vdev_open(vd) != 0)
1278 continue;
1280 (void) vdev_validate_aux(vd);
1282 if (!vdev_is_dead(vd))
1283 l2arc_add_vdev(spa, vd);
1288 * Purge vdevs that were dropped
1290 for (i = 0; i < oldnvdevs; i++) {
1291 uint64_t pool;
1293 vd = oldvdevs[i];
1294 if (vd != NULL) {
1295 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1296 pool != 0ULL && l2arc_vdev_present(vd))
1297 l2arc_remove_vdev(vd);
1298 (void) vdev_close(vd);
1299 spa_l2cache_remove(vd);
1303 if (oldvdevs)
1304 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1306 if (sav->sav_config == NULL)
1307 goto out;
1309 sav->sav_vdevs = newvdevs;
1310 sav->sav_count = (int)nl2cache;
1313 * Recompute the stashed list of l2cache devices, with status
1314 * information this time.
1316 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1317 DATA_TYPE_NVLIST_ARRAY) == 0);
1319 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1320 for (i = 0; i < sav->sav_count; i++)
1321 l2cache[i] = vdev_config_generate(spa,
1322 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1323 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1324 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1325 out:
1326 for (i = 0; i < sav->sav_count; i++)
1327 nvlist_free(l2cache[i]);
1328 if (sav->sav_count)
1329 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1332 static int
1333 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1335 dmu_buf_t *db;
1336 char *packed = NULL;
1337 size_t nvsize = 0;
1338 int error;
1339 *value = NULL;
1341 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1342 nvsize = *(uint64_t *)db->db_data;
1343 dmu_buf_rele(db, FTAG);
1345 packed = kmem_alloc(nvsize, KM_SLEEP);
1346 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1347 DMU_READ_PREFETCH);
1348 if (error == 0)
1349 error = nvlist_unpack(packed, nvsize, value, 0);
1350 kmem_free(packed, nvsize);
1352 return (error);
1356 * Checks to see if the given vdev could not be opened, in which case we post a
1357 * sysevent to notify the autoreplace code that the device has been removed.
1359 static void
1360 spa_check_removed(vdev_t *vd)
1362 for (int c = 0; c < vd->vdev_children; c++)
1363 spa_check_removed(vd->vdev_child[c]);
1365 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1366 zfs_post_autoreplace(vd->vdev_spa, vd);
1367 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1372 * Validate the current config against the MOS config
1374 static boolean_t
1375 spa_config_valid(spa_t *spa, nvlist_t *config)
1377 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1378 nvlist_t *nv;
1380 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1382 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1383 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1385 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1388 * If we're doing a normal import, then build up any additional
1389 * diagnostic information about missing devices in this config.
1390 * We'll pass this up to the user for further processing.
1392 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1393 nvlist_t **child, *nv;
1394 uint64_t idx = 0;
1396 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1397 KM_SLEEP);
1398 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1400 for (int c = 0; c < rvd->vdev_children; c++) {
1401 vdev_t *tvd = rvd->vdev_child[c];
1402 vdev_t *mtvd = mrvd->vdev_child[c];
1404 if (tvd->vdev_ops == &vdev_missing_ops &&
1405 mtvd->vdev_ops != &vdev_missing_ops &&
1406 mtvd->vdev_islog)
1407 child[idx++] = vdev_config_generate(spa, mtvd,
1408 B_FALSE, 0);
1411 if (idx) {
1412 VERIFY(nvlist_add_nvlist_array(nv,
1413 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1414 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1415 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1417 for (int i = 0; i < idx; i++)
1418 nvlist_free(child[i]);
1420 nvlist_free(nv);
1421 kmem_free(child, rvd->vdev_children * sizeof (char **));
1425 * Compare the root vdev tree with the information we have
1426 * from the MOS config (mrvd). Check each top-level vdev
1427 * with the corresponding MOS config top-level (mtvd).
1429 for (int c = 0; c < rvd->vdev_children; c++) {
1430 vdev_t *tvd = rvd->vdev_child[c];
1431 vdev_t *mtvd = mrvd->vdev_child[c];
1434 * Resolve any "missing" vdevs in the current configuration.
1435 * If we find that the MOS config has more accurate information
1436 * about the top-level vdev then use that vdev instead.
1438 if (tvd->vdev_ops == &vdev_missing_ops &&
1439 mtvd->vdev_ops != &vdev_missing_ops) {
1441 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1442 continue;
1445 * Device specific actions.
1447 if (mtvd->vdev_islog) {
1448 spa_set_log_state(spa, SPA_LOG_CLEAR);
1449 } else {
1451 * XXX - once we have 'readonly' pool
1452 * support we should be able to handle
1453 * missing data devices by transitioning
1454 * the pool to readonly.
1456 continue;
1460 * Swap the missing vdev with the data we were
1461 * able to obtain from the MOS config.
1463 vdev_remove_child(rvd, tvd);
1464 vdev_remove_child(mrvd, mtvd);
1466 vdev_add_child(rvd, mtvd);
1467 vdev_add_child(mrvd, tvd);
1469 spa_config_exit(spa, SCL_ALL, FTAG);
1470 vdev_load(mtvd);
1471 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1473 vdev_reopen(rvd);
1474 } else if (mtvd->vdev_islog) {
1476 * Load the slog device's state from the MOS config
1477 * since it's possible that the label does not
1478 * contain the most up-to-date information.
1480 vdev_load_log_state(tvd, mtvd);
1481 vdev_reopen(tvd);
1484 vdev_free(mrvd);
1485 spa_config_exit(spa, SCL_ALL, FTAG);
1488 * Ensure we were able to validate the config.
1490 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1494 * Check for missing log devices
1496 static int
1497 spa_check_logs(spa_t *spa)
1499 switch (spa->spa_log_state) {
1500 case SPA_LOG_MISSING:
1501 /* need to recheck in case slog has been restored */
1502 case SPA_LOG_UNKNOWN:
1503 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1504 DS_FIND_CHILDREN)) {
1505 spa_set_log_state(spa, SPA_LOG_MISSING);
1506 return (1);
1508 break;
1510 return (0);
1513 static boolean_t
1514 spa_passivate_log(spa_t *spa)
1516 vdev_t *rvd = spa->spa_root_vdev;
1517 boolean_t slog_found = B_FALSE;
1519 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1521 if (!spa_has_slogs(spa))
1522 return (B_FALSE);
1524 for (int c = 0; c < rvd->vdev_children; c++) {
1525 vdev_t *tvd = rvd->vdev_child[c];
1526 metaslab_group_t *mg = tvd->vdev_mg;
1528 if (tvd->vdev_islog) {
1529 metaslab_group_passivate(mg);
1530 slog_found = B_TRUE;
1534 return (slog_found);
1537 static void
1538 spa_activate_log(spa_t *spa)
1540 vdev_t *rvd = spa->spa_root_vdev;
1542 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1544 for (int c = 0; c < rvd->vdev_children; c++) {
1545 vdev_t *tvd = rvd->vdev_child[c];
1546 metaslab_group_t *mg = tvd->vdev_mg;
1548 if (tvd->vdev_islog)
1549 metaslab_group_activate(mg);
1554 spa_offline_log(spa_t *spa)
1556 int error = 0;
1558 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1559 NULL, DS_FIND_CHILDREN)) == 0) {
1562 * We successfully offlined the log device, sync out the
1563 * current txg so that the "stubby" block can be removed
1564 * by zil_sync().
1566 txg_wait_synced(spa->spa_dsl_pool, 0);
1568 return (error);
1571 static void
1572 spa_aux_check_removed(spa_aux_vdev_t *sav)
1574 for (int i = 0; i < sav->sav_count; i++)
1575 spa_check_removed(sav->sav_vdevs[i]);
1578 void
1579 spa_claim_notify(zio_t *zio)
1581 spa_t *spa = zio->io_spa;
1583 if (zio->io_error)
1584 return;
1586 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1587 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1588 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1589 mutex_exit(&spa->spa_props_lock);
1592 typedef struct spa_load_error {
1593 uint64_t sle_meta_count;
1594 uint64_t sle_data_count;
1595 } spa_load_error_t;
1597 static void
1598 spa_load_verify_done(zio_t *zio)
1600 blkptr_t *bp = zio->io_bp;
1601 spa_load_error_t *sle = zio->io_private;
1602 dmu_object_type_t type = BP_GET_TYPE(bp);
1603 int error = zio->io_error;
1605 if (error) {
1606 if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) &&
1607 type != DMU_OT_INTENT_LOG)
1608 atomic_add_64(&sle->sle_meta_count, 1);
1609 else
1610 atomic_add_64(&sle->sle_data_count, 1);
1612 zio_data_buf_free(zio->io_data, zio->io_size);
1615 /*ARGSUSED*/
1616 static int
1617 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1618 arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1620 if (bp != NULL) {
1621 zio_t *rio = arg;
1622 size_t size = BP_GET_PSIZE(bp);
1623 void *data = zio_data_buf_alloc(size);
1625 zio_nowait(zio_read(rio, spa, bp, data, size,
1626 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1627 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1628 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1630 return (0);
1633 static int
1634 spa_load_verify(spa_t *spa)
1636 zio_t *rio;
1637 spa_load_error_t sle = { 0 };
1638 zpool_rewind_policy_t policy;
1639 boolean_t verify_ok = B_FALSE;
1640 int error;
1642 zpool_get_rewind_policy(spa->spa_config, &policy);
1644 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1645 return (0);
1647 rio = zio_root(spa, NULL, &sle,
1648 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1650 error = traverse_pool(spa, spa->spa_verify_min_txg,
1651 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1653 (void) zio_wait(rio);
1655 spa->spa_load_meta_errors = sle.sle_meta_count;
1656 spa->spa_load_data_errors = sle.sle_data_count;
1658 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1659 sle.sle_data_count <= policy.zrp_maxdata) {
1660 int64_t loss = 0;
1662 verify_ok = B_TRUE;
1663 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1664 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1666 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1667 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1668 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1669 VERIFY(nvlist_add_int64(spa->spa_load_info,
1670 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1671 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1672 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1673 } else {
1674 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1677 if (error) {
1678 if (error != ENXIO && error != EIO)
1679 error = EIO;
1680 return (error);
1683 return (verify_ok ? 0 : EIO);
1687 * Find a value in the pool props object.
1689 static void
1690 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1692 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1693 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1697 * Find a value in the pool directory object.
1699 static int
1700 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1702 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1703 name, sizeof (uint64_t), 1, val));
1706 static int
1707 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1709 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1710 return (err);
1714 * Fix up config after a partly-completed split. This is done with the
1715 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1716 * pool have that entry in their config, but only the splitting one contains
1717 * a list of all the guids of the vdevs that are being split off.
1719 * This function determines what to do with that list: either rejoin
1720 * all the disks to the pool, or complete the splitting process. To attempt
1721 * the rejoin, each disk that is offlined is marked online again, and
1722 * we do a reopen() call. If the vdev label for every disk that was
1723 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1724 * then we call vdev_split() on each disk, and complete the split.
1726 * Otherwise we leave the config alone, with all the vdevs in place in
1727 * the original pool.
1729 static void
1730 spa_try_repair(spa_t *spa, nvlist_t *config)
1732 uint_t extracted;
1733 uint64_t *glist;
1734 uint_t i, gcount;
1735 nvlist_t *nvl;
1736 vdev_t **vd;
1737 boolean_t attempt_reopen;
1739 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1740 return;
1742 /* check that the config is complete */
1743 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1744 &glist, &gcount) != 0)
1745 return;
1747 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1749 /* attempt to online all the vdevs & validate */
1750 attempt_reopen = B_TRUE;
1751 for (i = 0; i < gcount; i++) {
1752 if (glist[i] == 0) /* vdev is hole */
1753 continue;
1755 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1756 if (vd[i] == NULL) {
1758 * Don't bother attempting to reopen the disks;
1759 * just do the split.
1761 attempt_reopen = B_FALSE;
1762 } else {
1763 /* attempt to re-online it */
1764 vd[i]->vdev_offline = B_FALSE;
1768 if (attempt_reopen) {
1769 vdev_reopen(spa->spa_root_vdev);
1771 /* check each device to see what state it's in */
1772 for (extracted = 0, i = 0; i < gcount; i++) {
1773 if (vd[i] != NULL &&
1774 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1775 break;
1776 ++extracted;
1781 * If every disk has been moved to the new pool, or if we never
1782 * even attempted to look at them, then we split them off for
1783 * good.
1785 if (!attempt_reopen || gcount == extracted) {
1786 for (i = 0; i < gcount; i++)
1787 if (vd[i] != NULL)
1788 vdev_split(vd[i]);
1789 vdev_reopen(spa->spa_root_vdev);
1792 kmem_free(vd, gcount * sizeof (vdev_t *));
1795 static int
1796 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1797 boolean_t mosconfig)
1799 nvlist_t *config = spa->spa_config;
1800 char *ereport = FM_EREPORT_ZFS_POOL;
1801 char *comment;
1802 int error;
1803 uint64_t pool_guid;
1804 nvlist_t *nvl;
1806 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1807 return (EINVAL);
1809 ASSERT(spa->spa_comment == NULL);
1810 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
1811 spa->spa_comment = spa_strdup(comment);
1814 * Versioning wasn't explicitly added to the label until later, so if
1815 * it's not present treat it as the initial version.
1817 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1818 &spa->spa_ubsync.ub_version) != 0)
1819 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1821 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1822 &spa->spa_config_txg);
1824 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1825 spa_guid_exists(pool_guid, 0)) {
1826 error = EEXIST;
1827 } else {
1828 spa->spa_config_guid = pool_guid;
1830 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1831 &nvl) == 0) {
1832 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1833 KM_SLEEP) == 0);
1836 gethrestime(&spa->spa_loaded_ts);
1837 error = spa_load_impl(spa, pool_guid, config, state, type,
1838 mosconfig, &ereport);
1841 spa->spa_minref = refcount_count(&spa->spa_refcount);
1842 if (error) {
1843 if (error != EEXIST) {
1844 spa->spa_loaded_ts.tv_sec = 0;
1845 spa->spa_loaded_ts.tv_nsec = 0;
1847 if (error != EBADF) {
1848 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1851 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
1852 spa->spa_ena = 0;
1854 return (error);
1858 * Load an existing storage pool, using the pool's builtin spa_config as a
1859 * source of configuration information.
1861 static int
1862 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
1863 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
1864 char **ereport)
1866 int error = 0;
1867 nvlist_t *nvroot = NULL;
1868 vdev_t *rvd;
1869 uberblock_t *ub = &spa->spa_uberblock;
1870 uint64_t children, config_cache_txg = spa->spa_config_txg;
1871 int orig_mode = spa->spa_mode;
1872 int parse;
1873 uint64_t obj;
1876 * If this is an untrusted config, access the pool in read-only mode.
1877 * This prevents things like resilvering recently removed devices.
1879 if (!mosconfig)
1880 spa->spa_mode = FREAD;
1882 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1884 spa->spa_load_state = state;
1886 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
1887 return (EINVAL);
1889 parse = (type == SPA_IMPORT_EXISTING ?
1890 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
1893 * Create "The Godfather" zio to hold all async IOs
1895 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1896 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1899 * Parse the configuration into a vdev tree. We explicitly set the
1900 * value that will be returned by spa_version() since parsing the
1901 * configuration requires knowing the version number.
1903 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1904 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
1905 spa_config_exit(spa, SCL_ALL, FTAG);
1907 if (error != 0)
1908 return (error);
1910 ASSERT(spa->spa_root_vdev == rvd);
1912 if (type != SPA_IMPORT_ASSEMBLE) {
1913 ASSERT(spa_guid(spa) == pool_guid);
1917 * Try to open all vdevs, loading each label in the process.
1919 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1920 error = vdev_open(rvd);
1921 spa_config_exit(spa, SCL_ALL, FTAG);
1922 if (error != 0)
1923 return (error);
1926 * We need to validate the vdev labels against the configuration that
1927 * we have in hand, which is dependent on the setting of mosconfig. If
1928 * mosconfig is true then we're validating the vdev labels based on
1929 * that config. Otherwise, we're validating against the cached config
1930 * (zpool.cache) that was read when we loaded the zfs module, and then
1931 * later we will recursively call spa_load() and validate against
1932 * the vdev config.
1934 * If we're assembling a new pool that's been split off from an
1935 * existing pool, the labels haven't yet been updated so we skip
1936 * validation for now.
1938 if (type != SPA_IMPORT_ASSEMBLE) {
1939 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1940 error = vdev_validate(rvd, mosconfig);
1941 spa_config_exit(spa, SCL_ALL, FTAG);
1943 if (error != 0)
1944 return (error);
1946 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
1947 return (ENXIO);
1951 * Find the best uberblock.
1953 vdev_uberblock_load(NULL, rvd, ub);
1956 * If we weren't able to find a single valid uberblock, return failure.
1958 if (ub->ub_txg == 0)
1959 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
1962 * If the pool is newer than the code, we can't open it.
1964 if (ub->ub_version > SPA_VERSION)
1965 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
1968 * If the vdev guid sum doesn't match the uberblock, we have an
1969 * incomplete configuration. We first check to see if the pool
1970 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
1971 * If it is, defer the vdev_guid_sum check till later so we
1972 * can handle missing vdevs.
1974 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
1975 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
1976 rvd->vdev_guid_sum != ub->ub_guid_sum)
1977 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
1979 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
1980 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1981 spa_try_repair(spa, config);
1982 spa_config_exit(spa, SCL_ALL, FTAG);
1983 nvlist_free(spa->spa_config_splitting);
1984 spa->spa_config_splitting = NULL;
1988 * Initialize internal SPA structures.
1990 spa->spa_state = POOL_STATE_ACTIVE;
1991 spa->spa_ubsync = spa->spa_uberblock;
1992 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
1993 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
1994 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
1995 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
1996 spa->spa_claim_max_txg = spa->spa_first_txg;
1997 spa->spa_prev_software_version = ub->ub_software_version;
1999 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2000 if (error)
2001 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2002 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2004 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2005 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2007 if (!mosconfig) {
2008 uint64_t hostid;
2009 nvlist_t *policy = NULL, *nvconfig;
2011 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2012 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2014 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2015 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2016 char *hostname;
2017 unsigned long myhostid = 0;
2019 VERIFY(nvlist_lookup_string(nvconfig,
2020 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2022 #ifdef _KERNEL
2023 myhostid = zone_get_hostid(NULL);
2024 #else /* _KERNEL */
2026 * We're emulating the system's hostid in userland, so
2027 * we can't use zone_get_hostid().
2029 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2030 #endif /* _KERNEL */
2031 if (hostid != 0 && myhostid != 0 &&
2032 hostid != myhostid) {
2033 nvlist_free(nvconfig);
2034 cmn_err(CE_WARN, "pool '%s' could not be "
2035 "loaded as it was last accessed by "
2036 "another system (host: %s hostid: 0x%lx). "
2037 "See: http://www.sun.com/msg/ZFS-8000-EY",
2038 spa_name(spa), hostname,
2039 (unsigned long)hostid);
2040 return (EBADF);
2043 if (nvlist_lookup_nvlist(spa->spa_config,
2044 ZPOOL_REWIND_POLICY, &policy) == 0)
2045 VERIFY(nvlist_add_nvlist(nvconfig,
2046 ZPOOL_REWIND_POLICY, policy) == 0);
2048 spa_config_set(spa, nvconfig);
2049 spa_unload(spa);
2050 spa_deactivate(spa);
2051 spa_activate(spa, orig_mode);
2053 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2056 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2057 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2058 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2059 if (error != 0)
2060 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2063 * Load the bit that tells us to use the new accounting function
2064 * (raid-z deflation). If we have an older pool, this will not
2065 * be present.
2067 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2068 if (error != 0 && error != ENOENT)
2069 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2071 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2072 &spa->spa_creation_version);
2073 if (error != 0 && error != ENOENT)
2074 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2077 * Load the persistent error log. If we have an older pool, this will
2078 * not be present.
2080 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2081 if (error != 0 && error != ENOENT)
2082 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2084 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2085 &spa->spa_errlog_scrub);
2086 if (error != 0 && error != ENOENT)
2087 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2090 * Load the history object. If we have an older pool, this
2091 * will not be present.
2093 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2094 if (error != 0 && error != ENOENT)
2095 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2098 * If we're assembling the pool from the split-off vdevs of
2099 * an existing pool, we don't want to attach the spares & cache
2100 * devices.
2104 * Load any hot spares for this pool.
2106 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2107 if (error != 0 && error != ENOENT)
2108 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2109 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2110 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2111 if (load_nvlist(spa, spa->spa_spares.sav_object,
2112 &spa->spa_spares.sav_config) != 0)
2113 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2115 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2116 spa_load_spares(spa);
2117 spa_config_exit(spa, SCL_ALL, FTAG);
2118 } else if (error == 0) {
2119 spa->spa_spares.sav_sync = B_TRUE;
2123 * Load any level 2 ARC devices for this pool.
2125 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2126 &spa->spa_l2cache.sav_object);
2127 if (error != 0 && error != ENOENT)
2128 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2129 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2130 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2131 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2132 &spa->spa_l2cache.sav_config) != 0)
2133 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2135 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2136 spa_load_l2cache(spa);
2137 spa_config_exit(spa, SCL_ALL, FTAG);
2138 } else if (error == 0) {
2139 spa->spa_l2cache.sav_sync = B_TRUE;
2142 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2144 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2145 if (error && error != ENOENT)
2146 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2148 if (error == 0) {
2149 uint64_t autoreplace;
2151 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2152 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2153 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2154 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2155 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2156 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2157 &spa->spa_dedup_ditto);
2159 spa->spa_autoreplace = (autoreplace != 0);
2163 * If the 'autoreplace' property is set, then post a resource notifying
2164 * the ZFS DE that it should not issue any faults for unopenable
2165 * devices. We also iterate over the vdevs, and post a sysevent for any
2166 * unopenable vdevs so that the normal autoreplace handler can take
2167 * over.
2169 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2170 spa_check_removed(spa->spa_root_vdev);
2172 * For the import case, this is done in spa_import(), because
2173 * at this point we're using the spare definitions from
2174 * the MOS config, not necessarily from the userland config.
2176 if (state != SPA_LOAD_IMPORT) {
2177 spa_aux_check_removed(&spa->spa_spares);
2178 spa_aux_check_removed(&spa->spa_l2cache);
2183 * Load the vdev state for all toplevel vdevs.
2185 vdev_load(rvd);
2188 * Propagate the leaf DTLs we just loaded all the way up the tree.
2190 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2191 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2192 spa_config_exit(spa, SCL_ALL, FTAG);
2195 * Load the DDTs (dedup tables).
2197 error = ddt_load(spa);
2198 if (error != 0)
2199 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2201 spa_update_dspace(spa);
2204 * Validate the config, using the MOS config to fill in any
2205 * information which might be missing. If we fail to validate
2206 * the config then declare the pool unfit for use. If we're
2207 * assembling a pool from a split, the log is not transferred
2208 * over.
2210 if (type != SPA_IMPORT_ASSEMBLE) {
2211 nvlist_t *nvconfig;
2213 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2214 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2216 if (!spa_config_valid(spa, nvconfig)) {
2217 nvlist_free(nvconfig);
2218 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2219 ENXIO));
2221 nvlist_free(nvconfig);
2224 * Now that we've validate the config, check the state of the
2225 * root vdev. If it can't be opened, it indicates one or
2226 * more toplevel vdevs are faulted.
2228 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2229 return (ENXIO);
2231 if (spa_check_logs(spa)) {
2232 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2233 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2238 * We've successfully opened the pool, verify that we're ready
2239 * to start pushing transactions.
2241 if (state != SPA_LOAD_TRYIMPORT) {
2242 if (error = spa_load_verify(spa))
2243 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2244 error));
2247 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2248 spa->spa_load_max_txg == UINT64_MAX)) {
2249 dmu_tx_t *tx;
2250 int need_update = B_FALSE;
2252 ASSERT(state != SPA_LOAD_TRYIMPORT);
2255 * Claim log blocks that haven't been committed yet.
2256 * This must all happen in a single txg.
2257 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2258 * invoked from zil_claim_log_block()'s i/o done callback.
2259 * Price of rollback is that we abandon the log.
2261 spa->spa_claiming = B_TRUE;
2263 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2264 spa_first_txg(spa));
2265 (void) dmu_objset_find(spa_name(spa),
2266 zil_claim, tx, DS_FIND_CHILDREN);
2267 dmu_tx_commit(tx);
2269 spa->spa_claiming = B_FALSE;
2271 spa_set_log_state(spa, SPA_LOG_GOOD);
2272 spa->spa_sync_on = B_TRUE;
2273 txg_sync_start(spa->spa_dsl_pool);
2276 * Wait for all claims to sync. We sync up to the highest
2277 * claimed log block birth time so that claimed log blocks
2278 * don't appear to be from the future. spa_claim_max_txg
2279 * will have been set for us by either zil_check_log_chain()
2280 * (invoked from spa_check_logs()) or zil_claim() above.
2282 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2285 * If the config cache is stale, or we have uninitialized
2286 * metaslabs (see spa_vdev_add()), then update the config.
2288 * If this is a verbatim import, trust the current
2289 * in-core spa_config and update the disk labels.
2291 if (config_cache_txg != spa->spa_config_txg ||
2292 state == SPA_LOAD_IMPORT ||
2293 state == SPA_LOAD_RECOVER ||
2294 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2295 need_update = B_TRUE;
2297 for (int c = 0; c < rvd->vdev_children; c++)
2298 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2299 need_update = B_TRUE;
2302 * Update the config cache asychronously in case we're the
2303 * root pool, in which case the config cache isn't writable yet.
2305 if (need_update)
2306 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2309 * Check all DTLs to see if anything needs resilvering.
2311 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2312 vdev_resilver_needed(rvd, NULL, NULL))
2313 spa_async_request(spa, SPA_ASYNC_RESILVER);
2316 * Delete any inconsistent datasets.
2318 (void) dmu_objset_find(spa_name(spa),
2319 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2322 * Clean up any stale temporary dataset userrefs.
2324 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2327 return (0);
2330 static int
2331 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2333 int mode = spa->spa_mode;
2335 spa_unload(spa);
2336 spa_deactivate(spa);
2338 spa->spa_load_max_txg--;
2340 spa_activate(spa, mode);
2341 spa_async_suspend(spa);
2343 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2346 static int
2347 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2348 uint64_t max_request, int rewind_flags)
2350 nvlist_t *config = NULL;
2351 int load_error, rewind_error;
2352 uint64_t safe_rewind_txg;
2353 uint64_t min_txg;
2355 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2356 spa->spa_load_max_txg = spa->spa_load_txg;
2357 spa_set_log_state(spa, SPA_LOG_CLEAR);
2358 } else {
2359 spa->spa_load_max_txg = max_request;
2362 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2363 mosconfig);
2364 if (load_error == 0)
2365 return (0);
2367 if (spa->spa_root_vdev != NULL)
2368 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2370 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2371 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2373 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2374 nvlist_free(config);
2375 return (load_error);
2378 /* Price of rolling back is discarding txgs, including log */
2379 if (state == SPA_LOAD_RECOVER)
2380 spa_set_log_state(spa, SPA_LOG_CLEAR);
2382 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2383 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2384 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2385 TXG_INITIAL : safe_rewind_txg;
2388 * Continue as long as we're finding errors, we're still within
2389 * the acceptable rewind range, and we're still finding uberblocks
2391 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2392 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2393 if (spa->spa_load_max_txg < safe_rewind_txg)
2394 spa->spa_extreme_rewind = B_TRUE;
2395 rewind_error = spa_load_retry(spa, state, mosconfig);
2398 spa->spa_extreme_rewind = B_FALSE;
2399 spa->spa_load_max_txg = UINT64_MAX;
2401 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2402 spa_config_set(spa, config);
2404 return (state == SPA_LOAD_RECOVER ? rewind_error : load_error);
2408 * Pool Open/Import
2410 * The import case is identical to an open except that the configuration is sent
2411 * down from userland, instead of grabbed from the configuration cache. For the
2412 * case of an open, the pool configuration will exist in the
2413 * POOL_STATE_UNINITIALIZED state.
2415 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2416 * the same time open the pool, without having to keep around the spa_t in some
2417 * ambiguous state.
2419 static int
2420 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2421 nvlist_t **config)
2423 spa_t *spa;
2424 spa_load_state_t state = SPA_LOAD_OPEN;
2425 int error;
2426 int locked = B_FALSE;
2428 *spapp = NULL;
2431 * As disgusting as this is, we need to support recursive calls to this
2432 * function because dsl_dir_open() is called during spa_load(), and ends
2433 * up calling spa_open() again. The real fix is to figure out how to
2434 * avoid dsl_dir_open() calling this in the first place.
2436 if (mutex_owner(&spa_namespace_lock) != curthread) {
2437 mutex_enter(&spa_namespace_lock);
2438 locked = B_TRUE;
2441 if ((spa = spa_lookup(pool)) == NULL) {
2442 if (locked)
2443 mutex_exit(&spa_namespace_lock);
2444 return (ENOENT);
2447 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2448 zpool_rewind_policy_t policy;
2450 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2451 &policy);
2452 if (policy.zrp_request & ZPOOL_DO_REWIND)
2453 state = SPA_LOAD_RECOVER;
2455 spa_activate(spa, spa_mode_global);
2457 if (state != SPA_LOAD_RECOVER)
2458 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2460 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2461 policy.zrp_request);
2463 if (error == EBADF) {
2465 * If vdev_validate() returns failure (indicated by
2466 * EBADF), it indicates that one of the vdevs indicates
2467 * that the pool has been exported or destroyed. If
2468 * this is the case, the config cache is out of sync and
2469 * we should remove the pool from the namespace.
2471 spa_unload(spa);
2472 spa_deactivate(spa);
2473 spa_config_sync(spa, B_TRUE, B_TRUE);
2474 spa_remove(spa);
2475 if (locked)
2476 mutex_exit(&spa_namespace_lock);
2477 return (ENOENT);
2480 if (error) {
2482 * We can't open the pool, but we still have useful
2483 * information: the state of each vdev after the
2484 * attempted vdev_open(). Return this to the user.
2486 if (config != NULL && spa->spa_config) {
2487 VERIFY(nvlist_dup(spa->spa_config, config,
2488 KM_SLEEP) == 0);
2489 VERIFY(nvlist_add_nvlist(*config,
2490 ZPOOL_CONFIG_LOAD_INFO,
2491 spa->spa_load_info) == 0);
2493 spa_unload(spa);
2494 spa_deactivate(spa);
2495 spa->spa_last_open_failed = error;
2496 if (locked)
2497 mutex_exit(&spa_namespace_lock);
2498 *spapp = NULL;
2499 return (error);
2503 spa_open_ref(spa, tag);
2505 if (config != NULL)
2506 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2509 * If we've recovered the pool, pass back any information we
2510 * gathered while doing the load.
2512 if (state == SPA_LOAD_RECOVER) {
2513 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2514 spa->spa_load_info) == 0);
2517 if (locked) {
2518 spa->spa_last_open_failed = 0;
2519 spa->spa_last_ubsync_txg = 0;
2520 spa->spa_load_txg = 0;
2521 mutex_exit(&spa_namespace_lock);
2524 *spapp = spa;
2526 return (0);
2530 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2531 nvlist_t **config)
2533 return (spa_open_common(name, spapp, tag, policy, config));
2537 spa_open(const char *name, spa_t **spapp, void *tag)
2539 return (spa_open_common(name, spapp, tag, NULL, NULL));
2543 * Lookup the given spa_t, incrementing the inject count in the process,
2544 * preventing it from being exported or destroyed.
2546 spa_t *
2547 spa_inject_addref(char *name)
2549 spa_t *spa;
2551 mutex_enter(&spa_namespace_lock);
2552 if ((spa = spa_lookup(name)) == NULL) {
2553 mutex_exit(&spa_namespace_lock);
2554 return (NULL);
2556 spa->spa_inject_ref++;
2557 mutex_exit(&spa_namespace_lock);
2559 return (spa);
2562 void
2563 spa_inject_delref(spa_t *spa)
2565 mutex_enter(&spa_namespace_lock);
2566 spa->spa_inject_ref--;
2567 mutex_exit(&spa_namespace_lock);
2571 * Add spares device information to the nvlist.
2573 static void
2574 spa_add_spares(spa_t *spa, nvlist_t *config)
2576 nvlist_t **spares;
2577 uint_t i, nspares;
2578 nvlist_t *nvroot;
2579 uint64_t guid;
2580 vdev_stat_t *vs;
2581 uint_t vsc;
2582 uint64_t pool;
2584 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2586 if (spa->spa_spares.sav_count == 0)
2587 return;
2589 VERIFY(nvlist_lookup_nvlist(config,
2590 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2591 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2592 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2593 if (nspares != 0) {
2594 VERIFY(nvlist_add_nvlist_array(nvroot,
2595 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2596 VERIFY(nvlist_lookup_nvlist_array(nvroot,
2597 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2600 * Go through and find any spares which have since been
2601 * repurposed as an active spare. If this is the case, update
2602 * their status appropriately.
2604 for (i = 0; i < nspares; i++) {
2605 VERIFY(nvlist_lookup_uint64(spares[i],
2606 ZPOOL_CONFIG_GUID, &guid) == 0);
2607 if (spa_spare_exists(guid, &pool, NULL) &&
2608 pool != 0ULL) {
2609 VERIFY(nvlist_lookup_uint64_array(
2610 spares[i], ZPOOL_CONFIG_VDEV_STATS,
2611 (uint64_t **)&vs, &vsc) == 0);
2612 vs->vs_state = VDEV_STATE_CANT_OPEN;
2613 vs->vs_aux = VDEV_AUX_SPARED;
2620 * Add l2cache device information to the nvlist, including vdev stats.
2622 static void
2623 spa_add_l2cache(spa_t *spa, nvlist_t *config)
2625 nvlist_t **l2cache;
2626 uint_t i, j, nl2cache;
2627 nvlist_t *nvroot;
2628 uint64_t guid;
2629 vdev_t *vd;
2630 vdev_stat_t *vs;
2631 uint_t vsc;
2633 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2635 if (spa->spa_l2cache.sav_count == 0)
2636 return;
2638 VERIFY(nvlist_lookup_nvlist(config,
2639 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2640 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2641 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2642 if (nl2cache != 0) {
2643 VERIFY(nvlist_add_nvlist_array(nvroot,
2644 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2645 VERIFY(nvlist_lookup_nvlist_array(nvroot,
2646 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2649 * Update level 2 cache device stats.
2652 for (i = 0; i < nl2cache; i++) {
2653 VERIFY(nvlist_lookup_uint64(l2cache[i],
2654 ZPOOL_CONFIG_GUID, &guid) == 0);
2656 vd = NULL;
2657 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2658 if (guid ==
2659 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2660 vd = spa->spa_l2cache.sav_vdevs[j];
2661 break;
2664 ASSERT(vd != NULL);
2666 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2667 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
2668 == 0);
2669 vdev_get_stats(vd, vs);
2675 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
2677 int error;
2678 spa_t *spa;
2680 *config = NULL;
2681 error = spa_open_common(name, &spa, FTAG, NULL, config);
2683 if (spa != NULL) {
2685 * This still leaves a window of inconsistency where the spares
2686 * or l2cache devices could change and the config would be
2687 * self-inconsistent.
2689 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2691 if (*config != NULL) {
2692 uint64_t loadtimes[2];
2694 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
2695 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
2696 VERIFY(nvlist_add_uint64_array(*config,
2697 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
2699 VERIFY(nvlist_add_uint64(*config,
2700 ZPOOL_CONFIG_ERRCOUNT,
2701 spa_get_errlog_size(spa)) == 0);
2703 if (spa_suspended(spa))
2704 VERIFY(nvlist_add_uint64(*config,
2705 ZPOOL_CONFIG_SUSPENDED,
2706 spa->spa_failmode) == 0);
2708 spa_add_spares(spa, *config);
2709 spa_add_l2cache(spa, *config);
2714 * We want to get the alternate root even for faulted pools, so we cheat
2715 * and call spa_lookup() directly.
2717 if (altroot) {
2718 if (spa == NULL) {
2719 mutex_enter(&spa_namespace_lock);
2720 spa = spa_lookup(name);
2721 if (spa)
2722 spa_altroot(spa, altroot, buflen);
2723 else
2724 altroot[0] = '\0';
2725 spa = NULL;
2726 mutex_exit(&spa_namespace_lock);
2727 } else {
2728 spa_altroot(spa, altroot, buflen);
2732 if (spa != NULL) {
2733 spa_config_exit(spa, SCL_CONFIG, FTAG);
2734 spa_close(spa, FTAG);
2737 return (error);
2741 * Validate that the auxiliary device array is well formed. We must have an
2742 * array of nvlists, each which describes a valid leaf vdev. If this is an
2743 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
2744 * specified, as long as they are well-formed.
2746 static int
2747 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
2748 spa_aux_vdev_t *sav, const char *config, uint64_t version,
2749 vdev_labeltype_t label)
2751 nvlist_t **dev;
2752 uint_t i, ndev;
2753 vdev_t *vd;
2754 int error;
2756 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2759 * It's acceptable to have no devs specified.
2761 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
2762 return (0);
2764 if (ndev == 0)
2765 return (EINVAL);
2768 * Make sure the pool is formatted with a version that supports this
2769 * device type.
2771 if (spa_version(spa) < version)
2772 return (ENOTSUP);
2775 * Set the pending device list so we correctly handle device in-use
2776 * checking.
2778 sav->sav_pending = dev;
2779 sav->sav_npending = ndev;
2781 for (i = 0; i < ndev; i++) {
2782 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
2783 mode)) != 0)
2784 goto out;
2786 if (!vd->vdev_ops->vdev_op_leaf) {
2787 vdev_free(vd);
2788 error = EINVAL;
2789 goto out;
2793 * The L2ARC currently only supports disk devices in
2794 * kernel context. For user-level testing, we allow it.
2796 #ifdef _KERNEL
2797 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
2798 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
2799 error = ENOTBLK;
2800 goto out;
2802 #endif
2803 vd->vdev_top = vd;
2805 if ((error = vdev_open(vd)) == 0 &&
2806 (error = vdev_label_init(vd, crtxg, label)) == 0) {
2807 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
2808 vd->vdev_guid) == 0);
2811 vdev_free(vd);
2813 if (error &&
2814 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
2815 goto out;
2816 else
2817 error = 0;
2820 out:
2821 sav->sav_pending = NULL;
2822 sav->sav_npending = 0;
2823 return (error);
2826 static int
2827 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
2829 int error;
2831 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2833 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2834 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
2835 VDEV_LABEL_SPARE)) != 0) {
2836 return (error);
2839 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2840 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2841 VDEV_LABEL_L2CACHE));
2844 static void
2845 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2846 const char *config)
2848 int i;
2850 if (sav->sav_config != NULL) {
2851 nvlist_t **olddevs;
2852 uint_t oldndevs;
2853 nvlist_t **newdevs;
2856 * Generate new dev list by concatentating with the
2857 * current dev list.
2859 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2860 &olddevs, &oldndevs) == 0);
2862 newdevs = kmem_alloc(sizeof (void *) *
2863 (ndevs + oldndevs), KM_SLEEP);
2864 for (i = 0; i < oldndevs; i++)
2865 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2866 KM_SLEEP) == 0);
2867 for (i = 0; i < ndevs; i++)
2868 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2869 KM_SLEEP) == 0);
2871 VERIFY(nvlist_remove(sav->sav_config, config,
2872 DATA_TYPE_NVLIST_ARRAY) == 0);
2874 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2875 config, newdevs, ndevs + oldndevs) == 0);
2876 for (i = 0; i < oldndevs + ndevs; i++)
2877 nvlist_free(newdevs[i]);
2878 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2879 } else {
2881 * Generate a new dev list.
2883 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2884 KM_SLEEP) == 0);
2885 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2886 devs, ndevs) == 0);
2891 * Stop and drop level 2 ARC devices
2893 void
2894 spa_l2cache_drop(spa_t *spa)
2896 vdev_t *vd;
2897 int i;
2898 spa_aux_vdev_t *sav = &spa->spa_l2cache;
2900 for (i = 0; i < sav->sav_count; i++) {
2901 uint64_t pool;
2903 vd = sav->sav_vdevs[i];
2904 ASSERT(vd != NULL);
2906 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2907 pool != 0ULL && l2arc_vdev_present(vd))
2908 l2arc_remove_vdev(vd);
2909 if (vd->vdev_isl2cache)
2910 spa_l2cache_remove(vd);
2911 vdev_clear_stats(vd);
2912 (void) vdev_close(vd);
2917 * Pool Creation
2920 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2921 const char *history_str, nvlist_t *zplprops)
2923 spa_t *spa;
2924 char *altroot = NULL;
2925 vdev_t *rvd;
2926 dsl_pool_t *dp;
2927 dmu_tx_t *tx;
2928 int error = 0;
2929 uint64_t txg = TXG_INITIAL;
2930 nvlist_t **spares, **l2cache;
2931 uint_t nspares, nl2cache;
2932 uint64_t version, obj;
2935 * If this pool already exists, return failure.
2937 mutex_enter(&spa_namespace_lock);
2938 if (spa_lookup(pool) != NULL) {
2939 mutex_exit(&spa_namespace_lock);
2940 return (EEXIST);
2944 * Allocate a new spa_t structure.
2946 (void) nvlist_lookup_string(props,
2947 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2948 spa = spa_add(pool, NULL, altroot);
2949 spa_activate(spa, spa_mode_global);
2951 if (props && (error = spa_prop_validate(spa, props))) {
2952 spa_deactivate(spa);
2953 spa_remove(spa);
2954 mutex_exit(&spa_namespace_lock);
2955 return (error);
2958 if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2959 &version) != 0)
2960 version = SPA_VERSION;
2961 ASSERT(version <= SPA_VERSION);
2963 spa->spa_first_txg = txg;
2964 spa->spa_uberblock.ub_txg = txg - 1;
2965 spa->spa_uberblock.ub_version = version;
2966 spa->spa_ubsync = spa->spa_uberblock;
2969 * Create "The Godfather" zio to hold all async IOs
2971 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2972 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2975 * Create the root vdev.
2977 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2979 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2981 ASSERT(error != 0 || rvd != NULL);
2982 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2984 if (error == 0 && !zfs_allocatable_devs(nvroot))
2985 error = EINVAL;
2987 if (error == 0 &&
2988 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2989 (error = spa_validate_aux(spa, nvroot, txg,
2990 VDEV_ALLOC_ADD)) == 0) {
2991 for (int c = 0; c < rvd->vdev_children; c++) {
2992 vdev_metaslab_set_size(rvd->vdev_child[c]);
2993 vdev_expand(rvd->vdev_child[c], txg);
2997 spa_config_exit(spa, SCL_ALL, FTAG);
2999 if (error != 0) {
3000 spa_unload(spa);
3001 spa_deactivate(spa);
3002 spa_remove(spa);
3003 mutex_exit(&spa_namespace_lock);
3004 return (error);
3008 * Get the list of spares, if specified.
3010 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3011 &spares, &nspares) == 0) {
3012 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3013 KM_SLEEP) == 0);
3014 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3015 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3016 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3017 spa_load_spares(spa);
3018 spa_config_exit(spa, SCL_ALL, FTAG);
3019 spa->spa_spares.sav_sync = B_TRUE;
3023 * Get the list of level 2 cache devices, if specified.
3025 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3026 &l2cache, &nl2cache) == 0) {
3027 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3028 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3029 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3030 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3031 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3032 spa_load_l2cache(spa);
3033 spa_config_exit(spa, SCL_ALL, FTAG);
3034 spa->spa_l2cache.sav_sync = B_TRUE;
3037 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3038 spa->spa_meta_objset = dp->dp_meta_objset;
3041 * Create DDTs (dedup tables).
3043 ddt_create(spa);
3045 spa_update_dspace(spa);
3047 tx = dmu_tx_create_assigned(dp, txg);
3050 * Create the pool config object.
3052 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3053 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3054 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3056 if (zap_add(spa->spa_meta_objset,
3057 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3058 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3059 cmn_err(CE_PANIC, "failed to add pool config");
3062 if (zap_add(spa->spa_meta_objset,
3063 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3064 sizeof (uint64_t), 1, &version, tx) != 0) {
3065 cmn_err(CE_PANIC, "failed to add pool version");
3068 /* Newly created pools with the right version are always deflated. */
3069 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3070 spa->spa_deflate = TRUE;
3071 if (zap_add(spa->spa_meta_objset,
3072 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3073 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3074 cmn_err(CE_PANIC, "failed to add deflate");
3079 * Create the deferred-free bpobj. Turn off compression
3080 * because sync-to-convergence takes longer if the blocksize
3081 * keeps changing.
3083 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3084 dmu_object_set_compress(spa->spa_meta_objset, obj,
3085 ZIO_COMPRESS_OFF, tx);
3086 if (zap_add(spa->spa_meta_objset,
3087 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3088 sizeof (uint64_t), 1, &obj, tx) != 0) {
3089 cmn_err(CE_PANIC, "failed to add bpobj");
3091 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3092 spa->spa_meta_objset, obj));
3095 * Create the pool's history object.
3097 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3098 spa_history_create_obj(spa, tx);
3101 * Set pool properties.
3103 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3104 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3105 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3106 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3108 if (props != NULL) {
3109 spa_configfile_set(spa, props, B_FALSE);
3110 spa_sync_props(spa, props, tx);
3113 dmu_tx_commit(tx);
3115 spa->spa_sync_on = B_TRUE;
3116 txg_sync_start(spa->spa_dsl_pool);
3119 * We explicitly wait for the first transaction to complete so that our
3120 * bean counters are appropriately updated.
3122 txg_wait_synced(spa->spa_dsl_pool, txg);
3124 spa_config_sync(spa, B_FALSE, B_TRUE);
3126 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
3127 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
3128 spa_history_log_version(spa, LOG_POOL_CREATE);
3130 spa->spa_minref = refcount_count(&spa->spa_refcount);
3132 mutex_exit(&spa_namespace_lock);
3134 return (0);
3137 #ifdef _KERNEL
3139 * Get the root pool information from the root disk, then import the root pool
3140 * during the system boot up time.
3142 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3144 static nvlist_t *
3145 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3147 nvlist_t *config;
3148 nvlist_t *nvtop, *nvroot;
3149 uint64_t pgid;
3151 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3152 return (NULL);
3155 * Add this top-level vdev to the child array.
3157 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3158 &nvtop) == 0);
3159 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3160 &pgid) == 0);
3161 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3164 * Put this pool's top-level vdevs into a root vdev.
3166 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3167 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3168 VDEV_TYPE_ROOT) == 0);
3169 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3170 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3171 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3172 &nvtop, 1) == 0);
3175 * Replace the existing vdev_tree with the new root vdev in
3176 * this pool's configuration (remove the old, add the new).
3178 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3179 nvlist_free(nvroot);
3180 return (config);
3184 * Walk the vdev tree and see if we can find a device with "better"
3185 * configuration. A configuration is "better" if the label on that
3186 * device has a more recent txg.
3188 static void
3189 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3191 for (int c = 0; c < vd->vdev_children; c++)
3192 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3194 if (vd->vdev_ops->vdev_op_leaf) {
3195 nvlist_t *label;
3196 uint64_t label_txg;
3198 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3199 &label) != 0)
3200 return;
3202 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3203 &label_txg) == 0);
3206 * Do we have a better boot device?
3208 if (label_txg > *txg) {
3209 *txg = label_txg;
3210 *avd = vd;
3212 nvlist_free(label);
3217 * Import a root pool.
3219 * For x86. devpath_list will consist of devid and/or physpath name of
3220 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3221 * The GRUB "findroot" command will return the vdev we should boot.
3223 * For Sparc, devpath_list consists the physpath name of the booting device
3224 * no matter the rootpool is a single device pool or a mirrored pool.
3225 * e.g.
3226 * "/pci@1f,0/ide@d/disk@0,0:a"
3229 spa_import_rootpool(char *devpath, char *devid)
3231 spa_t *spa;
3232 vdev_t *rvd, *bvd, *avd = NULL;
3233 nvlist_t *config, *nvtop;
3234 uint64_t guid, txg;
3235 char *pname;
3236 int error;
3239 * Read the label from the boot device and generate a configuration.
3241 config = spa_generate_rootconf(devpath, devid, &guid);
3242 #if defined(_OBP) && defined(_KERNEL)
3243 if (config == NULL) {
3244 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3245 /* iscsi boot */
3246 get_iscsi_bootpath_phy(devpath);
3247 config = spa_generate_rootconf(devpath, devid, &guid);
3250 #endif
3251 if (config == NULL) {
3252 cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
3253 devpath);
3254 return (EIO);
3257 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3258 &pname) == 0);
3259 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3261 mutex_enter(&spa_namespace_lock);
3262 if ((spa = spa_lookup(pname)) != NULL) {
3264 * Remove the existing root pool from the namespace so that we
3265 * can replace it with the correct config we just read in.
3267 spa_remove(spa);
3270 spa = spa_add(pname, config, NULL);
3271 spa->spa_is_root = B_TRUE;
3272 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3275 * Build up a vdev tree based on the boot device's label config.
3277 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3278 &nvtop) == 0);
3279 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3280 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3281 VDEV_ALLOC_ROOTPOOL);
3282 spa_config_exit(spa, SCL_ALL, FTAG);
3283 if (error) {
3284 mutex_exit(&spa_namespace_lock);
3285 nvlist_free(config);
3286 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3287 pname);
3288 return (error);
3292 * Get the boot vdev.
3294 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3295 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3296 (u_longlong_t)guid);
3297 error = ENOENT;
3298 goto out;
3302 * Determine if there is a better boot device.
3304 avd = bvd;
3305 spa_alt_rootvdev(rvd, &avd, &txg);
3306 if (avd != bvd) {
3307 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3308 "try booting from '%s'", avd->vdev_path);
3309 error = EINVAL;
3310 goto out;
3314 * If the boot device is part of a spare vdev then ensure that
3315 * we're booting off the active spare.
3317 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3318 !bvd->vdev_isspare) {
3319 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3320 "try booting from '%s'",
3321 bvd->vdev_parent->
3322 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3323 error = EINVAL;
3324 goto out;
3327 error = 0;
3328 spa_history_log_version(spa, LOG_POOL_IMPORT);
3329 out:
3330 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3331 vdev_free(rvd);
3332 spa_config_exit(spa, SCL_ALL, FTAG);
3333 mutex_exit(&spa_namespace_lock);
3335 nvlist_free(config);
3336 return (error);
3339 #endif
3342 * Import a non-root pool into the system.
3345 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3347 spa_t *spa;
3348 char *altroot = NULL;
3349 spa_load_state_t state = SPA_LOAD_IMPORT;
3350 zpool_rewind_policy_t policy;
3351 uint64_t mode = spa_mode_global;
3352 uint64_t readonly = B_FALSE;
3353 int error;
3354 nvlist_t *nvroot;
3355 nvlist_t **spares, **l2cache;
3356 uint_t nspares, nl2cache;
3359 * If a pool with this name exists, return failure.
3361 mutex_enter(&spa_namespace_lock);
3362 if (spa_lookup(pool) != NULL) {
3363 mutex_exit(&spa_namespace_lock);
3364 return (EEXIST);
3368 * Create and initialize the spa structure.
3370 (void) nvlist_lookup_string(props,
3371 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3372 (void) nvlist_lookup_uint64(props,
3373 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3374 if (readonly)
3375 mode = FREAD;
3376 spa = spa_add(pool, config, altroot);
3377 spa->spa_import_flags = flags;
3380 * Verbatim import - Take a pool and insert it into the namespace
3381 * as if it had been loaded at boot.
3383 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3384 if (props != NULL)
3385 spa_configfile_set(spa, props, B_FALSE);
3387 spa_config_sync(spa, B_FALSE, B_TRUE);
3389 mutex_exit(&spa_namespace_lock);
3390 spa_history_log_version(spa, LOG_POOL_IMPORT);
3392 return (0);
3395 spa_activate(spa, mode);
3398 * Don't start async tasks until we know everything is healthy.
3400 spa_async_suspend(spa);
3402 zpool_get_rewind_policy(config, &policy);
3403 if (policy.zrp_request & ZPOOL_DO_REWIND)
3404 state = SPA_LOAD_RECOVER;
3407 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3408 * because the user-supplied config is actually the one to trust when
3409 * doing an import.
3411 if (state != SPA_LOAD_RECOVER)
3412 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3414 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3415 policy.zrp_request);
3418 * Propagate anything learned while loading the pool and pass it
3419 * back to caller (i.e. rewind info, missing devices, etc).
3421 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3422 spa->spa_load_info) == 0);
3424 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3426 * Toss any existing sparelist, as it doesn't have any validity
3427 * anymore, and conflicts with spa_has_spare().
3429 if (spa->spa_spares.sav_config) {
3430 nvlist_free(spa->spa_spares.sav_config);
3431 spa->spa_spares.sav_config = NULL;
3432 spa_load_spares(spa);
3434 if (spa->spa_l2cache.sav_config) {
3435 nvlist_free(spa->spa_l2cache.sav_config);
3436 spa->spa_l2cache.sav_config = NULL;
3437 spa_load_l2cache(spa);
3440 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3441 &nvroot) == 0);
3442 if (error == 0)
3443 error = spa_validate_aux(spa, nvroot, -1ULL,
3444 VDEV_ALLOC_SPARE);
3445 if (error == 0)
3446 error = spa_validate_aux(spa, nvroot, -1ULL,
3447 VDEV_ALLOC_L2CACHE);
3448 spa_config_exit(spa, SCL_ALL, FTAG);
3450 if (props != NULL)
3451 spa_configfile_set(spa, props, B_FALSE);
3453 if (error != 0 || (props && spa_writeable(spa) &&
3454 (error = spa_prop_set(spa, props)))) {
3455 spa_unload(spa);
3456 spa_deactivate(spa);
3457 spa_remove(spa);
3458 mutex_exit(&spa_namespace_lock);
3459 return (error);
3462 spa_async_resume(spa);
3465 * Override any spares and level 2 cache devices as specified by
3466 * the user, as these may have correct device names/devids, etc.
3468 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3469 &spares, &nspares) == 0) {
3470 if (spa->spa_spares.sav_config)
3471 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3472 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3473 else
3474 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3475 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3476 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3477 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3478 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3479 spa_load_spares(spa);
3480 spa_config_exit(spa, SCL_ALL, FTAG);
3481 spa->spa_spares.sav_sync = B_TRUE;
3483 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3484 &l2cache, &nl2cache) == 0) {
3485 if (spa->spa_l2cache.sav_config)
3486 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3487 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3488 else
3489 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3490 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3491 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3492 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3493 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3494 spa_load_l2cache(spa);
3495 spa_config_exit(spa, SCL_ALL, FTAG);
3496 spa->spa_l2cache.sav_sync = B_TRUE;
3500 * Check for any removed devices.
3502 if (spa->spa_autoreplace) {
3503 spa_aux_check_removed(&spa->spa_spares);
3504 spa_aux_check_removed(&spa->spa_l2cache);
3507 if (spa_writeable(spa)) {
3509 * Update the config cache to include the newly-imported pool.
3511 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3515 * It's possible that the pool was expanded while it was exported.
3516 * We kick off an async task to handle this for us.
3518 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3520 mutex_exit(&spa_namespace_lock);
3521 spa_history_log_version(spa, LOG_POOL_IMPORT);
3523 return (0);
3526 nvlist_t *
3527 spa_tryimport(nvlist_t *tryconfig)
3529 nvlist_t *config = NULL;
3530 char *poolname;
3531 spa_t *spa;
3532 uint64_t state;
3533 int error;
3535 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3536 return (NULL);
3538 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3539 return (NULL);
3542 * Create and initialize the spa structure.
3544 mutex_enter(&spa_namespace_lock);
3545 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3546 spa_activate(spa, FREAD);
3549 * Pass off the heavy lifting to spa_load().
3550 * Pass TRUE for mosconfig because the user-supplied config
3551 * is actually the one to trust when doing an import.
3553 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3556 * If 'tryconfig' was at least parsable, return the current config.
3558 if (spa->spa_root_vdev != NULL) {
3559 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3560 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3561 poolname) == 0);
3562 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3563 state) == 0);
3564 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3565 spa->spa_uberblock.ub_timestamp) == 0);
3568 * If the bootfs property exists on this pool then we
3569 * copy it out so that external consumers can tell which
3570 * pools are bootable.
3572 if ((!error || error == EEXIST) && spa->spa_bootfs) {
3573 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3576 * We have to play games with the name since the
3577 * pool was opened as TRYIMPORT_NAME.
3579 if (dsl_dsobj_to_dsname(spa_name(spa),
3580 spa->spa_bootfs, tmpname) == 0) {
3581 char *cp;
3582 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3584 cp = strchr(tmpname, '/');
3585 if (cp == NULL) {
3586 (void) strlcpy(dsname, tmpname,
3587 MAXPATHLEN);
3588 } else {
3589 (void) snprintf(dsname, MAXPATHLEN,
3590 "%s/%s", poolname, ++cp);
3592 VERIFY(nvlist_add_string(config,
3593 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3594 kmem_free(dsname, MAXPATHLEN);
3596 kmem_free(tmpname, MAXPATHLEN);
3600 * Add the list of hot spares and level 2 cache devices.
3602 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3603 spa_add_spares(spa, config);
3604 spa_add_l2cache(spa, config);
3605 spa_config_exit(spa, SCL_CONFIG, FTAG);
3608 spa_unload(spa);
3609 spa_deactivate(spa);
3610 spa_remove(spa);
3611 mutex_exit(&spa_namespace_lock);
3613 return (config);
3617 * Pool export/destroy
3619 * The act of destroying or exporting a pool is very simple. We make sure there
3620 * is no more pending I/O and any references to the pool are gone. Then, we
3621 * update the pool state and sync all the labels to disk, removing the
3622 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3623 * we don't sync the labels or remove the configuration cache.
3625 static int
3626 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3627 boolean_t force, boolean_t hardforce)
3629 spa_t *spa;
3631 if (oldconfig)
3632 *oldconfig = NULL;
3634 if (!(spa_mode_global & FWRITE))
3635 return (EROFS);
3637 mutex_enter(&spa_namespace_lock);
3638 if ((spa = spa_lookup(pool)) == NULL) {
3639 mutex_exit(&spa_namespace_lock);
3640 return (ENOENT);
3644 * Put a hold on the pool, drop the namespace lock, stop async tasks,
3645 * reacquire the namespace lock, and see if we can export.
3647 spa_open_ref(spa, FTAG);
3648 mutex_exit(&spa_namespace_lock);
3649 spa_async_suspend(spa);
3650 mutex_enter(&spa_namespace_lock);
3651 spa_close(spa, FTAG);
3654 * The pool will be in core if it's openable,
3655 * in which case we can modify its state.
3657 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
3659 * Objsets may be open only because they're dirty, so we
3660 * have to force it to sync before checking spa_refcnt.
3662 txg_wait_synced(spa->spa_dsl_pool, 0);
3665 * A pool cannot be exported or destroyed if there are active
3666 * references. If we are resetting a pool, allow references by
3667 * fault injection handlers.
3669 if (!spa_refcount_zero(spa) ||
3670 (spa->spa_inject_ref != 0 &&
3671 new_state != POOL_STATE_UNINITIALIZED)) {
3672 spa_async_resume(spa);
3673 mutex_exit(&spa_namespace_lock);
3674 return (EBUSY);
3678 * A pool cannot be exported if it has an active shared spare.
3679 * This is to prevent other pools stealing the active spare
3680 * from an exported pool. At user's own will, such pool can
3681 * be forcedly exported.
3683 if (!force && new_state == POOL_STATE_EXPORTED &&
3684 spa_has_active_shared_spare(spa)) {
3685 spa_async_resume(spa);
3686 mutex_exit(&spa_namespace_lock);
3687 return (EXDEV);
3691 * We want this to be reflected on every label,
3692 * so mark them all dirty. spa_unload() will do the
3693 * final sync that pushes these changes out.
3695 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
3696 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3697 spa->spa_state = new_state;
3698 spa->spa_final_txg = spa_last_synced_txg(spa) +
3699 TXG_DEFER_SIZE + 1;
3700 vdev_config_dirty(spa->spa_root_vdev);
3701 spa_config_exit(spa, SCL_ALL, FTAG);
3705 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
3707 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3708 spa_unload(spa);
3709 spa_deactivate(spa);
3712 if (oldconfig && spa->spa_config)
3713 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
3715 if (new_state != POOL_STATE_UNINITIALIZED) {
3716 if (!hardforce)
3717 spa_config_sync(spa, B_TRUE, B_TRUE);
3718 spa_remove(spa);
3720 mutex_exit(&spa_namespace_lock);
3722 return (0);
3726 * Destroy a storage pool.
3729 spa_destroy(char *pool)
3731 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
3732 B_FALSE, B_FALSE));
3736 * Export a storage pool.
3739 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
3740 boolean_t hardforce)
3742 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
3743 force, hardforce));
3747 * Similar to spa_export(), this unloads the spa_t without actually removing it
3748 * from the namespace in any way.
3751 spa_reset(char *pool)
3753 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
3754 B_FALSE, B_FALSE));
3758 * ==========================================================================
3759 * Device manipulation
3760 * ==========================================================================
3764 * Add a device to a storage pool.
3767 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
3769 uint64_t txg, id;
3770 int error;
3771 vdev_t *rvd = spa->spa_root_vdev;
3772 vdev_t *vd, *tvd;
3773 nvlist_t **spares, **l2cache;
3774 uint_t nspares, nl2cache;
3776 ASSERT(spa_writeable(spa));
3778 txg = spa_vdev_enter(spa);
3780 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
3781 VDEV_ALLOC_ADD)) != 0)
3782 return (spa_vdev_exit(spa, NULL, txg, error));
3784 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
3786 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
3787 &nspares) != 0)
3788 nspares = 0;
3790 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
3791 &nl2cache) != 0)
3792 nl2cache = 0;
3794 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
3795 return (spa_vdev_exit(spa, vd, txg, EINVAL));
3797 if (vd->vdev_children != 0 &&
3798 (error = vdev_create(vd, txg, B_FALSE)) != 0)
3799 return (spa_vdev_exit(spa, vd, txg, error));
3802 * We must validate the spares and l2cache devices after checking the
3803 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
3805 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
3806 return (spa_vdev_exit(spa, vd, txg, error));
3809 * Transfer each new top-level vdev from vd to rvd.
3811 for (int c = 0; c < vd->vdev_children; c++) {
3814 * Set the vdev id to the first hole, if one exists.
3816 for (id = 0; id < rvd->vdev_children; id++) {
3817 if (rvd->vdev_child[id]->vdev_ishole) {
3818 vdev_free(rvd->vdev_child[id]);
3819 break;
3822 tvd = vd->vdev_child[c];
3823 vdev_remove_child(vd, tvd);
3824 tvd->vdev_id = id;
3825 vdev_add_child(rvd, tvd);
3826 vdev_config_dirty(tvd);
3829 if (nspares != 0) {
3830 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
3831 ZPOOL_CONFIG_SPARES);
3832 spa_load_spares(spa);
3833 spa->spa_spares.sav_sync = B_TRUE;
3836 if (nl2cache != 0) {
3837 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
3838 ZPOOL_CONFIG_L2CACHE);
3839 spa_load_l2cache(spa);
3840 spa->spa_l2cache.sav_sync = B_TRUE;
3844 * We have to be careful when adding new vdevs to an existing pool.
3845 * If other threads start allocating from these vdevs before we
3846 * sync the config cache, and we lose power, then upon reboot we may
3847 * fail to open the pool because there are DVAs that the config cache
3848 * can't translate. Therefore, we first add the vdevs without
3849 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
3850 * and then let spa_config_update() initialize the new metaslabs.
3852 * spa_load() checks for added-but-not-initialized vdevs, so that
3853 * if we lose power at any point in this sequence, the remaining
3854 * steps will be completed the next time we load the pool.
3856 (void) spa_vdev_exit(spa, vd, txg, 0);
3858 mutex_enter(&spa_namespace_lock);
3859 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3860 mutex_exit(&spa_namespace_lock);
3862 return (0);
3866 * Attach a device to a mirror. The arguments are the path to any device
3867 * in the mirror, and the nvroot for the new device. If the path specifies
3868 * a device that is not mirrored, we automatically insert the mirror vdev.
3870 * If 'replacing' is specified, the new device is intended to replace the
3871 * existing device; in this case the two devices are made into their own
3872 * mirror using the 'replacing' vdev, which is functionally identical to
3873 * the mirror vdev (it actually reuses all the same ops) but has a few
3874 * extra rules: you can't attach to it after it's been created, and upon
3875 * completion of resilvering, the first disk (the one being replaced)
3876 * is automatically detached.
3879 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
3881 uint64_t txg, dtl_max_txg;
3882 vdev_t *rvd = spa->spa_root_vdev;
3883 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3884 vdev_ops_t *pvops;
3885 char *oldvdpath, *newvdpath;
3886 int newvd_isspare;
3887 int error;
3889 ASSERT(spa_writeable(spa));
3891 txg = spa_vdev_enter(spa);
3893 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3895 if (oldvd == NULL)
3896 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3898 if (!oldvd->vdev_ops->vdev_op_leaf)
3899 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3901 pvd = oldvd->vdev_parent;
3903 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3904 VDEV_ALLOC_ADD)) != 0)
3905 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3907 if (newrootvd->vdev_children != 1)
3908 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3910 newvd = newrootvd->vdev_child[0];
3912 if (!newvd->vdev_ops->vdev_op_leaf)
3913 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3915 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3916 return (spa_vdev_exit(spa, newrootvd, txg, error));
3919 * Spares can't replace logs
3921 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3922 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3924 if (!replacing) {
3926 * For attach, the only allowable parent is a mirror or the root
3927 * vdev.
3929 if (pvd->vdev_ops != &vdev_mirror_ops &&
3930 pvd->vdev_ops != &vdev_root_ops)
3931 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3933 pvops = &vdev_mirror_ops;
3934 } else {
3936 * Active hot spares can only be replaced by inactive hot
3937 * spares.
3939 if (pvd->vdev_ops == &vdev_spare_ops &&
3940 oldvd->vdev_isspare &&
3941 !spa_has_spare(spa, newvd->vdev_guid))
3942 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3945 * If the source is a hot spare, and the parent isn't already a
3946 * spare, then we want to create a new hot spare. Otherwise, we
3947 * want to create a replacing vdev. The user is not allowed to
3948 * attach to a spared vdev child unless the 'isspare' state is
3949 * the same (spare replaces spare, non-spare replaces
3950 * non-spare).
3952 if (pvd->vdev_ops == &vdev_replacing_ops &&
3953 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
3954 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3955 } else if (pvd->vdev_ops == &vdev_spare_ops &&
3956 newvd->vdev_isspare != oldvd->vdev_isspare) {
3957 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3960 if (newvd->vdev_isspare)
3961 pvops = &vdev_spare_ops;
3962 else
3963 pvops = &vdev_replacing_ops;
3967 * Make sure the new device is big enough.
3969 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3970 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3973 * The new device cannot have a higher alignment requirement
3974 * than the top-level vdev.
3976 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3977 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3980 * If this is an in-place replacement, update oldvd's path and devid
3981 * to make it distinguishable from newvd, and unopenable from now on.
3983 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3984 spa_strfree(oldvd->vdev_path);
3985 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3986 KM_SLEEP);
3987 (void) sprintf(oldvd->vdev_path, "%s/%s",
3988 newvd->vdev_path, "old");
3989 if (oldvd->vdev_devid != NULL) {
3990 spa_strfree(oldvd->vdev_devid);
3991 oldvd->vdev_devid = NULL;
3995 /* mark the device being resilvered */
3996 newvd->vdev_resilvering = B_TRUE;
3999 * If the parent is not a mirror, or if we're replacing, insert the new
4000 * mirror/replacing/spare vdev above oldvd.
4002 if (pvd->vdev_ops != pvops)
4003 pvd = vdev_add_parent(oldvd, pvops);
4005 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4006 ASSERT(pvd->vdev_ops == pvops);
4007 ASSERT(oldvd->vdev_parent == pvd);
4010 * Extract the new device from its root and add it to pvd.
4012 vdev_remove_child(newrootvd, newvd);
4013 newvd->vdev_id = pvd->vdev_children;
4014 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4015 vdev_add_child(pvd, newvd);
4017 tvd = newvd->vdev_top;
4018 ASSERT(pvd->vdev_top == tvd);
4019 ASSERT(tvd->vdev_parent == rvd);
4021 vdev_config_dirty(tvd);
4024 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4025 * for any dmu_sync-ed blocks. It will propagate upward when
4026 * spa_vdev_exit() calls vdev_dtl_reassess().
4028 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4030 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4031 dtl_max_txg - TXG_INITIAL);
4033 if (newvd->vdev_isspare) {
4034 spa_spare_activate(newvd);
4035 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4038 oldvdpath = spa_strdup(oldvd->vdev_path);
4039 newvdpath = spa_strdup(newvd->vdev_path);
4040 newvd_isspare = newvd->vdev_isspare;
4043 * Mark newvd's DTL dirty in this txg.
4045 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4048 * Restart the resilver
4050 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4053 * Commit the config
4055 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4057 spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL,
4058 "%s vdev=%s %s vdev=%s",
4059 replacing && newvd_isspare ? "spare in" :
4060 replacing ? "replace" : "attach", newvdpath,
4061 replacing ? "for" : "to", oldvdpath);
4063 spa_strfree(oldvdpath);
4064 spa_strfree(newvdpath);
4066 if (spa->spa_bootfs)
4067 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4069 return (0);
4073 * Detach a device from a mirror or replacing vdev.
4074 * If 'replace_done' is specified, only detach if the parent
4075 * is a replacing vdev.
4078 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4080 uint64_t txg;
4081 int error;
4082 vdev_t *rvd = spa->spa_root_vdev;
4083 vdev_t *vd, *pvd, *cvd, *tvd;
4084 boolean_t unspare = B_FALSE;
4085 uint64_t unspare_guid;
4086 char *vdpath;
4088 ASSERT(spa_writeable(spa));
4090 txg = spa_vdev_enter(spa);
4092 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4094 if (vd == NULL)
4095 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4097 if (!vd->vdev_ops->vdev_op_leaf)
4098 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4100 pvd = vd->vdev_parent;
4103 * If the parent/child relationship is not as expected, don't do it.
4104 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4105 * vdev that's replacing B with C. The user's intent in replacing
4106 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4107 * the replace by detaching C, the expected behavior is to end up
4108 * M(A,B). But suppose that right after deciding to detach C,
4109 * the replacement of B completes. We would have M(A,C), and then
4110 * ask to detach C, which would leave us with just A -- not what
4111 * the user wanted. To prevent this, we make sure that the
4112 * parent/child relationship hasn't changed -- in this example,
4113 * that C's parent is still the replacing vdev R.
4115 if (pvd->vdev_guid != pguid && pguid != 0)
4116 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4119 * Only 'replacing' or 'spare' vdevs can be replaced.
4121 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4122 pvd->vdev_ops != &vdev_spare_ops)
4123 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4125 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4126 spa_version(spa) >= SPA_VERSION_SPARES);
4129 * Only mirror, replacing, and spare vdevs support detach.
4131 if (pvd->vdev_ops != &vdev_replacing_ops &&
4132 pvd->vdev_ops != &vdev_mirror_ops &&
4133 pvd->vdev_ops != &vdev_spare_ops)
4134 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4137 * If this device has the only valid copy of some data,
4138 * we cannot safely detach it.
4140 if (vdev_dtl_required(vd))
4141 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4143 ASSERT(pvd->vdev_children >= 2);
4146 * If we are detaching the second disk from a replacing vdev, then
4147 * check to see if we changed the original vdev's path to have "/old"
4148 * at the end in spa_vdev_attach(). If so, undo that change now.
4150 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4151 vd->vdev_path != NULL) {
4152 size_t len = strlen(vd->vdev_path);
4154 for (int c = 0; c < pvd->vdev_children; c++) {
4155 cvd = pvd->vdev_child[c];
4157 if (cvd == vd || cvd->vdev_path == NULL)
4158 continue;
4160 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4161 strcmp(cvd->vdev_path + len, "/old") == 0) {
4162 spa_strfree(cvd->vdev_path);
4163 cvd->vdev_path = spa_strdup(vd->vdev_path);
4164 break;
4170 * If we are detaching the original disk from a spare, then it implies
4171 * that the spare should become a real disk, and be removed from the
4172 * active spare list for the pool.
4174 if (pvd->vdev_ops == &vdev_spare_ops &&
4175 vd->vdev_id == 0 &&
4176 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4177 unspare = B_TRUE;
4180 * Erase the disk labels so the disk can be used for other things.
4181 * This must be done after all other error cases are handled,
4182 * but before we disembowel vd (so we can still do I/O to it).
4183 * But if we can't do it, don't treat the error as fatal --
4184 * it may be that the unwritability of the disk is the reason
4185 * it's being detached!
4187 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4190 * Remove vd from its parent and compact the parent's children.
4192 vdev_remove_child(pvd, vd);
4193 vdev_compact_children(pvd);
4196 * Remember one of the remaining children so we can get tvd below.
4198 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4201 * If we need to remove the remaining child from the list of hot spares,
4202 * do it now, marking the vdev as no longer a spare in the process.
4203 * We must do this before vdev_remove_parent(), because that can
4204 * change the GUID if it creates a new toplevel GUID. For a similar
4205 * reason, we must remove the spare now, in the same txg as the detach;
4206 * otherwise someone could attach a new sibling, change the GUID, and
4207 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4209 if (unspare) {
4210 ASSERT(cvd->vdev_isspare);
4211 spa_spare_remove(cvd);
4212 unspare_guid = cvd->vdev_guid;
4213 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4214 cvd->vdev_unspare = B_TRUE;
4218 * If the parent mirror/replacing vdev only has one child,
4219 * the parent is no longer needed. Remove it from the tree.
4221 if (pvd->vdev_children == 1) {
4222 if (pvd->vdev_ops == &vdev_spare_ops)
4223 cvd->vdev_unspare = B_FALSE;
4224 vdev_remove_parent(cvd);
4225 cvd->vdev_resilvering = B_FALSE;
4230 * We don't set tvd until now because the parent we just removed
4231 * may have been the previous top-level vdev.
4233 tvd = cvd->vdev_top;
4234 ASSERT(tvd->vdev_parent == rvd);
4237 * Reevaluate the parent vdev state.
4239 vdev_propagate_state(cvd);
4242 * If the 'autoexpand' property is set on the pool then automatically
4243 * try to expand the size of the pool. For example if the device we
4244 * just detached was smaller than the others, it may be possible to
4245 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4246 * first so that we can obtain the updated sizes of the leaf vdevs.
4248 if (spa->spa_autoexpand) {
4249 vdev_reopen(tvd);
4250 vdev_expand(tvd, txg);
4253 vdev_config_dirty(tvd);
4256 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4257 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4258 * But first make sure we're not on any *other* txg's DTL list, to
4259 * prevent vd from being accessed after it's freed.
4261 vdpath = spa_strdup(vd->vdev_path);
4262 for (int t = 0; t < TXG_SIZE; t++)
4263 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4264 vd->vdev_detached = B_TRUE;
4265 vdev_dirty(tvd, VDD_DTL, vd, txg);
4267 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4269 /* hang on to the spa before we release the lock */
4270 spa_open_ref(spa, FTAG);
4272 error = spa_vdev_exit(spa, vd, txg, 0);
4274 spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL,
4275 "vdev=%s", vdpath);
4276 spa_strfree(vdpath);
4279 * If this was the removal of the original device in a hot spare vdev,
4280 * then we want to go through and remove the device from the hot spare
4281 * list of every other pool.
4283 if (unspare) {
4284 spa_t *altspa = NULL;
4286 mutex_enter(&spa_namespace_lock);
4287 while ((altspa = spa_next(altspa)) != NULL) {
4288 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4289 altspa == spa)
4290 continue;
4292 spa_open_ref(altspa, FTAG);
4293 mutex_exit(&spa_namespace_lock);
4294 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4295 mutex_enter(&spa_namespace_lock);
4296 spa_close(altspa, FTAG);
4298 mutex_exit(&spa_namespace_lock);
4300 /* search the rest of the vdevs for spares to remove */
4301 spa_vdev_resilver_done(spa);
4304 /* all done with the spa; OK to release */
4305 mutex_enter(&spa_namespace_lock);
4306 spa_close(spa, FTAG);
4307 mutex_exit(&spa_namespace_lock);
4309 return (error);
4313 * Split a set of devices from their mirrors, and create a new pool from them.
4316 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4317 nvlist_t *props, boolean_t exp)
4319 int error = 0;
4320 uint64_t txg, *glist;
4321 spa_t *newspa;
4322 uint_t c, children, lastlog;
4323 nvlist_t **child, *nvl, *tmp;
4324 dmu_tx_t *tx;
4325 char *altroot = NULL;
4326 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4327 boolean_t activate_slog;
4329 ASSERT(spa_writeable(spa));
4331 txg = spa_vdev_enter(spa);
4333 /* clear the log and flush everything up to now */
4334 activate_slog = spa_passivate_log(spa);
4335 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4336 error = spa_offline_log(spa);
4337 txg = spa_vdev_config_enter(spa);
4339 if (activate_slog)
4340 spa_activate_log(spa);
4342 if (error != 0)
4343 return (spa_vdev_exit(spa, NULL, txg, error));
4345 /* check new spa name before going any further */
4346 if (spa_lookup(newname) != NULL)
4347 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4350 * scan through all the children to ensure they're all mirrors
4352 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4353 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4354 &children) != 0)
4355 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4357 /* first, check to ensure we've got the right child count */
4358 rvd = spa->spa_root_vdev;
4359 lastlog = 0;
4360 for (c = 0; c < rvd->vdev_children; c++) {
4361 vdev_t *vd = rvd->vdev_child[c];
4363 /* don't count the holes & logs as children */
4364 if (vd->vdev_islog || vd->vdev_ishole) {
4365 if (lastlog == 0)
4366 lastlog = c;
4367 continue;
4370 lastlog = 0;
4372 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4373 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4375 /* next, ensure no spare or cache devices are part of the split */
4376 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4377 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4378 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4380 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4381 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4383 /* then, loop over each vdev and validate it */
4384 for (c = 0; c < children; c++) {
4385 uint64_t is_hole = 0;
4387 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4388 &is_hole);
4390 if (is_hole != 0) {
4391 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4392 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4393 continue;
4394 } else {
4395 error = EINVAL;
4396 break;
4400 /* which disk is going to be split? */
4401 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4402 &glist[c]) != 0) {
4403 error = EINVAL;
4404 break;
4407 /* look it up in the spa */
4408 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4409 if (vml[c] == NULL) {
4410 error = ENODEV;
4411 break;
4414 /* make sure there's nothing stopping the split */
4415 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4416 vml[c]->vdev_islog ||
4417 vml[c]->vdev_ishole ||
4418 vml[c]->vdev_isspare ||
4419 vml[c]->vdev_isl2cache ||
4420 !vdev_writeable(vml[c]) ||
4421 vml[c]->vdev_children != 0 ||
4422 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4423 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4424 error = EINVAL;
4425 break;
4428 if (vdev_dtl_required(vml[c])) {
4429 error = EBUSY;
4430 break;
4433 /* we need certain info from the top level */
4434 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4435 vml[c]->vdev_top->vdev_ms_array) == 0);
4436 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4437 vml[c]->vdev_top->vdev_ms_shift) == 0);
4438 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4439 vml[c]->vdev_top->vdev_asize) == 0);
4440 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4441 vml[c]->vdev_top->vdev_ashift) == 0);
4444 if (error != 0) {
4445 kmem_free(vml, children * sizeof (vdev_t *));
4446 kmem_free(glist, children * sizeof (uint64_t));
4447 return (spa_vdev_exit(spa, NULL, txg, error));
4450 /* stop writers from using the disks */
4451 for (c = 0; c < children; c++) {
4452 if (vml[c] != NULL)
4453 vml[c]->vdev_offline = B_TRUE;
4455 vdev_reopen(spa->spa_root_vdev);
4458 * Temporarily record the splitting vdevs in the spa config. This
4459 * will disappear once the config is regenerated.
4461 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4462 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4463 glist, children) == 0);
4464 kmem_free(glist, children * sizeof (uint64_t));
4466 mutex_enter(&spa->spa_props_lock);
4467 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4468 nvl) == 0);
4469 mutex_exit(&spa->spa_props_lock);
4470 spa->spa_config_splitting = nvl;
4471 vdev_config_dirty(spa->spa_root_vdev);
4473 /* configure and create the new pool */
4474 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4475 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4476 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4477 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4478 spa_version(spa)) == 0);
4479 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4480 spa->spa_config_txg) == 0);
4481 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4482 spa_generate_guid(NULL)) == 0);
4483 (void) nvlist_lookup_string(props,
4484 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4486 /* add the new pool to the namespace */
4487 newspa = spa_add(newname, config, altroot);
4488 newspa->spa_config_txg = spa->spa_config_txg;
4489 spa_set_log_state(newspa, SPA_LOG_CLEAR);
4491 /* release the spa config lock, retaining the namespace lock */
4492 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4494 if (zio_injection_enabled)
4495 zio_handle_panic_injection(spa, FTAG, 1);
4497 spa_activate(newspa, spa_mode_global);
4498 spa_async_suspend(newspa);
4500 /* create the new pool from the disks of the original pool */
4501 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4502 if (error)
4503 goto out;
4505 /* if that worked, generate a real config for the new pool */
4506 if (newspa->spa_root_vdev != NULL) {
4507 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4508 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4509 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4510 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4511 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4512 B_TRUE));
4515 /* set the props */
4516 if (props != NULL) {
4517 spa_configfile_set(newspa, props, B_FALSE);
4518 error = spa_prop_set(newspa, props);
4519 if (error)
4520 goto out;
4523 /* flush everything */
4524 txg = spa_vdev_config_enter(newspa);
4525 vdev_config_dirty(newspa->spa_root_vdev);
4526 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4528 if (zio_injection_enabled)
4529 zio_handle_panic_injection(spa, FTAG, 2);
4531 spa_async_resume(newspa);
4533 /* finally, update the original pool's config */
4534 txg = spa_vdev_config_enter(spa);
4535 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4536 error = dmu_tx_assign(tx, TXG_WAIT);
4537 if (error != 0)
4538 dmu_tx_abort(tx);
4539 for (c = 0; c < children; c++) {
4540 if (vml[c] != NULL) {
4541 vdev_split(vml[c]);
4542 if (error == 0)
4543 spa_history_log_internal(LOG_POOL_VDEV_DETACH,
4544 spa, tx, "vdev=%s",
4545 vml[c]->vdev_path);
4546 vdev_free(vml[c]);
4549 vdev_config_dirty(spa->spa_root_vdev);
4550 spa->spa_config_splitting = NULL;
4551 nvlist_free(nvl);
4552 if (error == 0)
4553 dmu_tx_commit(tx);
4554 (void) spa_vdev_exit(spa, NULL, txg, 0);
4556 if (zio_injection_enabled)
4557 zio_handle_panic_injection(spa, FTAG, 3);
4559 /* split is complete; log a history record */
4560 spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL,
4561 "split new pool %s from pool %s", newname, spa_name(spa));
4563 kmem_free(vml, children * sizeof (vdev_t *));
4565 /* if we're not going to mount the filesystems in userland, export */
4566 if (exp)
4567 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4568 B_FALSE, B_FALSE);
4570 return (error);
4572 out:
4573 spa_unload(newspa);
4574 spa_deactivate(newspa);
4575 spa_remove(newspa);
4577 txg = spa_vdev_config_enter(spa);
4579 /* re-online all offlined disks */
4580 for (c = 0; c < children; c++) {
4581 if (vml[c] != NULL)
4582 vml[c]->vdev_offline = B_FALSE;
4584 vdev_reopen(spa->spa_root_vdev);
4586 nvlist_free(spa->spa_config_splitting);
4587 spa->spa_config_splitting = NULL;
4588 (void) spa_vdev_exit(spa, NULL, txg, error);
4590 kmem_free(vml, children * sizeof (vdev_t *));
4591 return (error);
4594 static nvlist_t *
4595 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
4597 for (int i = 0; i < count; i++) {
4598 uint64_t guid;
4600 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
4601 &guid) == 0);
4603 if (guid == target_guid)
4604 return (nvpp[i]);
4607 return (NULL);
4610 static void
4611 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
4612 nvlist_t *dev_to_remove)
4614 nvlist_t **newdev = NULL;
4616 if (count > 1)
4617 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
4619 for (int i = 0, j = 0; i < count; i++) {
4620 if (dev[i] == dev_to_remove)
4621 continue;
4622 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
4625 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
4626 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
4628 for (int i = 0; i < count - 1; i++)
4629 nvlist_free(newdev[i]);
4631 if (count > 1)
4632 kmem_free(newdev, (count - 1) * sizeof (void *));
4636 * Evacuate the device.
4638 static int
4639 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
4641 uint64_t txg;
4642 int error = 0;
4644 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4645 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4646 ASSERT(vd == vd->vdev_top);
4649 * Evacuate the device. We don't hold the config lock as writer
4650 * since we need to do I/O but we do keep the
4651 * spa_namespace_lock held. Once this completes the device
4652 * should no longer have any blocks allocated on it.
4654 if (vd->vdev_islog) {
4655 if (vd->vdev_stat.vs_alloc != 0)
4656 error = spa_offline_log(spa);
4657 } else {
4658 error = ENOTSUP;
4661 if (error)
4662 return (error);
4665 * The evacuation succeeded. Remove any remaining MOS metadata
4666 * associated with this vdev, and wait for these changes to sync.
4668 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
4669 txg = spa_vdev_config_enter(spa);
4670 vd->vdev_removing = B_TRUE;
4671 vdev_dirty(vd, 0, NULL, txg);
4672 vdev_config_dirty(vd);
4673 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4675 return (0);
4679 * Complete the removal by cleaning up the namespace.
4681 static void
4682 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
4684 vdev_t *rvd = spa->spa_root_vdev;
4685 uint64_t id = vd->vdev_id;
4686 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
4688 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4689 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4690 ASSERT(vd == vd->vdev_top);
4693 * Only remove any devices which are empty.
4695 if (vd->vdev_stat.vs_alloc != 0)
4696 return;
4698 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4700 if (list_link_active(&vd->vdev_state_dirty_node))
4701 vdev_state_clean(vd);
4702 if (list_link_active(&vd->vdev_config_dirty_node))
4703 vdev_config_clean(vd);
4705 vdev_free(vd);
4707 if (last_vdev) {
4708 vdev_compact_children(rvd);
4709 } else {
4710 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
4711 vdev_add_child(rvd, vd);
4713 vdev_config_dirty(rvd);
4716 * Reassess the health of our root vdev.
4718 vdev_reopen(rvd);
4722 * Remove a device from the pool -
4724 * Removing a device from the vdev namespace requires several steps
4725 * and can take a significant amount of time. As a result we use
4726 * the spa_vdev_config_[enter/exit] functions which allow us to
4727 * grab and release the spa_config_lock while still holding the namespace
4728 * lock. During each step the configuration is synced out.
4732 * Remove a device from the pool. Currently, this supports removing only hot
4733 * spares, slogs, and level 2 ARC devices.
4736 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
4738 vdev_t *vd;
4739 metaslab_group_t *mg;
4740 nvlist_t **spares, **l2cache, *nv;
4741 uint64_t txg = 0;
4742 uint_t nspares, nl2cache;
4743 int error = 0;
4744 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
4746 ASSERT(spa_writeable(spa));
4748 if (!locked)
4749 txg = spa_vdev_enter(spa);
4751 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4753 if (spa->spa_spares.sav_vdevs != NULL &&
4754 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4755 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
4756 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
4758 * Only remove the hot spare if it's not currently in use
4759 * in this pool.
4761 if (vd == NULL || unspare) {
4762 spa_vdev_remove_aux(spa->spa_spares.sav_config,
4763 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
4764 spa_load_spares(spa);
4765 spa->spa_spares.sav_sync = B_TRUE;
4766 } else {
4767 error = EBUSY;
4769 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
4770 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4771 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
4772 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
4774 * Cache devices can always be removed.
4776 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
4777 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
4778 spa_load_l2cache(spa);
4779 spa->spa_l2cache.sav_sync = B_TRUE;
4780 } else if (vd != NULL && vd->vdev_islog) {
4781 ASSERT(!locked);
4782 ASSERT(vd == vd->vdev_top);
4785 * XXX - Once we have bp-rewrite this should
4786 * become the common case.
4789 mg = vd->vdev_mg;
4792 * Stop allocating from this vdev.
4794 metaslab_group_passivate(mg);
4797 * Wait for the youngest allocations and frees to sync,
4798 * and then wait for the deferral of those frees to finish.
4800 spa_vdev_config_exit(spa, NULL,
4801 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
4804 * Attempt to evacuate the vdev.
4806 error = spa_vdev_remove_evacuate(spa, vd);
4808 txg = spa_vdev_config_enter(spa);
4811 * If we couldn't evacuate the vdev, unwind.
4813 if (error) {
4814 metaslab_group_activate(mg);
4815 return (spa_vdev_exit(spa, NULL, txg, error));
4819 * Clean up the vdev namespace.
4821 spa_vdev_remove_from_namespace(spa, vd);
4823 } else if (vd != NULL) {
4825 * Normal vdevs cannot be removed (yet).
4827 error = ENOTSUP;
4828 } else {
4830 * There is no vdev of any kind with the specified guid.
4832 error = ENOENT;
4835 if (!locked)
4836 return (spa_vdev_exit(spa, NULL, txg, error));
4838 return (error);
4842 * Find any device that's done replacing, or a vdev marked 'unspare' that's
4843 * current spared, so we can detach it.
4845 static vdev_t *
4846 spa_vdev_resilver_done_hunt(vdev_t *vd)
4848 vdev_t *newvd, *oldvd;
4850 for (int c = 0; c < vd->vdev_children; c++) {
4851 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
4852 if (oldvd != NULL)
4853 return (oldvd);
4857 * Check for a completed replacement. We always consider the first
4858 * vdev in the list to be the oldest vdev, and the last one to be
4859 * the newest (see spa_vdev_attach() for how that works). In
4860 * the case where the newest vdev is faulted, we will not automatically
4861 * remove it after a resilver completes. This is OK as it will require
4862 * user intervention to determine which disk the admin wishes to keep.
4864 if (vd->vdev_ops == &vdev_replacing_ops) {
4865 ASSERT(vd->vdev_children > 1);
4867 newvd = vd->vdev_child[vd->vdev_children - 1];
4868 oldvd = vd->vdev_child[0];
4870 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
4871 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4872 !vdev_dtl_required(oldvd))
4873 return (oldvd);
4877 * Check for a completed resilver with the 'unspare' flag set.
4879 if (vd->vdev_ops == &vdev_spare_ops) {
4880 vdev_t *first = vd->vdev_child[0];
4881 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
4883 if (last->vdev_unspare) {
4884 oldvd = first;
4885 newvd = last;
4886 } else if (first->vdev_unspare) {
4887 oldvd = last;
4888 newvd = first;
4889 } else {
4890 oldvd = NULL;
4893 if (oldvd != NULL &&
4894 vdev_dtl_empty(newvd, DTL_MISSING) &&
4895 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4896 !vdev_dtl_required(oldvd))
4897 return (oldvd);
4900 * If there are more than two spares attached to a disk,
4901 * and those spares are not required, then we want to
4902 * attempt to free them up now so that they can be used
4903 * by other pools. Once we're back down to a single
4904 * disk+spare, we stop removing them.
4906 if (vd->vdev_children > 2) {
4907 newvd = vd->vdev_child[1];
4909 if (newvd->vdev_isspare && last->vdev_isspare &&
4910 vdev_dtl_empty(last, DTL_MISSING) &&
4911 vdev_dtl_empty(last, DTL_OUTAGE) &&
4912 !vdev_dtl_required(newvd))
4913 return (newvd);
4917 return (NULL);
4920 static void
4921 spa_vdev_resilver_done(spa_t *spa)
4923 vdev_t *vd, *pvd, *ppvd;
4924 uint64_t guid, sguid, pguid, ppguid;
4926 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4928 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
4929 pvd = vd->vdev_parent;
4930 ppvd = pvd->vdev_parent;
4931 guid = vd->vdev_guid;
4932 pguid = pvd->vdev_guid;
4933 ppguid = ppvd->vdev_guid;
4934 sguid = 0;
4936 * If we have just finished replacing a hot spared device, then
4937 * we need to detach the parent's first child (the original hot
4938 * spare) as well.
4940 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
4941 ppvd->vdev_children == 2) {
4942 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
4943 sguid = ppvd->vdev_child[1]->vdev_guid;
4945 spa_config_exit(spa, SCL_ALL, FTAG);
4946 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
4947 return;
4948 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
4949 return;
4950 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4953 spa_config_exit(spa, SCL_ALL, FTAG);
4957 * Update the stored path or FRU for this vdev.
4960 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
4961 boolean_t ispath)
4963 vdev_t *vd;
4964 boolean_t sync = B_FALSE;
4966 ASSERT(spa_writeable(spa));
4968 spa_vdev_state_enter(spa, SCL_ALL);
4970 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4971 return (spa_vdev_state_exit(spa, NULL, ENOENT));
4973 if (!vd->vdev_ops->vdev_op_leaf)
4974 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4976 if (ispath) {
4977 if (strcmp(value, vd->vdev_path) != 0) {
4978 spa_strfree(vd->vdev_path);
4979 vd->vdev_path = spa_strdup(value);
4980 sync = B_TRUE;
4982 } else {
4983 if (vd->vdev_fru == NULL) {
4984 vd->vdev_fru = spa_strdup(value);
4985 sync = B_TRUE;
4986 } else if (strcmp(value, vd->vdev_fru) != 0) {
4987 spa_strfree(vd->vdev_fru);
4988 vd->vdev_fru = spa_strdup(value);
4989 sync = B_TRUE;
4993 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
4997 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
4999 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5003 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5005 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5009 * ==========================================================================
5010 * SPA Scanning
5011 * ==========================================================================
5015 spa_scan_stop(spa_t *spa)
5017 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5018 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5019 return (EBUSY);
5020 return (dsl_scan_cancel(spa->spa_dsl_pool));
5024 spa_scan(spa_t *spa, pool_scan_func_t func)
5026 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5028 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5029 return (ENOTSUP);
5032 * If a resilver was requested, but there is no DTL on a
5033 * writeable leaf device, we have nothing to do.
5035 if (func == POOL_SCAN_RESILVER &&
5036 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5037 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5038 return (0);
5041 return (dsl_scan(spa->spa_dsl_pool, func));
5045 * ==========================================================================
5046 * SPA async task processing
5047 * ==========================================================================
5050 static void
5051 spa_async_remove(spa_t *spa, vdev_t *vd)
5053 if (vd->vdev_remove_wanted) {
5054 vd->vdev_remove_wanted = B_FALSE;
5055 vd->vdev_delayed_close = B_FALSE;
5056 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5059 * We want to clear the stats, but we don't want to do a full
5060 * vdev_clear() as that will cause us to throw away
5061 * degraded/faulted state as well as attempt to reopen the
5062 * device, all of which is a waste.
5064 vd->vdev_stat.vs_read_errors = 0;
5065 vd->vdev_stat.vs_write_errors = 0;
5066 vd->vdev_stat.vs_checksum_errors = 0;
5068 vdev_state_dirty(vd->vdev_top);
5071 for (int c = 0; c < vd->vdev_children; c++)
5072 spa_async_remove(spa, vd->vdev_child[c]);
5075 static void
5076 spa_async_probe(spa_t *spa, vdev_t *vd)
5078 if (vd->vdev_probe_wanted) {
5079 vd->vdev_probe_wanted = B_FALSE;
5080 vdev_reopen(vd); /* vdev_open() does the actual probe */
5083 for (int c = 0; c < vd->vdev_children; c++)
5084 spa_async_probe(spa, vd->vdev_child[c]);
5087 static void
5088 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5090 sysevent_id_t eid;
5091 nvlist_t *attr;
5092 char *physpath;
5094 if (!spa->spa_autoexpand)
5095 return;
5097 for (int c = 0; c < vd->vdev_children; c++) {
5098 vdev_t *cvd = vd->vdev_child[c];
5099 spa_async_autoexpand(spa, cvd);
5102 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5103 return;
5105 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5106 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5108 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5109 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5111 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5112 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5114 nvlist_free(attr);
5115 kmem_free(physpath, MAXPATHLEN);
5118 static void
5119 spa_async_thread(spa_t *spa)
5121 int tasks;
5123 ASSERT(spa->spa_sync_on);
5125 mutex_enter(&spa->spa_async_lock);
5126 tasks = spa->spa_async_tasks;
5127 spa->spa_async_tasks = 0;
5128 mutex_exit(&spa->spa_async_lock);
5131 * See if the config needs to be updated.
5133 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5134 uint64_t old_space, new_space;
5136 mutex_enter(&spa_namespace_lock);
5137 old_space = metaslab_class_get_space(spa_normal_class(spa));
5138 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5139 new_space = metaslab_class_get_space(spa_normal_class(spa));
5140 mutex_exit(&spa_namespace_lock);
5143 * If the pool grew as a result of the config update,
5144 * then log an internal history event.
5146 if (new_space != old_space) {
5147 spa_history_log_internal(LOG_POOL_VDEV_ONLINE,
5148 spa, NULL,
5149 "pool '%s' size: %llu(+%llu)",
5150 spa_name(spa), new_space, new_space - old_space);
5155 * See if any devices need to be marked REMOVED.
5157 if (tasks & SPA_ASYNC_REMOVE) {
5158 spa_vdev_state_enter(spa, SCL_NONE);
5159 spa_async_remove(spa, spa->spa_root_vdev);
5160 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5161 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5162 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5163 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5164 (void) spa_vdev_state_exit(spa, NULL, 0);
5167 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5168 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5169 spa_async_autoexpand(spa, spa->spa_root_vdev);
5170 spa_config_exit(spa, SCL_CONFIG, FTAG);
5174 * See if any devices need to be probed.
5176 if (tasks & SPA_ASYNC_PROBE) {
5177 spa_vdev_state_enter(spa, SCL_NONE);
5178 spa_async_probe(spa, spa->spa_root_vdev);
5179 (void) spa_vdev_state_exit(spa, NULL, 0);
5183 * If any devices are done replacing, detach them.
5185 if (tasks & SPA_ASYNC_RESILVER_DONE)
5186 spa_vdev_resilver_done(spa);
5189 * Kick off a resilver.
5191 if (tasks & SPA_ASYNC_RESILVER)
5192 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5195 * Let the world know that we're done.
5197 mutex_enter(&spa->spa_async_lock);
5198 spa->spa_async_thread = NULL;
5199 cv_broadcast(&spa->spa_async_cv);
5200 mutex_exit(&spa->spa_async_lock);
5201 thread_exit();
5204 void
5205 spa_async_suspend(spa_t *spa)
5207 mutex_enter(&spa->spa_async_lock);
5208 spa->spa_async_suspended++;
5209 while (spa->spa_async_thread != NULL)
5210 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5211 mutex_exit(&spa->spa_async_lock);
5214 void
5215 spa_async_resume(spa_t *spa)
5217 mutex_enter(&spa->spa_async_lock);
5218 ASSERT(spa->spa_async_suspended != 0);
5219 spa->spa_async_suspended--;
5220 mutex_exit(&spa->spa_async_lock);
5223 static void
5224 spa_async_dispatch(spa_t *spa)
5226 mutex_enter(&spa->spa_async_lock);
5227 if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5228 spa->spa_async_thread == NULL &&
5229 rootdir != NULL && !vn_is_readonly(rootdir))
5230 spa->spa_async_thread = thread_create(NULL, 0,
5231 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5232 mutex_exit(&spa->spa_async_lock);
5235 void
5236 spa_async_request(spa_t *spa, int task)
5238 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5239 mutex_enter(&spa->spa_async_lock);
5240 spa->spa_async_tasks |= task;
5241 mutex_exit(&spa->spa_async_lock);
5245 * ==========================================================================
5246 * SPA syncing routines
5247 * ==========================================================================
5250 static int
5251 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5253 bpobj_t *bpo = arg;
5254 bpobj_enqueue(bpo, bp, tx);
5255 return (0);
5258 static int
5259 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5261 zio_t *zio = arg;
5263 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5264 zio->io_flags));
5265 return (0);
5268 static void
5269 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5271 char *packed = NULL;
5272 size_t bufsize;
5273 size_t nvsize = 0;
5274 dmu_buf_t *db;
5276 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5279 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5280 * information. This avoids the dbuf_will_dirty() path and
5281 * saves us a pre-read to get data we don't actually care about.
5283 bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
5284 packed = kmem_alloc(bufsize, KM_SLEEP);
5286 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5287 KM_SLEEP) == 0);
5288 bzero(packed + nvsize, bufsize - nvsize);
5290 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5292 kmem_free(packed, bufsize);
5294 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5295 dmu_buf_will_dirty(db, tx);
5296 *(uint64_t *)db->db_data = nvsize;
5297 dmu_buf_rele(db, FTAG);
5300 static void
5301 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5302 const char *config, const char *entry)
5304 nvlist_t *nvroot;
5305 nvlist_t **list;
5306 int i;
5308 if (!sav->sav_sync)
5309 return;
5312 * Update the MOS nvlist describing the list of available devices.
5313 * spa_validate_aux() will have already made sure this nvlist is
5314 * valid and the vdevs are labeled appropriately.
5316 if (sav->sav_object == 0) {
5317 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5318 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5319 sizeof (uint64_t), tx);
5320 VERIFY(zap_update(spa->spa_meta_objset,
5321 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5322 &sav->sav_object, tx) == 0);
5325 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5326 if (sav->sav_count == 0) {
5327 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5328 } else {
5329 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5330 for (i = 0; i < sav->sav_count; i++)
5331 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5332 B_FALSE, VDEV_CONFIG_L2CACHE);
5333 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5334 sav->sav_count) == 0);
5335 for (i = 0; i < sav->sav_count; i++)
5336 nvlist_free(list[i]);
5337 kmem_free(list, sav->sav_count * sizeof (void *));
5340 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5341 nvlist_free(nvroot);
5343 sav->sav_sync = B_FALSE;
5346 static void
5347 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5349 nvlist_t *config;
5351 if (list_is_empty(&spa->spa_config_dirty_list))
5352 return;
5354 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5356 config = spa_config_generate(spa, spa->spa_root_vdev,
5357 dmu_tx_get_txg(tx), B_FALSE);
5359 spa_config_exit(spa, SCL_STATE, FTAG);
5361 if (spa->spa_config_syncing)
5362 nvlist_free(spa->spa_config_syncing);
5363 spa->spa_config_syncing = config;
5365 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5369 * Set zpool properties.
5371 static void
5372 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
5374 spa_t *spa = arg1;
5375 objset_t *mos = spa->spa_meta_objset;
5376 nvlist_t *nvp = arg2;
5377 nvpair_t *elem;
5378 uint64_t intval;
5379 char *strval;
5380 zpool_prop_t prop;
5381 const char *propname;
5382 zprop_type_t proptype;
5384 mutex_enter(&spa->spa_props_lock);
5386 elem = NULL;
5387 while ((elem = nvlist_next_nvpair(nvp, elem))) {
5388 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5389 case ZPOOL_PROP_VERSION:
5391 * Only set version for non-zpool-creation cases
5392 * (set/import). spa_create() needs special care
5393 * for version setting.
5395 if (tx->tx_txg != TXG_INITIAL) {
5396 VERIFY(nvpair_value_uint64(elem,
5397 &intval) == 0);
5398 ASSERT(intval <= SPA_VERSION);
5399 ASSERT(intval >= spa_version(spa));
5400 spa->spa_uberblock.ub_version = intval;
5401 vdev_config_dirty(spa->spa_root_vdev);
5403 break;
5405 case ZPOOL_PROP_ALTROOT:
5407 * 'altroot' is a non-persistent property. It should
5408 * have been set temporarily at creation or import time.
5410 ASSERT(spa->spa_root != NULL);
5411 break;
5413 case ZPOOL_PROP_READONLY:
5414 case ZPOOL_PROP_CACHEFILE:
5416 * 'readonly' and 'cachefile' are also non-persisitent
5417 * properties.
5419 break;
5420 case ZPOOL_PROP_COMMENT:
5421 VERIFY(nvpair_value_string(elem, &strval) == 0);
5422 if (spa->spa_comment != NULL)
5423 spa_strfree(spa->spa_comment);
5424 spa->spa_comment = spa_strdup(strval);
5426 * We need to dirty the configuration on all the vdevs
5427 * so that their labels get updated. It's unnecessary
5428 * to do this for pool creation since the vdev's
5429 * configuratoin has already been dirtied.
5431 if (tx->tx_txg != TXG_INITIAL)
5432 vdev_config_dirty(spa->spa_root_vdev);
5433 break;
5434 default:
5436 * Set pool property values in the poolprops mos object.
5438 if (spa->spa_pool_props_object == 0) {
5439 VERIFY((spa->spa_pool_props_object =
5440 zap_create(mos, DMU_OT_POOL_PROPS,
5441 DMU_OT_NONE, 0, tx)) > 0);
5443 VERIFY(zap_update(mos,
5444 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5445 8, 1, &spa->spa_pool_props_object, tx)
5446 == 0);
5449 /* normalize the property name */
5450 propname = zpool_prop_to_name(prop);
5451 proptype = zpool_prop_get_type(prop);
5453 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5454 ASSERT(proptype == PROP_TYPE_STRING);
5455 VERIFY(nvpair_value_string(elem, &strval) == 0);
5456 VERIFY(zap_update(mos,
5457 spa->spa_pool_props_object, propname,
5458 1, strlen(strval) + 1, strval, tx) == 0);
5460 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5461 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5463 if (proptype == PROP_TYPE_INDEX) {
5464 const char *unused;
5465 VERIFY(zpool_prop_index_to_string(
5466 prop, intval, &unused) == 0);
5468 VERIFY(zap_update(mos,
5469 spa->spa_pool_props_object, propname,
5470 8, 1, &intval, tx) == 0);
5471 } else {
5472 ASSERT(0); /* not allowed */
5475 switch (prop) {
5476 case ZPOOL_PROP_DELEGATION:
5477 spa->spa_delegation = intval;
5478 break;
5479 case ZPOOL_PROP_BOOTFS:
5480 spa->spa_bootfs = intval;
5481 break;
5482 case ZPOOL_PROP_FAILUREMODE:
5483 spa->spa_failmode = intval;
5484 break;
5485 case ZPOOL_PROP_AUTOEXPAND:
5486 spa->spa_autoexpand = intval;
5487 if (tx->tx_txg != TXG_INITIAL)
5488 spa_async_request(spa,
5489 SPA_ASYNC_AUTOEXPAND);
5490 break;
5491 case ZPOOL_PROP_DEDUPDITTO:
5492 spa->spa_dedup_ditto = intval;
5493 break;
5494 default:
5495 break;
5499 /* log internal history if this is not a zpool create */
5500 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
5501 tx->tx_txg != TXG_INITIAL) {
5502 spa_history_log_internal(LOG_POOL_PROPSET,
5503 spa, tx, "%s %lld %s",
5504 nvpair_name(elem), intval, spa_name(spa));
5508 mutex_exit(&spa->spa_props_lock);
5512 * Perform one-time upgrade on-disk changes. spa_version() does not
5513 * reflect the new version this txg, so there must be no changes this
5514 * txg to anything that the upgrade code depends on after it executes.
5515 * Therefore this must be called after dsl_pool_sync() does the sync
5516 * tasks.
5518 static void
5519 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5521 dsl_pool_t *dp = spa->spa_dsl_pool;
5523 ASSERT(spa->spa_sync_pass == 1);
5525 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5526 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5527 dsl_pool_create_origin(dp, tx);
5529 /* Keeping the origin open increases spa_minref */
5530 spa->spa_minref += 3;
5533 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5534 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5535 dsl_pool_upgrade_clones(dp, tx);
5538 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
5539 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
5540 dsl_pool_upgrade_dir_clones(dp, tx);
5542 /* Keeping the freedir open increases spa_minref */
5543 spa->spa_minref += 3;
5548 * Sync the specified transaction group. New blocks may be dirtied as
5549 * part of the process, so we iterate until it converges.
5551 void
5552 spa_sync(spa_t *spa, uint64_t txg)
5554 dsl_pool_t *dp = spa->spa_dsl_pool;
5555 objset_t *mos = spa->spa_meta_objset;
5556 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
5557 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5558 vdev_t *rvd = spa->spa_root_vdev;
5559 vdev_t *vd;
5560 dmu_tx_t *tx;
5561 int error;
5563 VERIFY(spa_writeable(spa));
5566 * Lock out configuration changes.
5568 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5570 spa->spa_syncing_txg = txg;
5571 spa->spa_sync_pass = 0;
5574 * If there are any pending vdev state changes, convert them
5575 * into config changes that go out with this transaction group.
5577 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5578 while (list_head(&spa->spa_state_dirty_list) != NULL) {
5580 * We need the write lock here because, for aux vdevs,
5581 * calling vdev_config_dirty() modifies sav_config.
5582 * This is ugly and will become unnecessary when we
5583 * eliminate the aux vdev wart by integrating all vdevs
5584 * into the root vdev tree.
5586 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5587 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
5588 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
5589 vdev_state_clean(vd);
5590 vdev_config_dirty(vd);
5592 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5593 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
5595 spa_config_exit(spa, SCL_STATE, FTAG);
5597 tx = dmu_tx_create_assigned(dp, txg);
5600 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
5601 * set spa_deflate if we have no raid-z vdevs.
5603 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
5604 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
5605 int i;
5607 for (i = 0; i < rvd->vdev_children; i++) {
5608 vd = rvd->vdev_child[i];
5609 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
5610 break;
5612 if (i == rvd->vdev_children) {
5613 spa->spa_deflate = TRUE;
5614 VERIFY(0 == zap_add(spa->spa_meta_objset,
5615 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5616 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
5621 * If anything has changed in this txg, or if someone is waiting
5622 * for this txg to sync (eg, spa_vdev_remove()), push the
5623 * deferred frees from the previous txg. If not, leave them
5624 * alone so that we don't generate work on an otherwise idle
5625 * system.
5627 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
5628 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
5629 !txg_list_empty(&dp->dp_sync_tasks, txg) ||
5630 ((dsl_scan_active(dp->dp_scan) ||
5631 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
5632 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5633 VERIFY3U(bpobj_iterate(defer_bpo,
5634 spa_free_sync_cb, zio, tx), ==, 0);
5635 VERIFY3U(zio_wait(zio), ==, 0);
5639 * Iterate to convergence.
5641 do {
5642 int pass = ++spa->spa_sync_pass;
5644 spa_sync_config_object(spa, tx);
5645 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
5646 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
5647 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
5648 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
5649 spa_errlog_sync(spa, txg);
5650 dsl_pool_sync(dp, txg);
5652 if (pass <= SYNC_PASS_DEFERRED_FREE) {
5653 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5654 bplist_iterate(free_bpl, spa_free_sync_cb,
5655 zio, tx);
5656 VERIFY(zio_wait(zio) == 0);
5657 } else {
5658 bplist_iterate(free_bpl, bpobj_enqueue_cb,
5659 defer_bpo, tx);
5662 ddt_sync(spa, txg);
5663 dsl_scan_sync(dp, tx);
5665 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
5666 vdev_sync(vd, txg);
5668 if (pass == 1)
5669 spa_sync_upgrades(spa, tx);
5671 } while (dmu_objset_is_dirty(mos, txg));
5674 * Rewrite the vdev configuration (which includes the uberblock)
5675 * to commit the transaction group.
5677 * If there are no dirty vdevs, we sync the uberblock to a few
5678 * random top-level vdevs that are known to be visible in the
5679 * config cache (see spa_vdev_add() for a complete description).
5680 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
5682 for (;;) {
5684 * We hold SCL_STATE to prevent vdev open/close/etc.
5685 * while we're attempting to write the vdev labels.
5687 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5689 if (list_is_empty(&spa->spa_config_dirty_list)) {
5690 vdev_t *svd[SPA_DVAS_PER_BP];
5691 int svdcount = 0;
5692 int children = rvd->vdev_children;
5693 int c0 = spa_get_random(children);
5695 for (int c = 0; c < children; c++) {
5696 vd = rvd->vdev_child[(c0 + c) % children];
5697 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
5698 continue;
5699 svd[svdcount++] = vd;
5700 if (svdcount == SPA_DVAS_PER_BP)
5701 break;
5703 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
5704 if (error != 0)
5705 error = vdev_config_sync(svd, svdcount, txg,
5706 B_TRUE);
5707 } else {
5708 error = vdev_config_sync(rvd->vdev_child,
5709 rvd->vdev_children, txg, B_FALSE);
5710 if (error != 0)
5711 error = vdev_config_sync(rvd->vdev_child,
5712 rvd->vdev_children, txg, B_TRUE);
5715 spa_config_exit(spa, SCL_STATE, FTAG);
5717 if (error == 0)
5718 break;
5719 zio_suspend(spa, NULL);
5720 zio_resume_wait(spa);
5722 dmu_tx_commit(tx);
5725 * Clear the dirty config list.
5727 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
5728 vdev_config_clean(vd);
5731 * Now that the new config has synced transactionally,
5732 * let it become visible to the config cache.
5734 if (spa->spa_config_syncing != NULL) {
5735 spa_config_set(spa, spa->spa_config_syncing);
5736 spa->spa_config_txg = txg;
5737 spa->spa_config_syncing = NULL;
5740 spa->spa_ubsync = spa->spa_uberblock;
5742 dsl_pool_sync_done(dp, txg);
5745 * Update usable space statistics.
5747 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
5748 vdev_sync_done(vd, txg);
5750 spa_update_dspace(spa);
5753 * It had better be the case that we didn't dirty anything
5754 * since vdev_config_sync().
5756 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
5757 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
5758 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
5760 spa->spa_sync_pass = 0;
5762 spa_config_exit(spa, SCL_CONFIG, FTAG);
5764 spa_handle_ignored_writes(spa);
5767 * If any async tasks have been requested, kick them off.
5769 spa_async_dispatch(spa);
5773 * Sync all pools. We don't want to hold the namespace lock across these
5774 * operations, so we take a reference on the spa_t and drop the lock during the
5775 * sync.
5777 void
5778 spa_sync_allpools(void)
5780 spa_t *spa = NULL;
5781 mutex_enter(&spa_namespace_lock);
5782 while ((spa = spa_next(spa)) != NULL) {
5783 if (spa_state(spa) != POOL_STATE_ACTIVE ||
5784 !spa_writeable(spa) || spa_suspended(spa))
5785 continue;
5786 spa_open_ref(spa, FTAG);
5787 mutex_exit(&spa_namespace_lock);
5788 txg_wait_synced(spa_get_dsl(spa), 0);
5789 mutex_enter(&spa_namespace_lock);
5790 spa_close(spa, FTAG);
5792 mutex_exit(&spa_namespace_lock);
5796 * ==========================================================================
5797 * Miscellaneous routines
5798 * ==========================================================================
5802 * Remove all pools in the system.
5804 void
5805 spa_evict_all(void)
5807 spa_t *spa;
5810 * Remove all cached state. All pools should be closed now,
5811 * so every spa in the AVL tree should be unreferenced.
5813 mutex_enter(&spa_namespace_lock);
5814 while ((spa = spa_next(NULL)) != NULL) {
5816 * Stop async tasks. The async thread may need to detach
5817 * a device that's been replaced, which requires grabbing
5818 * spa_namespace_lock, so we must drop it here.
5820 spa_open_ref(spa, FTAG);
5821 mutex_exit(&spa_namespace_lock);
5822 spa_async_suspend(spa);
5823 mutex_enter(&spa_namespace_lock);
5824 spa_close(spa, FTAG);
5826 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5827 spa_unload(spa);
5828 spa_deactivate(spa);
5830 spa_remove(spa);
5832 mutex_exit(&spa_namespace_lock);
5835 vdev_t *
5836 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
5838 vdev_t *vd;
5839 int i;
5841 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
5842 return (vd);
5844 if (aux) {
5845 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
5846 vd = spa->spa_l2cache.sav_vdevs[i];
5847 if (vd->vdev_guid == guid)
5848 return (vd);
5851 for (i = 0; i < spa->spa_spares.sav_count; i++) {
5852 vd = spa->spa_spares.sav_vdevs[i];
5853 if (vd->vdev_guid == guid)
5854 return (vd);
5858 return (NULL);
5861 void
5862 spa_upgrade(spa_t *spa, uint64_t version)
5864 ASSERT(spa_writeable(spa));
5866 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5869 * This should only be called for a non-faulted pool, and since a
5870 * future version would result in an unopenable pool, this shouldn't be
5871 * possible.
5873 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
5874 ASSERT(version >= spa->spa_uberblock.ub_version);
5876 spa->spa_uberblock.ub_version = version;
5877 vdev_config_dirty(spa->spa_root_vdev);
5879 spa_config_exit(spa, SCL_ALL, FTAG);
5881 txg_wait_synced(spa_get_dsl(spa), 0);
5884 boolean_t
5885 spa_has_spare(spa_t *spa, uint64_t guid)
5887 int i;
5888 uint64_t spareguid;
5889 spa_aux_vdev_t *sav = &spa->spa_spares;
5891 for (i = 0; i < sav->sav_count; i++)
5892 if (sav->sav_vdevs[i]->vdev_guid == guid)
5893 return (B_TRUE);
5895 for (i = 0; i < sav->sav_npending; i++) {
5896 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
5897 &spareguid) == 0 && spareguid == guid)
5898 return (B_TRUE);
5901 return (B_FALSE);
5905 * Check if a pool has an active shared spare device.
5906 * Note: reference count of an active spare is 2, as a spare and as a replace
5908 static boolean_t
5909 spa_has_active_shared_spare(spa_t *spa)
5911 int i, refcnt;
5912 uint64_t pool;
5913 spa_aux_vdev_t *sav = &spa->spa_spares;
5915 for (i = 0; i < sav->sav_count; i++) {
5916 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
5917 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
5918 refcnt > 2)
5919 return (B_TRUE);
5922 return (B_FALSE);
5926 * Post a sysevent corresponding to the given event. The 'name' must be one of
5927 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
5928 * filled in from the spa and (optionally) the vdev. This doesn't do anything
5929 * in the userland libzpool, as we don't want consumers to misinterpret ztest
5930 * or zdb as real changes.
5932 void
5933 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
5935 #ifdef _KERNEL
5936 sysevent_t *ev;
5937 sysevent_attr_list_t *attr = NULL;
5938 sysevent_value_t value;
5939 sysevent_id_t eid;
5941 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
5942 SE_SLEEP);
5944 value.value_type = SE_DATA_TYPE_STRING;
5945 value.value.sv_string = spa_name(spa);
5946 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
5947 goto done;
5949 value.value_type = SE_DATA_TYPE_UINT64;
5950 value.value.sv_uint64 = spa_guid(spa);
5951 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
5952 goto done;
5954 if (vd) {
5955 value.value_type = SE_DATA_TYPE_UINT64;
5956 value.value.sv_uint64 = vd->vdev_guid;
5957 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
5958 SE_SLEEP) != 0)
5959 goto done;
5961 if (vd->vdev_path) {
5962 value.value_type = SE_DATA_TYPE_STRING;
5963 value.value.sv_string = vd->vdev_path;
5964 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
5965 &value, SE_SLEEP) != 0)
5966 goto done;
5970 if (sysevent_attach_attributes(ev, attr) != 0)
5971 goto done;
5972 attr = NULL;
5974 (void) log_sysevent(ev, SE_SLEEP, &eid);
5976 done:
5977 if (attr)
5978 sysevent_free_attr(attr);
5979 sysevent_free(ev);
5980 #endif