1949 crash during reguid causes stale config
[unleashed.git] / usr / src / uts / common / fs / zfs / arc.c
blobe039b9cac43bad9e902266c2ad78c6a065f3a979
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011 by Delphix. All rights reserved.
28 * DVA-based Adjustable Replacement Cache
30 * While much of the theory of operation used here is
31 * based on the self-tuning, low overhead replacement cache
32 * presented by Megiddo and Modha at FAST 2003, there are some
33 * significant differences:
35 * 1. The Megiddo and Modha model assumes any page is evictable.
36 * Pages in its cache cannot be "locked" into memory. This makes
37 * the eviction algorithm simple: evict the last page in the list.
38 * This also make the performance characteristics easy to reason
39 * about. Our cache is not so simple. At any given moment, some
40 * subset of the blocks in the cache are un-evictable because we
41 * have handed out a reference to them. Blocks are only evictable
42 * when there are no external references active. This makes
43 * eviction far more problematic: we choose to evict the evictable
44 * blocks that are the "lowest" in the list.
46 * There are times when it is not possible to evict the requested
47 * space. In these circumstances we are unable to adjust the cache
48 * size. To prevent the cache growing unbounded at these times we
49 * implement a "cache throttle" that slows the flow of new data
50 * into the cache until we can make space available.
52 * 2. The Megiddo and Modha model assumes a fixed cache size.
53 * Pages are evicted when the cache is full and there is a cache
54 * miss. Our model has a variable sized cache. It grows with
55 * high use, but also tries to react to memory pressure from the
56 * operating system: decreasing its size when system memory is
57 * tight.
59 * 3. The Megiddo and Modha model assumes a fixed page size. All
60 * elements of the cache are therefor exactly the same size. So
61 * when adjusting the cache size following a cache miss, its simply
62 * a matter of choosing a single page to evict. In our model, we
63 * have variable sized cache blocks (rangeing from 512 bytes to
64 * 128K bytes). We therefor choose a set of blocks to evict to make
65 * space for a cache miss that approximates as closely as possible
66 * the space used by the new block.
68 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
69 * by N. Megiddo & D. Modha, FAST 2003
73 * The locking model:
75 * A new reference to a cache buffer can be obtained in two
76 * ways: 1) via a hash table lookup using the DVA as a key,
77 * or 2) via one of the ARC lists. The arc_read() interface
78 * uses method 1, while the internal arc algorithms for
79 * adjusting the cache use method 2. We therefor provide two
80 * types of locks: 1) the hash table lock array, and 2) the
81 * arc list locks.
83 * Buffers do not have their own mutexs, rather they rely on the
84 * hash table mutexs for the bulk of their protection (i.e. most
85 * fields in the arc_buf_hdr_t are protected by these mutexs).
87 * buf_hash_find() returns the appropriate mutex (held) when it
88 * locates the requested buffer in the hash table. It returns
89 * NULL for the mutex if the buffer was not in the table.
91 * buf_hash_remove() expects the appropriate hash mutex to be
92 * already held before it is invoked.
94 * Each arc state also has a mutex which is used to protect the
95 * buffer list associated with the state. When attempting to
96 * obtain a hash table lock while holding an arc list lock you
97 * must use: mutex_tryenter() to avoid deadlock. Also note that
98 * the active state mutex must be held before the ghost state mutex.
100 * Arc buffers may have an associated eviction callback function.
101 * This function will be invoked prior to removing the buffer (e.g.
102 * in arc_do_user_evicts()). Note however that the data associated
103 * with the buffer may be evicted prior to the callback. The callback
104 * must be made with *no locks held* (to prevent deadlock). Additionally,
105 * the users of callbacks must ensure that their private data is
106 * protected from simultaneous callbacks from arc_buf_evict()
107 * and arc_do_user_evicts().
109 * Note that the majority of the performance stats are manipulated
110 * with atomic operations.
112 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
114 * - L2ARC buflist creation
115 * - L2ARC buflist eviction
116 * - L2ARC write completion, which walks L2ARC buflists
117 * - ARC header destruction, as it removes from L2ARC buflists
118 * - ARC header release, as it removes from L2ARC buflists
121 #include <sys/spa.h>
122 #include <sys/zio.h>
123 #include <sys/zfs_context.h>
124 #include <sys/arc.h>
125 #include <sys/refcount.h>
126 #include <sys/vdev.h>
127 #include <sys/vdev_impl.h>
128 #ifdef _KERNEL
129 #include <sys/vmsystm.h>
130 #include <vm/anon.h>
131 #include <sys/fs/swapnode.h>
132 #include <sys/dnlc.h>
133 #endif
134 #include <sys/callb.h>
135 #include <sys/kstat.h>
136 #include <zfs_fletcher.h>
138 static kmutex_t arc_reclaim_thr_lock;
139 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */
140 static uint8_t arc_thread_exit;
142 extern int zfs_write_limit_shift;
143 extern uint64_t zfs_write_limit_max;
144 extern kmutex_t zfs_write_limit_lock;
146 #define ARC_REDUCE_DNLC_PERCENT 3
147 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
149 typedef enum arc_reclaim_strategy {
150 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */
151 ARC_RECLAIM_CONS /* Conservative reclaim strategy */
152 } arc_reclaim_strategy_t;
154 /* number of seconds before growing cache again */
155 static int arc_grow_retry = 60;
157 /* shift of arc_c for calculating both min and max arc_p */
158 static int arc_p_min_shift = 4;
160 /* log2(fraction of arc to reclaim) */
161 static int arc_shrink_shift = 5;
164 * minimum lifespan of a prefetch block in clock ticks
165 * (initialized in arc_init())
167 static int arc_min_prefetch_lifespan;
169 static int arc_dead;
172 * The arc has filled available memory and has now warmed up.
174 static boolean_t arc_warm;
177 * These tunables are for performance analysis.
179 uint64_t zfs_arc_max;
180 uint64_t zfs_arc_min;
181 uint64_t zfs_arc_meta_limit = 0;
182 int zfs_arc_grow_retry = 0;
183 int zfs_arc_shrink_shift = 0;
184 int zfs_arc_p_min_shift = 0;
187 * Note that buffers can be in one of 6 states:
188 * ARC_anon - anonymous (discussed below)
189 * ARC_mru - recently used, currently cached
190 * ARC_mru_ghost - recentely used, no longer in cache
191 * ARC_mfu - frequently used, currently cached
192 * ARC_mfu_ghost - frequently used, no longer in cache
193 * ARC_l2c_only - exists in L2ARC but not other states
194 * When there are no active references to the buffer, they are
195 * are linked onto a list in one of these arc states. These are
196 * the only buffers that can be evicted or deleted. Within each
197 * state there are multiple lists, one for meta-data and one for
198 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes,
199 * etc.) is tracked separately so that it can be managed more
200 * explicitly: favored over data, limited explicitly.
202 * Anonymous buffers are buffers that are not associated with
203 * a DVA. These are buffers that hold dirty block copies
204 * before they are written to stable storage. By definition,
205 * they are "ref'd" and are considered part of arc_mru
206 * that cannot be freed. Generally, they will aquire a DVA
207 * as they are written and migrate onto the arc_mru list.
209 * The ARC_l2c_only state is for buffers that are in the second
210 * level ARC but no longer in any of the ARC_m* lists. The second
211 * level ARC itself may also contain buffers that are in any of
212 * the ARC_m* states - meaning that a buffer can exist in two
213 * places. The reason for the ARC_l2c_only state is to keep the
214 * buffer header in the hash table, so that reads that hit the
215 * second level ARC benefit from these fast lookups.
218 typedef struct arc_state {
219 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */
220 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */
221 uint64_t arcs_size; /* total amount of data in this state */
222 kmutex_t arcs_mtx;
223 } arc_state_t;
225 /* The 6 states: */
226 static arc_state_t ARC_anon;
227 static arc_state_t ARC_mru;
228 static arc_state_t ARC_mru_ghost;
229 static arc_state_t ARC_mfu;
230 static arc_state_t ARC_mfu_ghost;
231 static arc_state_t ARC_l2c_only;
233 typedef struct arc_stats {
234 kstat_named_t arcstat_hits;
235 kstat_named_t arcstat_misses;
236 kstat_named_t arcstat_demand_data_hits;
237 kstat_named_t arcstat_demand_data_misses;
238 kstat_named_t arcstat_demand_metadata_hits;
239 kstat_named_t arcstat_demand_metadata_misses;
240 kstat_named_t arcstat_prefetch_data_hits;
241 kstat_named_t arcstat_prefetch_data_misses;
242 kstat_named_t arcstat_prefetch_metadata_hits;
243 kstat_named_t arcstat_prefetch_metadata_misses;
244 kstat_named_t arcstat_mru_hits;
245 kstat_named_t arcstat_mru_ghost_hits;
246 kstat_named_t arcstat_mfu_hits;
247 kstat_named_t arcstat_mfu_ghost_hits;
248 kstat_named_t arcstat_deleted;
249 kstat_named_t arcstat_recycle_miss;
250 kstat_named_t arcstat_mutex_miss;
251 kstat_named_t arcstat_evict_skip;
252 kstat_named_t arcstat_evict_l2_cached;
253 kstat_named_t arcstat_evict_l2_eligible;
254 kstat_named_t arcstat_evict_l2_ineligible;
255 kstat_named_t arcstat_hash_elements;
256 kstat_named_t arcstat_hash_elements_max;
257 kstat_named_t arcstat_hash_collisions;
258 kstat_named_t arcstat_hash_chains;
259 kstat_named_t arcstat_hash_chain_max;
260 kstat_named_t arcstat_p;
261 kstat_named_t arcstat_c;
262 kstat_named_t arcstat_c_min;
263 kstat_named_t arcstat_c_max;
264 kstat_named_t arcstat_size;
265 kstat_named_t arcstat_hdr_size;
266 kstat_named_t arcstat_data_size;
267 kstat_named_t arcstat_other_size;
268 kstat_named_t arcstat_l2_hits;
269 kstat_named_t arcstat_l2_misses;
270 kstat_named_t arcstat_l2_feeds;
271 kstat_named_t arcstat_l2_rw_clash;
272 kstat_named_t arcstat_l2_read_bytes;
273 kstat_named_t arcstat_l2_write_bytes;
274 kstat_named_t arcstat_l2_writes_sent;
275 kstat_named_t arcstat_l2_writes_done;
276 kstat_named_t arcstat_l2_writes_error;
277 kstat_named_t arcstat_l2_writes_hdr_miss;
278 kstat_named_t arcstat_l2_evict_lock_retry;
279 kstat_named_t arcstat_l2_evict_reading;
280 kstat_named_t arcstat_l2_free_on_write;
281 kstat_named_t arcstat_l2_abort_lowmem;
282 kstat_named_t arcstat_l2_cksum_bad;
283 kstat_named_t arcstat_l2_io_error;
284 kstat_named_t arcstat_l2_size;
285 kstat_named_t arcstat_l2_hdr_size;
286 kstat_named_t arcstat_memory_throttle_count;
287 } arc_stats_t;
289 static arc_stats_t arc_stats = {
290 { "hits", KSTAT_DATA_UINT64 },
291 { "misses", KSTAT_DATA_UINT64 },
292 { "demand_data_hits", KSTAT_DATA_UINT64 },
293 { "demand_data_misses", KSTAT_DATA_UINT64 },
294 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
295 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
296 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
297 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
298 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
299 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
300 { "mru_hits", KSTAT_DATA_UINT64 },
301 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
302 { "mfu_hits", KSTAT_DATA_UINT64 },
303 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
304 { "deleted", KSTAT_DATA_UINT64 },
305 { "recycle_miss", KSTAT_DATA_UINT64 },
306 { "mutex_miss", KSTAT_DATA_UINT64 },
307 { "evict_skip", KSTAT_DATA_UINT64 },
308 { "evict_l2_cached", KSTAT_DATA_UINT64 },
309 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
310 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
311 { "hash_elements", KSTAT_DATA_UINT64 },
312 { "hash_elements_max", KSTAT_DATA_UINT64 },
313 { "hash_collisions", KSTAT_DATA_UINT64 },
314 { "hash_chains", KSTAT_DATA_UINT64 },
315 { "hash_chain_max", KSTAT_DATA_UINT64 },
316 { "p", KSTAT_DATA_UINT64 },
317 { "c", KSTAT_DATA_UINT64 },
318 { "c_min", KSTAT_DATA_UINT64 },
319 { "c_max", KSTAT_DATA_UINT64 },
320 { "size", KSTAT_DATA_UINT64 },
321 { "hdr_size", KSTAT_DATA_UINT64 },
322 { "data_size", KSTAT_DATA_UINT64 },
323 { "other_size", KSTAT_DATA_UINT64 },
324 { "l2_hits", KSTAT_DATA_UINT64 },
325 { "l2_misses", KSTAT_DATA_UINT64 },
326 { "l2_feeds", KSTAT_DATA_UINT64 },
327 { "l2_rw_clash", KSTAT_DATA_UINT64 },
328 { "l2_read_bytes", KSTAT_DATA_UINT64 },
329 { "l2_write_bytes", KSTAT_DATA_UINT64 },
330 { "l2_writes_sent", KSTAT_DATA_UINT64 },
331 { "l2_writes_done", KSTAT_DATA_UINT64 },
332 { "l2_writes_error", KSTAT_DATA_UINT64 },
333 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 },
334 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
335 { "l2_evict_reading", KSTAT_DATA_UINT64 },
336 { "l2_free_on_write", KSTAT_DATA_UINT64 },
337 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
338 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
339 { "l2_io_error", KSTAT_DATA_UINT64 },
340 { "l2_size", KSTAT_DATA_UINT64 },
341 { "l2_hdr_size", KSTAT_DATA_UINT64 },
342 { "memory_throttle_count", KSTAT_DATA_UINT64 }
345 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)
347 #define ARCSTAT_INCR(stat, val) \
348 atomic_add_64(&arc_stats.stat.value.ui64, (val));
350 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
351 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
353 #define ARCSTAT_MAX(stat, val) { \
354 uint64_t m; \
355 while ((val) > (m = arc_stats.stat.value.ui64) && \
356 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
357 continue; \
360 #define ARCSTAT_MAXSTAT(stat) \
361 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
364 * We define a macro to allow ARC hits/misses to be easily broken down by
365 * two separate conditions, giving a total of four different subtypes for
366 * each of hits and misses (so eight statistics total).
368 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
369 if (cond1) { \
370 if (cond2) { \
371 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
372 } else { \
373 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
375 } else { \
376 if (cond2) { \
377 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
378 } else { \
379 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
383 kstat_t *arc_ksp;
384 static arc_state_t *arc_anon;
385 static arc_state_t *arc_mru;
386 static arc_state_t *arc_mru_ghost;
387 static arc_state_t *arc_mfu;
388 static arc_state_t *arc_mfu_ghost;
389 static arc_state_t *arc_l2c_only;
392 * There are several ARC variables that are critical to export as kstats --
393 * but we don't want to have to grovel around in the kstat whenever we wish to
394 * manipulate them. For these variables, we therefore define them to be in
395 * terms of the statistic variable. This assures that we are not introducing
396 * the possibility of inconsistency by having shadow copies of the variables,
397 * while still allowing the code to be readable.
399 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
400 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
401 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
402 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
403 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
405 static int arc_no_grow; /* Don't try to grow cache size */
406 static uint64_t arc_tempreserve;
407 static uint64_t arc_loaned_bytes;
408 static uint64_t arc_meta_used;
409 static uint64_t arc_meta_limit;
410 static uint64_t arc_meta_max = 0;
412 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
414 typedef struct arc_callback arc_callback_t;
416 struct arc_callback {
417 void *acb_private;
418 arc_done_func_t *acb_done;
419 arc_buf_t *acb_buf;
420 zio_t *acb_zio_dummy;
421 arc_callback_t *acb_next;
424 typedef struct arc_write_callback arc_write_callback_t;
426 struct arc_write_callback {
427 void *awcb_private;
428 arc_done_func_t *awcb_ready;
429 arc_done_func_t *awcb_done;
430 arc_buf_t *awcb_buf;
433 struct arc_buf_hdr {
434 /* protected by hash lock */
435 dva_t b_dva;
436 uint64_t b_birth;
437 uint64_t b_cksum0;
439 kmutex_t b_freeze_lock;
440 zio_cksum_t *b_freeze_cksum;
441 void *b_thawed;
443 arc_buf_hdr_t *b_hash_next;
444 arc_buf_t *b_buf;
445 uint32_t b_flags;
446 uint32_t b_datacnt;
448 arc_callback_t *b_acb;
449 kcondvar_t b_cv;
451 /* immutable */
452 arc_buf_contents_t b_type;
453 uint64_t b_size;
454 uint64_t b_spa;
456 /* protected by arc state mutex */
457 arc_state_t *b_state;
458 list_node_t b_arc_node;
460 /* updated atomically */
461 clock_t b_arc_access;
463 /* self protecting */
464 refcount_t b_refcnt;
466 l2arc_buf_hdr_t *b_l2hdr;
467 list_node_t b_l2node;
470 static arc_buf_t *arc_eviction_list;
471 static kmutex_t arc_eviction_mtx;
472 static arc_buf_hdr_t arc_eviction_hdr;
473 static void arc_get_data_buf(arc_buf_t *buf);
474 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
475 static int arc_evict_needed(arc_buf_contents_t type);
476 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
478 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
480 #define GHOST_STATE(state) \
481 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
482 (state) == arc_l2c_only)
485 * Private ARC flags. These flags are private ARC only flags that will show up
486 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can
487 * be passed in as arc_flags in things like arc_read. However, these flags
488 * should never be passed and should only be set by ARC code. When adding new
489 * public flags, make sure not to smash the private ones.
492 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */
493 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */
494 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */
495 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */
496 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */
497 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */
498 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */
499 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */
500 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */
501 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */
503 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE)
504 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS)
505 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR)
506 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH)
507 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ)
508 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE)
509 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
510 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE)
511 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \
512 (hdr)->b_l2hdr != NULL)
513 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING)
514 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED)
515 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD)
518 * Other sizes
521 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
522 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
525 * Hash table routines
528 #define HT_LOCK_PAD 64
530 struct ht_lock {
531 kmutex_t ht_lock;
532 #ifdef _KERNEL
533 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
534 #endif
537 #define BUF_LOCKS 256
538 typedef struct buf_hash_table {
539 uint64_t ht_mask;
540 arc_buf_hdr_t **ht_table;
541 struct ht_lock ht_locks[BUF_LOCKS];
542 } buf_hash_table_t;
544 static buf_hash_table_t buf_hash_table;
546 #define BUF_HASH_INDEX(spa, dva, birth) \
547 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
548 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
549 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
550 #define HDR_LOCK(hdr) \
551 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
553 uint64_t zfs_crc64_table[256];
556 * Level 2 ARC
559 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
560 #define L2ARC_HEADROOM 2 /* num of writes */
561 #define L2ARC_FEED_SECS 1 /* caching interval secs */
562 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
564 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
565 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
568 * L2ARC Performance Tunables
570 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */
571 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */
572 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */
573 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
574 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
575 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
576 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */
577 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */
580 * L2ARC Internals
582 typedef struct l2arc_dev {
583 vdev_t *l2ad_vdev; /* vdev */
584 spa_t *l2ad_spa; /* spa */
585 uint64_t l2ad_hand; /* next write location */
586 uint64_t l2ad_write; /* desired write size, bytes */
587 uint64_t l2ad_boost; /* warmup write boost, bytes */
588 uint64_t l2ad_start; /* first addr on device */
589 uint64_t l2ad_end; /* last addr on device */
590 uint64_t l2ad_evict; /* last addr eviction reached */
591 boolean_t l2ad_first; /* first sweep through */
592 boolean_t l2ad_writing; /* currently writing */
593 list_t *l2ad_buflist; /* buffer list */
594 list_node_t l2ad_node; /* device list node */
595 } l2arc_dev_t;
597 static list_t L2ARC_dev_list; /* device list */
598 static list_t *l2arc_dev_list; /* device list pointer */
599 static kmutex_t l2arc_dev_mtx; /* device list mutex */
600 static l2arc_dev_t *l2arc_dev_last; /* last device used */
601 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */
602 static list_t L2ARC_free_on_write; /* free after write buf list */
603 static list_t *l2arc_free_on_write; /* free after write list ptr */
604 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
605 static uint64_t l2arc_ndev; /* number of devices */
607 typedef struct l2arc_read_callback {
608 arc_buf_t *l2rcb_buf; /* read buffer */
609 spa_t *l2rcb_spa; /* spa */
610 blkptr_t l2rcb_bp; /* original blkptr */
611 zbookmark_t l2rcb_zb; /* original bookmark */
612 int l2rcb_flags; /* original flags */
613 } l2arc_read_callback_t;
615 typedef struct l2arc_write_callback {
616 l2arc_dev_t *l2wcb_dev; /* device info */
617 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */
618 } l2arc_write_callback_t;
620 struct l2arc_buf_hdr {
621 /* protected by arc_buf_hdr mutex */
622 l2arc_dev_t *b_dev; /* L2ARC device */
623 uint64_t b_daddr; /* disk address, offset byte */
626 typedef struct l2arc_data_free {
627 /* protected by l2arc_free_on_write_mtx */
628 void *l2df_data;
629 size_t l2df_size;
630 void (*l2df_func)(void *, size_t);
631 list_node_t l2df_list_node;
632 } l2arc_data_free_t;
634 static kmutex_t l2arc_feed_thr_lock;
635 static kcondvar_t l2arc_feed_thr_cv;
636 static uint8_t l2arc_thread_exit;
638 static void l2arc_read_done(zio_t *zio);
639 static void l2arc_hdr_stat_add(void);
640 static void l2arc_hdr_stat_remove(void);
642 static uint64_t
643 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
645 uint8_t *vdva = (uint8_t *)dva;
646 uint64_t crc = -1ULL;
647 int i;
649 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
651 for (i = 0; i < sizeof (dva_t); i++)
652 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
654 crc ^= (spa>>8) ^ birth;
656 return (crc);
659 #define BUF_EMPTY(buf) \
660 ((buf)->b_dva.dva_word[0] == 0 && \
661 (buf)->b_dva.dva_word[1] == 0 && \
662 (buf)->b_birth == 0)
664 #define BUF_EQUAL(spa, dva, birth, buf) \
665 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
666 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
667 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
669 static void
670 buf_discard_identity(arc_buf_hdr_t *hdr)
672 hdr->b_dva.dva_word[0] = 0;
673 hdr->b_dva.dva_word[1] = 0;
674 hdr->b_birth = 0;
675 hdr->b_cksum0 = 0;
678 static arc_buf_hdr_t *
679 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
681 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
682 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
683 arc_buf_hdr_t *buf;
685 mutex_enter(hash_lock);
686 for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
687 buf = buf->b_hash_next) {
688 if (BUF_EQUAL(spa, dva, birth, buf)) {
689 *lockp = hash_lock;
690 return (buf);
693 mutex_exit(hash_lock);
694 *lockp = NULL;
695 return (NULL);
699 * Insert an entry into the hash table. If there is already an element
700 * equal to elem in the hash table, then the already existing element
701 * will be returned and the new element will not be inserted.
702 * Otherwise returns NULL.
704 static arc_buf_hdr_t *
705 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
707 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
708 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
709 arc_buf_hdr_t *fbuf;
710 uint32_t i;
712 ASSERT(!HDR_IN_HASH_TABLE(buf));
713 *lockp = hash_lock;
714 mutex_enter(hash_lock);
715 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
716 fbuf = fbuf->b_hash_next, i++) {
717 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
718 return (fbuf);
721 buf->b_hash_next = buf_hash_table.ht_table[idx];
722 buf_hash_table.ht_table[idx] = buf;
723 buf->b_flags |= ARC_IN_HASH_TABLE;
725 /* collect some hash table performance data */
726 if (i > 0) {
727 ARCSTAT_BUMP(arcstat_hash_collisions);
728 if (i == 1)
729 ARCSTAT_BUMP(arcstat_hash_chains);
731 ARCSTAT_MAX(arcstat_hash_chain_max, i);
734 ARCSTAT_BUMP(arcstat_hash_elements);
735 ARCSTAT_MAXSTAT(arcstat_hash_elements);
737 return (NULL);
740 static void
741 buf_hash_remove(arc_buf_hdr_t *buf)
743 arc_buf_hdr_t *fbuf, **bufp;
744 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
746 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
747 ASSERT(HDR_IN_HASH_TABLE(buf));
749 bufp = &buf_hash_table.ht_table[idx];
750 while ((fbuf = *bufp) != buf) {
751 ASSERT(fbuf != NULL);
752 bufp = &fbuf->b_hash_next;
754 *bufp = buf->b_hash_next;
755 buf->b_hash_next = NULL;
756 buf->b_flags &= ~ARC_IN_HASH_TABLE;
758 /* collect some hash table performance data */
759 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
761 if (buf_hash_table.ht_table[idx] &&
762 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
763 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
767 * Global data structures and functions for the buf kmem cache.
769 static kmem_cache_t *hdr_cache;
770 static kmem_cache_t *buf_cache;
772 static void
773 buf_fini(void)
775 int i;
777 kmem_free(buf_hash_table.ht_table,
778 (buf_hash_table.ht_mask + 1) * sizeof (void *));
779 for (i = 0; i < BUF_LOCKS; i++)
780 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
781 kmem_cache_destroy(hdr_cache);
782 kmem_cache_destroy(buf_cache);
786 * Constructor callback - called when the cache is empty
787 * and a new buf is requested.
789 /* ARGSUSED */
790 static int
791 hdr_cons(void *vbuf, void *unused, int kmflag)
793 arc_buf_hdr_t *buf = vbuf;
795 bzero(buf, sizeof (arc_buf_hdr_t));
796 refcount_create(&buf->b_refcnt);
797 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
798 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
799 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
801 return (0);
804 /* ARGSUSED */
805 static int
806 buf_cons(void *vbuf, void *unused, int kmflag)
808 arc_buf_t *buf = vbuf;
810 bzero(buf, sizeof (arc_buf_t));
811 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
812 rw_init(&buf->b_data_lock, NULL, RW_DEFAULT, NULL);
813 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
815 return (0);
819 * Destructor callback - called when a cached buf is
820 * no longer required.
822 /* ARGSUSED */
823 static void
824 hdr_dest(void *vbuf, void *unused)
826 arc_buf_hdr_t *buf = vbuf;
828 ASSERT(BUF_EMPTY(buf));
829 refcount_destroy(&buf->b_refcnt);
830 cv_destroy(&buf->b_cv);
831 mutex_destroy(&buf->b_freeze_lock);
832 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
835 /* ARGSUSED */
836 static void
837 buf_dest(void *vbuf, void *unused)
839 arc_buf_t *buf = vbuf;
841 mutex_destroy(&buf->b_evict_lock);
842 rw_destroy(&buf->b_data_lock);
843 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
847 * Reclaim callback -- invoked when memory is low.
849 /* ARGSUSED */
850 static void
851 hdr_recl(void *unused)
853 dprintf("hdr_recl called\n");
855 * umem calls the reclaim func when we destroy the buf cache,
856 * which is after we do arc_fini().
858 if (!arc_dead)
859 cv_signal(&arc_reclaim_thr_cv);
862 static void
863 buf_init(void)
865 uint64_t *ct;
866 uint64_t hsize = 1ULL << 12;
867 int i, j;
870 * The hash table is big enough to fill all of physical memory
871 * with an average 64K block size. The table will take up
872 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
874 while (hsize * 65536 < physmem * PAGESIZE)
875 hsize <<= 1;
876 retry:
877 buf_hash_table.ht_mask = hsize - 1;
878 buf_hash_table.ht_table =
879 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
880 if (buf_hash_table.ht_table == NULL) {
881 ASSERT(hsize > (1ULL << 8));
882 hsize >>= 1;
883 goto retry;
886 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
887 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
888 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
889 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
891 for (i = 0; i < 256; i++)
892 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
893 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
895 for (i = 0; i < BUF_LOCKS; i++) {
896 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
897 NULL, MUTEX_DEFAULT, NULL);
901 #define ARC_MINTIME (hz>>4) /* 62 ms */
903 static void
904 arc_cksum_verify(arc_buf_t *buf)
906 zio_cksum_t zc;
908 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
909 return;
911 mutex_enter(&buf->b_hdr->b_freeze_lock);
912 if (buf->b_hdr->b_freeze_cksum == NULL ||
913 (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
914 mutex_exit(&buf->b_hdr->b_freeze_lock);
915 return;
917 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
918 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
919 panic("buffer modified while frozen!");
920 mutex_exit(&buf->b_hdr->b_freeze_lock);
923 static int
924 arc_cksum_equal(arc_buf_t *buf)
926 zio_cksum_t zc;
927 int equal;
929 mutex_enter(&buf->b_hdr->b_freeze_lock);
930 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
931 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
932 mutex_exit(&buf->b_hdr->b_freeze_lock);
934 return (equal);
937 static void
938 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
940 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
941 return;
943 mutex_enter(&buf->b_hdr->b_freeze_lock);
944 if (buf->b_hdr->b_freeze_cksum != NULL) {
945 mutex_exit(&buf->b_hdr->b_freeze_lock);
946 return;
948 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
949 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
950 buf->b_hdr->b_freeze_cksum);
951 mutex_exit(&buf->b_hdr->b_freeze_lock);
954 void
955 arc_buf_thaw(arc_buf_t *buf)
957 if (zfs_flags & ZFS_DEBUG_MODIFY) {
958 if (buf->b_hdr->b_state != arc_anon)
959 panic("modifying non-anon buffer!");
960 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
961 panic("modifying buffer while i/o in progress!");
962 arc_cksum_verify(buf);
965 mutex_enter(&buf->b_hdr->b_freeze_lock);
966 if (buf->b_hdr->b_freeze_cksum != NULL) {
967 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
968 buf->b_hdr->b_freeze_cksum = NULL;
971 if (zfs_flags & ZFS_DEBUG_MODIFY) {
972 if (buf->b_hdr->b_thawed)
973 kmem_free(buf->b_hdr->b_thawed, 1);
974 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
977 mutex_exit(&buf->b_hdr->b_freeze_lock);
980 void
981 arc_buf_freeze(arc_buf_t *buf)
983 kmutex_t *hash_lock;
985 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
986 return;
988 hash_lock = HDR_LOCK(buf->b_hdr);
989 mutex_enter(hash_lock);
991 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
992 buf->b_hdr->b_state == arc_anon);
993 arc_cksum_compute(buf, B_FALSE);
994 mutex_exit(hash_lock);
997 static void
998 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1000 ASSERT(MUTEX_HELD(hash_lock));
1002 if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1003 (ab->b_state != arc_anon)) {
1004 uint64_t delta = ab->b_size * ab->b_datacnt;
1005 list_t *list = &ab->b_state->arcs_list[ab->b_type];
1006 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1008 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1009 mutex_enter(&ab->b_state->arcs_mtx);
1010 ASSERT(list_link_active(&ab->b_arc_node));
1011 list_remove(list, ab);
1012 if (GHOST_STATE(ab->b_state)) {
1013 ASSERT3U(ab->b_datacnt, ==, 0);
1014 ASSERT3P(ab->b_buf, ==, NULL);
1015 delta = ab->b_size;
1017 ASSERT(delta > 0);
1018 ASSERT3U(*size, >=, delta);
1019 atomic_add_64(size, -delta);
1020 mutex_exit(&ab->b_state->arcs_mtx);
1021 /* remove the prefetch flag if we get a reference */
1022 if (ab->b_flags & ARC_PREFETCH)
1023 ab->b_flags &= ~ARC_PREFETCH;
1027 static int
1028 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1030 int cnt;
1031 arc_state_t *state = ab->b_state;
1033 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1034 ASSERT(!GHOST_STATE(state));
1036 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1037 (state != arc_anon)) {
1038 uint64_t *size = &state->arcs_lsize[ab->b_type];
1040 ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1041 mutex_enter(&state->arcs_mtx);
1042 ASSERT(!list_link_active(&ab->b_arc_node));
1043 list_insert_head(&state->arcs_list[ab->b_type], ab);
1044 ASSERT(ab->b_datacnt > 0);
1045 atomic_add_64(size, ab->b_size * ab->b_datacnt);
1046 mutex_exit(&state->arcs_mtx);
1048 return (cnt);
1052 * Move the supplied buffer to the indicated state. The mutex
1053 * for the buffer must be held by the caller.
1055 static void
1056 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1058 arc_state_t *old_state = ab->b_state;
1059 int64_t refcnt = refcount_count(&ab->b_refcnt);
1060 uint64_t from_delta, to_delta;
1062 ASSERT(MUTEX_HELD(hash_lock));
1063 ASSERT(new_state != old_state);
1064 ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1065 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1066 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1068 from_delta = to_delta = ab->b_datacnt * ab->b_size;
1071 * If this buffer is evictable, transfer it from the
1072 * old state list to the new state list.
1074 if (refcnt == 0) {
1075 if (old_state != arc_anon) {
1076 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1077 uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1079 if (use_mutex)
1080 mutex_enter(&old_state->arcs_mtx);
1082 ASSERT(list_link_active(&ab->b_arc_node));
1083 list_remove(&old_state->arcs_list[ab->b_type], ab);
1086 * If prefetching out of the ghost cache,
1087 * we will have a non-zero datacnt.
1089 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1090 /* ghost elements have a ghost size */
1091 ASSERT(ab->b_buf == NULL);
1092 from_delta = ab->b_size;
1094 ASSERT3U(*size, >=, from_delta);
1095 atomic_add_64(size, -from_delta);
1097 if (use_mutex)
1098 mutex_exit(&old_state->arcs_mtx);
1100 if (new_state != arc_anon) {
1101 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1102 uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1104 if (use_mutex)
1105 mutex_enter(&new_state->arcs_mtx);
1107 list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1109 /* ghost elements have a ghost size */
1110 if (GHOST_STATE(new_state)) {
1111 ASSERT(ab->b_datacnt == 0);
1112 ASSERT(ab->b_buf == NULL);
1113 to_delta = ab->b_size;
1115 atomic_add_64(size, to_delta);
1117 if (use_mutex)
1118 mutex_exit(&new_state->arcs_mtx);
1122 ASSERT(!BUF_EMPTY(ab));
1123 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1124 buf_hash_remove(ab);
1126 /* adjust state sizes */
1127 if (to_delta)
1128 atomic_add_64(&new_state->arcs_size, to_delta);
1129 if (from_delta) {
1130 ASSERT3U(old_state->arcs_size, >=, from_delta);
1131 atomic_add_64(&old_state->arcs_size, -from_delta);
1133 ab->b_state = new_state;
1135 /* adjust l2arc hdr stats */
1136 if (new_state == arc_l2c_only)
1137 l2arc_hdr_stat_add();
1138 else if (old_state == arc_l2c_only)
1139 l2arc_hdr_stat_remove();
1142 void
1143 arc_space_consume(uint64_t space, arc_space_type_t type)
1145 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1147 switch (type) {
1148 case ARC_SPACE_DATA:
1149 ARCSTAT_INCR(arcstat_data_size, space);
1150 break;
1151 case ARC_SPACE_OTHER:
1152 ARCSTAT_INCR(arcstat_other_size, space);
1153 break;
1154 case ARC_SPACE_HDRS:
1155 ARCSTAT_INCR(arcstat_hdr_size, space);
1156 break;
1157 case ARC_SPACE_L2HDRS:
1158 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1159 break;
1162 atomic_add_64(&arc_meta_used, space);
1163 atomic_add_64(&arc_size, space);
1166 void
1167 arc_space_return(uint64_t space, arc_space_type_t type)
1169 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1171 switch (type) {
1172 case ARC_SPACE_DATA:
1173 ARCSTAT_INCR(arcstat_data_size, -space);
1174 break;
1175 case ARC_SPACE_OTHER:
1176 ARCSTAT_INCR(arcstat_other_size, -space);
1177 break;
1178 case ARC_SPACE_HDRS:
1179 ARCSTAT_INCR(arcstat_hdr_size, -space);
1180 break;
1181 case ARC_SPACE_L2HDRS:
1182 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1183 break;
1186 ASSERT(arc_meta_used >= space);
1187 if (arc_meta_max < arc_meta_used)
1188 arc_meta_max = arc_meta_used;
1189 atomic_add_64(&arc_meta_used, -space);
1190 ASSERT(arc_size >= space);
1191 atomic_add_64(&arc_size, -space);
1194 void *
1195 arc_data_buf_alloc(uint64_t size)
1197 if (arc_evict_needed(ARC_BUFC_DATA))
1198 cv_signal(&arc_reclaim_thr_cv);
1199 atomic_add_64(&arc_size, size);
1200 return (zio_data_buf_alloc(size));
1203 void
1204 arc_data_buf_free(void *buf, uint64_t size)
1206 zio_data_buf_free(buf, size);
1207 ASSERT(arc_size >= size);
1208 atomic_add_64(&arc_size, -size);
1211 arc_buf_t *
1212 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1214 arc_buf_hdr_t *hdr;
1215 arc_buf_t *buf;
1217 ASSERT3U(size, >, 0);
1218 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1219 ASSERT(BUF_EMPTY(hdr));
1220 hdr->b_size = size;
1221 hdr->b_type = type;
1222 hdr->b_spa = spa_load_guid(spa);
1223 hdr->b_state = arc_anon;
1224 hdr->b_arc_access = 0;
1225 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1226 buf->b_hdr = hdr;
1227 buf->b_data = NULL;
1228 buf->b_efunc = NULL;
1229 buf->b_private = NULL;
1230 buf->b_next = NULL;
1231 hdr->b_buf = buf;
1232 arc_get_data_buf(buf);
1233 hdr->b_datacnt = 1;
1234 hdr->b_flags = 0;
1235 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1236 (void) refcount_add(&hdr->b_refcnt, tag);
1238 return (buf);
1241 static char *arc_onloan_tag = "onloan";
1244 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1245 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1246 * buffers must be returned to the arc before they can be used by the DMU or
1247 * freed.
1249 arc_buf_t *
1250 arc_loan_buf(spa_t *spa, int size)
1252 arc_buf_t *buf;
1254 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1256 atomic_add_64(&arc_loaned_bytes, size);
1257 return (buf);
1261 * Return a loaned arc buffer to the arc.
1263 void
1264 arc_return_buf(arc_buf_t *buf, void *tag)
1266 arc_buf_hdr_t *hdr = buf->b_hdr;
1268 ASSERT(buf->b_data != NULL);
1269 (void) refcount_add(&hdr->b_refcnt, tag);
1270 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1272 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1275 /* Detach an arc_buf from a dbuf (tag) */
1276 void
1277 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1279 arc_buf_hdr_t *hdr;
1281 ASSERT(buf->b_data != NULL);
1282 hdr = buf->b_hdr;
1283 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1284 (void) refcount_remove(&hdr->b_refcnt, tag);
1285 buf->b_efunc = NULL;
1286 buf->b_private = NULL;
1288 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1291 static arc_buf_t *
1292 arc_buf_clone(arc_buf_t *from)
1294 arc_buf_t *buf;
1295 arc_buf_hdr_t *hdr = from->b_hdr;
1296 uint64_t size = hdr->b_size;
1298 ASSERT(hdr->b_state != arc_anon);
1300 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1301 buf->b_hdr = hdr;
1302 buf->b_data = NULL;
1303 buf->b_efunc = NULL;
1304 buf->b_private = NULL;
1305 buf->b_next = hdr->b_buf;
1306 hdr->b_buf = buf;
1307 arc_get_data_buf(buf);
1308 bcopy(from->b_data, buf->b_data, size);
1309 hdr->b_datacnt += 1;
1310 return (buf);
1313 void
1314 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1316 arc_buf_hdr_t *hdr;
1317 kmutex_t *hash_lock;
1320 * Check to see if this buffer is evicted. Callers
1321 * must verify b_data != NULL to know if the add_ref
1322 * was successful.
1324 mutex_enter(&buf->b_evict_lock);
1325 if (buf->b_data == NULL) {
1326 mutex_exit(&buf->b_evict_lock);
1327 return;
1329 hash_lock = HDR_LOCK(buf->b_hdr);
1330 mutex_enter(hash_lock);
1331 hdr = buf->b_hdr;
1332 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1333 mutex_exit(&buf->b_evict_lock);
1335 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1336 add_reference(hdr, hash_lock, tag);
1337 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1338 arc_access(hdr, hash_lock);
1339 mutex_exit(hash_lock);
1340 ARCSTAT_BUMP(arcstat_hits);
1341 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1342 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1343 data, metadata, hits);
1347 * Free the arc data buffer. If it is an l2arc write in progress,
1348 * the buffer is placed on l2arc_free_on_write to be freed later.
1350 static void
1351 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1352 void *data, size_t size)
1354 if (HDR_L2_WRITING(hdr)) {
1355 l2arc_data_free_t *df;
1356 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1357 df->l2df_data = data;
1358 df->l2df_size = size;
1359 df->l2df_func = free_func;
1360 mutex_enter(&l2arc_free_on_write_mtx);
1361 list_insert_head(l2arc_free_on_write, df);
1362 mutex_exit(&l2arc_free_on_write_mtx);
1363 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1364 } else {
1365 free_func(data, size);
1369 static void
1370 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1372 arc_buf_t **bufp;
1374 /* free up data associated with the buf */
1375 if (buf->b_data) {
1376 arc_state_t *state = buf->b_hdr->b_state;
1377 uint64_t size = buf->b_hdr->b_size;
1378 arc_buf_contents_t type = buf->b_hdr->b_type;
1380 arc_cksum_verify(buf);
1382 if (!recycle) {
1383 if (type == ARC_BUFC_METADATA) {
1384 arc_buf_data_free(buf->b_hdr, zio_buf_free,
1385 buf->b_data, size);
1386 arc_space_return(size, ARC_SPACE_DATA);
1387 } else {
1388 ASSERT(type == ARC_BUFC_DATA);
1389 arc_buf_data_free(buf->b_hdr,
1390 zio_data_buf_free, buf->b_data, size);
1391 ARCSTAT_INCR(arcstat_data_size, -size);
1392 atomic_add_64(&arc_size, -size);
1395 if (list_link_active(&buf->b_hdr->b_arc_node)) {
1396 uint64_t *cnt = &state->arcs_lsize[type];
1398 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1399 ASSERT(state != arc_anon);
1401 ASSERT3U(*cnt, >=, size);
1402 atomic_add_64(cnt, -size);
1404 ASSERT3U(state->arcs_size, >=, size);
1405 atomic_add_64(&state->arcs_size, -size);
1406 buf->b_data = NULL;
1407 ASSERT(buf->b_hdr->b_datacnt > 0);
1408 buf->b_hdr->b_datacnt -= 1;
1411 /* only remove the buf if requested */
1412 if (!all)
1413 return;
1415 /* remove the buf from the hdr list */
1416 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1417 continue;
1418 *bufp = buf->b_next;
1419 buf->b_next = NULL;
1421 ASSERT(buf->b_efunc == NULL);
1423 /* clean up the buf */
1424 buf->b_hdr = NULL;
1425 kmem_cache_free(buf_cache, buf);
1428 static void
1429 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1431 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1432 ASSERT3P(hdr->b_state, ==, arc_anon);
1433 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1434 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1436 if (l2hdr != NULL) {
1437 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1439 * To prevent arc_free() and l2arc_evict() from
1440 * attempting to free the same buffer at the same time,
1441 * a FREE_IN_PROGRESS flag is given to arc_free() to
1442 * give it priority. l2arc_evict() can't destroy this
1443 * header while we are waiting on l2arc_buflist_mtx.
1445 * The hdr may be removed from l2ad_buflist before we
1446 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1448 if (!buflist_held) {
1449 mutex_enter(&l2arc_buflist_mtx);
1450 l2hdr = hdr->b_l2hdr;
1453 if (l2hdr != NULL) {
1454 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1455 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1456 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1457 if (hdr->b_state == arc_l2c_only)
1458 l2arc_hdr_stat_remove();
1459 hdr->b_l2hdr = NULL;
1462 if (!buflist_held)
1463 mutex_exit(&l2arc_buflist_mtx);
1466 if (!BUF_EMPTY(hdr)) {
1467 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1468 buf_discard_identity(hdr);
1470 while (hdr->b_buf) {
1471 arc_buf_t *buf = hdr->b_buf;
1473 if (buf->b_efunc) {
1474 mutex_enter(&arc_eviction_mtx);
1475 mutex_enter(&buf->b_evict_lock);
1476 ASSERT(buf->b_hdr != NULL);
1477 arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1478 hdr->b_buf = buf->b_next;
1479 buf->b_hdr = &arc_eviction_hdr;
1480 buf->b_next = arc_eviction_list;
1481 arc_eviction_list = buf;
1482 mutex_exit(&buf->b_evict_lock);
1483 mutex_exit(&arc_eviction_mtx);
1484 } else {
1485 arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1488 if (hdr->b_freeze_cksum != NULL) {
1489 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1490 hdr->b_freeze_cksum = NULL;
1492 if (hdr->b_thawed) {
1493 kmem_free(hdr->b_thawed, 1);
1494 hdr->b_thawed = NULL;
1497 ASSERT(!list_link_active(&hdr->b_arc_node));
1498 ASSERT3P(hdr->b_hash_next, ==, NULL);
1499 ASSERT3P(hdr->b_acb, ==, NULL);
1500 kmem_cache_free(hdr_cache, hdr);
1503 void
1504 arc_buf_free(arc_buf_t *buf, void *tag)
1506 arc_buf_hdr_t *hdr = buf->b_hdr;
1507 int hashed = hdr->b_state != arc_anon;
1509 ASSERT(buf->b_efunc == NULL);
1510 ASSERT(buf->b_data != NULL);
1512 if (hashed) {
1513 kmutex_t *hash_lock = HDR_LOCK(hdr);
1515 mutex_enter(hash_lock);
1516 hdr = buf->b_hdr;
1517 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1519 (void) remove_reference(hdr, hash_lock, tag);
1520 if (hdr->b_datacnt > 1) {
1521 arc_buf_destroy(buf, FALSE, TRUE);
1522 } else {
1523 ASSERT(buf == hdr->b_buf);
1524 ASSERT(buf->b_efunc == NULL);
1525 hdr->b_flags |= ARC_BUF_AVAILABLE;
1527 mutex_exit(hash_lock);
1528 } else if (HDR_IO_IN_PROGRESS(hdr)) {
1529 int destroy_hdr;
1531 * We are in the middle of an async write. Don't destroy
1532 * this buffer unless the write completes before we finish
1533 * decrementing the reference count.
1535 mutex_enter(&arc_eviction_mtx);
1536 (void) remove_reference(hdr, NULL, tag);
1537 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1538 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1539 mutex_exit(&arc_eviction_mtx);
1540 if (destroy_hdr)
1541 arc_hdr_destroy(hdr);
1542 } else {
1543 if (remove_reference(hdr, NULL, tag) > 0)
1544 arc_buf_destroy(buf, FALSE, TRUE);
1545 else
1546 arc_hdr_destroy(hdr);
1551 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1553 arc_buf_hdr_t *hdr = buf->b_hdr;
1554 kmutex_t *hash_lock = HDR_LOCK(hdr);
1555 int no_callback = (buf->b_efunc == NULL);
1557 if (hdr->b_state == arc_anon) {
1558 ASSERT(hdr->b_datacnt == 1);
1559 arc_buf_free(buf, tag);
1560 return (no_callback);
1563 mutex_enter(hash_lock);
1564 hdr = buf->b_hdr;
1565 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1566 ASSERT(hdr->b_state != arc_anon);
1567 ASSERT(buf->b_data != NULL);
1569 (void) remove_reference(hdr, hash_lock, tag);
1570 if (hdr->b_datacnt > 1) {
1571 if (no_callback)
1572 arc_buf_destroy(buf, FALSE, TRUE);
1573 } else if (no_callback) {
1574 ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1575 ASSERT(buf->b_efunc == NULL);
1576 hdr->b_flags |= ARC_BUF_AVAILABLE;
1578 ASSERT(no_callback || hdr->b_datacnt > 1 ||
1579 refcount_is_zero(&hdr->b_refcnt));
1580 mutex_exit(hash_lock);
1581 return (no_callback);
1585 arc_buf_size(arc_buf_t *buf)
1587 return (buf->b_hdr->b_size);
1591 * Evict buffers from list until we've removed the specified number of
1592 * bytes. Move the removed buffers to the appropriate evict state.
1593 * If the recycle flag is set, then attempt to "recycle" a buffer:
1594 * - look for a buffer to evict that is `bytes' long.
1595 * - return the data block from this buffer rather than freeing it.
1596 * This flag is used by callers that are trying to make space for a
1597 * new buffer in a full arc cache.
1599 * This function makes a "best effort". It skips over any buffers
1600 * it can't get a hash_lock on, and so may not catch all candidates.
1601 * It may also return without evicting as much space as requested.
1603 static void *
1604 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1605 arc_buf_contents_t type)
1607 arc_state_t *evicted_state;
1608 uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1609 arc_buf_hdr_t *ab, *ab_prev = NULL;
1610 list_t *list = &state->arcs_list[type];
1611 kmutex_t *hash_lock;
1612 boolean_t have_lock;
1613 void *stolen = NULL;
1615 ASSERT(state == arc_mru || state == arc_mfu);
1617 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1619 mutex_enter(&state->arcs_mtx);
1620 mutex_enter(&evicted_state->arcs_mtx);
1622 for (ab = list_tail(list); ab; ab = ab_prev) {
1623 ab_prev = list_prev(list, ab);
1624 /* prefetch buffers have a minimum lifespan */
1625 if (HDR_IO_IN_PROGRESS(ab) ||
1626 (spa && ab->b_spa != spa) ||
1627 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1628 ddi_get_lbolt() - ab->b_arc_access <
1629 arc_min_prefetch_lifespan)) {
1630 skipped++;
1631 continue;
1633 /* "lookahead" for better eviction candidate */
1634 if (recycle && ab->b_size != bytes &&
1635 ab_prev && ab_prev->b_size == bytes)
1636 continue;
1637 hash_lock = HDR_LOCK(ab);
1638 have_lock = MUTEX_HELD(hash_lock);
1639 if (have_lock || mutex_tryenter(hash_lock)) {
1640 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1641 ASSERT(ab->b_datacnt > 0);
1642 while (ab->b_buf) {
1643 arc_buf_t *buf = ab->b_buf;
1644 if (!mutex_tryenter(&buf->b_evict_lock)) {
1645 missed += 1;
1646 break;
1648 if (buf->b_data) {
1649 bytes_evicted += ab->b_size;
1650 if (recycle && ab->b_type == type &&
1651 ab->b_size == bytes &&
1652 !HDR_L2_WRITING(ab)) {
1653 stolen = buf->b_data;
1654 recycle = FALSE;
1657 if (buf->b_efunc) {
1658 mutex_enter(&arc_eviction_mtx);
1659 arc_buf_destroy(buf,
1660 buf->b_data == stolen, FALSE);
1661 ab->b_buf = buf->b_next;
1662 buf->b_hdr = &arc_eviction_hdr;
1663 buf->b_next = arc_eviction_list;
1664 arc_eviction_list = buf;
1665 mutex_exit(&arc_eviction_mtx);
1666 mutex_exit(&buf->b_evict_lock);
1667 } else {
1668 mutex_exit(&buf->b_evict_lock);
1669 arc_buf_destroy(buf,
1670 buf->b_data == stolen, TRUE);
1674 if (ab->b_l2hdr) {
1675 ARCSTAT_INCR(arcstat_evict_l2_cached,
1676 ab->b_size);
1677 } else {
1678 if (l2arc_write_eligible(ab->b_spa, ab)) {
1679 ARCSTAT_INCR(arcstat_evict_l2_eligible,
1680 ab->b_size);
1681 } else {
1682 ARCSTAT_INCR(
1683 arcstat_evict_l2_ineligible,
1684 ab->b_size);
1688 if (ab->b_datacnt == 0) {
1689 arc_change_state(evicted_state, ab, hash_lock);
1690 ASSERT(HDR_IN_HASH_TABLE(ab));
1691 ab->b_flags |= ARC_IN_HASH_TABLE;
1692 ab->b_flags &= ~ARC_BUF_AVAILABLE;
1693 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1695 if (!have_lock)
1696 mutex_exit(hash_lock);
1697 if (bytes >= 0 && bytes_evicted >= bytes)
1698 break;
1699 } else {
1700 missed += 1;
1704 mutex_exit(&evicted_state->arcs_mtx);
1705 mutex_exit(&state->arcs_mtx);
1707 if (bytes_evicted < bytes)
1708 dprintf("only evicted %lld bytes from %x",
1709 (longlong_t)bytes_evicted, state);
1711 if (skipped)
1712 ARCSTAT_INCR(arcstat_evict_skip, skipped);
1714 if (missed)
1715 ARCSTAT_INCR(arcstat_mutex_miss, missed);
1718 * We have just evicted some date into the ghost state, make
1719 * sure we also adjust the ghost state size if necessary.
1721 if (arc_no_grow &&
1722 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1723 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1724 arc_mru_ghost->arcs_size - arc_c;
1726 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1727 int64_t todelete =
1728 MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1729 arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1730 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1731 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1732 arc_mru_ghost->arcs_size +
1733 arc_mfu_ghost->arcs_size - arc_c);
1734 arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1738 return (stolen);
1742 * Remove buffers from list until we've removed the specified number of
1743 * bytes. Destroy the buffers that are removed.
1745 static void
1746 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1748 arc_buf_hdr_t *ab, *ab_prev;
1749 arc_buf_hdr_t marker = { 0 };
1750 list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1751 kmutex_t *hash_lock;
1752 uint64_t bytes_deleted = 0;
1753 uint64_t bufs_skipped = 0;
1755 ASSERT(GHOST_STATE(state));
1756 top:
1757 mutex_enter(&state->arcs_mtx);
1758 for (ab = list_tail(list); ab; ab = ab_prev) {
1759 ab_prev = list_prev(list, ab);
1760 if (spa && ab->b_spa != spa)
1761 continue;
1763 /* ignore markers */
1764 if (ab->b_spa == 0)
1765 continue;
1767 hash_lock = HDR_LOCK(ab);
1768 /* caller may be trying to modify this buffer, skip it */
1769 if (MUTEX_HELD(hash_lock))
1770 continue;
1771 if (mutex_tryenter(hash_lock)) {
1772 ASSERT(!HDR_IO_IN_PROGRESS(ab));
1773 ASSERT(ab->b_buf == NULL);
1774 ARCSTAT_BUMP(arcstat_deleted);
1775 bytes_deleted += ab->b_size;
1777 if (ab->b_l2hdr != NULL) {
1779 * This buffer is cached on the 2nd Level ARC;
1780 * don't destroy the header.
1782 arc_change_state(arc_l2c_only, ab, hash_lock);
1783 mutex_exit(hash_lock);
1784 } else {
1785 arc_change_state(arc_anon, ab, hash_lock);
1786 mutex_exit(hash_lock);
1787 arc_hdr_destroy(ab);
1790 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1791 if (bytes >= 0 && bytes_deleted >= bytes)
1792 break;
1793 } else if (bytes < 0) {
1795 * Insert a list marker and then wait for the
1796 * hash lock to become available. Once its
1797 * available, restart from where we left off.
1799 list_insert_after(list, ab, &marker);
1800 mutex_exit(&state->arcs_mtx);
1801 mutex_enter(hash_lock);
1802 mutex_exit(hash_lock);
1803 mutex_enter(&state->arcs_mtx);
1804 ab_prev = list_prev(list, &marker);
1805 list_remove(list, &marker);
1806 } else
1807 bufs_skipped += 1;
1809 mutex_exit(&state->arcs_mtx);
1811 if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1812 (bytes < 0 || bytes_deleted < bytes)) {
1813 list = &state->arcs_list[ARC_BUFC_METADATA];
1814 goto top;
1817 if (bufs_skipped) {
1818 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1819 ASSERT(bytes >= 0);
1822 if (bytes_deleted < bytes)
1823 dprintf("only deleted %lld bytes from %p",
1824 (longlong_t)bytes_deleted, state);
1827 static void
1828 arc_adjust(void)
1830 int64_t adjustment, delta;
1833 * Adjust MRU size
1836 adjustment = MIN((int64_t)(arc_size - arc_c),
1837 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
1838 arc_p));
1840 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1841 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
1842 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA);
1843 adjustment -= delta;
1846 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1847 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
1848 (void) arc_evict(arc_mru, NULL, delta, FALSE,
1849 ARC_BUFC_METADATA);
1853 * Adjust MFU size
1856 adjustment = arc_size - arc_c;
1858 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1859 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
1860 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA);
1861 adjustment -= delta;
1864 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1865 int64_t delta = MIN(adjustment,
1866 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
1867 (void) arc_evict(arc_mfu, NULL, delta, FALSE,
1868 ARC_BUFC_METADATA);
1872 * Adjust ghost lists
1875 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
1877 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
1878 delta = MIN(arc_mru_ghost->arcs_size, adjustment);
1879 arc_evict_ghost(arc_mru_ghost, NULL, delta);
1882 adjustment =
1883 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
1885 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
1886 delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
1887 arc_evict_ghost(arc_mfu_ghost, NULL, delta);
1891 static void
1892 arc_do_user_evicts(void)
1894 mutex_enter(&arc_eviction_mtx);
1895 while (arc_eviction_list != NULL) {
1896 arc_buf_t *buf = arc_eviction_list;
1897 arc_eviction_list = buf->b_next;
1898 mutex_enter(&buf->b_evict_lock);
1899 buf->b_hdr = NULL;
1900 mutex_exit(&buf->b_evict_lock);
1901 mutex_exit(&arc_eviction_mtx);
1903 if (buf->b_efunc != NULL)
1904 VERIFY(buf->b_efunc(buf) == 0);
1906 buf->b_efunc = NULL;
1907 buf->b_private = NULL;
1908 kmem_cache_free(buf_cache, buf);
1909 mutex_enter(&arc_eviction_mtx);
1911 mutex_exit(&arc_eviction_mtx);
1915 * Flush all *evictable* data from the cache for the given spa.
1916 * NOTE: this will not touch "active" (i.e. referenced) data.
1918 void
1919 arc_flush(spa_t *spa)
1921 uint64_t guid = 0;
1923 if (spa)
1924 guid = spa_load_guid(spa);
1926 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
1927 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
1928 if (spa)
1929 break;
1931 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
1932 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
1933 if (spa)
1934 break;
1936 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
1937 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
1938 if (spa)
1939 break;
1941 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
1942 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
1943 if (spa)
1944 break;
1947 arc_evict_ghost(arc_mru_ghost, guid, -1);
1948 arc_evict_ghost(arc_mfu_ghost, guid, -1);
1950 mutex_enter(&arc_reclaim_thr_lock);
1951 arc_do_user_evicts();
1952 mutex_exit(&arc_reclaim_thr_lock);
1953 ASSERT(spa || arc_eviction_list == NULL);
1956 void
1957 arc_shrink(void)
1959 if (arc_c > arc_c_min) {
1960 uint64_t to_free;
1962 #ifdef _KERNEL
1963 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
1964 #else
1965 to_free = arc_c >> arc_shrink_shift;
1966 #endif
1967 if (arc_c > arc_c_min + to_free)
1968 atomic_add_64(&arc_c, -to_free);
1969 else
1970 arc_c = arc_c_min;
1972 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
1973 if (arc_c > arc_size)
1974 arc_c = MAX(arc_size, arc_c_min);
1975 if (arc_p > arc_c)
1976 arc_p = (arc_c >> 1);
1977 ASSERT(arc_c >= arc_c_min);
1978 ASSERT((int64_t)arc_p >= 0);
1981 if (arc_size > arc_c)
1982 arc_adjust();
1985 static int
1986 arc_reclaim_needed(void)
1988 uint64_t extra;
1990 #ifdef _KERNEL
1992 if (needfree)
1993 return (1);
1996 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1998 extra = desfree;
2001 * check that we're out of range of the pageout scanner. It starts to
2002 * schedule paging if freemem is less than lotsfree and needfree.
2003 * lotsfree is the high-water mark for pageout, and needfree is the
2004 * number of needed free pages. We add extra pages here to make sure
2005 * the scanner doesn't start up while we're freeing memory.
2007 if (freemem < lotsfree + needfree + extra)
2008 return (1);
2011 * check to make sure that swapfs has enough space so that anon
2012 * reservations can still succeed. anon_resvmem() checks that the
2013 * availrmem is greater than swapfs_minfree, and the number of reserved
2014 * swap pages. We also add a bit of extra here just to prevent
2015 * circumstances from getting really dire.
2017 if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2018 return (1);
2020 #if defined(__i386)
2022 * If we're on an i386 platform, it's possible that we'll exhaust the
2023 * kernel heap space before we ever run out of available physical
2024 * memory. Most checks of the size of the heap_area compare against
2025 * tune.t_minarmem, which is the minimum available real memory that we
2026 * can have in the system. However, this is generally fixed at 25 pages
2027 * which is so low that it's useless. In this comparison, we seek to
2028 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2029 * heap is allocated. (Or, in the calculation, if less than 1/4th is
2030 * free)
2032 if (btop(vmem_size(heap_arena, VMEM_FREE)) <
2033 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
2034 return (1);
2035 #endif
2037 #else
2038 if (spa_get_random(100) == 0)
2039 return (1);
2040 #endif
2041 return (0);
2044 static void
2045 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2047 size_t i;
2048 kmem_cache_t *prev_cache = NULL;
2049 kmem_cache_t *prev_data_cache = NULL;
2050 extern kmem_cache_t *zio_buf_cache[];
2051 extern kmem_cache_t *zio_data_buf_cache[];
2053 #ifdef _KERNEL
2054 if (arc_meta_used >= arc_meta_limit) {
2056 * We are exceeding our meta-data cache limit.
2057 * Purge some DNLC entries to release holds on meta-data.
2059 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2061 #if defined(__i386)
2063 * Reclaim unused memory from all kmem caches.
2065 kmem_reap();
2066 #endif
2067 #endif
2070 * An aggressive reclamation will shrink the cache size as well as
2071 * reap free buffers from the arc kmem caches.
2073 if (strat == ARC_RECLAIM_AGGR)
2074 arc_shrink();
2076 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2077 if (zio_buf_cache[i] != prev_cache) {
2078 prev_cache = zio_buf_cache[i];
2079 kmem_cache_reap_now(zio_buf_cache[i]);
2081 if (zio_data_buf_cache[i] != prev_data_cache) {
2082 prev_data_cache = zio_data_buf_cache[i];
2083 kmem_cache_reap_now(zio_data_buf_cache[i]);
2086 kmem_cache_reap_now(buf_cache);
2087 kmem_cache_reap_now(hdr_cache);
2090 static void
2091 arc_reclaim_thread(void)
2093 clock_t growtime = 0;
2094 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS;
2095 callb_cpr_t cpr;
2097 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2099 mutex_enter(&arc_reclaim_thr_lock);
2100 while (arc_thread_exit == 0) {
2101 if (arc_reclaim_needed()) {
2103 if (arc_no_grow) {
2104 if (last_reclaim == ARC_RECLAIM_CONS) {
2105 last_reclaim = ARC_RECLAIM_AGGR;
2106 } else {
2107 last_reclaim = ARC_RECLAIM_CONS;
2109 } else {
2110 arc_no_grow = TRUE;
2111 last_reclaim = ARC_RECLAIM_AGGR;
2112 membar_producer();
2115 /* reset the growth delay for every reclaim */
2116 growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2118 arc_kmem_reap_now(last_reclaim);
2119 arc_warm = B_TRUE;
2121 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2122 arc_no_grow = FALSE;
2125 arc_adjust();
2127 if (arc_eviction_list != NULL)
2128 arc_do_user_evicts();
2130 /* block until needed, or one second, whichever is shorter */
2131 CALLB_CPR_SAFE_BEGIN(&cpr);
2132 (void) cv_timedwait(&arc_reclaim_thr_cv,
2133 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
2134 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2137 arc_thread_exit = 0;
2138 cv_broadcast(&arc_reclaim_thr_cv);
2139 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */
2140 thread_exit();
2144 * Adapt arc info given the number of bytes we are trying to add and
2145 * the state that we are comming from. This function is only called
2146 * when we are adding new content to the cache.
2148 static void
2149 arc_adapt(int bytes, arc_state_t *state)
2151 int mult;
2152 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2154 if (state == arc_l2c_only)
2155 return;
2157 ASSERT(bytes > 0);
2159 * Adapt the target size of the MRU list:
2160 * - if we just hit in the MRU ghost list, then increase
2161 * the target size of the MRU list.
2162 * - if we just hit in the MFU ghost list, then increase
2163 * the target size of the MFU list by decreasing the
2164 * target size of the MRU list.
2166 if (state == arc_mru_ghost) {
2167 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2168 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2169 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2171 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2172 } else if (state == arc_mfu_ghost) {
2173 uint64_t delta;
2175 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2176 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2177 mult = MIN(mult, 10);
2179 delta = MIN(bytes * mult, arc_p);
2180 arc_p = MAX(arc_p_min, arc_p - delta);
2182 ASSERT((int64_t)arc_p >= 0);
2184 if (arc_reclaim_needed()) {
2185 cv_signal(&arc_reclaim_thr_cv);
2186 return;
2189 if (arc_no_grow)
2190 return;
2192 if (arc_c >= arc_c_max)
2193 return;
2196 * If we're within (2 * maxblocksize) bytes of the target
2197 * cache size, increment the target cache size
2199 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2200 atomic_add_64(&arc_c, (int64_t)bytes);
2201 if (arc_c > arc_c_max)
2202 arc_c = arc_c_max;
2203 else if (state == arc_anon)
2204 atomic_add_64(&arc_p, (int64_t)bytes);
2205 if (arc_p > arc_c)
2206 arc_p = arc_c;
2208 ASSERT((int64_t)arc_p >= 0);
2212 * Check if the cache has reached its limits and eviction is required
2213 * prior to insert.
2215 static int
2216 arc_evict_needed(arc_buf_contents_t type)
2218 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2219 return (1);
2221 #ifdef _KERNEL
2223 * If zio data pages are being allocated out of a separate heap segment,
2224 * then enforce that the size of available vmem for this area remains
2225 * above about 1/32nd free.
2227 if (type == ARC_BUFC_DATA && zio_arena != NULL &&
2228 vmem_size(zio_arena, VMEM_FREE) <
2229 (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
2230 return (1);
2231 #endif
2233 if (arc_reclaim_needed())
2234 return (1);
2236 return (arc_size > arc_c);
2240 * The buffer, supplied as the first argument, needs a data block.
2241 * So, if we are at cache max, determine which cache should be victimized.
2242 * We have the following cases:
2244 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2245 * In this situation if we're out of space, but the resident size of the MFU is
2246 * under the limit, victimize the MFU cache to satisfy this insertion request.
2248 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2249 * Here, we've used up all of the available space for the MRU, so we need to
2250 * evict from our own cache instead. Evict from the set of resident MRU
2251 * entries.
2253 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2254 * c minus p represents the MFU space in the cache, since p is the size of the
2255 * cache that is dedicated to the MRU. In this situation there's still space on
2256 * the MFU side, so the MRU side needs to be victimized.
2258 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2259 * MFU's resident set is consuming more space than it has been allotted. In
2260 * this situation, we must victimize our own cache, the MFU, for this insertion.
2262 static void
2263 arc_get_data_buf(arc_buf_t *buf)
2265 arc_state_t *state = buf->b_hdr->b_state;
2266 uint64_t size = buf->b_hdr->b_size;
2267 arc_buf_contents_t type = buf->b_hdr->b_type;
2269 arc_adapt(size, state);
2272 * We have not yet reached cache maximum size,
2273 * just allocate a new buffer.
2275 if (!arc_evict_needed(type)) {
2276 if (type == ARC_BUFC_METADATA) {
2277 buf->b_data = zio_buf_alloc(size);
2278 arc_space_consume(size, ARC_SPACE_DATA);
2279 } else {
2280 ASSERT(type == ARC_BUFC_DATA);
2281 buf->b_data = zio_data_buf_alloc(size);
2282 ARCSTAT_INCR(arcstat_data_size, size);
2283 atomic_add_64(&arc_size, size);
2285 goto out;
2289 * If we are prefetching from the mfu ghost list, this buffer
2290 * will end up on the mru list; so steal space from there.
2292 if (state == arc_mfu_ghost)
2293 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2294 else if (state == arc_mru_ghost)
2295 state = arc_mru;
2297 if (state == arc_mru || state == arc_anon) {
2298 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2299 state = (arc_mfu->arcs_lsize[type] >= size &&
2300 arc_p > mru_used) ? arc_mfu : arc_mru;
2301 } else {
2302 /* MFU cases */
2303 uint64_t mfu_space = arc_c - arc_p;
2304 state = (arc_mru->arcs_lsize[type] >= size &&
2305 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2307 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2308 if (type == ARC_BUFC_METADATA) {
2309 buf->b_data = zio_buf_alloc(size);
2310 arc_space_consume(size, ARC_SPACE_DATA);
2311 } else {
2312 ASSERT(type == ARC_BUFC_DATA);
2313 buf->b_data = zio_data_buf_alloc(size);
2314 ARCSTAT_INCR(arcstat_data_size, size);
2315 atomic_add_64(&arc_size, size);
2317 ARCSTAT_BUMP(arcstat_recycle_miss);
2319 ASSERT(buf->b_data != NULL);
2320 out:
2322 * Update the state size. Note that ghost states have a
2323 * "ghost size" and so don't need to be updated.
2325 if (!GHOST_STATE(buf->b_hdr->b_state)) {
2326 arc_buf_hdr_t *hdr = buf->b_hdr;
2328 atomic_add_64(&hdr->b_state->arcs_size, size);
2329 if (list_link_active(&hdr->b_arc_node)) {
2330 ASSERT(refcount_is_zero(&hdr->b_refcnt));
2331 atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2334 * If we are growing the cache, and we are adding anonymous
2335 * data, and we have outgrown arc_p, update arc_p
2337 if (arc_size < arc_c && hdr->b_state == arc_anon &&
2338 arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2339 arc_p = MIN(arc_c, arc_p + size);
2344 * This routine is called whenever a buffer is accessed.
2345 * NOTE: the hash lock is dropped in this function.
2347 static void
2348 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2350 clock_t now;
2352 ASSERT(MUTEX_HELD(hash_lock));
2354 if (buf->b_state == arc_anon) {
2356 * This buffer is not in the cache, and does not
2357 * appear in our "ghost" list. Add the new buffer
2358 * to the MRU state.
2361 ASSERT(buf->b_arc_access == 0);
2362 buf->b_arc_access = ddi_get_lbolt();
2363 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2364 arc_change_state(arc_mru, buf, hash_lock);
2366 } else if (buf->b_state == arc_mru) {
2367 now = ddi_get_lbolt();
2370 * If this buffer is here because of a prefetch, then either:
2371 * - clear the flag if this is a "referencing" read
2372 * (any subsequent access will bump this into the MFU state).
2373 * or
2374 * - move the buffer to the head of the list if this is
2375 * another prefetch (to make it less likely to be evicted).
2377 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2378 if (refcount_count(&buf->b_refcnt) == 0) {
2379 ASSERT(list_link_active(&buf->b_arc_node));
2380 } else {
2381 buf->b_flags &= ~ARC_PREFETCH;
2382 ARCSTAT_BUMP(arcstat_mru_hits);
2384 buf->b_arc_access = now;
2385 return;
2389 * This buffer has been "accessed" only once so far,
2390 * but it is still in the cache. Move it to the MFU
2391 * state.
2393 if (now > buf->b_arc_access + ARC_MINTIME) {
2395 * More than 125ms have passed since we
2396 * instantiated this buffer. Move it to the
2397 * most frequently used state.
2399 buf->b_arc_access = now;
2400 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2401 arc_change_state(arc_mfu, buf, hash_lock);
2403 ARCSTAT_BUMP(arcstat_mru_hits);
2404 } else if (buf->b_state == arc_mru_ghost) {
2405 arc_state_t *new_state;
2407 * This buffer has been "accessed" recently, but
2408 * was evicted from the cache. Move it to the
2409 * MFU state.
2412 if (buf->b_flags & ARC_PREFETCH) {
2413 new_state = arc_mru;
2414 if (refcount_count(&buf->b_refcnt) > 0)
2415 buf->b_flags &= ~ARC_PREFETCH;
2416 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2417 } else {
2418 new_state = arc_mfu;
2419 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2422 buf->b_arc_access = ddi_get_lbolt();
2423 arc_change_state(new_state, buf, hash_lock);
2425 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2426 } else if (buf->b_state == arc_mfu) {
2428 * This buffer has been accessed more than once and is
2429 * still in the cache. Keep it in the MFU state.
2431 * NOTE: an add_reference() that occurred when we did
2432 * the arc_read() will have kicked this off the list.
2433 * If it was a prefetch, we will explicitly move it to
2434 * the head of the list now.
2436 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2437 ASSERT(refcount_count(&buf->b_refcnt) == 0);
2438 ASSERT(list_link_active(&buf->b_arc_node));
2440 ARCSTAT_BUMP(arcstat_mfu_hits);
2441 buf->b_arc_access = ddi_get_lbolt();
2442 } else if (buf->b_state == arc_mfu_ghost) {
2443 arc_state_t *new_state = arc_mfu;
2445 * This buffer has been accessed more than once but has
2446 * been evicted from the cache. Move it back to the
2447 * MFU state.
2450 if (buf->b_flags & ARC_PREFETCH) {
2452 * This is a prefetch access...
2453 * move this block back to the MRU state.
2455 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2456 new_state = arc_mru;
2459 buf->b_arc_access = ddi_get_lbolt();
2460 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2461 arc_change_state(new_state, buf, hash_lock);
2463 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2464 } else if (buf->b_state == arc_l2c_only) {
2466 * This buffer is on the 2nd Level ARC.
2469 buf->b_arc_access = ddi_get_lbolt();
2470 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2471 arc_change_state(arc_mfu, buf, hash_lock);
2472 } else {
2473 ASSERT(!"invalid arc state");
2477 /* a generic arc_done_func_t which you can use */
2478 /* ARGSUSED */
2479 void
2480 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2482 if (zio == NULL || zio->io_error == 0)
2483 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2484 VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2487 /* a generic arc_done_func_t */
2488 void
2489 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2491 arc_buf_t **bufp = arg;
2492 if (zio && zio->io_error) {
2493 VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2494 *bufp = NULL;
2495 } else {
2496 *bufp = buf;
2497 ASSERT(buf->b_data);
2501 static void
2502 arc_read_done(zio_t *zio)
2504 arc_buf_hdr_t *hdr, *found;
2505 arc_buf_t *buf;
2506 arc_buf_t *abuf; /* buffer we're assigning to callback */
2507 kmutex_t *hash_lock;
2508 arc_callback_t *callback_list, *acb;
2509 int freeable = FALSE;
2511 buf = zio->io_private;
2512 hdr = buf->b_hdr;
2515 * The hdr was inserted into hash-table and removed from lists
2516 * prior to starting I/O. We should find this header, since
2517 * it's in the hash table, and it should be legit since it's
2518 * not possible to evict it during the I/O. The only possible
2519 * reason for it not to be found is if we were freed during the
2520 * read.
2522 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2523 &hash_lock);
2525 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2526 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2527 (found == hdr && HDR_L2_READING(hdr)));
2529 hdr->b_flags &= ~ARC_L2_EVICTED;
2530 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2531 hdr->b_flags &= ~ARC_L2CACHE;
2533 /* byteswap if necessary */
2534 callback_list = hdr->b_acb;
2535 ASSERT(callback_list != NULL);
2536 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2537 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2538 byteswap_uint64_array :
2539 dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap;
2540 func(buf->b_data, hdr->b_size);
2543 arc_cksum_compute(buf, B_FALSE);
2545 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2547 * Only call arc_access on anonymous buffers. This is because
2548 * if we've issued an I/O for an evicted buffer, we've already
2549 * called arc_access (to prevent any simultaneous readers from
2550 * getting confused).
2552 arc_access(hdr, hash_lock);
2555 /* create copies of the data buffer for the callers */
2556 abuf = buf;
2557 for (acb = callback_list; acb; acb = acb->acb_next) {
2558 if (acb->acb_done) {
2559 if (abuf == NULL)
2560 abuf = arc_buf_clone(buf);
2561 acb->acb_buf = abuf;
2562 abuf = NULL;
2565 hdr->b_acb = NULL;
2566 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2567 ASSERT(!HDR_BUF_AVAILABLE(hdr));
2568 if (abuf == buf) {
2569 ASSERT(buf->b_efunc == NULL);
2570 ASSERT(hdr->b_datacnt == 1);
2571 hdr->b_flags |= ARC_BUF_AVAILABLE;
2574 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2576 if (zio->io_error != 0) {
2577 hdr->b_flags |= ARC_IO_ERROR;
2578 if (hdr->b_state != arc_anon)
2579 arc_change_state(arc_anon, hdr, hash_lock);
2580 if (HDR_IN_HASH_TABLE(hdr))
2581 buf_hash_remove(hdr);
2582 freeable = refcount_is_zero(&hdr->b_refcnt);
2586 * Broadcast before we drop the hash_lock to avoid the possibility
2587 * that the hdr (and hence the cv) might be freed before we get to
2588 * the cv_broadcast().
2590 cv_broadcast(&hdr->b_cv);
2592 if (hash_lock) {
2593 mutex_exit(hash_lock);
2594 } else {
2596 * This block was freed while we waited for the read to
2597 * complete. It has been removed from the hash table and
2598 * moved to the anonymous state (so that it won't show up
2599 * in the cache).
2601 ASSERT3P(hdr->b_state, ==, arc_anon);
2602 freeable = refcount_is_zero(&hdr->b_refcnt);
2605 /* execute each callback and free its structure */
2606 while ((acb = callback_list) != NULL) {
2607 if (acb->acb_done)
2608 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2610 if (acb->acb_zio_dummy != NULL) {
2611 acb->acb_zio_dummy->io_error = zio->io_error;
2612 zio_nowait(acb->acb_zio_dummy);
2615 callback_list = acb->acb_next;
2616 kmem_free(acb, sizeof (arc_callback_t));
2619 if (freeable)
2620 arc_hdr_destroy(hdr);
2624 * "Read" the block block at the specified DVA (in bp) via the
2625 * cache. If the block is found in the cache, invoke the provided
2626 * callback immediately and return. Note that the `zio' parameter
2627 * in the callback will be NULL in this case, since no IO was
2628 * required. If the block is not in the cache pass the read request
2629 * on to the spa with a substitute callback function, so that the
2630 * requested block will be added to the cache.
2632 * If a read request arrives for a block that has a read in-progress,
2633 * either wait for the in-progress read to complete (and return the
2634 * results); or, if this is a read with a "done" func, add a record
2635 * to the read to invoke the "done" func when the read completes,
2636 * and return; or just return.
2638 * arc_read_done() will invoke all the requested "done" functions
2639 * for readers of this block.
2641 * Normal callers should use arc_read and pass the arc buffer and offset
2642 * for the bp. But if you know you don't need locking, you can use
2643 * arc_read_bp.
2646 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf,
2647 arc_done_func_t *done, void *private, int priority, int zio_flags,
2648 uint32_t *arc_flags, const zbookmark_t *zb)
2650 int err;
2652 if (pbuf == NULL) {
2654 * XXX This happens from traverse callback funcs, for
2655 * the objset_phys_t block.
2657 return (arc_read_nolock(pio, spa, bp, done, private, priority,
2658 zio_flags, arc_flags, zb));
2661 ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2662 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
2663 rw_enter(&pbuf->b_data_lock, RW_READER);
2665 err = arc_read_nolock(pio, spa, bp, done, private, priority,
2666 zio_flags, arc_flags, zb);
2667 rw_exit(&pbuf->b_data_lock);
2669 return (err);
2673 arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp,
2674 arc_done_func_t *done, void *private, int priority, int zio_flags,
2675 uint32_t *arc_flags, const zbookmark_t *zb)
2677 arc_buf_hdr_t *hdr;
2678 arc_buf_t *buf;
2679 kmutex_t *hash_lock;
2680 zio_t *rzio;
2681 uint64_t guid = spa_load_guid(spa);
2683 top:
2684 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2685 &hash_lock);
2686 if (hdr && hdr->b_datacnt > 0) {
2688 *arc_flags |= ARC_CACHED;
2690 if (HDR_IO_IN_PROGRESS(hdr)) {
2692 if (*arc_flags & ARC_WAIT) {
2693 cv_wait(&hdr->b_cv, hash_lock);
2694 mutex_exit(hash_lock);
2695 goto top;
2697 ASSERT(*arc_flags & ARC_NOWAIT);
2699 if (done) {
2700 arc_callback_t *acb = NULL;
2702 acb = kmem_zalloc(sizeof (arc_callback_t),
2703 KM_SLEEP);
2704 acb->acb_done = done;
2705 acb->acb_private = private;
2706 if (pio != NULL)
2707 acb->acb_zio_dummy = zio_null(pio,
2708 spa, NULL, NULL, NULL, zio_flags);
2710 ASSERT(acb->acb_done != NULL);
2711 acb->acb_next = hdr->b_acb;
2712 hdr->b_acb = acb;
2713 add_reference(hdr, hash_lock, private);
2714 mutex_exit(hash_lock);
2715 return (0);
2717 mutex_exit(hash_lock);
2718 return (0);
2721 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2723 if (done) {
2724 add_reference(hdr, hash_lock, private);
2726 * If this block is already in use, create a new
2727 * copy of the data so that we will be guaranteed
2728 * that arc_release() will always succeed.
2730 buf = hdr->b_buf;
2731 ASSERT(buf);
2732 ASSERT(buf->b_data);
2733 if (HDR_BUF_AVAILABLE(hdr)) {
2734 ASSERT(buf->b_efunc == NULL);
2735 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2736 } else {
2737 buf = arc_buf_clone(buf);
2740 } else if (*arc_flags & ARC_PREFETCH &&
2741 refcount_count(&hdr->b_refcnt) == 0) {
2742 hdr->b_flags |= ARC_PREFETCH;
2744 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2745 arc_access(hdr, hash_lock);
2746 if (*arc_flags & ARC_L2CACHE)
2747 hdr->b_flags |= ARC_L2CACHE;
2748 mutex_exit(hash_lock);
2749 ARCSTAT_BUMP(arcstat_hits);
2750 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2751 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2752 data, metadata, hits);
2754 if (done)
2755 done(NULL, buf, private);
2756 } else {
2757 uint64_t size = BP_GET_LSIZE(bp);
2758 arc_callback_t *acb;
2759 vdev_t *vd = NULL;
2760 uint64_t addr;
2761 boolean_t devw = B_FALSE;
2763 if (hdr == NULL) {
2764 /* this block is not in the cache */
2765 arc_buf_hdr_t *exists;
2766 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2767 buf = arc_buf_alloc(spa, size, private, type);
2768 hdr = buf->b_hdr;
2769 hdr->b_dva = *BP_IDENTITY(bp);
2770 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
2771 hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2772 exists = buf_hash_insert(hdr, &hash_lock);
2773 if (exists) {
2774 /* somebody beat us to the hash insert */
2775 mutex_exit(hash_lock);
2776 buf_discard_identity(hdr);
2777 (void) arc_buf_remove_ref(buf, private);
2778 goto top; /* restart the IO request */
2780 /* if this is a prefetch, we don't have a reference */
2781 if (*arc_flags & ARC_PREFETCH) {
2782 (void) remove_reference(hdr, hash_lock,
2783 private);
2784 hdr->b_flags |= ARC_PREFETCH;
2786 if (*arc_flags & ARC_L2CACHE)
2787 hdr->b_flags |= ARC_L2CACHE;
2788 if (BP_GET_LEVEL(bp) > 0)
2789 hdr->b_flags |= ARC_INDIRECT;
2790 } else {
2791 /* this block is in the ghost cache */
2792 ASSERT(GHOST_STATE(hdr->b_state));
2793 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2794 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2795 ASSERT(hdr->b_buf == NULL);
2797 /* if this is a prefetch, we don't have a reference */
2798 if (*arc_flags & ARC_PREFETCH)
2799 hdr->b_flags |= ARC_PREFETCH;
2800 else
2801 add_reference(hdr, hash_lock, private);
2802 if (*arc_flags & ARC_L2CACHE)
2803 hdr->b_flags |= ARC_L2CACHE;
2804 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2805 buf->b_hdr = hdr;
2806 buf->b_data = NULL;
2807 buf->b_efunc = NULL;
2808 buf->b_private = NULL;
2809 buf->b_next = NULL;
2810 hdr->b_buf = buf;
2811 ASSERT(hdr->b_datacnt == 0);
2812 hdr->b_datacnt = 1;
2813 arc_get_data_buf(buf);
2814 arc_access(hdr, hash_lock);
2817 ASSERT(!GHOST_STATE(hdr->b_state));
2819 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2820 acb->acb_done = done;
2821 acb->acb_private = private;
2823 ASSERT(hdr->b_acb == NULL);
2824 hdr->b_acb = acb;
2825 hdr->b_flags |= ARC_IO_IN_PROGRESS;
2827 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
2828 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
2829 devw = hdr->b_l2hdr->b_dev->l2ad_writing;
2830 addr = hdr->b_l2hdr->b_daddr;
2832 * Lock out device removal.
2834 if (vdev_is_dead(vd) ||
2835 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
2836 vd = NULL;
2839 mutex_exit(hash_lock);
2841 ASSERT3U(hdr->b_size, ==, size);
2842 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
2843 uint64_t, size, zbookmark_t *, zb);
2844 ARCSTAT_BUMP(arcstat_misses);
2845 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2846 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2847 data, metadata, misses);
2849 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
2851 * Read from the L2ARC if the following are true:
2852 * 1. The L2ARC vdev was previously cached.
2853 * 2. This buffer still has L2ARC metadata.
2854 * 3. This buffer isn't currently writing to the L2ARC.
2855 * 4. The L2ARC entry wasn't evicted, which may
2856 * also have invalidated the vdev.
2857 * 5. This isn't prefetch and l2arc_noprefetch is set.
2859 if (hdr->b_l2hdr != NULL &&
2860 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
2861 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
2862 l2arc_read_callback_t *cb;
2864 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2865 ARCSTAT_BUMP(arcstat_l2_hits);
2867 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
2868 KM_SLEEP);
2869 cb->l2rcb_buf = buf;
2870 cb->l2rcb_spa = spa;
2871 cb->l2rcb_bp = *bp;
2872 cb->l2rcb_zb = *zb;
2873 cb->l2rcb_flags = zio_flags;
2876 * l2arc read. The SCL_L2ARC lock will be
2877 * released by l2arc_read_done().
2879 rzio = zio_read_phys(pio, vd, addr, size,
2880 buf->b_data, ZIO_CHECKSUM_OFF,
2881 l2arc_read_done, cb, priority, zio_flags |
2882 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
2883 ZIO_FLAG_DONT_PROPAGATE |
2884 ZIO_FLAG_DONT_RETRY, B_FALSE);
2885 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
2886 zio_t *, rzio);
2887 ARCSTAT_INCR(arcstat_l2_read_bytes, size);
2889 if (*arc_flags & ARC_NOWAIT) {
2890 zio_nowait(rzio);
2891 return (0);
2894 ASSERT(*arc_flags & ARC_WAIT);
2895 if (zio_wait(rzio) == 0)
2896 return (0);
2898 /* l2arc read error; goto zio_read() */
2899 } else {
2900 DTRACE_PROBE1(l2arc__miss,
2901 arc_buf_hdr_t *, hdr);
2902 ARCSTAT_BUMP(arcstat_l2_misses);
2903 if (HDR_L2_WRITING(hdr))
2904 ARCSTAT_BUMP(arcstat_l2_rw_clash);
2905 spa_config_exit(spa, SCL_L2ARC, vd);
2907 } else {
2908 if (vd != NULL)
2909 spa_config_exit(spa, SCL_L2ARC, vd);
2910 if (l2arc_ndev != 0) {
2911 DTRACE_PROBE1(l2arc__miss,
2912 arc_buf_hdr_t *, hdr);
2913 ARCSTAT_BUMP(arcstat_l2_misses);
2917 rzio = zio_read(pio, spa, bp, buf->b_data, size,
2918 arc_read_done, buf, priority, zio_flags, zb);
2920 if (*arc_flags & ARC_WAIT)
2921 return (zio_wait(rzio));
2923 ASSERT(*arc_flags & ARC_NOWAIT);
2924 zio_nowait(rzio);
2926 return (0);
2929 void
2930 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
2932 ASSERT(buf->b_hdr != NULL);
2933 ASSERT(buf->b_hdr->b_state != arc_anon);
2934 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
2935 ASSERT(buf->b_efunc == NULL);
2936 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
2938 buf->b_efunc = func;
2939 buf->b_private = private;
2943 * This is used by the DMU to let the ARC know that a buffer is
2944 * being evicted, so the ARC should clean up. If this arc buf
2945 * is not yet in the evicted state, it will be put there.
2948 arc_buf_evict(arc_buf_t *buf)
2950 arc_buf_hdr_t *hdr;
2951 kmutex_t *hash_lock;
2952 arc_buf_t **bufp;
2954 mutex_enter(&buf->b_evict_lock);
2955 hdr = buf->b_hdr;
2956 if (hdr == NULL) {
2958 * We are in arc_do_user_evicts().
2960 ASSERT(buf->b_data == NULL);
2961 mutex_exit(&buf->b_evict_lock);
2962 return (0);
2963 } else if (buf->b_data == NULL) {
2964 arc_buf_t copy = *buf; /* structure assignment */
2966 * We are on the eviction list; process this buffer now
2967 * but let arc_do_user_evicts() do the reaping.
2969 buf->b_efunc = NULL;
2970 mutex_exit(&buf->b_evict_lock);
2971 VERIFY(copy.b_efunc(&copy) == 0);
2972 return (1);
2974 hash_lock = HDR_LOCK(hdr);
2975 mutex_enter(hash_lock);
2976 hdr = buf->b_hdr;
2977 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2979 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2980 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2983 * Pull this buffer off of the hdr
2985 bufp = &hdr->b_buf;
2986 while (*bufp != buf)
2987 bufp = &(*bufp)->b_next;
2988 *bufp = buf->b_next;
2990 ASSERT(buf->b_data != NULL);
2991 arc_buf_destroy(buf, FALSE, FALSE);
2993 if (hdr->b_datacnt == 0) {
2994 arc_state_t *old_state = hdr->b_state;
2995 arc_state_t *evicted_state;
2997 ASSERT(hdr->b_buf == NULL);
2998 ASSERT(refcount_is_zero(&hdr->b_refcnt));
3000 evicted_state =
3001 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3003 mutex_enter(&old_state->arcs_mtx);
3004 mutex_enter(&evicted_state->arcs_mtx);
3006 arc_change_state(evicted_state, hdr, hash_lock);
3007 ASSERT(HDR_IN_HASH_TABLE(hdr));
3008 hdr->b_flags |= ARC_IN_HASH_TABLE;
3009 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3011 mutex_exit(&evicted_state->arcs_mtx);
3012 mutex_exit(&old_state->arcs_mtx);
3014 mutex_exit(hash_lock);
3015 mutex_exit(&buf->b_evict_lock);
3017 VERIFY(buf->b_efunc(buf) == 0);
3018 buf->b_efunc = NULL;
3019 buf->b_private = NULL;
3020 buf->b_hdr = NULL;
3021 buf->b_next = NULL;
3022 kmem_cache_free(buf_cache, buf);
3023 return (1);
3027 * Release this buffer from the cache. This must be done
3028 * after a read and prior to modifying the buffer contents.
3029 * If the buffer has more than one reference, we must make
3030 * a new hdr for the buffer.
3032 void
3033 arc_release(arc_buf_t *buf, void *tag)
3035 arc_buf_hdr_t *hdr;
3036 kmutex_t *hash_lock = NULL;
3037 l2arc_buf_hdr_t *l2hdr;
3038 uint64_t buf_size;
3041 * It would be nice to assert that if it's DMU metadata (level >
3042 * 0 || it's the dnode file), then it must be syncing context.
3043 * But we don't know that information at this level.
3046 mutex_enter(&buf->b_evict_lock);
3047 hdr = buf->b_hdr;
3049 /* this buffer is not on any list */
3050 ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3052 if (hdr->b_state == arc_anon) {
3053 /* this buffer is already released */
3054 ASSERT(buf->b_efunc == NULL);
3055 } else {
3056 hash_lock = HDR_LOCK(hdr);
3057 mutex_enter(hash_lock);
3058 hdr = buf->b_hdr;
3059 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3062 l2hdr = hdr->b_l2hdr;
3063 if (l2hdr) {
3064 mutex_enter(&l2arc_buflist_mtx);
3065 hdr->b_l2hdr = NULL;
3066 buf_size = hdr->b_size;
3070 * Do we have more than one buf?
3072 if (hdr->b_datacnt > 1) {
3073 arc_buf_hdr_t *nhdr;
3074 arc_buf_t **bufp;
3075 uint64_t blksz = hdr->b_size;
3076 uint64_t spa = hdr->b_spa;
3077 arc_buf_contents_t type = hdr->b_type;
3078 uint32_t flags = hdr->b_flags;
3080 ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3082 * Pull the data off of this hdr and attach it to
3083 * a new anonymous hdr.
3085 (void) remove_reference(hdr, hash_lock, tag);
3086 bufp = &hdr->b_buf;
3087 while (*bufp != buf)
3088 bufp = &(*bufp)->b_next;
3089 *bufp = buf->b_next;
3090 buf->b_next = NULL;
3092 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3093 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3094 if (refcount_is_zero(&hdr->b_refcnt)) {
3095 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3096 ASSERT3U(*size, >=, hdr->b_size);
3097 atomic_add_64(size, -hdr->b_size);
3099 hdr->b_datacnt -= 1;
3100 arc_cksum_verify(buf);
3102 mutex_exit(hash_lock);
3104 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3105 nhdr->b_size = blksz;
3106 nhdr->b_spa = spa;
3107 nhdr->b_type = type;
3108 nhdr->b_buf = buf;
3109 nhdr->b_state = arc_anon;
3110 nhdr->b_arc_access = 0;
3111 nhdr->b_flags = flags & ARC_L2_WRITING;
3112 nhdr->b_l2hdr = NULL;
3113 nhdr->b_datacnt = 1;
3114 nhdr->b_freeze_cksum = NULL;
3115 (void) refcount_add(&nhdr->b_refcnt, tag);
3116 buf->b_hdr = nhdr;
3117 mutex_exit(&buf->b_evict_lock);
3118 atomic_add_64(&arc_anon->arcs_size, blksz);
3119 } else {
3120 mutex_exit(&buf->b_evict_lock);
3121 ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3122 ASSERT(!list_link_active(&hdr->b_arc_node));
3123 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3124 if (hdr->b_state != arc_anon)
3125 arc_change_state(arc_anon, hdr, hash_lock);
3126 hdr->b_arc_access = 0;
3127 if (hash_lock)
3128 mutex_exit(hash_lock);
3130 buf_discard_identity(hdr);
3131 arc_buf_thaw(buf);
3133 buf->b_efunc = NULL;
3134 buf->b_private = NULL;
3136 if (l2hdr) {
3137 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3138 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3139 ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3140 mutex_exit(&l2arc_buflist_mtx);
3145 * Release this buffer. If it does not match the provided BP, fill it
3146 * with that block's contents.
3148 /* ARGSUSED */
3150 arc_release_bp(arc_buf_t *buf, void *tag, blkptr_t *bp, spa_t *spa,
3151 zbookmark_t *zb)
3153 arc_release(buf, tag);
3154 return (0);
3158 arc_released(arc_buf_t *buf)
3160 int released;
3162 mutex_enter(&buf->b_evict_lock);
3163 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3164 mutex_exit(&buf->b_evict_lock);
3165 return (released);
3169 arc_has_callback(arc_buf_t *buf)
3171 int callback;
3173 mutex_enter(&buf->b_evict_lock);
3174 callback = (buf->b_efunc != NULL);
3175 mutex_exit(&buf->b_evict_lock);
3176 return (callback);
3179 #ifdef ZFS_DEBUG
3181 arc_referenced(arc_buf_t *buf)
3183 int referenced;
3185 mutex_enter(&buf->b_evict_lock);
3186 referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3187 mutex_exit(&buf->b_evict_lock);
3188 return (referenced);
3190 #endif
3192 static void
3193 arc_write_ready(zio_t *zio)
3195 arc_write_callback_t *callback = zio->io_private;
3196 arc_buf_t *buf = callback->awcb_buf;
3197 arc_buf_hdr_t *hdr = buf->b_hdr;
3199 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3200 callback->awcb_ready(zio, buf, callback->awcb_private);
3203 * If the IO is already in progress, then this is a re-write
3204 * attempt, so we need to thaw and re-compute the cksum.
3205 * It is the responsibility of the callback to handle the
3206 * accounting for any re-write attempt.
3208 if (HDR_IO_IN_PROGRESS(hdr)) {
3209 mutex_enter(&hdr->b_freeze_lock);
3210 if (hdr->b_freeze_cksum != NULL) {
3211 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3212 hdr->b_freeze_cksum = NULL;
3214 mutex_exit(&hdr->b_freeze_lock);
3216 arc_cksum_compute(buf, B_FALSE);
3217 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3220 static void
3221 arc_write_done(zio_t *zio)
3223 arc_write_callback_t *callback = zio->io_private;
3224 arc_buf_t *buf = callback->awcb_buf;
3225 arc_buf_hdr_t *hdr = buf->b_hdr;
3227 ASSERT(hdr->b_acb == NULL);
3229 if (zio->io_error == 0) {
3230 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3231 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3232 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3233 } else {
3234 ASSERT(BUF_EMPTY(hdr));
3238 * If the block to be written was all-zero, we may have
3239 * compressed it away. In this case no write was performed
3240 * so there will be no dva/birth/checksum. The buffer must
3241 * therefore remain anonymous (and uncached).
3243 if (!BUF_EMPTY(hdr)) {
3244 arc_buf_hdr_t *exists;
3245 kmutex_t *hash_lock;
3247 ASSERT(zio->io_error == 0);
3249 arc_cksum_verify(buf);
3251 exists = buf_hash_insert(hdr, &hash_lock);
3252 if (exists) {
3254 * This can only happen if we overwrite for
3255 * sync-to-convergence, because we remove
3256 * buffers from the hash table when we arc_free().
3258 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3259 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3260 panic("bad overwrite, hdr=%p exists=%p",
3261 (void *)hdr, (void *)exists);
3262 ASSERT(refcount_is_zero(&exists->b_refcnt));
3263 arc_change_state(arc_anon, exists, hash_lock);
3264 mutex_exit(hash_lock);
3265 arc_hdr_destroy(exists);
3266 exists = buf_hash_insert(hdr, &hash_lock);
3267 ASSERT3P(exists, ==, NULL);
3268 } else {
3269 /* Dedup */
3270 ASSERT(hdr->b_datacnt == 1);
3271 ASSERT(hdr->b_state == arc_anon);
3272 ASSERT(BP_GET_DEDUP(zio->io_bp));
3273 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3276 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3277 /* if it's not anon, we are doing a scrub */
3278 if (!exists && hdr->b_state == arc_anon)
3279 arc_access(hdr, hash_lock);
3280 mutex_exit(hash_lock);
3281 } else {
3282 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3285 ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3286 callback->awcb_done(zio, buf, callback->awcb_private);
3288 kmem_free(callback, sizeof (arc_write_callback_t));
3291 zio_t *
3292 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3293 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp,
3294 arc_done_func_t *ready, arc_done_func_t *done, void *private,
3295 int priority, int zio_flags, const zbookmark_t *zb)
3297 arc_buf_hdr_t *hdr = buf->b_hdr;
3298 arc_write_callback_t *callback;
3299 zio_t *zio;
3301 ASSERT(ready != NULL);
3302 ASSERT(done != NULL);
3303 ASSERT(!HDR_IO_ERROR(hdr));
3304 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3305 ASSERT(hdr->b_acb == NULL);
3306 if (l2arc)
3307 hdr->b_flags |= ARC_L2CACHE;
3308 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3309 callback->awcb_ready = ready;
3310 callback->awcb_done = done;
3311 callback->awcb_private = private;
3312 callback->awcb_buf = buf;
3314 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3315 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
3317 return (zio);
3320 static int
3321 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
3323 #ifdef _KERNEL
3324 uint64_t available_memory = ptob(freemem);
3325 static uint64_t page_load = 0;
3326 static uint64_t last_txg = 0;
3328 #if defined(__i386)
3329 available_memory =
3330 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3331 #endif
3332 if (available_memory >= zfs_write_limit_max)
3333 return (0);
3335 if (txg > last_txg) {
3336 last_txg = txg;
3337 page_load = 0;
3340 * If we are in pageout, we know that memory is already tight,
3341 * the arc is already going to be evicting, so we just want to
3342 * continue to let page writes occur as quickly as possible.
3344 if (curproc == proc_pageout) {
3345 if (page_load > MAX(ptob(minfree), available_memory) / 4)
3346 return (ERESTART);
3347 /* Note: reserve is inflated, so we deflate */
3348 page_load += reserve / 8;
3349 return (0);
3350 } else if (page_load > 0 && arc_reclaim_needed()) {
3351 /* memory is low, delay before restarting */
3352 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3353 return (EAGAIN);
3355 page_load = 0;
3357 if (arc_size > arc_c_min) {
3358 uint64_t evictable_memory =
3359 arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3360 arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3361 arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3362 arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3363 available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3366 if (inflight_data > available_memory / 4) {
3367 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3368 return (ERESTART);
3370 #endif
3371 return (0);
3374 void
3375 arc_tempreserve_clear(uint64_t reserve)
3377 atomic_add_64(&arc_tempreserve, -reserve);
3378 ASSERT((int64_t)arc_tempreserve >= 0);
3382 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3384 int error;
3385 uint64_t anon_size;
3387 #ifdef ZFS_DEBUG
3389 * Once in a while, fail for no reason. Everything should cope.
3391 if (spa_get_random(10000) == 0) {
3392 dprintf("forcing random failure\n");
3393 return (ERESTART);
3395 #endif
3396 if (reserve > arc_c/4 && !arc_no_grow)
3397 arc_c = MIN(arc_c_max, reserve * 4);
3398 if (reserve > arc_c)
3399 return (ENOMEM);
3402 * Don't count loaned bufs as in flight dirty data to prevent long
3403 * network delays from blocking transactions that are ready to be
3404 * assigned to a txg.
3406 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3409 * Writes will, almost always, require additional memory allocations
3410 * in order to compress/encrypt/etc the data. We therefor need to
3411 * make sure that there is sufficient available memory for this.
3413 if (error = arc_memory_throttle(reserve, anon_size, txg))
3414 return (error);
3417 * Throttle writes when the amount of dirty data in the cache
3418 * gets too large. We try to keep the cache less than half full
3419 * of dirty blocks so that our sync times don't grow too large.
3420 * Note: if two requests come in concurrently, we might let them
3421 * both succeed, when one of them should fail. Not a huge deal.
3424 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3425 anon_size > arc_c / 4) {
3426 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3427 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3428 arc_tempreserve>>10,
3429 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3430 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3431 reserve>>10, arc_c>>10);
3432 return (ERESTART);
3434 atomic_add_64(&arc_tempreserve, reserve);
3435 return (0);
3438 void
3439 arc_init(void)
3441 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3442 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3444 /* Convert seconds to clock ticks */
3445 arc_min_prefetch_lifespan = 1 * hz;
3447 /* Start out with 1/8 of all memory */
3448 arc_c = physmem * PAGESIZE / 8;
3450 #ifdef _KERNEL
3452 * On architectures where the physical memory can be larger
3453 * than the addressable space (intel in 32-bit mode), we may
3454 * need to limit the cache to 1/8 of VM size.
3456 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3457 #endif
3459 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3460 arc_c_min = MAX(arc_c / 4, 64<<20);
3461 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3462 if (arc_c * 8 >= 1<<30)
3463 arc_c_max = (arc_c * 8) - (1<<30);
3464 else
3465 arc_c_max = arc_c_min;
3466 arc_c_max = MAX(arc_c * 6, arc_c_max);
3469 * Allow the tunables to override our calculations if they are
3470 * reasonable (ie. over 64MB)
3472 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3473 arc_c_max = zfs_arc_max;
3474 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3475 arc_c_min = zfs_arc_min;
3477 arc_c = arc_c_max;
3478 arc_p = (arc_c >> 1);
3480 /* limit meta-data to 1/4 of the arc capacity */
3481 arc_meta_limit = arc_c_max / 4;
3483 /* Allow the tunable to override if it is reasonable */
3484 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3485 arc_meta_limit = zfs_arc_meta_limit;
3487 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3488 arc_c_min = arc_meta_limit / 2;
3490 if (zfs_arc_grow_retry > 0)
3491 arc_grow_retry = zfs_arc_grow_retry;
3493 if (zfs_arc_shrink_shift > 0)
3494 arc_shrink_shift = zfs_arc_shrink_shift;
3496 if (zfs_arc_p_min_shift > 0)
3497 arc_p_min_shift = zfs_arc_p_min_shift;
3499 /* if kmem_flags are set, lets try to use less memory */
3500 if (kmem_debugging())
3501 arc_c = arc_c / 2;
3502 if (arc_c < arc_c_min)
3503 arc_c = arc_c_min;
3505 arc_anon = &ARC_anon;
3506 arc_mru = &ARC_mru;
3507 arc_mru_ghost = &ARC_mru_ghost;
3508 arc_mfu = &ARC_mfu;
3509 arc_mfu_ghost = &ARC_mfu_ghost;
3510 arc_l2c_only = &ARC_l2c_only;
3511 arc_size = 0;
3513 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3514 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3515 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3516 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3517 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3518 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3520 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3521 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3522 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3523 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3524 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3525 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3526 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3527 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3528 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3529 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3530 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3531 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3532 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3533 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3534 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3535 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3536 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3537 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3538 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3539 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3541 buf_init();
3543 arc_thread_exit = 0;
3544 arc_eviction_list = NULL;
3545 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3546 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3548 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3549 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3551 if (arc_ksp != NULL) {
3552 arc_ksp->ks_data = &arc_stats;
3553 kstat_install(arc_ksp);
3556 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3557 TS_RUN, minclsyspri);
3559 arc_dead = FALSE;
3560 arc_warm = B_FALSE;
3562 if (zfs_write_limit_max == 0)
3563 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
3564 else
3565 zfs_write_limit_shift = 0;
3566 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
3569 void
3570 arc_fini(void)
3572 mutex_enter(&arc_reclaim_thr_lock);
3573 arc_thread_exit = 1;
3574 while (arc_thread_exit != 0)
3575 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3576 mutex_exit(&arc_reclaim_thr_lock);
3578 arc_flush(NULL);
3580 arc_dead = TRUE;
3582 if (arc_ksp != NULL) {
3583 kstat_delete(arc_ksp);
3584 arc_ksp = NULL;
3587 mutex_destroy(&arc_eviction_mtx);
3588 mutex_destroy(&arc_reclaim_thr_lock);
3589 cv_destroy(&arc_reclaim_thr_cv);
3591 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3592 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3593 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3594 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3595 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3596 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3597 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3598 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3600 mutex_destroy(&arc_anon->arcs_mtx);
3601 mutex_destroy(&arc_mru->arcs_mtx);
3602 mutex_destroy(&arc_mru_ghost->arcs_mtx);
3603 mutex_destroy(&arc_mfu->arcs_mtx);
3604 mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3605 mutex_destroy(&arc_l2c_only->arcs_mtx);
3607 mutex_destroy(&zfs_write_limit_lock);
3609 buf_fini();
3611 ASSERT(arc_loaned_bytes == 0);
3615 * Level 2 ARC
3617 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3618 * It uses dedicated storage devices to hold cached data, which are populated
3619 * using large infrequent writes. The main role of this cache is to boost
3620 * the performance of random read workloads. The intended L2ARC devices
3621 * include short-stroked disks, solid state disks, and other media with
3622 * substantially faster read latency than disk.
3624 * +-----------------------+
3625 * | ARC |
3626 * +-----------------------+
3627 * | ^ ^
3628 * | | |
3629 * l2arc_feed_thread() arc_read()
3630 * | | |
3631 * | l2arc read |
3632 * V | |
3633 * +---------------+ |
3634 * | L2ARC | |
3635 * +---------------+ |
3636 * | ^ |
3637 * l2arc_write() | |
3638 * | | |
3639 * V | |
3640 * +-------+ +-------+
3641 * | vdev | | vdev |
3642 * | cache | | cache |
3643 * +-------+ +-------+
3644 * +=========+ .-----.
3645 * : L2ARC : |-_____-|
3646 * : devices : | Disks |
3647 * +=========+ `-_____-'
3649 * Read requests are satisfied from the following sources, in order:
3651 * 1) ARC
3652 * 2) vdev cache of L2ARC devices
3653 * 3) L2ARC devices
3654 * 4) vdev cache of disks
3655 * 5) disks
3657 * Some L2ARC device types exhibit extremely slow write performance.
3658 * To accommodate for this there are some significant differences between
3659 * the L2ARC and traditional cache design:
3661 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
3662 * the ARC behave as usual, freeing buffers and placing headers on ghost
3663 * lists. The ARC does not send buffers to the L2ARC during eviction as
3664 * this would add inflated write latencies for all ARC memory pressure.
3666 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3667 * It does this by periodically scanning buffers from the eviction-end of
3668 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3669 * not already there. It scans until a headroom of buffers is satisfied,
3670 * which itself is a buffer for ARC eviction. The thread that does this is
3671 * l2arc_feed_thread(), illustrated below; example sizes are included to
3672 * provide a better sense of ratio than this diagram:
3674 * head --> tail
3675 * +---------------------+----------+
3676 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
3677 * +---------------------+----------+ | o L2ARC eligible
3678 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
3679 * +---------------------+----------+ |
3680 * 15.9 Gbytes ^ 32 Mbytes |
3681 * headroom |
3682 * l2arc_feed_thread()
3684 * l2arc write hand <--[oooo]--'
3685 * | 8 Mbyte
3686 * | write max
3688 * +==============================+
3689 * L2ARC dev |####|#|###|###| |####| ... |
3690 * +==============================+
3691 * 32 Gbytes
3693 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3694 * evicted, then the L2ARC has cached a buffer much sooner than it probably
3695 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
3696 * safe to say that this is an uncommon case, since buffers at the end of
3697 * the ARC lists have moved there due to inactivity.
3699 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3700 * then the L2ARC simply misses copying some buffers. This serves as a
3701 * pressure valve to prevent heavy read workloads from both stalling the ARC
3702 * with waits and clogging the L2ARC with writes. This also helps prevent
3703 * the potential for the L2ARC to churn if it attempts to cache content too
3704 * quickly, such as during backups of the entire pool.
3706 * 5. After system boot and before the ARC has filled main memory, there are
3707 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3708 * lists can remain mostly static. Instead of searching from tail of these
3709 * lists as pictured, the l2arc_feed_thread() will search from the list heads
3710 * for eligible buffers, greatly increasing its chance of finding them.
3712 * The L2ARC device write speed is also boosted during this time so that
3713 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
3714 * there are no L2ARC reads, and no fear of degrading read performance
3715 * through increased writes.
3717 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3718 * the vdev queue can aggregate them into larger and fewer writes. Each
3719 * device is written to in a rotor fashion, sweeping writes through
3720 * available space then repeating.
3722 * 7. The L2ARC does not store dirty content. It never needs to flush
3723 * write buffers back to disk based storage.
3725 * 8. If an ARC buffer is written (and dirtied) which also exists in the
3726 * L2ARC, the now stale L2ARC buffer is immediately dropped.
3728 * The performance of the L2ARC can be tweaked by a number of tunables, which
3729 * may be necessary for different workloads:
3731 * l2arc_write_max max write bytes per interval
3732 * l2arc_write_boost extra write bytes during device warmup
3733 * l2arc_noprefetch skip caching prefetched buffers
3734 * l2arc_headroom number of max device writes to precache
3735 * l2arc_feed_secs seconds between L2ARC writing
3737 * Tunables may be removed or added as future performance improvements are
3738 * integrated, and also may become zpool properties.
3740 * There are three key functions that control how the L2ARC warms up:
3742 * l2arc_write_eligible() check if a buffer is eligible to cache
3743 * l2arc_write_size() calculate how much to write
3744 * l2arc_write_interval() calculate sleep delay between writes
3746 * These three functions determine what to write, how much, and how quickly
3747 * to send writes.
3750 static boolean_t
3751 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
3754 * A buffer is *not* eligible for the L2ARC if it:
3755 * 1. belongs to a different spa.
3756 * 2. is already cached on the L2ARC.
3757 * 3. has an I/O in progress (it may be an incomplete read).
3758 * 4. is flagged not eligible (zfs property).
3760 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
3761 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
3762 return (B_FALSE);
3764 return (B_TRUE);
3767 static uint64_t
3768 l2arc_write_size(l2arc_dev_t *dev)
3770 uint64_t size;
3772 size = dev->l2ad_write;
3774 if (arc_warm == B_FALSE)
3775 size += dev->l2ad_boost;
3777 return (size);
3781 static clock_t
3782 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
3784 clock_t interval, next, now;
3787 * If the ARC lists are busy, increase our write rate; if the
3788 * lists are stale, idle back. This is achieved by checking
3789 * how much we previously wrote - if it was more than half of
3790 * what we wanted, schedule the next write much sooner.
3792 if (l2arc_feed_again && wrote > (wanted / 2))
3793 interval = (hz * l2arc_feed_min_ms) / 1000;
3794 else
3795 interval = hz * l2arc_feed_secs;
3797 now = ddi_get_lbolt();
3798 next = MAX(now, MIN(now + interval, began + interval));
3800 return (next);
3803 static void
3804 l2arc_hdr_stat_add(void)
3806 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
3807 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
3810 static void
3811 l2arc_hdr_stat_remove(void)
3813 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
3814 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
3818 * Cycle through L2ARC devices. This is how L2ARC load balances.
3819 * If a device is returned, this also returns holding the spa config lock.
3821 static l2arc_dev_t *
3822 l2arc_dev_get_next(void)
3824 l2arc_dev_t *first, *next = NULL;
3827 * Lock out the removal of spas (spa_namespace_lock), then removal
3828 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
3829 * both locks will be dropped and a spa config lock held instead.
3831 mutex_enter(&spa_namespace_lock);
3832 mutex_enter(&l2arc_dev_mtx);
3834 /* if there are no vdevs, there is nothing to do */
3835 if (l2arc_ndev == 0)
3836 goto out;
3838 first = NULL;
3839 next = l2arc_dev_last;
3840 do {
3841 /* loop around the list looking for a non-faulted vdev */
3842 if (next == NULL) {
3843 next = list_head(l2arc_dev_list);
3844 } else {
3845 next = list_next(l2arc_dev_list, next);
3846 if (next == NULL)
3847 next = list_head(l2arc_dev_list);
3850 /* if we have come back to the start, bail out */
3851 if (first == NULL)
3852 first = next;
3853 else if (next == first)
3854 break;
3856 } while (vdev_is_dead(next->l2ad_vdev));
3858 /* if we were unable to find any usable vdevs, return NULL */
3859 if (vdev_is_dead(next->l2ad_vdev))
3860 next = NULL;
3862 l2arc_dev_last = next;
3864 out:
3865 mutex_exit(&l2arc_dev_mtx);
3868 * Grab the config lock to prevent the 'next' device from being
3869 * removed while we are writing to it.
3871 if (next != NULL)
3872 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
3873 mutex_exit(&spa_namespace_lock);
3875 return (next);
3879 * Free buffers that were tagged for destruction.
3881 static void
3882 l2arc_do_free_on_write()
3884 list_t *buflist;
3885 l2arc_data_free_t *df, *df_prev;
3887 mutex_enter(&l2arc_free_on_write_mtx);
3888 buflist = l2arc_free_on_write;
3890 for (df = list_tail(buflist); df; df = df_prev) {
3891 df_prev = list_prev(buflist, df);
3892 ASSERT(df->l2df_data != NULL);
3893 ASSERT(df->l2df_func != NULL);
3894 df->l2df_func(df->l2df_data, df->l2df_size);
3895 list_remove(buflist, df);
3896 kmem_free(df, sizeof (l2arc_data_free_t));
3899 mutex_exit(&l2arc_free_on_write_mtx);
3903 * A write to a cache device has completed. Update all headers to allow
3904 * reads from these buffers to begin.
3906 static void
3907 l2arc_write_done(zio_t *zio)
3909 l2arc_write_callback_t *cb;
3910 l2arc_dev_t *dev;
3911 list_t *buflist;
3912 arc_buf_hdr_t *head, *ab, *ab_prev;
3913 l2arc_buf_hdr_t *abl2;
3914 kmutex_t *hash_lock;
3916 cb = zio->io_private;
3917 ASSERT(cb != NULL);
3918 dev = cb->l2wcb_dev;
3919 ASSERT(dev != NULL);
3920 head = cb->l2wcb_head;
3921 ASSERT(head != NULL);
3922 buflist = dev->l2ad_buflist;
3923 ASSERT(buflist != NULL);
3924 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
3925 l2arc_write_callback_t *, cb);
3927 if (zio->io_error != 0)
3928 ARCSTAT_BUMP(arcstat_l2_writes_error);
3930 mutex_enter(&l2arc_buflist_mtx);
3933 * All writes completed, or an error was hit.
3935 for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
3936 ab_prev = list_prev(buflist, ab);
3938 hash_lock = HDR_LOCK(ab);
3939 if (!mutex_tryenter(hash_lock)) {
3941 * This buffer misses out. It may be in a stage
3942 * of eviction. Its ARC_L2_WRITING flag will be
3943 * left set, denying reads to this buffer.
3945 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
3946 continue;
3949 if (zio->io_error != 0) {
3951 * Error - drop L2ARC entry.
3953 list_remove(buflist, ab);
3954 abl2 = ab->b_l2hdr;
3955 ab->b_l2hdr = NULL;
3956 kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
3957 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
3961 * Allow ARC to begin reads to this L2ARC entry.
3963 ab->b_flags &= ~ARC_L2_WRITING;
3965 mutex_exit(hash_lock);
3968 atomic_inc_64(&l2arc_writes_done);
3969 list_remove(buflist, head);
3970 kmem_cache_free(hdr_cache, head);
3971 mutex_exit(&l2arc_buflist_mtx);
3973 l2arc_do_free_on_write();
3975 kmem_free(cb, sizeof (l2arc_write_callback_t));
3979 * A read to a cache device completed. Validate buffer contents before
3980 * handing over to the regular ARC routines.
3982 static void
3983 l2arc_read_done(zio_t *zio)
3985 l2arc_read_callback_t *cb;
3986 arc_buf_hdr_t *hdr;
3987 arc_buf_t *buf;
3988 kmutex_t *hash_lock;
3989 int equal;
3991 ASSERT(zio->io_vd != NULL);
3992 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
3994 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
3996 cb = zio->io_private;
3997 ASSERT(cb != NULL);
3998 buf = cb->l2rcb_buf;
3999 ASSERT(buf != NULL);
4001 hash_lock = HDR_LOCK(buf->b_hdr);
4002 mutex_enter(hash_lock);
4003 hdr = buf->b_hdr;
4004 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4007 * Check this survived the L2ARC journey.
4009 equal = arc_cksum_equal(buf);
4010 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4011 mutex_exit(hash_lock);
4012 zio->io_private = buf;
4013 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
4014 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
4015 arc_read_done(zio);
4016 } else {
4017 mutex_exit(hash_lock);
4019 * Buffer didn't survive caching. Increment stats and
4020 * reissue to the original storage device.
4022 if (zio->io_error != 0) {
4023 ARCSTAT_BUMP(arcstat_l2_io_error);
4024 } else {
4025 zio->io_error = EIO;
4027 if (!equal)
4028 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4031 * If there's no waiter, issue an async i/o to the primary
4032 * storage now. If there *is* a waiter, the caller must
4033 * issue the i/o in a context where it's OK to block.
4035 if (zio->io_waiter == NULL) {
4036 zio_t *pio = zio_unique_parent(zio);
4038 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4040 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4041 buf->b_data, zio->io_size, arc_read_done, buf,
4042 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4046 kmem_free(cb, sizeof (l2arc_read_callback_t));
4050 * This is the list priority from which the L2ARC will search for pages to
4051 * cache. This is used within loops (0..3) to cycle through lists in the
4052 * desired order. This order can have a significant effect on cache
4053 * performance.
4055 * Currently the metadata lists are hit first, MFU then MRU, followed by
4056 * the data lists. This function returns a locked list, and also returns
4057 * the lock pointer.
4059 static list_t *
4060 l2arc_list_locked(int list_num, kmutex_t **lock)
4062 list_t *list;
4064 ASSERT(list_num >= 0 && list_num <= 3);
4066 switch (list_num) {
4067 case 0:
4068 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4069 *lock = &arc_mfu->arcs_mtx;
4070 break;
4071 case 1:
4072 list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4073 *lock = &arc_mru->arcs_mtx;
4074 break;
4075 case 2:
4076 list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4077 *lock = &arc_mfu->arcs_mtx;
4078 break;
4079 case 3:
4080 list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4081 *lock = &arc_mru->arcs_mtx;
4082 break;
4085 ASSERT(!(MUTEX_HELD(*lock)));
4086 mutex_enter(*lock);
4087 return (list);
4091 * Evict buffers from the device write hand to the distance specified in
4092 * bytes. This distance may span populated buffers, it may span nothing.
4093 * This is clearing a region on the L2ARC device ready for writing.
4094 * If the 'all' boolean is set, every buffer is evicted.
4096 static void
4097 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4099 list_t *buflist;
4100 l2arc_buf_hdr_t *abl2;
4101 arc_buf_hdr_t *ab, *ab_prev;
4102 kmutex_t *hash_lock;
4103 uint64_t taddr;
4105 buflist = dev->l2ad_buflist;
4107 if (buflist == NULL)
4108 return;
4110 if (!all && dev->l2ad_first) {
4112 * This is the first sweep through the device. There is
4113 * nothing to evict.
4115 return;
4118 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4120 * When nearing the end of the device, evict to the end
4121 * before the device write hand jumps to the start.
4123 taddr = dev->l2ad_end;
4124 } else {
4125 taddr = dev->l2ad_hand + distance;
4127 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4128 uint64_t, taddr, boolean_t, all);
4130 top:
4131 mutex_enter(&l2arc_buflist_mtx);
4132 for (ab = list_tail(buflist); ab; ab = ab_prev) {
4133 ab_prev = list_prev(buflist, ab);
4135 hash_lock = HDR_LOCK(ab);
4136 if (!mutex_tryenter(hash_lock)) {
4138 * Missed the hash lock. Retry.
4140 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4141 mutex_exit(&l2arc_buflist_mtx);
4142 mutex_enter(hash_lock);
4143 mutex_exit(hash_lock);
4144 goto top;
4147 if (HDR_L2_WRITE_HEAD(ab)) {
4149 * We hit a write head node. Leave it for
4150 * l2arc_write_done().
4152 list_remove(buflist, ab);
4153 mutex_exit(hash_lock);
4154 continue;
4157 if (!all && ab->b_l2hdr != NULL &&
4158 (ab->b_l2hdr->b_daddr > taddr ||
4159 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4161 * We've evicted to the target address,
4162 * or the end of the device.
4164 mutex_exit(hash_lock);
4165 break;
4168 if (HDR_FREE_IN_PROGRESS(ab)) {
4170 * Already on the path to destruction.
4172 mutex_exit(hash_lock);
4173 continue;
4176 if (ab->b_state == arc_l2c_only) {
4177 ASSERT(!HDR_L2_READING(ab));
4179 * This doesn't exist in the ARC. Destroy.
4180 * arc_hdr_destroy() will call list_remove()
4181 * and decrement arcstat_l2_size.
4183 arc_change_state(arc_anon, ab, hash_lock);
4184 arc_hdr_destroy(ab);
4185 } else {
4187 * Invalidate issued or about to be issued
4188 * reads, since we may be about to write
4189 * over this location.
4191 if (HDR_L2_READING(ab)) {
4192 ARCSTAT_BUMP(arcstat_l2_evict_reading);
4193 ab->b_flags |= ARC_L2_EVICTED;
4197 * Tell ARC this no longer exists in L2ARC.
4199 if (ab->b_l2hdr != NULL) {
4200 abl2 = ab->b_l2hdr;
4201 ab->b_l2hdr = NULL;
4202 kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4203 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4205 list_remove(buflist, ab);
4208 * This may have been leftover after a
4209 * failed write.
4211 ab->b_flags &= ~ARC_L2_WRITING;
4213 mutex_exit(hash_lock);
4215 mutex_exit(&l2arc_buflist_mtx);
4217 vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
4218 dev->l2ad_evict = taddr;
4222 * Find and write ARC buffers to the L2ARC device.
4224 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4225 * for reading until they have completed writing.
4227 static uint64_t
4228 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4230 arc_buf_hdr_t *ab, *ab_prev, *head;
4231 l2arc_buf_hdr_t *hdrl2;
4232 list_t *list;
4233 uint64_t passed_sz, write_sz, buf_sz, headroom;
4234 void *buf_data;
4235 kmutex_t *hash_lock, *list_lock;
4236 boolean_t have_lock, full;
4237 l2arc_write_callback_t *cb;
4238 zio_t *pio, *wzio;
4239 uint64_t guid = spa_load_guid(spa);
4241 ASSERT(dev->l2ad_vdev != NULL);
4243 pio = NULL;
4244 write_sz = 0;
4245 full = B_FALSE;
4246 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4247 head->b_flags |= ARC_L2_WRITE_HEAD;
4250 * Copy buffers for L2ARC writing.
4252 mutex_enter(&l2arc_buflist_mtx);
4253 for (int try = 0; try <= 3; try++) {
4254 list = l2arc_list_locked(try, &list_lock);
4255 passed_sz = 0;
4258 * L2ARC fast warmup.
4260 * Until the ARC is warm and starts to evict, read from the
4261 * head of the ARC lists rather than the tail.
4263 headroom = target_sz * l2arc_headroom;
4264 if (arc_warm == B_FALSE)
4265 ab = list_head(list);
4266 else
4267 ab = list_tail(list);
4269 for (; ab; ab = ab_prev) {
4270 if (arc_warm == B_FALSE)
4271 ab_prev = list_next(list, ab);
4272 else
4273 ab_prev = list_prev(list, ab);
4275 hash_lock = HDR_LOCK(ab);
4276 have_lock = MUTEX_HELD(hash_lock);
4277 if (!have_lock && !mutex_tryenter(hash_lock)) {
4279 * Skip this buffer rather than waiting.
4281 continue;
4284 passed_sz += ab->b_size;
4285 if (passed_sz > headroom) {
4287 * Searched too far.
4289 mutex_exit(hash_lock);
4290 break;
4293 if (!l2arc_write_eligible(guid, ab)) {
4294 mutex_exit(hash_lock);
4295 continue;
4298 if ((write_sz + ab->b_size) > target_sz) {
4299 full = B_TRUE;
4300 mutex_exit(hash_lock);
4301 break;
4304 if (pio == NULL) {
4306 * Insert a dummy header on the buflist so
4307 * l2arc_write_done() can find where the
4308 * write buffers begin without searching.
4310 list_insert_head(dev->l2ad_buflist, head);
4312 cb = kmem_alloc(
4313 sizeof (l2arc_write_callback_t), KM_SLEEP);
4314 cb->l2wcb_dev = dev;
4315 cb->l2wcb_head = head;
4316 pio = zio_root(spa, l2arc_write_done, cb,
4317 ZIO_FLAG_CANFAIL);
4321 * Create and add a new L2ARC header.
4323 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4324 hdrl2->b_dev = dev;
4325 hdrl2->b_daddr = dev->l2ad_hand;
4327 ab->b_flags |= ARC_L2_WRITING;
4328 ab->b_l2hdr = hdrl2;
4329 list_insert_head(dev->l2ad_buflist, ab);
4330 buf_data = ab->b_buf->b_data;
4331 buf_sz = ab->b_size;
4334 * Compute and store the buffer cksum before
4335 * writing. On debug the cksum is verified first.
4337 arc_cksum_verify(ab->b_buf);
4338 arc_cksum_compute(ab->b_buf, B_TRUE);
4340 mutex_exit(hash_lock);
4342 wzio = zio_write_phys(pio, dev->l2ad_vdev,
4343 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4344 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4345 ZIO_FLAG_CANFAIL, B_FALSE);
4347 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4348 zio_t *, wzio);
4349 (void) zio_nowait(wzio);
4352 * Keep the clock hand suitably device-aligned.
4354 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4356 write_sz += buf_sz;
4357 dev->l2ad_hand += buf_sz;
4360 mutex_exit(list_lock);
4362 if (full == B_TRUE)
4363 break;
4365 mutex_exit(&l2arc_buflist_mtx);
4367 if (pio == NULL) {
4368 ASSERT3U(write_sz, ==, 0);
4369 kmem_cache_free(hdr_cache, head);
4370 return (0);
4373 ASSERT3U(write_sz, <=, target_sz);
4374 ARCSTAT_BUMP(arcstat_l2_writes_sent);
4375 ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
4376 ARCSTAT_INCR(arcstat_l2_size, write_sz);
4377 vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0);
4380 * Bump device hand to the device start if it is approaching the end.
4381 * l2arc_evict() will already have evicted ahead for this case.
4383 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4384 vdev_space_update(dev->l2ad_vdev,
4385 dev->l2ad_end - dev->l2ad_hand, 0, 0);
4386 dev->l2ad_hand = dev->l2ad_start;
4387 dev->l2ad_evict = dev->l2ad_start;
4388 dev->l2ad_first = B_FALSE;
4391 dev->l2ad_writing = B_TRUE;
4392 (void) zio_wait(pio);
4393 dev->l2ad_writing = B_FALSE;
4395 return (write_sz);
4399 * This thread feeds the L2ARC at regular intervals. This is the beating
4400 * heart of the L2ARC.
4402 static void
4403 l2arc_feed_thread(void)
4405 callb_cpr_t cpr;
4406 l2arc_dev_t *dev;
4407 spa_t *spa;
4408 uint64_t size, wrote;
4409 clock_t begin, next = ddi_get_lbolt();
4411 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4413 mutex_enter(&l2arc_feed_thr_lock);
4415 while (l2arc_thread_exit == 0) {
4416 CALLB_CPR_SAFE_BEGIN(&cpr);
4417 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4418 next);
4419 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4420 next = ddi_get_lbolt() + hz;
4423 * Quick check for L2ARC devices.
4425 mutex_enter(&l2arc_dev_mtx);
4426 if (l2arc_ndev == 0) {
4427 mutex_exit(&l2arc_dev_mtx);
4428 continue;
4430 mutex_exit(&l2arc_dev_mtx);
4431 begin = ddi_get_lbolt();
4434 * This selects the next l2arc device to write to, and in
4435 * doing so the next spa to feed from: dev->l2ad_spa. This
4436 * will return NULL if there are now no l2arc devices or if
4437 * they are all faulted.
4439 * If a device is returned, its spa's config lock is also
4440 * held to prevent device removal. l2arc_dev_get_next()
4441 * will grab and release l2arc_dev_mtx.
4443 if ((dev = l2arc_dev_get_next()) == NULL)
4444 continue;
4446 spa = dev->l2ad_spa;
4447 ASSERT(spa != NULL);
4450 * If the pool is read-only then force the feed thread to
4451 * sleep a little longer.
4453 if (!spa_writeable(spa)) {
4454 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
4455 spa_config_exit(spa, SCL_L2ARC, dev);
4456 continue;
4460 * Avoid contributing to memory pressure.
4462 if (arc_reclaim_needed()) {
4463 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4464 spa_config_exit(spa, SCL_L2ARC, dev);
4465 continue;
4468 ARCSTAT_BUMP(arcstat_l2_feeds);
4470 size = l2arc_write_size(dev);
4473 * Evict L2ARC buffers that will be overwritten.
4475 l2arc_evict(dev, size, B_FALSE);
4478 * Write ARC buffers.
4480 wrote = l2arc_write_buffers(spa, dev, size);
4483 * Calculate interval between writes.
4485 next = l2arc_write_interval(begin, size, wrote);
4486 spa_config_exit(spa, SCL_L2ARC, dev);
4489 l2arc_thread_exit = 0;
4490 cv_broadcast(&l2arc_feed_thr_cv);
4491 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
4492 thread_exit();
4495 boolean_t
4496 l2arc_vdev_present(vdev_t *vd)
4498 l2arc_dev_t *dev;
4500 mutex_enter(&l2arc_dev_mtx);
4501 for (dev = list_head(l2arc_dev_list); dev != NULL;
4502 dev = list_next(l2arc_dev_list, dev)) {
4503 if (dev->l2ad_vdev == vd)
4504 break;
4506 mutex_exit(&l2arc_dev_mtx);
4508 return (dev != NULL);
4512 * Add a vdev for use by the L2ARC. By this point the spa has already
4513 * validated the vdev and opened it.
4515 void
4516 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
4518 l2arc_dev_t *adddev;
4520 ASSERT(!l2arc_vdev_present(vd));
4523 * Create a new l2arc device entry.
4525 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4526 adddev->l2ad_spa = spa;
4527 adddev->l2ad_vdev = vd;
4528 adddev->l2ad_write = l2arc_write_max;
4529 adddev->l2ad_boost = l2arc_write_boost;
4530 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
4531 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
4532 adddev->l2ad_hand = adddev->l2ad_start;
4533 adddev->l2ad_evict = adddev->l2ad_start;
4534 adddev->l2ad_first = B_TRUE;
4535 adddev->l2ad_writing = B_FALSE;
4536 ASSERT3U(adddev->l2ad_write, >, 0);
4539 * This is a list of all ARC buffers that are still valid on the
4540 * device.
4542 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4543 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4544 offsetof(arc_buf_hdr_t, b_l2node));
4546 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
4549 * Add device to global list
4551 mutex_enter(&l2arc_dev_mtx);
4552 list_insert_head(l2arc_dev_list, adddev);
4553 atomic_inc_64(&l2arc_ndev);
4554 mutex_exit(&l2arc_dev_mtx);
4558 * Remove a vdev from the L2ARC.
4560 void
4561 l2arc_remove_vdev(vdev_t *vd)
4563 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4566 * Find the device by vdev
4568 mutex_enter(&l2arc_dev_mtx);
4569 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4570 nextdev = list_next(l2arc_dev_list, dev);
4571 if (vd == dev->l2ad_vdev) {
4572 remdev = dev;
4573 break;
4576 ASSERT(remdev != NULL);
4579 * Remove device from global list
4581 list_remove(l2arc_dev_list, remdev);
4582 l2arc_dev_last = NULL; /* may have been invalidated */
4583 atomic_dec_64(&l2arc_ndev);
4584 mutex_exit(&l2arc_dev_mtx);
4587 * Clear all buflists and ARC references. L2ARC device flush.
4589 l2arc_evict(remdev, 0, B_TRUE);
4590 list_destroy(remdev->l2ad_buflist);
4591 kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4592 kmem_free(remdev, sizeof (l2arc_dev_t));
4595 void
4596 l2arc_init(void)
4598 l2arc_thread_exit = 0;
4599 l2arc_ndev = 0;
4600 l2arc_writes_sent = 0;
4601 l2arc_writes_done = 0;
4603 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4604 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4605 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4606 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4607 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4609 l2arc_dev_list = &L2ARC_dev_list;
4610 l2arc_free_on_write = &L2ARC_free_on_write;
4611 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4612 offsetof(l2arc_dev_t, l2ad_node));
4613 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4614 offsetof(l2arc_data_free_t, l2df_list_node));
4617 void
4618 l2arc_fini(void)
4621 * This is called from dmu_fini(), which is called from spa_fini();
4622 * Because of this, we can assume that all l2arc devices have
4623 * already been removed when the pools themselves were removed.
4626 l2arc_do_free_on_write();
4628 mutex_destroy(&l2arc_feed_thr_lock);
4629 cv_destroy(&l2arc_feed_thr_cv);
4630 mutex_destroy(&l2arc_dev_mtx);
4631 mutex_destroy(&l2arc_buflist_mtx);
4632 mutex_destroy(&l2arc_free_on_write_mtx);
4634 list_destroy(l2arc_dev_list);
4635 list_destroy(l2arc_free_on_write);
4638 void
4639 l2arc_start(void)
4641 if (!(spa_mode_global & FWRITE))
4642 return;
4644 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4645 TS_RUN, minclsyspri);
4648 void
4649 l2arc_stop(void)
4651 if (!(spa_mode_global & FWRITE))
4652 return;
4654 mutex_enter(&l2arc_feed_thr_lock);
4655 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
4656 l2arc_thread_exit = 1;
4657 while (l2arc_thread_exit != 0)
4658 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4659 mutex_exit(&l2arc_feed_thr_lock);