7029 want per-process exploit mitigation features (secflags)
[unleashed.git] / usr / src / uts / i86pc / vm / vm_machdep.c
blob1a523a902cd98704b3a9c979bfd8d0eae77133b5
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2010, Intel Corporation.
26 * All rights reserved.
29 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
30 /* All Rights Reserved */
33 * Portions of this source code were derived from Berkeley 4.3 BSD
34 * under license from the Regents of the University of California.
38 * UNIX machine dependent virtual memory support.
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/user.h>
45 #include <sys/proc.h>
46 #include <sys/kmem.h>
47 #include <sys/vmem.h>
48 #include <sys/buf.h>
49 #include <sys/cpuvar.h>
50 #include <sys/lgrp.h>
51 #include <sys/disp.h>
52 #include <sys/vm.h>
53 #include <sys/mman.h>
54 #include <sys/vnode.h>
55 #include <sys/cred.h>
56 #include <sys/exec.h>
57 #include <sys/exechdr.h>
58 #include <sys/debug.h>
59 #include <sys/vmsystm.h>
60 #include <sys/swap.h>
61 #include <sys/dumphdr.h>
62 #include <sys/random.h>
64 #include <vm/hat.h>
65 #include <vm/as.h>
66 #include <vm/seg.h>
67 #include <vm/seg_kp.h>
68 #include <vm/seg_vn.h>
69 #include <vm/page.h>
70 #include <vm/seg_kmem.h>
71 #include <vm/seg_kpm.h>
72 #include <vm/vm_dep.h>
74 #include <sys/cpu.h>
75 #include <sys/vm_machparam.h>
76 #include <sys/memlist.h>
77 #include <sys/bootconf.h> /* XXX the memlist stuff belongs in memlist_plat.h */
78 #include <vm/hat_i86.h>
79 #include <sys/x86_archext.h>
80 #include <sys/elf_386.h>
81 #include <sys/cmn_err.h>
82 #include <sys/archsystm.h>
83 #include <sys/machsystm.h>
84 #include <sys/secflags.h>
86 #include <sys/vtrace.h>
87 #include <sys/ddidmareq.h>
88 #include <sys/promif.h>
89 #include <sys/memnode.h>
90 #include <sys/stack.h>
91 #include <util/qsort.h>
92 #include <sys/taskq.h>
94 #ifdef __xpv
96 #include <sys/hypervisor.h>
97 #include <sys/xen_mmu.h>
98 #include <sys/balloon_impl.h>
101 * domain 0 pages usable for DMA are kept pre-allocated and kept in
102 * distinct lists, ordered by increasing mfn.
104 static kmutex_t io_pool_lock;
105 static kmutex_t contig_list_lock;
106 static page_t *io_pool_4g; /* pool for 32 bit dma limited devices */
107 static page_t *io_pool_16m; /* pool for 24 bit dma limited legacy devices */
108 static long io_pool_cnt;
109 static long io_pool_cnt_max = 0;
110 #define DEFAULT_IO_POOL_MIN 128
111 static long io_pool_cnt_min = DEFAULT_IO_POOL_MIN;
112 static long io_pool_cnt_lowater = 0;
113 static long io_pool_shrink_attempts; /* how many times did we try to shrink */
114 static long io_pool_shrinks; /* how many times did we really shrink */
115 static long io_pool_grows; /* how many times did we grow */
116 static mfn_t start_mfn = 1;
117 static caddr_t io_pool_kva; /* use to alloc pages when needed */
119 static int create_contig_pfnlist(uint_t);
122 * percentage of phys mem to hold in the i/o pool
124 #define DEFAULT_IO_POOL_PCT 2
125 static long io_pool_physmem_pct = DEFAULT_IO_POOL_PCT;
126 static void page_io_pool_sub(page_t **, page_t *, page_t *);
127 int ioalloc_dbg = 0;
129 #endif /* __xpv */
131 uint_t vac_colors = 1;
133 int largepagesupport = 0;
134 extern uint_t page_create_new;
135 extern uint_t page_create_exists;
136 extern uint_t page_create_putbacks;
138 * Allow users to disable the kernel's use of SSE.
140 extern int use_sse_pagecopy, use_sse_pagezero;
143 * combined memory ranges from mnode and memranges[] to manage single
144 * mnode/mtype dimension in the page lists.
146 typedef struct {
147 pfn_t mnr_pfnlo;
148 pfn_t mnr_pfnhi;
149 int mnr_mnode;
150 int mnr_memrange; /* index into memranges[] */
151 int mnr_next; /* next lower PA mnoderange */
152 int mnr_exists;
153 /* maintain page list stats */
154 pgcnt_t mnr_mt_clpgcnt; /* cache list cnt */
155 pgcnt_t mnr_mt_flpgcnt[MMU_PAGE_SIZES]; /* free list cnt per szc */
156 pgcnt_t mnr_mt_totcnt; /* sum of cache and free lists */
157 #ifdef DEBUG
158 struct mnr_mts { /* mnode/mtype szc stats */
159 pgcnt_t mnr_mts_pgcnt;
160 int mnr_mts_colors;
161 pgcnt_t *mnr_mtsc_pgcnt;
162 } *mnr_mts;
163 #endif
164 } mnoderange_t;
166 #define MEMRANGEHI(mtype) \
167 ((mtype > 0) ? memranges[mtype - 1] - 1: physmax)
168 #define MEMRANGELO(mtype) (memranges[mtype])
170 #define MTYPE_FREEMEM(mt) (mnoderanges[mt].mnr_mt_totcnt)
173 * As the PC architecture evolved memory up was clumped into several
174 * ranges for various historical I/O devices to do DMA.
175 * < 16Meg - ISA bus
176 * < 2Gig - ???
177 * < 4Gig - PCI bus or drivers that don't understand PAE mode
179 * These are listed in reverse order, so that we can skip over unused
180 * ranges on machines with small memories.
182 * For now under the Hypervisor, we'll only ever have one memrange.
184 #define PFN_4GIG 0x100000
185 #define PFN_16MEG 0x1000
186 /* Indices into the memory range (arch_memranges) array. */
187 #define MRI_4G 0
188 #define MRI_2G 1
189 #define MRI_16M 2
190 #define MRI_0 3
191 static pfn_t arch_memranges[NUM_MEM_RANGES] = {
192 PFN_4GIG, /* pfn range for 4G and above */
193 0x80000, /* pfn range for 2G-4G */
194 PFN_16MEG, /* pfn range for 16M-2G */
195 0x00000, /* pfn range for 0-16M */
197 pfn_t *memranges = &arch_memranges[0];
198 int nranges = NUM_MEM_RANGES;
201 * This combines mem_node_config and memranges into one data
202 * structure to be used for page list management.
204 mnoderange_t *mnoderanges;
205 int mnoderangecnt;
206 int mtype4g;
207 int mtype16m;
208 int mtypetop; /* index of highest pfn'ed mnoderange */
211 * 4g memory management variables for systems with more than 4g of memory:
213 * physical memory below 4g is required for 32bit dma devices and, currently,
214 * for kmem memory. On systems with more than 4g of memory, the pool of memory
215 * below 4g can be depleted without any paging activity given that there is
216 * likely to be sufficient memory above 4g.
218 * physmax4g is set true if the largest pfn is over 4g. The rest of the
219 * 4g memory management code is enabled only when physmax4g is true.
221 * maxmem4g is the count of the maximum number of pages on the page lists
222 * with physical addresses below 4g. It can be a lot less then 4g given that
223 * BIOS may reserve large chunks of space below 4g for hot plug pci devices,
224 * agp aperture etc.
226 * freemem4g maintains the count of the number of available pages on the
227 * page lists with physical addresses below 4g.
229 * DESFREE4G specifies the desired amount of below 4g memory. It defaults to
230 * 6% (desfree4gshift = 4) of maxmem4g.
232 * RESTRICT4G_ALLOC returns true if freemem4g falls below DESFREE4G
233 * and the amount of physical memory above 4g is greater than freemem4g.
234 * In this case, page_get_* routines will restrict below 4g allocations
235 * for requests that don't specifically require it.
238 #define DESFREE4G (maxmem4g >> desfree4gshift)
240 #define RESTRICT4G_ALLOC \
241 (physmax4g && (freemem4g < DESFREE4G) && ((freemem4g << 1) < freemem))
243 static pgcnt_t maxmem4g;
244 static pgcnt_t freemem4g;
245 static int physmax4g;
246 static int desfree4gshift = 4; /* maxmem4g shift to derive DESFREE4G */
249 * 16m memory management:
251 * reserve some amount of physical memory below 16m for legacy devices.
253 * RESTRICT16M_ALLOC returns true if an there are sufficient free pages above
254 * 16m or if the 16m pool drops below DESFREE16M.
256 * In this case, general page allocations via page_get_{free,cache}list
257 * routines will be restricted from allocating from the 16m pool. Allocations
258 * that require specific pfn ranges (page_get_anylist) and PG_PANIC allocations
259 * are not restricted.
262 #define FREEMEM16M MTYPE_FREEMEM(mtype16m)
263 #define DESFREE16M desfree16m
264 #define RESTRICT16M_ALLOC(freemem, pgcnt, flags) \
265 ((freemem != 0) && ((flags & PG_PANIC) == 0) && \
266 ((freemem >= (FREEMEM16M)) || \
267 (FREEMEM16M < (DESFREE16M + pgcnt))))
269 static pgcnt_t desfree16m = 0x380;
272 * This can be patched via /etc/system to allow old non-PAE aware device
273 * drivers to use kmem_alloc'd memory on 32 bit systems with > 4Gig RAM.
275 int restricted_kmemalloc = 0;
277 #ifdef VM_STATS
278 struct {
279 ulong_t pga_alloc;
280 ulong_t pga_notfullrange;
281 ulong_t pga_nulldmaattr;
282 ulong_t pga_allocok;
283 ulong_t pga_allocfailed;
284 ulong_t pgma_alloc;
285 ulong_t pgma_allocok;
286 ulong_t pgma_allocfailed;
287 ulong_t pgma_allocempty;
288 } pga_vmstats;
289 #endif
291 uint_t mmu_page_sizes;
293 /* How many page sizes the users can see */
294 uint_t mmu_exported_page_sizes;
296 /* page sizes that legacy applications can see */
297 uint_t mmu_legacy_page_sizes;
300 * Number of pages in 1 GB. Don't enable automatic large pages if we have
301 * fewer than this many pages.
303 pgcnt_t shm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT);
304 pgcnt_t privm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT);
307 * Maximum and default segment size tunables for user private
308 * and shared anon memory, and user text and initialized data.
309 * These can be patched via /etc/system to allow large pages
310 * to be used for mapping application private and shared anon memory.
312 size_t mcntl0_lpsize = MMU_PAGESIZE;
313 size_t max_uheap_lpsize = MMU_PAGESIZE;
314 size_t default_uheap_lpsize = MMU_PAGESIZE;
315 size_t max_ustack_lpsize = MMU_PAGESIZE;
316 size_t default_ustack_lpsize = MMU_PAGESIZE;
317 size_t max_privmap_lpsize = MMU_PAGESIZE;
318 size_t max_uidata_lpsize = MMU_PAGESIZE;
319 size_t max_utext_lpsize = MMU_PAGESIZE;
320 size_t max_shm_lpsize = MMU_PAGESIZE;
324 * initialized by page_coloring_init().
326 uint_t page_colors;
327 uint_t page_colors_mask;
328 uint_t page_coloring_shift;
329 int cpu_page_colors;
330 static uint_t l2_colors;
333 * Page freelists and cachelists are dynamically allocated once mnoderangecnt
334 * and page_colors are calculated from the l2 cache n-way set size. Within a
335 * mnode range, the page freelist and cachelist are hashed into bins based on
336 * color. This makes it easier to search for a page within a specific memory
337 * range.
339 #define PAGE_COLORS_MIN 16
341 page_t ****page_freelists;
342 page_t ***page_cachelists;
346 * Used by page layer to know about page sizes
348 hw_pagesize_t hw_page_array[MAX_NUM_LEVEL + 1];
350 kmutex_t *fpc_mutex[NPC_MUTEX];
351 kmutex_t *cpc_mutex[NPC_MUTEX];
353 /* Lock to protect mnoderanges array for memory DR operations. */
354 static kmutex_t mnoderange_lock;
357 * Only let one thread at a time try to coalesce large pages, to
358 * prevent them from working against each other.
360 static kmutex_t contig_lock;
361 #define CONTIG_LOCK() mutex_enter(&contig_lock);
362 #define CONTIG_UNLOCK() mutex_exit(&contig_lock);
364 #define PFN_16M (mmu_btop((uint64_t)0x1000000))
367 * Return the optimum page size for a given mapping
369 /*ARGSUSED*/
370 size_t
371 map_pgsz(int maptype, struct proc *p, caddr_t addr, size_t len, int memcntl)
373 level_t l = 0;
374 size_t pgsz = MMU_PAGESIZE;
375 size_t max_lpsize;
376 uint_t mszc;
378 ASSERT(maptype != MAPPGSZ_VA);
380 if (maptype != MAPPGSZ_ISM && physmem < privm_lpg_min_physmem) {
381 return (MMU_PAGESIZE);
384 switch (maptype) {
385 case MAPPGSZ_HEAP:
386 case MAPPGSZ_STK:
387 max_lpsize = memcntl ? mcntl0_lpsize : (maptype ==
388 MAPPGSZ_HEAP ? max_uheap_lpsize : max_ustack_lpsize);
389 if (max_lpsize == MMU_PAGESIZE) {
390 return (MMU_PAGESIZE);
392 if (len == 0) {
393 len = (maptype == MAPPGSZ_HEAP) ? p->p_brkbase +
394 p->p_brksize - p->p_bssbase : p->p_stksize;
396 len = (maptype == MAPPGSZ_HEAP) ? MAX(len,
397 default_uheap_lpsize) : MAX(len, default_ustack_lpsize);
400 * use the pages size that best fits len
402 for (l = mmu.umax_page_level; l > 0; --l) {
403 if (LEVEL_SIZE(l) > max_lpsize || len < LEVEL_SIZE(l)) {
404 continue;
405 } else {
406 pgsz = LEVEL_SIZE(l);
408 break;
411 mszc = (maptype == MAPPGSZ_HEAP ? p->p_brkpageszc :
412 p->p_stkpageszc);
413 if (addr == 0 && (pgsz < hw_page_array[mszc].hp_size)) {
414 pgsz = hw_page_array[mszc].hp_size;
416 return (pgsz);
418 case MAPPGSZ_ISM:
419 for (l = mmu.umax_page_level; l > 0; --l) {
420 if (len >= LEVEL_SIZE(l))
421 return (LEVEL_SIZE(l));
423 return (LEVEL_SIZE(0));
425 return (pgsz);
428 static uint_t
429 map_szcvec(caddr_t addr, size_t size, uintptr_t off, size_t max_lpsize,
430 size_t min_physmem)
432 caddr_t eaddr = addr + size;
433 uint_t szcvec = 0;
434 caddr_t raddr;
435 caddr_t readdr;
436 size_t pgsz;
437 int i;
439 if (physmem < min_physmem || max_lpsize <= MMU_PAGESIZE) {
440 return (0);
443 for (i = mmu_exported_page_sizes - 1; i > 0; i--) {
444 pgsz = page_get_pagesize(i);
445 if (pgsz > max_lpsize) {
446 continue;
448 raddr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
449 readdr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
450 if (raddr < addr || raddr >= readdr) {
451 continue;
453 if (P2PHASE((uintptr_t)addr ^ off, pgsz)) {
454 continue;
457 * Set szcvec to the remaining page sizes.
459 szcvec = ((1 << (i + 1)) - 1) & ~1;
460 break;
462 return (szcvec);
466 * Return a bit vector of large page size codes that
467 * can be used to map [addr, addr + len) region.
469 /*ARGSUSED*/
470 uint_t
471 map_pgszcvec(caddr_t addr, size_t size, uintptr_t off, int flags, int type,
472 int memcntl)
474 size_t max_lpsize = mcntl0_lpsize;
476 if (mmu.max_page_level == 0)
477 return (0);
479 if (flags & MAP_TEXT) {
480 if (!memcntl)
481 max_lpsize = max_utext_lpsize;
482 return (map_szcvec(addr, size, off, max_lpsize,
483 shm_lpg_min_physmem));
485 } else if (flags & MAP_INITDATA) {
486 if (!memcntl)
487 max_lpsize = max_uidata_lpsize;
488 return (map_szcvec(addr, size, off, max_lpsize,
489 privm_lpg_min_physmem));
491 } else if (type == MAPPGSZC_SHM) {
492 if (!memcntl)
493 max_lpsize = max_shm_lpsize;
494 return (map_szcvec(addr, size, off, max_lpsize,
495 shm_lpg_min_physmem));
497 } else if (type == MAPPGSZC_HEAP) {
498 if (!memcntl)
499 max_lpsize = max_uheap_lpsize;
500 return (map_szcvec(addr, size, off, max_lpsize,
501 privm_lpg_min_physmem));
503 } else if (type == MAPPGSZC_STACK) {
504 if (!memcntl)
505 max_lpsize = max_ustack_lpsize;
506 return (map_szcvec(addr, size, off, max_lpsize,
507 privm_lpg_min_physmem));
509 } else {
510 if (!memcntl)
511 max_lpsize = max_privmap_lpsize;
512 return (map_szcvec(addr, size, off, max_lpsize,
513 privm_lpg_min_physmem));
518 * Handle a pagefault.
520 faultcode_t
521 pagefault(
522 caddr_t addr,
523 enum fault_type type,
524 enum seg_rw rw,
525 int iskernel)
527 struct as *as;
528 struct hat *hat;
529 struct proc *p;
530 kthread_t *t;
531 faultcode_t res;
532 caddr_t base;
533 size_t len;
534 int err;
535 int mapped_red;
536 uintptr_t ea;
538 ASSERT_STACK_ALIGNED();
540 if (INVALID_VADDR(addr))
541 return (FC_NOMAP);
543 mapped_red = segkp_map_red();
545 if (iskernel) {
546 as = &kas;
547 hat = as->a_hat;
548 } else {
549 t = curthread;
550 p = ttoproc(t);
551 as = p->p_as;
552 hat = as->a_hat;
556 * Dispatch pagefault.
558 res = as_fault(hat, as, addr, 1, type, rw);
561 * If this isn't a potential unmapped hole in the user's
562 * UNIX data or stack segments, just return status info.
564 if (res != FC_NOMAP || iskernel)
565 goto out;
568 * Check to see if we happened to faulted on a currently unmapped
569 * part of the UNIX data or stack segments. If so, create a zfod
570 * mapping there and then try calling the fault routine again.
572 base = p->p_brkbase;
573 len = p->p_brksize;
575 if (addr < base || addr >= base + len) { /* data seg? */
576 base = (caddr_t)p->p_usrstack - p->p_stksize;
577 len = p->p_stksize;
578 if (addr < base || addr >= p->p_usrstack) { /* stack seg? */
579 /* not in either UNIX data or stack segments */
580 res = FC_NOMAP;
581 goto out;
586 * the rest of this function implements a 3.X 4.X 5.X compatibility
587 * This code is probably not needed anymore
589 if (p->p_model == DATAMODEL_ILP32) {
591 /* expand the gap to the page boundaries on each side */
592 ea = P2ROUNDUP((uintptr_t)base + len, MMU_PAGESIZE);
593 base = (caddr_t)P2ALIGN((uintptr_t)base, MMU_PAGESIZE);
594 len = ea - (uintptr_t)base;
596 as_rangelock(as);
597 if (as_gap(as, MMU_PAGESIZE, &base, &len, AH_CONTAIN, addr) ==
598 0) {
599 err = as_map(as, base, len, segvn_create, zfod_argsp);
600 as_rangeunlock(as);
601 if (err) {
602 res = FC_MAKE_ERR(err);
603 goto out;
605 } else {
607 * This page is already mapped by another thread after
608 * we returned from as_fault() above. We just fall
609 * through as_fault() below.
611 as_rangeunlock(as);
614 res = as_fault(hat, as, addr, 1, F_INVAL, rw);
617 out:
618 if (mapped_red)
619 segkp_unmap_red();
621 return (res);
624 void
625 map_addr(caddr_t *addrp, size_t len, offset_t off, int vacalign, uint_t flags)
627 struct proc *p = curproc;
628 caddr_t userlimit = (flags & _MAP_LOW32) ?
629 (caddr_t)_userlimit32 : p->p_as->a_userlimit;
631 map_addr_proc(addrp, len, off, vacalign, userlimit, curproc, flags);
634 /*ARGSUSED*/
636 map_addr_vacalign_check(caddr_t addr, u_offset_t off)
638 return (0);
642 * The maximum amount a randomized mapping will be slewed. We should perhaps
643 * arrange things so these tunables can be separate for mmap, mmapobj, and
644 * ld.so
646 size_t aslr_max_map_skew = 256 * 1024 * 1024; /* 256MB */
649 * map_addr_proc() is the routine called when the system is to
650 * choose an address for the user. We will pick an address
651 * range which is the highest available below userlimit.
653 * Every mapping will have a redzone of a single page on either side of
654 * the request. This is done to leave one page unmapped between segments.
655 * This is not required, but it's useful for the user because if their
656 * program strays across a segment boundary, it will catch a fault
657 * immediately making debugging a little easier. Currently the redzone
658 * is mandatory.
660 * addrp is a value/result parameter.
661 * On input it is a hint from the user to be used in a completely
662 * machine dependent fashion. We decide to completely ignore this hint.
663 * If MAP_ALIGN was specified, addrp contains the minimal alignment, which
664 * must be some "power of two" multiple of pagesize.
666 * On output it is NULL if no address can be found in the current
667 * processes address space or else an address that is currently
668 * not mapped for len bytes with a page of red zone on either side.
670 * vacalign is not needed on x86 (it's for viturally addressed caches)
672 /*ARGSUSED*/
673 void
674 map_addr_proc(
675 caddr_t *addrp,
676 size_t len,
677 offset_t off,
678 int vacalign,
679 caddr_t userlimit,
680 struct proc *p,
681 uint_t flags)
683 struct as *as = p->p_as;
684 caddr_t addr;
685 caddr_t base;
686 size_t slen;
687 size_t align_amount;
689 ASSERT32(userlimit == as->a_userlimit);
691 base = p->p_brkbase;
692 #if defined(__amd64)
694 * XX64 Yes, this needs more work.
696 if (p->p_model == DATAMODEL_NATIVE) {
697 if (userlimit < as->a_userlimit) {
699 * This happens when a program wants to map
700 * something in a range that's accessible to a
701 * program in a smaller address space. For example,
702 * a 64-bit program calling mmap32(2) to guarantee
703 * that the returned address is below 4Gbytes.
705 ASSERT((uintptr_t)userlimit < ADDRESS_C(0xffffffff));
707 if (userlimit > base)
708 slen = userlimit - base;
709 else {
710 *addrp = NULL;
711 return;
713 } else {
715 * XX64 This layout is probably wrong .. but in
716 * the event we make the amd64 address space look
717 * like sparcv9 i.e. with the stack -above- the
718 * heap, this bit of code might even be correct.
720 slen = p->p_usrstack - base -
721 ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK);
723 } else
724 #endif
725 slen = userlimit - base;
727 /* Make len be a multiple of PAGESIZE */
728 len = (len + PAGEOFFSET) & PAGEMASK;
731 * figure out what the alignment should be
733 * XX64 -- is there an ELF_AMD64_MAXPGSZ or is it the same????
735 if (len <= ELF_386_MAXPGSZ) {
737 * Align virtual addresses to ensure that ELF shared libraries
738 * are mapped with the appropriate alignment constraints by
739 * the run-time linker.
741 align_amount = ELF_386_MAXPGSZ;
742 } else {
744 * For 32-bit processes, only those which have specified
745 * MAP_ALIGN and an addr will be aligned on a larger page size.
746 * Not doing so can potentially waste up to 1G of process
747 * address space.
749 int lvl = (p->p_model == DATAMODEL_ILP32) ? 1 :
750 mmu.umax_page_level;
752 while (lvl && len < LEVEL_SIZE(lvl))
753 --lvl;
755 align_amount = LEVEL_SIZE(lvl);
757 if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount))
758 align_amount = (uintptr_t)*addrp;
760 ASSERT(ISP2(align_amount));
761 ASSERT(align_amount == 0 || align_amount >= PAGESIZE);
763 off = off & (align_amount - 1);
766 * Look for a large enough hole starting below userlimit.
767 * After finding it, use the upper part.
769 if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount,
770 PAGESIZE, off) == 0) {
771 caddr_t as_addr;
774 * addr is the highest possible address to use since we have
775 * a PAGESIZE redzone at the beginning and end.
777 addr = base + slen - (PAGESIZE + len);
778 as_addr = addr;
780 * Round address DOWN to the alignment amount and
781 * add the offset in.
782 * If addr is greater than as_addr, len would not be large
783 * enough to include the redzone, so we must adjust down
784 * by the alignment amount.
786 addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1)));
787 addr += (uintptr_t)off;
788 if (addr > as_addr) {
789 addr -= align_amount;
793 * If randomization is requested, slew the allocation
794 * backwards, within the same gap, by a random amount.
796 if (flags & _MAP_RANDOMIZE) {
797 uint32_t slew;
799 (void) random_get_pseudo_bytes((uint8_t *)&slew,
800 sizeof (slew));
802 slew = slew % MIN(aslr_max_map_skew, (addr - base));
803 addr -= P2ALIGN(slew, align_amount);
806 ASSERT(addr > base);
807 ASSERT(addr + len < base + slen);
808 ASSERT(((uintptr_t)addr & (align_amount - 1)) ==
809 ((uintptr_t)(off)));
810 *addrp = addr;
811 } else {
812 *addrp = NULL; /* no more virtual space */
816 int valid_va_range_aligned_wraparound;
819 * Determine whether [*basep, *basep + *lenp) contains a mappable range of
820 * addresses at least "minlen" long, where the base of the range is at "off"
821 * phase from an "align" boundary and there is space for a "redzone"-sized
822 * redzone on either side of the range. On success, 1 is returned and *basep
823 * and *lenp are adjusted to describe the acceptable range (including
824 * the redzone). On failure, 0 is returned.
826 /*ARGSUSED3*/
828 valid_va_range_aligned(caddr_t *basep, size_t *lenp, size_t minlen, int dir,
829 size_t align, size_t redzone, size_t off)
831 uintptr_t hi, lo;
832 size_t tot_len;
834 ASSERT(align == 0 ? off == 0 : off < align);
835 ASSERT(ISP2(align));
836 ASSERT(align == 0 || align >= PAGESIZE);
838 lo = (uintptr_t)*basep;
839 hi = lo + *lenp;
840 tot_len = minlen + 2 * redzone; /* need at least this much space */
843 * If hi rolled over the top, try cutting back.
845 if (hi < lo) {
846 *lenp = 0UL - lo - 1UL;
847 /* See if this really happens. If so, then we figure out why */
848 valid_va_range_aligned_wraparound++;
849 hi = lo + *lenp;
851 if (*lenp < tot_len) {
852 return (0);
855 #if defined(__amd64)
857 * Deal with a possible hole in the address range between
858 * hole_start and hole_end that should never be mapped.
860 if (lo < hole_start) {
861 if (hi > hole_start) {
862 if (hi < hole_end) {
863 hi = hole_start;
864 } else {
865 /* lo < hole_start && hi >= hole_end */
866 if (dir == AH_LO) {
868 * prefer lowest range
870 if (hole_start - lo >= tot_len)
871 hi = hole_start;
872 else if (hi - hole_end >= tot_len)
873 lo = hole_end;
874 else
875 return (0);
876 } else {
878 * prefer highest range
880 if (hi - hole_end >= tot_len)
881 lo = hole_end;
882 else if (hole_start - lo >= tot_len)
883 hi = hole_start;
884 else
885 return (0);
889 } else {
890 /* lo >= hole_start */
891 if (hi < hole_end)
892 return (0);
893 if (lo < hole_end)
894 lo = hole_end;
896 #endif
898 if (hi - lo < tot_len)
899 return (0);
901 if (align > 1) {
902 uintptr_t tlo = lo + redzone;
903 uintptr_t thi = hi - redzone;
904 tlo = (uintptr_t)P2PHASEUP(tlo, align, off);
905 if (tlo < lo + redzone) {
906 return (0);
908 if (thi < tlo || thi - tlo < minlen) {
909 return (0);
913 *basep = (caddr_t)lo;
914 *lenp = hi - lo;
915 return (1);
919 * Determine whether [*basep, *basep + *lenp) contains a mappable range of
920 * addresses at least "minlen" long. On success, 1 is returned and *basep
921 * and *lenp are adjusted to describe the acceptable range. On failure, 0
922 * is returned.
925 valid_va_range(caddr_t *basep, size_t *lenp, size_t minlen, int dir)
927 return (valid_va_range_aligned(basep, lenp, minlen, dir, 0, 0, 0));
931 * Default to forbidding the first 64k of address space. This protects most
932 * reasonably sized structures from dereferences through NULL:
933 * ((foo_t *)0)->bar
935 uintptr_t forbidden_null_mapping_sz = 0x10000;
938 * Determine whether [addr, addr+len] are valid user addresses.
940 /*ARGSUSED*/
942 valid_usr_range(caddr_t addr, size_t len, uint_t prot, struct as *as,
943 caddr_t userlimit)
945 caddr_t eaddr = addr + len;
947 if (eaddr <= addr || addr >= userlimit || eaddr > userlimit)
948 return (RANGE_BADADDR);
950 if ((addr <= (caddr_t)forbidden_null_mapping_sz) &&
951 secflag_enabled(as->a_proc, PROC_SEC_FORBIDNULLMAP))
952 return (RANGE_BADADDR);
954 #if defined(__amd64)
956 * Check for the VA hole
958 if (eaddr > (caddr_t)hole_start && addr < (caddr_t)hole_end)
959 return (RANGE_BADADDR);
960 #endif
962 return (RANGE_OKAY);
966 * Return 1 if the page frame is onboard memory, else 0.
969 pf_is_memory(pfn_t pf)
971 if (pfn_is_foreign(pf))
972 return (0);
973 return (address_in_memlist(phys_install, pfn_to_pa(pf), 1));
977 * return the memrange containing pfn
980 memrange_num(pfn_t pfn)
982 int n;
984 for (n = 0; n < nranges - 1; ++n) {
985 if (pfn >= memranges[n])
986 break;
988 return (n);
992 * return the mnoderange containing pfn
994 /*ARGSUSED*/
996 pfn_2_mtype(pfn_t pfn)
998 #if defined(__xpv)
999 return (0);
1000 #else
1001 int n;
1003 /* Always start from highest pfn and work our way down */
1004 for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) {
1005 if (pfn >= mnoderanges[n].mnr_pfnlo) {
1006 break;
1009 return (n);
1010 #endif
1013 #if !defined(__xpv)
1015 * is_contigpage_free:
1016 * returns a page list of contiguous pages. It minimally has to return
1017 * minctg pages. Caller determines minctg based on the scatter-gather
1018 * list length.
1020 * pfnp is set to the next page frame to search on return.
1022 static page_t *
1023 is_contigpage_free(
1024 pfn_t *pfnp,
1025 pgcnt_t *pgcnt,
1026 pgcnt_t minctg,
1027 uint64_t pfnseg,
1028 int iolock)
1030 int i = 0;
1031 pfn_t pfn = *pfnp;
1032 page_t *pp;
1033 page_t *plist = NULL;
1036 * fail if pfn + minctg crosses a segment boundary.
1037 * Adjust for next starting pfn to begin at segment boundary.
1040 if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg)) {
1041 *pfnp = roundup(*pfnp, pfnseg + 1);
1042 return (NULL);
1045 do {
1046 retry:
1047 pp = page_numtopp_nolock(pfn + i);
1048 if ((pp == NULL) || IS_DUMP_PAGE(pp) ||
1049 (page_trylock(pp, SE_EXCL) == 0)) {
1050 (*pfnp)++;
1051 break;
1053 if (page_pptonum(pp) != pfn + i) {
1054 page_unlock(pp);
1055 goto retry;
1058 if (!(PP_ISFREE(pp))) {
1059 page_unlock(pp);
1060 (*pfnp)++;
1061 break;
1064 if (!PP_ISAGED(pp)) {
1065 page_list_sub(pp, PG_CACHE_LIST);
1066 page_hashout(pp, (kmutex_t *)NULL);
1067 } else {
1068 page_list_sub(pp, PG_FREE_LIST);
1071 if (iolock)
1072 page_io_lock(pp);
1073 page_list_concat(&plist, &pp);
1076 * exit loop when pgcnt satisfied or segment boundary reached.
1079 } while ((++i < *pgcnt) && ((pfn + i) & pfnseg));
1081 *pfnp += i; /* set to next pfn to search */
1083 if (i >= minctg) {
1084 *pgcnt -= i;
1085 return (plist);
1089 * failure: minctg not satisfied.
1091 * if next request crosses segment boundary, set next pfn
1092 * to search from the segment boundary.
1094 if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg))
1095 *pfnp = roundup(*pfnp, pfnseg + 1);
1097 /* clean up any pages already allocated */
1099 while (plist) {
1100 pp = plist;
1101 page_sub(&plist, pp);
1102 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
1103 if (iolock)
1104 page_io_unlock(pp);
1105 page_unlock(pp);
1108 return (NULL);
1110 #endif /* !__xpv */
1113 * verify that pages being returned from allocator have correct DMA attribute
1115 #ifndef DEBUG
1116 #define check_dma(a, b, c) (void)(0)
1117 #else
1118 static void
1119 check_dma(ddi_dma_attr_t *dma_attr, page_t *pp, int cnt)
1121 if (dma_attr == NULL)
1122 return;
1124 while (cnt-- > 0) {
1125 if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) <
1126 dma_attr->dma_attr_addr_lo)
1127 panic("PFN (pp=%p) below dma_attr_addr_lo", (void *)pp);
1128 if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) >=
1129 dma_attr->dma_attr_addr_hi)
1130 panic("PFN (pp=%p) above dma_attr_addr_hi", (void *)pp);
1131 pp = pp->p_next;
1134 #endif
1136 #if !defined(__xpv)
1137 static page_t *
1138 page_get_contigpage(pgcnt_t *pgcnt, ddi_dma_attr_t *mattr, int iolock)
1140 pfn_t pfn;
1141 int sgllen;
1142 uint64_t pfnseg;
1143 pgcnt_t minctg;
1144 page_t *pplist = NULL, *plist;
1145 uint64_t lo, hi;
1146 pgcnt_t pfnalign = 0;
1147 static pfn_t startpfn;
1148 static pgcnt_t lastctgcnt;
1149 uintptr_t align;
1151 CONTIG_LOCK();
1153 if (mattr) {
1154 lo = mmu_btop((mattr->dma_attr_addr_lo + MMU_PAGEOFFSET));
1155 hi = mmu_btop(mattr->dma_attr_addr_hi);
1156 if (hi >= physmax)
1157 hi = physmax - 1;
1158 sgllen = mattr->dma_attr_sgllen;
1159 pfnseg = mmu_btop(mattr->dma_attr_seg);
1161 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
1162 if (align > MMU_PAGESIZE)
1163 pfnalign = mmu_btop(align);
1166 * in order to satisfy the request, must minimally
1167 * acquire minctg contiguous pages
1169 minctg = howmany(*pgcnt, sgllen);
1171 ASSERT(hi >= lo);
1174 * start from where last searched if the minctg >= lastctgcnt
1176 if (minctg < lastctgcnt || startpfn < lo || startpfn > hi)
1177 startpfn = lo;
1178 } else {
1179 hi = physmax - 1;
1180 lo = 0;
1181 sgllen = 1;
1182 pfnseg = mmu.highest_pfn;
1183 minctg = *pgcnt;
1185 if (minctg < lastctgcnt)
1186 startpfn = lo;
1188 lastctgcnt = minctg;
1190 ASSERT(pfnseg + 1 >= (uint64_t)minctg);
1192 /* conserve 16m memory - start search above 16m when possible */
1193 if (hi > PFN_16M && startpfn < PFN_16M)
1194 startpfn = PFN_16M;
1196 pfn = startpfn;
1197 if (pfnalign)
1198 pfn = P2ROUNDUP(pfn, pfnalign);
1200 while (pfn + minctg - 1 <= hi) {
1202 plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock);
1203 if (plist) {
1204 page_list_concat(&pplist, &plist);
1205 sgllen--;
1207 * return when contig pages no longer needed
1209 if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) {
1210 startpfn = pfn;
1211 CONTIG_UNLOCK();
1212 check_dma(mattr, pplist, *pgcnt);
1213 return (pplist);
1215 minctg = howmany(*pgcnt, sgllen);
1217 if (pfnalign)
1218 pfn = P2ROUNDUP(pfn, pfnalign);
1221 /* cannot find contig pages in specified range */
1222 if (startpfn == lo) {
1223 CONTIG_UNLOCK();
1224 return (NULL);
1227 /* did not start with lo previously */
1228 pfn = lo;
1229 if (pfnalign)
1230 pfn = P2ROUNDUP(pfn, pfnalign);
1232 /* allow search to go above startpfn */
1233 while (pfn < startpfn) {
1235 plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock);
1236 if (plist != NULL) {
1238 page_list_concat(&pplist, &plist);
1239 sgllen--;
1242 * return when contig pages no longer needed
1244 if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) {
1245 startpfn = pfn;
1246 CONTIG_UNLOCK();
1247 check_dma(mattr, pplist, *pgcnt);
1248 return (pplist);
1250 minctg = howmany(*pgcnt, sgllen);
1252 if (pfnalign)
1253 pfn = P2ROUNDUP(pfn, pfnalign);
1255 CONTIG_UNLOCK();
1256 return (NULL);
1258 #endif /* !__xpv */
1261 * mnode_range_cnt() calculates the number of memory ranges for mnode and
1262 * memranges[]. Used to determine the size of page lists and mnoderanges.
1265 mnode_range_cnt(int mnode)
1267 #if defined(__xpv)
1268 ASSERT(mnode == 0);
1269 return (1);
1270 #else /* __xpv */
1271 int mri;
1272 int mnrcnt = 0;
1274 if (mem_node_config[mnode].exists != 0) {
1275 mri = nranges - 1;
1277 /* find the memranges index below contained in mnode range */
1279 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase)
1280 mri--;
1283 * increment mnode range counter when memranges or mnode
1284 * boundary is reached.
1286 while (mri >= 0 &&
1287 mem_node_config[mnode].physmax >= MEMRANGELO(mri)) {
1288 mnrcnt++;
1289 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri))
1290 mri--;
1291 else
1292 break;
1295 ASSERT(mnrcnt <= MAX_MNODE_MRANGES);
1296 return (mnrcnt);
1297 #endif /* __xpv */
1301 * mnode_range_setup() initializes mnoderanges.
1303 void
1304 mnode_range_setup(mnoderange_t *mnoderanges)
1306 mnoderange_t *mp = mnoderanges;
1307 int mnode, mri;
1308 int mindex = 0; /* current index into mnoderanges array */
1309 int i, j;
1310 pfn_t hipfn;
1311 int last, hi;
1313 for (mnode = 0; mnode < max_mem_nodes; mnode++) {
1314 if (mem_node_config[mnode].exists == 0)
1315 continue;
1317 mri = nranges - 1;
1319 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase)
1320 mri--;
1322 while (mri >= 0 && mem_node_config[mnode].physmax >=
1323 MEMRANGELO(mri)) {
1324 mnoderanges->mnr_pfnlo = MAX(MEMRANGELO(mri),
1325 mem_node_config[mnode].physbase);
1326 mnoderanges->mnr_pfnhi = MIN(MEMRANGEHI(mri),
1327 mem_node_config[mnode].physmax);
1328 mnoderanges->mnr_mnode = mnode;
1329 mnoderanges->mnr_memrange = mri;
1330 mnoderanges->mnr_exists = 1;
1331 mnoderanges++;
1332 mindex++;
1333 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri))
1334 mri--;
1335 else
1336 break;
1341 * For now do a simple sort of the mnoderanges array to fill in
1342 * the mnr_next fields. Since mindex is expected to be relatively
1343 * small, using a simple O(N^2) algorithm.
1345 for (i = 0; i < mindex; i++) {
1346 if (mp[i].mnr_pfnlo == 0) /* find lowest */
1347 break;
1349 ASSERT(i < mindex);
1350 last = i;
1351 mtype16m = last;
1352 mp[last].mnr_next = -1;
1353 for (i = 0; i < mindex - 1; i++) {
1354 hipfn = (pfn_t)(-1);
1355 hi = -1;
1356 /* find next highest mnode range */
1357 for (j = 0; j < mindex; j++) {
1358 if (mp[j].mnr_pfnlo > mp[last].mnr_pfnlo &&
1359 mp[j].mnr_pfnlo < hipfn) {
1360 hipfn = mp[j].mnr_pfnlo;
1361 hi = j;
1364 mp[hi].mnr_next = last;
1365 last = hi;
1367 mtypetop = last;
1370 #ifndef __xpv
1372 * Update mnoderanges for memory hot-add DR operations.
1374 static void
1375 mnode_range_add(int mnode)
1377 int *prev;
1378 int n, mri;
1379 pfn_t start, end;
1380 extern void membar_sync(void);
1382 ASSERT(0 <= mnode && mnode < max_mem_nodes);
1383 ASSERT(mem_node_config[mnode].exists);
1384 start = mem_node_config[mnode].physbase;
1385 end = mem_node_config[mnode].physmax;
1386 ASSERT(start <= end);
1387 mutex_enter(&mnoderange_lock);
1389 #ifdef DEBUG
1390 /* Check whether it interleaves with other memory nodes. */
1391 for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) {
1392 ASSERT(mnoderanges[n].mnr_exists);
1393 if (mnoderanges[n].mnr_mnode == mnode)
1394 continue;
1395 ASSERT(start > mnoderanges[n].mnr_pfnhi ||
1396 end < mnoderanges[n].mnr_pfnlo);
1398 #endif /* DEBUG */
1400 mri = nranges - 1;
1401 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase)
1402 mri--;
1403 while (mri >= 0 && mem_node_config[mnode].physmax >= MEMRANGELO(mri)) {
1404 /* Check whether mtype already exists. */
1405 for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) {
1406 if (mnoderanges[n].mnr_mnode == mnode &&
1407 mnoderanges[n].mnr_memrange == mri) {
1408 mnoderanges[n].mnr_pfnlo = MAX(MEMRANGELO(mri),
1409 start);
1410 mnoderanges[n].mnr_pfnhi = MIN(MEMRANGEHI(mri),
1411 end);
1412 break;
1416 /* Add a new entry if it doesn't exist yet. */
1417 if (n == -1) {
1418 /* Try to find an unused entry in mnoderanges array. */
1419 for (n = 0; n < mnoderangecnt; n++) {
1420 if (mnoderanges[n].mnr_exists == 0)
1421 break;
1423 ASSERT(n < mnoderangecnt);
1424 mnoderanges[n].mnr_pfnlo = MAX(MEMRANGELO(mri), start);
1425 mnoderanges[n].mnr_pfnhi = MIN(MEMRANGEHI(mri), end);
1426 mnoderanges[n].mnr_mnode = mnode;
1427 mnoderanges[n].mnr_memrange = mri;
1428 mnoderanges[n].mnr_exists = 1;
1429 /* Page 0 should always be present. */
1430 for (prev = &mtypetop;
1431 mnoderanges[*prev].mnr_pfnlo > start;
1432 prev = &mnoderanges[*prev].mnr_next) {
1433 ASSERT(mnoderanges[*prev].mnr_next >= 0);
1434 ASSERT(mnoderanges[*prev].mnr_pfnlo > end);
1436 mnoderanges[n].mnr_next = *prev;
1437 membar_sync();
1438 *prev = n;
1441 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri))
1442 mri--;
1443 else
1444 break;
1447 mutex_exit(&mnoderange_lock);
1451 * Update mnoderanges for memory hot-removal DR operations.
1453 static void
1454 mnode_range_del(int mnode)
1456 _NOTE(ARGUNUSED(mnode));
1457 ASSERT(0 <= mnode && mnode < max_mem_nodes);
1458 /* TODO: support deletion operation. */
1459 ASSERT(0);
1462 void
1463 plat_slice_add(pfn_t start, pfn_t end)
1465 mem_node_add_slice(start, end);
1466 if (plat_dr_enabled()) {
1467 mnode_range_add(PFN_2_MEM_NODE(start));
1471 void
1472 plat_slice_del(pfn_t start, pfn_t end)
1474 ASSERT(PFN_2_MEM_NODE(start) == PFN_2_MEM_NODE(end));
1475 ASSERT(plat_dr_enabled());
1476 mnode_range_del(PFN_2_MEM_NODE(start));
1477 mem_node_del_slice(start, end);
1479 #endif /* __xpv */
1481 /*ARGSUSED*/
1483 mtype_init(vnode_t *vp, caddr_t vaddr, uint_t *flags, size_t pgsz)
1485 int mtype = mtypetop;
1487 #if !defined(__xpv)
1488 #if defined(__i386)
1490 * set the mtype range
1491 * - kmem requests need to be below 4g if restricted_kmemalloc is set.
1492 * - for non kmem requests, set range to above 4g if memory below 4g
1493 * runs low.
1495 if (restricted_kmemalloc && VN_ISKAS(vp) &&
1496 (caddr_t)(vaddr) >= kernelheap &&
1497 (caddr_t)(vaddr) < ekernelheap) {
1498 ASSERT(physmax4g);
1499 mtype = mtype4g;
1500 if (RESTRICT16M_ALLOC(freemem4g - btop(pgsz),
1501 btop(pgsz), *flags)) {
1502 *flags |= PGI_MT_RANGE16M;
1503 } else {
1504 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt);
1505 VM_STAT_COND_ADD((*flags & PG_PANIC),
1506 vmm_vmstats.pgpanicalloc);
1507 *flags |= PGI_MT_RANGE0;
1509 return (mtype);
1511 #endif /* __i386 */
1513 if (RESTRICT4G_ALLOC) {
1514 VM_STAT_ADD(vmm_vmstats.restrict4gcnt);
1515 /* here only for > 4g systems */
1516 *flags |= PGI_MT_RANGE4G;
1517 } else if (RESTRICT16M_ALLOC(freemem, btop(pgsz), *flags)) {
1518 *flags |= PGI_MT_RANGE16M;
1519 } else {
1520 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt);
1521 VM_STAT_COND_ADD((*flags & PG_PANIC), vmm_vmstats.pgpanicalloc);
1522 *flags |= PGI_MT_RANGE0;
1524 #endif /* !__xpv */
1525 return (mtype);
1529 /* mtype init for page_get_replacement_page */
1530 /*ARGSUSED*/
1532 mtype_pgr_init(int *flags, page_t *pp, int mnode, pgcnt_t pgcnt)
1534 int mtype = mtypetop;
1535 #if !defined(__xpv)
1536 if (RESTRICT16M_ALLOC(freemem, pgcnt, *flags)) {
1537 *flags |= PGI_MT_RANGE16M;
1538 } else {
1539 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt);
1540 *flags |= PGI_MT_RANGE0;
1542 #endif
1543 return (mtype);
1547 * Determine if the mnode range specified in mtype contains memory belonging
1548 * to memory node mnode. If flags & PGI_MT_RANGE is set then mtype contains
1549 * the range from high pfn to 0, 16m or 4g.
1551 * Return first mnode range type index found otherwise return -1 if none found.
1554 mtype_func(int mnode, int mtype, uint_t flags)
1556 if (flags & PGI_MT_RANGE) {
1557 int mnr_lim = MRI_0;
1559 if (flags & PGI_MT_NEXT) {
1560 mtype = mnoderanges[mtype].mnr_next;
1562 if (flags & PGI_MT_RANGE4G)
1563 mnr_lim = MRI_4G; /* exclude 0-4g range */
1564 else if (flags & PGI_MT_RANGE16M)
1565 mnr_lim = MRI_16M; /* exclude 0-16m range */
1566 while (mtype != -1 &&
1567 mnoderanges[mtype].mnr_memrange <= mnr_lim) {
1568 if (mnoderanges[mtype].mnr_mnode == mnode)
1569 return (mtype);
1570 mtype = mnoderanges[mtype].mnr_next;
1572 } else if (mnoderanges[mtype].mnr_mnode == mnode) {
1573 return (mtype);
1575 return (-1);
1579 * Update the page list max counts with the pfn range specified by the
1580 * input parameters.
1582 void
1583 mtype_modify_max(pfn_t startpfn, long cnt)
1585 int mtype;
1586 pgcnt_t inc;
1587 spgcnt_t scnt = (spgcnt_t)(cnt);
1588 pgcnt_t acnt = ABS(scnt);
1589 pfn_t endpfn = startpfn + acnt;
1590 pfn_t pfn, lo;
1592 if (!physmax4g)
1593 return;
1595 mtype = mtypetop;
1596 for (pfn = endpfn; pfn > startpfn; ) {
1597 ASSERT(mtype != -1);
1598 lo = mnoderanges[mtype].mnr_pfnlo;
1599 if (pfn > lo) {
1600 if (startpfn >= lo) {
1601 inc = pfn - startpfn;
1602 } else {
1603 inc = pfn - lo;
1605 if (mnoderanges[mtype].mnr_memrange != MRI_4G) {
1606 if (scnt > 0)
1607 maxmem4g += inc;
1608 else
1609 maxmem4g -= inc;
1611 pfn -= inc;
1613 mtype = mnoderanges[mtype].mnr_next;
1618 mtype_2_mrange(int mtype)
1620 return (mnoderanges[mtype].mnr_memrange);
1623 void
1624 mnodetype_2_pfn(int mnode, int mtype, pfn_t *pfnlo, pfn_t *pfnhi)
1626 _NOTE(ARGUNUSED(mnode));
1627 ASSERT(mnoderanges[mtype].mnr_mnode == mnode);
1628 *pfnlo = mnoderanges[mtype].mnr_pfnlo;
1629 *pfnhi = mnoderanges[mtype].mnr_pfnhi;
1632 size_t
1633 plcnt_sz(size_t ctrs_sz)
1635 #ifdef DEBUG
1636 int szc, colors;
1638 ctrs_sz += mnoderangecnt * sizeof (struct mnr_mts) * mmu_page_sizes;
1639 for (szc = 0; szc < mmu_page_sizes; szc++) {
1640 colors = page_get_pagecolors(szc);
1641 ctrs_sz += mnoderangecnt * sizeof (pgcnt_t) * colors;
1643 #endif
1644 return (ctrs_sz);
1647 caddr_t
1648 plcnt_init(caddr_t addr)
1650 #ifdef DEBUG
1651 int mt, szc, colors;
1653 for (mt = 0; mt < mnoderangecnt; mt++) {
1654 mnoderanges[mt].mnr_mts = (struct mnr_mts *)addr;
1655 addr += (sizeof (struct mnr_mts) * mmu_page_sizes);
1656 for (szc = 0; szc < mmu_page_sizes; szc++) {
1657 colors = page_get_pagecolors(szc);
1658 mnoderanges[mt].mnr_mts[szc].mnr_mts_colors = colors;
1659 mnoderanges[mt].mnr_mts[szc].mnr_mtsc_pgcnt =
1660 (pgcnt_t *)addr;
1661 addr += (sizeof (pgcnt_t) * colors);
1664 #endif
1665 return (addr);
1668 void
1669 plcnt_inc_dec(page_t *pp, int mtype, int szc, long cnt, int flags)
1671 _NOTE(ARGUNUSED(pp));
1672 #ifdef DEBUG
1673 int bin = PP_2_BIN(pp);
1675 atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mts_pgcnt, cnt);
1676 atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mtsc_pgcnt[bin],
1677 cnt);
1678 #endif
1679 ASSERT(mtype == PP_2_MTYPE(pp));
1680 if (physmax4g && mnoderanges[mtype].mnr_memrange != MRI_4G)
1681 atomic_add_long(&freemem4g, cnt);
1682 if (flags & PG_CACHE_LIST)
1683 atomic_add_long(&mnoderanges[mtype].mnr_mt_clpgcnt, cnt);
1684 else
1685 atomic_add_long(&mnoderanges[mtype].mnr_mt_flpgcnt[szc], cnt);
1686 atomic_add_long(&mnoderanges[mtype].mnr_mt_totcnt, cnt);
1690 * Returns the free page count for mnode
1693 mnode_pgcnt(int mnode)
1695 int mtype = mtypetop;
1696 int flags = PGI_MT_RANGE0;
1697 pgcnt_t pgcnt = 0;
1699 mtype = mtype_func(mnode, mtype, flags);
1701 while (mtype != -1) {
1702 pgcnt += MTYPE_FREEMEM(mtype);
1703 mtype = mtype_func(mnode, mtype, flags | PGI_MT_NEXT);
1705 return (pgcnt);
1709 * Initialize page coloring variables based on the l2 cache parameters.
1710 * Calculate and return memory needed for page coloring data structures.
1712 size_t
1713 page_coloring_init(uint_t l2_sz, int l2_linesz, int l2_assoc)
1715 _NOTE(ARGUNUSED(l2_linesz));
1716 size_t colorsz = 0;
1717 int i;
1718 int colors;
1720 #if defined(__xpv)
1722 * Hypervisor domains currently don't have any concept of NUMA.
1723 * Hence we'll act like there is only 1 memrange.
1725 i = memrange_num(1);
1726 #else /* !__xpv */
1728 * Reduce the memory ranges lists if we don't have large amounts
1729 * of memory. This avoids searching known empty free lists.
1730 * To support memory DR operations, we need to keep memory ranges
1731 * for possible memory hot-add operations.
1733 if (plat_dr_physmax > physmax)
1734 i = memrange_num(plat_dr_physmax);
1735 else
1736 i = memrange_num(physmax);
1737 #if defined(__i386)
1738 if (i > MRI_4G)
1739 restricted_kmemalloc = 0;
1740 #endif
1741 /* physmax greater than 4g */
1742 if (i == MRI_4G)
1743 physmax4g = 1;
1744 #endif /* !__xpv */
1745 memranges += i;
1746 nranges -= i;
1748 ASSERT(mmu_page_sizes <= MMU_PAGE_SIZES);
1750 ASSERT(ISP2(l2_linesz));
1751 ASSERT(l2_sz > MMU_PAGESIZE);
1753 /* l2_assoc is 0 for fully associative l2 cache */
1754 if (l2_assoc)
1755 l2_colors = MAX(1, l2_sz / (l2_assoc * MMU_PAGESIZE));
1756 else
1757 l2_colors = 1;
1759 ASSERT(ISP2(l2_colors));
1761 /* for scalability, configure at least PAGE_COLORS_MIN color bins */
1762 page_colors = MAX(l2_colors, PAGE_COLORS_MIN);
1765 * cpu_page_colors is non-zero when a page color may be spread across
1766 * multiple bins.
1768 if (l2_colors < page_colors)
1769 cpu_page_colors = l2_colors;
1771 ASSERT(ISP2(page_colors));
1773 page_colors_mask = page_colors - 1;
1775 ASSERT(ISP2(CPUSETSIZE()));
1776 page_coloring_shift = lowbit(CPUSETSIZE());
1778 /* initialize number of colors per page size */
1779 for (i = 0; i <= mmu.max_page_level; i++) {
1780 hw_page_array[i].hp_size = LEVEL_SIZE(i);
1781 hw_page_array[i].hp_shift = LEVEL_SHIFT(i);
1782 hw_page_array[i].hp_pgcnt = LEVEL_SIZE(i) >> LEVEL_SHIFT(0);
1783 hw_page_array[i].hp_colors = (page_colors_mask >>
1784 (hw_page_array[i].hp_shift - hw_page_array[0].hp_shift))
1785 + 1;
1786 colorequivszc[i] = 0;
1790 * The value of cpu_page_colors determines if additional color bins
1791 * need to be checked for a particular color in the page_get routines.
1793 if (cpu_page_colors != 0) {
1795 int a = lowbit(page_colors) - lowbit(cpu_page_colors);
1796 ASSERT(a > 0);
1797 ASSERT(a < 16);
1799 for (i = 0; i <= mmu.max_page_level; i++) {
1800 if ((colors = hw_page_array[i].hp_colors) <= 1) {
1801 colorequivszc[i] = 0;
1802 continue;
1804 while ((colors >> a) == 0)
1805 a--;
1806 ASSERT(a >= 0);
1808 /* higher 4 bits encodes color equiv mask */
1809 colorequivszc[i] = (a << 4);
1813 /* factor in colorequiv to check additional 'equivalent' bins. */
1814 if (colorequiv > 1) {
1816 int a = lowbit(colorequiv) - 1;
1817 if (a > 15)
1818 a = 15;
1820 for (i = 0; i <= mmu.max_page_level; i++) {
1821 if ((colors = hw_page_array[i].hp_colors) <= 1) {
1822 continue;
1824 while ((colors >> a) == 0)
1825 a--;
1826 if ((a << 4) > colorequivszc[i]) {
1827 colorequivszc[i] = (a << 4);
1832 /* size for mnoderanges */
1833 for (mnoderangecnt = 0, i = 0; i < max_mem_nodes; i++)
1834 mnoderangecnt += mnode_range_cnt(i);
1835 if (plat_dr_support_memory()) {
1837 * Reserve enough space for memory DR operations.
1838 * Two extra mnoderanges for possbile fragmentations,
1839 * one for the 2G boundary and the other for the 4G boundary.
1840 * We don't expect a memory board crossing the 16M boundary
1841 * for memory hot-add operations on x86 platforms.
1843 mnoderangecnt += 2 + max_mem_nodes - lgrp_plat_node_cnt;
1845 colorsz = mnoderangecnt * sizeof (mnoderange_t);
1847 /* size for fpc_mutex and cpc_mutex */
1848 colorsz += (2 * max_mem_nodes * sizeof (kmutex_t) * NPC_MUTEX);
1850 /* size of page_freelists */
1851 colorsz += mnoderangecnt * sizeof (page_t ***);
1852 colorsz += mnoderangecnt * mmu_page_sizes * sizeof (page_t **);
1854 for (i = 0; i < mmu_page_sizes; i++) {
1855 colors = page_get_pagecolors(i);
1856 colorsz += mnoderangecnt * colors * sizeof (page_t *);
1859 /* size of page_cachelists */
1860 colorsz += mnoderangecnt * sizeof (page_t **);
1861 colorsz += mnoderangecnt * page_colors * sizeof (page_t *);
1863 return (colorsz);
1867 * Called once at startup to configure page_coloring data structures and
1868 * does the 1st page_free()/page_freelist_add().
1870 void
1871 page_coloring_setup(caddr_t pcmemaddr)
1873 int i;
1874 int j;
1875 int k;
1876 caddr_t addr;
1877 int colors;
1880 * do page coloring setup
1882 addr = pcmemaddr;
1884 mnoderanges = (mnoderange_t *)addr;
1885 addr += (mnoderangecnt * sizeof (mnoderange_t));
1887 mnode_range_setup(mnoderanges);
1889 if (physmax4g)
1890 mtype4g = pfn_2_mtype(0xfffff);
1892 for (k = 0; k < NPC_MUTEX; k++) {
1893 fpc_mutex[k] = (kmutex_t *)addr;
1894 addr += (max_mem_nodes * sizeof (kmutex_t));
1896 for (k = 0; k < NPC_MUTEX; k++) {
1897 cpc_mutex[k] = (kmutex_t *)addr;
1898 addr += (max_mem_nodes * sizeof (kmutex_t));
1900 page_freelists = (page_t ****)addr;
1901 addr += (mnoderangecnt * sizeof (page_t ***));
1903 page_cachelists = (page_t ***)addr;
1904 addr += (mnoderangecnt * sizeof (page_t **));
1906 for (i = 0; i < mnoderangecnt; i++) {
1907 page_freelists[i] = (page_t ***)addr;
1908 addr += (mmu_page_sizes * sizeof (page_t **));
1910 for (j = 0; j < mmu_page_sizes; j++) {
1911 colors = page_get_pagecolors(j);
1912 page_freelists[i][j] = (page_t **)addr;
1913 addr += (colors * sizeof (page_t *));
1915 page_cachelists[i] = (page_t **)addr;
1916 addr += (page_colors * sizeof (page_t *));
1920 #if defined(__xpv)
1922 * Give back 10% of the io_pool pages to the free list.
1923 * Don't shrink the pool below some absolute minimum.
1925 static void
1926 page_io_pool_shrink()
1928 int retcnt;
1929 page_t *pp, *pp_first, *pp_last, **curpool;
1930 mfn_t mfn;
1931 int bothpools = 0;
1933 mutex_enter(&io_pool_lock);
1934 io_pool_shrink_attempts++; /* should be a kstat? */
1935 retcnt = io_pool_cnt / 10;
1936 if (io_pool_cnt - retcnt < io_pool_cnt_min)
1937 retcnt = io_pool_cnt - io_pool_cnt_min;
1938 if (retcnt <= 0)
1939 goto done;
1940 io_pool_shrinks++; /* should be a kstat? */
1941 curpool = &io_pool_4g;
1942 domore:
1944 * Loop through taking pages from the end of the list
1945 * (highest mfns) till amount to return reached.
1947 for (pp = *curpool; pp && retcnt > 0; ) {
1948 pp_first = pp_last = pp->p_prev;
1949 if (pp_first == *curpool)
1950 break;
1951 retcnt--;
1952 io_pool_cnt--;
1953 page_io_pool_sub(curpool, pp_first, pp_last);
1954 if ((mfn = pfn_to_mfn(pp->p_pagenum)) < start_mfn)
1955 start_mfn = mfn;
1956 page_free(pp_first, 1);
1957 pp = *curpool;
1959 if (retcnt != 0 && !bothpools) {
1961 * If not enough found in less constrained pool try the
1962 * more constrained one.
1964 curpool = &io_pool_16m;
1965 bothpools = 1;
1966 goto domore;
1968 done:
1969 mutex_exit(&io_pool_lock);
1972 #endif /* __xpv */
1974 uint_t
1975 page_create_update_flags_x86(uint_t flags)
1977 #if defined(__xpv)
1979 * Check this is an urgent allocation and free pages are depleted.
1981 if (!(flags & PG_WAIT) && freemem < desfree)
1982 page_io_pool_shrink();
1983 #else /* !__xpv */
1985 * page_create_get_something may call this because 4g memory may be
1986 * depleted. Set flags to allow for relocation of base page below
1987 * 4g if necessary.
1989 if (physmax4g)
1990 flags |= (PGI_PGCPSZC0 | PGI_PGCPHIPRI);
1991 #endif /* __xpv */
1992 return (flags);
1995 /*ARGSUSED*/
1997 bp_color(struct buf *bp)
1999 return (0);
2002 #if defined(__xpv)
2005 * Take pages out of an io_pool
2007 static void
2008 page_io_pool_sub(page_t **poolp, page_t *pp_first, page_t *pp_last)
2010 if (*poolp == pp_first) {
2011 *poolp = pp_last->p_next;
2012 if (*poolp == pp_first)
2013 *poolp = NULL;
2015 pp_first->p_prev->p_next = pp_last->p_next;
2016 pp_last->p_next->p_prev = pp_first->p_prev;
2017 pp_first->p_prev = pp_last;
2018 pp_last->p_next = pp_first;
2022 * Put a page on the io_pool list. The list is ordered by increasing MFN.
2024 static void
2025 page_io_pool_add(page_t **poolp, page_t *pp)
2027 page_t *look;
2028 mfn_t mfn = mfn_list[pp->p_pagenum];
2030 if (*poolp == NULL) {
2031 *poolp = pp;
2032 pp->p_next = pp;
2033 pp->p_prev = pp;
2034 return;
2038 * Since we try to take pages from the high end of the pool
2039 * chances are good that the pages to be put on the list will
2040 * go at or near the end of the list. so start at the end and
2041 * work backwards.
2043 look = (*poolp)->p_prev;
2044 while (mfn < mfn_list[look->p_pagenum]) {
2045 look = look->p_prev;
2046 if (look == (*poolp)->p_prev)
2047 break; /* backed all the way to front of list */
2050 /* insert after look */
2051 pp->p_prev = look;
2052 pp->p_next = look->p_next;
2053 pp->p_next->p_prev = pp;
2054 look->p_next = pp;
2055 if (mfn < mfn_list[(*poolp)->p_pagenum]) {
2057 * we inserted a new first list element
2058 * adjust pool pointer to newly inserted element
2060 *poolp = pp;
2065 * Add a page to the io_pool. Setting the force flag will force the page
2066 * into the io_pool no matter what.
2068 static void
2069 add_page_to_pool(page_t *pp, int force)
2071 page_t *highest;
2072 page_t *freep = NULL;
2074 mutex_enter(&io_pool_lock);
2076 * Always keep the scarce low memory pages
2078 if (mfn_list[pp->p_pagenum] < PFN_16MEG) {
2079 ++io_pool_cnt;
2080 page_io_pool_add(&io_pool_16m, pp);
2081 goto done;
2083 if (io_pool_cnt < io_pool_cnt_max || force || io_pool_4g == NULL) {
2084 ++io_pool_cnt;
2085 page_io_pool_add(&io_pool_4g, pp);
2086 } else {
2087 highest = io_pool_4g->p_prev;
2088 if (mfn_list[pp->p_pagenum] < mfn_list[highest->p_pagenum]) {
2089 page_io_pool_sub(&io_pool_4g, highest, highest);
2090 page_io_pool_add(&io_pool_4g, pp);
2091 freep = highest;
2092 } else {
2093 freep = pp;
2096 done:
2097 mutex_exit(&io_pool_lock);
2098 if (freep)
2099 page_free(freep, 1);
2103 int contig_pfn_cnt; /* no of pfns in the contig pfn list */
2104 int contig_pfn_max; /* capacity of the contig pfn list */
2105 int next_alloc_pfn; /* next position in list to start a contig search */
2106 int contig_pfnlist_updates; /* pfn list update count */
2107 int contig_pfnlist_builds; /* how many times have we (re)built list */
2108 int contig_pfnlist_buildfailed; /* how many times has list build failed */
2109 int create_contig_pending; /* nonzero means taskq creating contig list */
2110 pfn_t *contig_pfn_list = NULL; /* list of contig pfns in ascending mfn order */
2113 * Function to use in sorting a list of pfns by their underlying mfns.
2115 static int
2116 mfn_compare(const void *pfnp1, const void *pfnp2)
2118 mfn_t mfn1 = mfn_list[*(pfn_t *)pfnp1];
2119 mfn_t mfn2 = mfn_list[*(pfn_t *)pfnp2];
2121 if (mfn1 > mfn2)
2122 return (1);
2123 if (mfn1 < mfn2)
2124 return (-1);
2125 return (0);
2129 * Compact the contig_pfn_list by tossing all the non-contiguous
2130 * elements from the list.
2132 static void
2133 compact_contig_pfn_list(void)
2135 pfn_t pfn, lapfn, prev_lapfn;
2136 mfn_t mfn;
2137 int i, newcnt = 0;
2139 prev_lapfn = 0;
2140 for (i = 0; i < contig_pfn_cnt - 1; i++) {
2141 pfn = contig_pfn_list[i];
2142 lapfn = contig_pfn_list[i + 1];
2143 mfn = mfn_list[pfn];
2145 * See if next pfn is for a contig mfn
2147 if (mfn_list[lapfn] != mfn + 1)
2148 continue;
2150 * pfn and lookahead are both put in list
2151 * unless pfn is the previous lookahead.
2153 if (pfn != prev_lapfn)
2154 contig_pfn_list[newcnt++] = pfn;
2155 contig_pfn_list[newcnt++] = lapfn;
2156 prev_lapfn = lapfn;
2158 for (i = newcnt; i < contig_pfn_cnt; i++)
2159 contig_pfn_list[i] = 0;
2160 contig_pfn_cnt = newcnt;
2163 /*ARGSUSED*/
2164 static void
2165 call_create_contiglist(void *arg)
2167 (void) create_contig_pfnlist(PG_WAIT);
2171 * Create list of freelist pfns that have underlying
2172 * contiguous mfns. The list is kept in ascending mfn order.
2173 * returns 1 if list created else 0.
2175 static int
2176 create_contig_pfnlist(uint_t flags)
2178 pfn_t pfn;
2179 page_t *pp;
2180 int ret = 1;
2182 mutex_enter(&contig_list_lock);
2183 if (contig_pfn_list != NULL)
2184 goto out;
2185 contig_pfn_max = freemem + (freemem / 10);
2186 contig_pfn_list = kmem_zalloc(contig_pfn_max * sizeof (pfn_t),
2187 (flags & PG_WAIT) ? KM_SLEEP : KM_NOSLEEP);
2188 if (contig_pfn_list == NULL) {
2190 * If we could not create the contig list (because
2191 * we could not sleep for memory). Dispatch a taskq that can
2192 * sleep to get the memory.
2194 if (!create_contig_pending) {
2195 if (taskq_dispatch(system_taskq, call_create_contiglist,
2196 NULL, TQ_NOSLEEP) != NULL)
2197 create_contig_pending = 1;
2199 contig_pfnlist_buildfailed++; /* count list build failures */
2200 ret = 0;
2201 goto out;
2203 create_contig_pending = 0;
2204 ASSERT(contig_pfn_cnt == 0);
2205 for (pfn = 0; pfn < mfn_count; pfn++) {
2206 pp = page_numtopp_nolock(pfn);
2207 if (pp == NULL || !PP_ISFREE(pp))
2208 continue;
2209 contig_pfn_list[contig_pfn_cnt] = pfn;
2210 if (++contig_pfn_cnt == contig_pfn_max)
2211 break;
2214 * Sanity check the new list.
2216 if (contig_pfn_cnt < 2) { /* no contig pfns */
2217 contig_pfn_cnt = 0;
2218 contig_pfnlist_buildfailed++;
2219 kmem_free(contig_pfn_list, contig_pfn_max * sizeof (pfn_t));
2220 contig_pfn_list = NULL;
2221 contig_pfn_max = 0;
2222 ret = 0;
2223 goto out;
2225 qsort(contig_pfn_list, contig_pfn_cnt, sizeof (pfn_t), mfn_compare);
2226 compact_contig_pfn_list();
2228 * Make sure next search of the newly created contiguous pfn
2229 * list starts at the beginning of the list.
2231 next_alloc_pfn = 0;
2232 contig_pfnlist_builds++; /* count list builds */
2233 out:
2234 mutex_exit(&contig_list_lock);
2235 return (ret);
2240 * Toss the current contig pfnlist. Someone is about to do a massive
2241 * update to pfn<->mfn mappings. So we have them destroy the list and lock
2242 * it till they are done with their update.
2244 void
2245 clear_and_lock_contig_pfnlist()
2247 pfn_t *listp = NULL;
2248 size_t listsize;
2250 mutex_enter(&contig_list_lock);
2251 if (contig_pfn_list != NULL) {
2252 listp = contig_pfn_list;
2253 listsize = contig_pfn_max * sizeof (pfn_t);
2254 contig_pfn_list = NULL;
2255 contig_pfn_max = contig_pfn_cnt = 0;
2257 if (listp != NULL)
2258 kmem_free(listp, listsize);
2262 * Unlock the contig_pfn_list. The next attempted use of it will cause
2263 * it to be re-created.
2265 void
2266 unlock_contig_pfnlist()
2268 mutex_exit(&contig_list_lock);
2272 * Update the contiguous pfn list in response to a pfn <-> mfn reassignment
2274 void
2275 update_contig_pfnlist(pfn_t pfn, mfn_t oldmfn, mfn_t newmfn)
2277 int probe_hi, probe_lo, probe_pos, insert_after, insert_point;
2278 pfn_t probe_pfn;
2279 mfn_t probe_mfn;
2280 int drop_lock = 0;
2282 if (mutex_owner(&contig_list_lock) != curthread) {
2283 drop_lock = 1;
2284 mutex_enter(&contig_list_lock);
2286 if (contig_pfn_list == NULL)
2287 goto done;
2288 contig_pfnlist_updates++;
2290 * Find the pfn in the current list. Use a binary chop to locate it.
2292 probe_hi = contig_pfn_cnt - 1;
2293 probe_lo = 0;
2294 probe_pos = (probe_hi + probe_lo) / 2;
2295 while ((probe_pfn = contig_pfn_list[probe_pos]) != pfn) {
2296 if (probe_pos == probe_lo) { /* pfn not in list */
2297 probe_pos = -1;
2298 break;
2300 if (pfn_to_mfn(probe_pfn) <= oldmfn)
2301 probe_lo = probe_pos;
2302 else
2303 probe_hi = probe_pos;
2304 probe_pos = (probe_hi + probe_lo) / 2;
2306 if (probe_pos >= 0) {
2308 * Remove pfn from list and ensure next alloc
2309 * position stays in bounds.
2311 if (--contig_pfn_cnt <= next_alloc_pfn)
2312 next_alloc_pfn = 0;
2313 if (contig_pfn_cnt < 2) { /* no contig pfns */
2314 contig_pfn_cnt = 0;
2315 kmem_free(contig_pfn_list,
2316 contig_pfn_max * sizeof (pfn_t));
2317 contig_pfn_list = NULL;
2318 contig_pfn_max = 0;
2319 goto done;
2321 ovbcopy(&contig_pfn_list[probe_pos + 1],
2322 &contig_pfn_list[probe_pos],
2323 (contig_pfn_cnt - probe_pos) * sizeof (pfn_t));
2325 if (newmfn == MFN_INVALID)
2326 goto done;
2328 * Check if new mfn has adjacent mfns in the list
2330 probe_hi = contig_pfn_cnt - 1;
2331 probe_lo = 0;
2332 insert_after = -2;
2333 do {
2334 probe_pos = (probe_hi + probe_lo) / 2;
2335 probe_mfn = pfn_to_mfn(contig_pfn_list[probe_pos]);
2336 if (newmfn == probe_mfn + 1)
2337 insert_after = probe_pos;
2338 else if (newmfn == probe_mfn - 1)
2339 insert_after = probe_pos - 1;
2340 if (probe_pos == probe_lo)
2341 break;
2342 if (probe_mfn <= newmfn)
2343 probe_lo = probe_pos;
2344 else
2345 probe_hi = probe_pos;
2346 } while (insert_after == -2);
2348 * If there is space in the list and there are adjacent mfns
2349 * insert the pfn in to its proper place in the list.
2351 if (insert_after != -2 && contig_pfn_cnt + 1 <= contig_pfn_max) {
2352 insert_point = insert_after + 1;
2353 ovbcopy(&contig_pfn_list[insert_point],
2354 &contig_pfn_list[insert_point + 1],
2355 (contig_pfn_cnt - insert_point) * sizeof (pfn_t));
2356 contig_pfn_list[insert_point] = pfn;
2357 contig_pfn_cnt++;
2359 done:
2360 if (drop_lock)
2361 mutex_exit(&contig_list_lock);
2365 * Called to (re-)populate the io_pool from the free page lists.
2367 long
2368 populate_io_pool(void)
2370 pfn_t pfn;
2371 mfn_t mfn, max_mfn;
2372 page_t *pp;
2375 * Figure out the bounds of the pool on first invocation.
2376 * We use a percentage of memory for the io pool size.
2377 * we allow that to shrink, but not to less than a fixed minimum
2379 if (io_pool_cnt_max == 0) {
2380 io_pool_cnt_max = physmem / (100 / io_pool_physmem_pct);
2381 io_pool_cnt_lowater = io_pool_cnt_max;
2383 * This is the first time in populate_io_pool, grab a va to use
2384 * when we need to allocate pages.
2386 io_pool_kva = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP);
2389 * If we are out of pages in the pool, then grow the size of the pool
2391 if (io_pool_cnt == 0) {
2393 * Grow the max size of the io pool by 5%, but never more than
2394 * 25% of physical memory.
2396 if (io_pool_cnt_max < physmem / 4)
2397 io_pool_cnt_max += io_pool_cnt_max / 20;
2399 io_pool_grows++; /* should be a kstat? */
2402 * Get highest mfn on this platform, but limit to the 32 bit DMA max.
2404 (void) mfn_to_pfn(start_mfn);
2405 max_mfn = MIN(cached_max_mfn, PFN_4GIG);
2406 for (mfn = start_mfn; mfn < max_mfn; start_mfn = ++mfn) {
2407 pfn = mfn_to_pfn(mfn);
2408 if (pfn & PFN_IS_FOREIGN_MFN)
2409 continue;
2411 * try to allocate it from free pages
2413 pp = page_numtopp_alloc(pfn);
2414 if (pp == NULL)
2415 continue;
2416 PP_CLRFREE(pp);
2417 add_page_to_pool(pp, 1);
2418 if (io_pool_cnt >= io_pool_cnt_max)
2419 break;
2422 return (io_pool_cnt);
2426 * Destroy a page that was being used for DMA I/O. It may or
2427 * may not actually go back to the io_pool.
2429 void
2430 page_destroy_io(page_t *pp)
2432 mfn_t mfn = mfn_list[pp->p_pagenum];
2435 * When the page was alloc'd a reservation was made, release it now
2437 page_unresv(1);
2439 * Unload translations, if any, then hash out the
2440 * page to erase its identity.
2442 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
2443 page_hashout(pp, NULL);
2446 * If the page came from the free lists, just put it back to them.
2447 * DomU pages always go on the free lists as well.
2449 if (!DOMAIN_IS_INITDOMAIN(xen_info) || mfn >= PFN_4GIG) {
2450 page_free(pp, 1);
2451 return;
2454 add_page_to_pool(pp, 0);
2458 long contig_searches; /* count of times contig pages requested */
2459 long contig_search_restarts; /* count of contig ranges tried */
2460 long contig_search_failed; /* count of contig alloc failures */
2463 * Free partial page list
2465 static void
2466 free_partial_list(page_t **pplist)
2468 page_t *pp;
2470 while (*pplist != NULL) {
2471 pp = *pplist;
2472 page_io_pool_sub(pplist, pp, pp);
2473 page_free(pp, 1);
2478 * Look thru the contiguous pfns that are not part of the io_pool for
2479 * contiguous free pages. Return a list of the found pages or NULL.
2481 page_t *
2482 find_contig_free(uint_t npages, uint_t flags, uint64_t pfnseg,
2483 pgcnt_t pfnalign)
2485 page_t *pp, *plist = NULL;
2486 mfn_t mfn, prev_mfn, start_mfn;
2487 pfn_t pfn;
2488 int pages_needed, pages_requested;
2489 int search_start;
2492 * create the contig pfn list if not already done
2494 retry:
2495 mutex_enter(&contig_list_lock);
2496 if (contig_pfn_list == NULL) {
2497 mutex_exit(&contig_list_lock);
2498 if (!create_contig_pfnlist(flags)) {
2499 return (NULL);
2501 goto retry;
2503 contig_searches++;
2505 * Search contiguous pfn list for physically contiguous pages not in
2506 * the io_pool. Start the search where the last search left off.
2508 pages_requested = pages_needed = npages;
2509 search_start = next_alloc_pfn;
2510 start_mfn = prev_mfn = 0;
2511 while (pages_needed) {
2512 pfn = contig_pfn_list[next_alloc_pfn];
2513 mfn = pfn_to_mfn(pfn);
2515 * Check if mfn is first one or contig to previous one and
2516 * if page corresponding to mfn is free and that mfn
2517 * range is not crossing a segment boundary.
2519 if ((prev_mfn == 0 || mfn == prev_mfn + 1) &&
2520 (pp = page_numtopp_alloc(pfn)) != NULL &&
2521 !((mfn & pfnseg) < (start_mfn & pfnseg))) {
2522 PP_CLRFREE(pp);
2523 page_io_pool_add(&plist, pp);
2524 pages_needed--;
2525 if (prev_mfn == 0) {
2526 if (pfnalign &&
2527 mfn != P2ROUNDUP(mfn, pfnalign)) {
2529 * not properly aligned
2531 contig_search_restarts++;
2532 free_partial_list(&plist);
2533 pages_needed = pages_requested;
2534 start_mfn = prev_mfn = 0;
2535 goto skip;
2537 start_mfn = mfn;
2539 prev_mfn = mfn;
2540 } else {
2541 contig_search_restarts++;
2542 free_partial_list(&plist);
2543 pages_needed = pages_requested;
2544 start_mfn = prev_mfn = 0;
2546 skip:
2547 if (++next_alloc_pfn == contig_pfn_cnt)
2548 next_alloc_pfn = 0;
2549 if (next_alloc_pfn == search_start)
2550 break; /* all pfns searched */
2552 mutex_exit(&contig_list_lock);
2553 if (pages_needed) {
2554 contig_search_failed++;
2556 * Failed to find enough contig pages.
2557 * free partial page list
2559 free_partial_list(&plist);
2561 return (plist);
2565 * Search the reserved io pool pages for a page range with the
2566 * desired characteristics.
2568 page_t *
2569 page_io_pool_alloc(ddi_dma_attr_t *mattr, int contig, pgcnt_t minctg)
2571 page_t *pp_first, *pp_last;
2572 page_t *pp, **poolp;
2573 pgcnt_t nwanted, pfnalign;
2574 uint64_t pfnseg;
2575 mfn_t mfn, tmfn, hi_mfn, lo_mfn;
2576 int align, attempt = 0;
2578 if (minctg == 1)
2579 contig = 0;
2580 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo);
2581 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi);
2582 pfnseg = mmu_btop(mattr->dma_attr_seg);
2583 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
2584 if (align > MMU_PAGESIZE)
2585 pfnalign = mmu_btop(align);
2586 else
2587 pfnalign = 0;
2589 try_again:
2591 * See if we want pages for a legacy device
2593 if (hi_mfn < PFN_16MEG)
2594 poolp = &io_pool_16m;
2595 else
2596 poolp = &io_pool_4g;
2597 try_smaller:
2599 * Take pages from I/O pool. We'll use pages from the highest
2600 * MFN range possible.
2602 pp_first = pp_last = NULL;
2603 mutex_enter(&io_pool_lock);
2604 nwanted = minctg;
2605 for (pp = *poolp; pp && nwanted > 0; ) {
2606 pp = pp->p_prev;
2609 * skip pages above allowable range
2611 mfn = mfn_list[pp->p_pagenum];
2612 if (hi_mfn < mfn)
2613 goto skip;
2616 * stop at pages below allowable range
2618 if (lo_mfn > mfn)
2619 break;
2620 restart:
2621 if (pp_last == NULL) {
2623 * Check alignment
2625 tmfn = mfn - (minctg - 1);
2626 if (pfnalign && tmfn != P2ROUNDUP(tmfn, pfnalign))
2627 goto skip; /* not properly aligned */
2629 * Check segment
2631 if ((mfn & pfnseg) < (tmfn & pfnseg))
2632 goto skip; /* crosses seg boundary */
2634 * Start building page list
2636 pp_first = pp_last = pp;
2637 nwanted--;
2638 } else {
2640 * check physical contiguity if required
2642 if (contig &&
2643 mfn_list[pp_first->p_pagenum] != mfn + 1) {
2645 * not a contiguous page, restart list.
2647 pp_last = NULL;
2648 nwanted = minctg;
2649 goto restart;
2650 } else { /* add page to list */
2651 pp_first = pp;
2652 nwanted--;
2655 skip:
2656 if (pp == *poolp)
2657 break;
2661 * If we didn't find memory. Try the more constrained pool, then
2662 * sweep free pages into the DMA pool and try again.
2664 if (nwanted != 0) {
2665 mutex_exit(&io_pool_lock);
2667 * If we were looking in the less constrained pool and
2668 * didn't find pages, try the more constrained pool.
2670 if (poolp == &io_pool_4g) {
2671 poolp = &io_pool_16m;
2672 goto try_smaller;
2674 kmem_reap();
2675 if (++attempt < 4) {
2677 * Grab some more io_pool pages
2679 (void) populate_io_pool();
2680 goto try_again; /* go around and retry */
2682 return (NULL);
2685 * Found the pages, now snip them from the list
2687 page_io_pool_sub(poolp, pp_first, pp_last);
2688 io_pool_cnt -= minctg;
2690 * reset low water mark
2692 if (io_pool_cnt < io_pool_cnt_lowater)
2693 io_pool_cnt_lowater = io_pool_cnt;
2694 mutex_exit(&io_pool_lock);
2695 return (pp_first);
2698 page_t *
2699 page_swap_with_hypervisor(struct vnode *vp, u_offset_t off, caddr_t vaddr,
2700 ddi_dma_attr_t *mattr, uint_t flags, pgcnt_t minctg)
2702 uint_t kflags;
2703 int order, extra, extpages, i, contig, nbits, extents;
2704 page_t *pp, *expp, *pp_first, **pplist = NULL;
2705 mfn_t *mfnlist = NULL;
2707 contig = flags & PG_PHYSCONTIG;
2708 if (minctg == 1)
2709 contig = 0;
2710 flags &= ~PG_PHYSCONTIG;
2711 kflags = flags & PG_WAIT ? KM_SLEEP : KM_NOSLEEP;
2713 * Hypervisor will allocate extents, if we want contig
2714 * pages extent must be >= minctg
2716 if (contig) {
2717 order = highbit(minctg) - 1;
2718 if (minctg & ((1 << order) - 1))
2719 order++;
2720 extpages = 1 << order;
2721 } else {
2722 order = 0;
2723 extpages = minctg;
2725 if (extpages > minctg) {
2726 extra = extpages - minctg;
2727 if (!page_resv(extra, kflags))
2728 return (NULL);
2730 pp_first = NULL;
2731 pplist = kmem_alloc(extpages * sizeof (page_t *), kflags);
2732 if (pplist == NULL)
2733 goto balloon_fail;
2734 mfnlist = kmem_alloc(extpages * sizeof (mfn_t), kflags);
2735 if (mfnlist == NULL)
2736 goto balloon_fail;
2737 pp = page_create_va(vp, off, minctg * PAGESIZE, flags, &kvseg, vaddr);
2738 if (pp == NULL)
2739 goto balloon_fail;
2740 pp_first = pp;
2741 if (extpages > minctg) {
2743 * fill out the rest of extent pages to swap
2744 * with the hypervisor
2746 for (i = 0; i < extra; i++) {
2747 expp = page_create_va(vp,
2748 (u_offset_t)(uintptr_t)io_pool_kva,
2749 PAGESIZE, flags, &kvseg, io_pool_kva);
2750 if (expp == NULL)
2751 goto balloon_fail;
2752 (void) hat_pageunload(expp, HAT_FORCE_PGUNLOAD);
2753 page_io_unlock(expp);
2754 page_hashout(expp, NULL);
2755 page_io_lock(expp);
2757 * add page to end of list
2759 expp->p_prev = pp_first->p_prev;
2760 expp->p_next = pp_first;
2761 expp->p_prev->p_next = expp;
2762 pp_first->p_prev = expp;
2766 for (i = 0; i < extpages; i++) {
2767 pplist[i] = pp;
2768 pp = pp->p_next;
2770 nbits = highbit(mattr->dma_attr_addr_hi);
2771 extents = contig ? 1 : minctg;
2772 if (balloon_replace_pages(extents, pplist, nbits, order,
2773 mfnlist) != extents) {
2774 if (ioalloc_dbg)
2775 cmn_err(CE_NOTE, "request to hypervisor"
2776 " for %d pages, maxaddr %" PRIx64 " failed",
2777 extpages, mattr->dma_attr_addr_hi);
2778 goto balloon_fail;
2781 kmem_free(pplist, extpages * sizeof (page_t *));
2782 kmem_free(mfnlist, extpages * sizeof (mfn_t));
2784 * Return any excess pages to free list
2786 if (extpages > minctg) {
2787 for (i = 0; i < extra; i++) {
2788 pp = pp_first->p_prev;
2789 page_sub(&pp_first, pp);
2790 page_io_unlock(pp);
2791 page_unresv(1);
2792 page_free(pp, 1);
2795 return (pp_first);
2796 balloon_fail:
2798 * Return pages to free list and return failure
2800 while (pp_first != NULL) {
2801 pp = pp_first;
2802 page_sub(&pp_first, pp);
2803 page_io_unlock(pp);
2804 if (pp->p_vnode != NULL)
2805 page_hashout(pp, NULL);
2806 page_free(pp, 1);
2808 if (pplist)
2809 kmem_free(pplist, extpages * sizeof (page_t *));
2810 if (mfnlist)
2811 kmem_free(mfnlist, extpages * sizeof (mfn_t));
2812 page_unresv(extpages - minctg);
2813 return (NULL);
2816 static void
2817 return_partial_alloc(page_t *plist)
2819 page_t *pp;
2821 while (plist != NULL) {
2822 pp = plist;
2823 page_sub(&plist, pp);
2824 page_io_unlock(pp);
2825 page_destroy_io(pp);
2829 static page_t *
2830 page_get_contigpages(
2831 struct vnode *vp,
2832 u_offset_t off,
2833 int *npagesp,
2834 uint_t flags,
2835 caddr_t vaddr,
2836 ddi_dma_attr_t *mattr)
2838 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
2839 page_t *plist; /* list to return */
2840 page_t *pp, *mcpl;
2841 int contig, anyaddr, npages, getone = 0;
2842 mfn_t lo_mfn;
2843 mfn_t hi_mfn;
2844 pgcnt_t pfnalign = 0;
2845 int align, sgllen;
2846 uint64_t pfnseg;
2847 pgcnt_t minctg;
2849 npages = *npagesp;
2850 ASSERT(mattr != NULL);
2851 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo);
2852 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi);
2853 sgllen = mattr->dma_attr_sgllen;
2854 pfnseg = mmu_btop(mattr->dma_attr_seg);
2855 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
2856 if (align > MMU_PAGESIZE)
2857 pfnalign = mmu_btop(align);
2859 contig = flags & PG_PHYSCONTIG;
2860 if (npages == -1) {
2861 npages = 1;
2862 pfnalign = 0;
2865 * Clear the contig flag if only one page is needed.
2867 if (npages == 1) {
2868 getone = 1;
2869 contig = 0;
2873 * Check if any page in the system is fine.
2875 anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn;
2876 if (!contig && anyaddr && !pfnalign) {
2877 flags &= ~PG_PHYSCONTIG;
2878 plist = page_create_va(vp, off, npages * MMU_PAGESIZE,
2879 flags, &kvseg, vaddr);
2880 if (plist != NULL) {
2881 *npagesp = 0;
2882 return (plist);
2885 plist = NULL;
2886 minctg = howmany(npages, sgllen);
2887 while (npages > sgllen || getone) {
2888 if (minctg > npages)
2889 minctg = npages;
2890 mcpl = NULL;
2892 * We could want contig pages with no address range limits.
2894 if (anyaddr && contig) {
2896 * Look for free contig pages to satisfy the request.
2898 mcpl = find_contig_free(minctg, flags, pfnseg,
2899 pfnalign);
2902 * Try the reserved io pools next
2904 if (mcpl == NULL)
2905 mcpl = page_io_pool_alloc(mattr, contig, minctg);
2906 if (mcpl != NULL) {
2907 pp = mcpl;
2908 do {
2909 if (!page_hashin(pp, vp, off, NULL)) {
2910 panic("page_get_contigpages:"
2911 " hashin failed"
2912 " pp %p, vp %p, off %llx",
2913 (void *)pp, (void *)vp, off);
2915 off += MMU_PAGESIZE;
2916 PP_CLRFREE(pp);
2917 PP_CLRAGED(pp);
2918 page_set_props(pp, P_REF);
2919 page_io_lock(pp);
2920 pp = pp->p_next;
2921 } while (pp != mcpl);
2922 } else {
2924 * Hypervisor exchange doesn't handle segment or
2925 * alignment constraints
2927 if (mattr->dma_attr_seg < mattr->dma_attr_addr_hi ||
2928 pfnalign)
2929 goto fail;
2931 * Try exchanging pages with the hypervisor
2933 mcpl = page_swap_with_hypervisor(vp, off, vaddr, mattr,
2934 flags, minctg);
2935 if (mcpl == NULL)
2936 goto fail;
2937 off += minctg * MMU_PAGESIZE;
2939 check_dma(mattr, mcpl, minctg);
2941 * Here with a minctg run of contiguous pages, add them to the
2942 * list we will return for this request.
2944 page_list_concat(&plist, &mcpl);
2945 npages -= minctg;
2946 *npagesp = npages;
2947 sgllen--;
2948 if (getone)
2949 break;
2951 return (plist);
2952 fail:
2953 return_partial_alloc(plist);
2954 return (NULL);
2958 * Allocator for domain 0 I/O pages. We match the required
2959 * DMA attributes and contiguity constraints.
2961 /*ARGSUSED*/
2962 page_t *
2963 page_create_io(
2964 struct vnode *vp,
2965 u_offset_t off,
2966 uint_t bytes,
2967 uint_t flags,
2968 struct as *as,
2969 caddr_t vaddr,
2970 ddi_dma_attr_t *mattr)
2972 page_t *plist = NULL, *pp;
2973 int npages = 0, contig, anyaddr, pages_req;
2974 mfn_t lo_mfn;
2975 mfn_t hi_mfn;
2976 pgcnt_t pfnalign = 0;
2977 int align;
2978 int is_domu = 0;
2979 int dummy, bytes_got;
2980 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
2982 ASSERT(mattr != NULL);
2983 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo);
2984 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi);
2985 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
2986 if (align > MMU_PAGESIZE)
2987 pfnalign = mmu_btop(align);
2990 * Clear the contig flag if only one page is needed or the scatter
2991 * gather list length is >= npages.
2993 pages_req = npages = mmu_btopr(bytes);
2994 contig = (flags & PG_PHYSCONTIG);
2995 bytes = P2ROUNDUP(bytes, MMU_PAGESIZE);
2996 if (bytes == MMU_PAGESIZE || mattr->dma_attr_sgllen >= npages)
2997 contig = 0;
3000 * Check if any old page in the system is fine.
3001 * DomU should always go down this path.
3003 is_domu = !DOMAIN_IS_INITDOMAIN(xen_info);
3004 anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn && !pfnalign;
3005 if ((!contig && anyaddr) || is_domu) {
3006 flags &= ~PG_PHYSCONTIG;
3007 plist = page_create_va(vp, off, bytes, flags, &kvseg, vaddr);
3008 if (plist != NULL)
3009 return (plist);
3010 else if (is_domu)
3011 return (NULL); /* no memory available */
3014 * DomU should never reach here
3016 if (contig) {
3017 plist = page_get_contigpages(vp, off, &npages, flags, vaddr,
3018 mattr);
3019 if (plist == NULL)
3020 goto fail;
3021 bytes_got = (pages_req - npages) << MMU_PAGESHIFT;
3022 vaddr += bytes_got;
3023 off += bytes_got;
3025 * We now have all the contiguous pages we need, but
3026 * we may still need additional non-contiguous pages.
3030 * now loop collecting the requested number of pages, these do
3031 * not have to be contiguous pages but we will use the contig
3032 * page alloc code to get the pages since it will honor any
3033 * other constraints the pages may have.
3035 while (npages--) {
3036 dummy = -1;
3037 pp = page_get_contigpages(vp, off, &dummy, flags, vaddr, mattr);
3038 if (pp == NULL)
3039 goto fail;
3040 page_add(&plist, pp);
3041 vaddr += MMU_PAGESIZE;
3042 off += MMU_PAGESIZE;
3044 return (plist);
3045 fail:
3047 * Failed to get enough pages, return ones we did get
3049 return_partial_alloc(plist);
3050 return (NULL);
3054 * Lock and return the page with the highest mfn that we can find. last_mfn
3055 * holds the last one found, so the next search can start from there. We
3056 * also keep a counter so that we don't loop forever if the machine has no
3057 * free pages.
3059 * This is called from the balloon thread to find pages to give away. new_high
3060 * is used when new mfn's have been added to the system - we will reset our
3061 * search if the new mfn's are higher than our current search position.
3063 page_t *
3064 page_get_high_mfn(mfn_t new_high)
3066 static mfn_t last_mfn = 0;
3067 pfn_t pfn;
3068 page_t *pp;
3069 ulong_t loop_count = 0;
3071 if (new_high > last_mfn)
3072 last_mfn = new_high;
3074 for (; loop_count < mfn_count; loop_count++, last_mfn--) {
3075 if (last_mfn == 0) {
3076 last_mfn = cached_max_mfn;
3079 pfn = mfn_to_pfn(last_mfn);
3080 if (pfn & PFN_IS_FOREIGN_MFN)
3081 continue;
3083 /* See if the page is free. If so, lock it. */
3084 pp = page_numtopp_alloc(pfn);
3085 if (pp == NULL)
3086 continue;
3087 PP_CLRFREE(pp);
3089 ASSERT(PAGE_EXCL(pp));
3090 ASSERT(pp->p_vnode == NULL);
3091 ASSERT(!hat_page_is_mapped(pp));
3092 last_mfn--;
3093 return (pp);
3095 return (NULL);
3098 #else /* !__xpv */
3101 * get a page from any list with the given mnode
3103 static page_t *
3104 page_get_mnode_anylist(ulong_t origbin, uchar_t szc, uint_t flags,
3105 int mnode, int mtype, ddi_dma_attr_t *dma_attr)
3107 kmutex_t *pcm;
3108 int i;
3109 page_t *pp;
3110 page_t *first_pp;
3111 uint64_t pgaddr;
3112 ulong_t bin;
3113 int mtypestart;
3114 int plw_initialized;
3115 page_list_walker_t plw;
3117 VM_STAT_ADD(pga_vmstats.pgma_alloc);
3119 ASSERT((flags & PG_MATCH_COLOR) == 0);
3120 ASSERT(szc == 0);
3121 ASSERT(dma_attr != NULL);
3123 MTYPE_START(mnode, mtype, flags);
3124 if (mtype < 0) {
3125 VM_STAT_ADD(pga_vmstats.pgma_allocempty);
3126 return (NULL);
3129 mtypestart = mtype;
3131 bin = origbin;
3134 * check up to page_colors + 1 bins - origbin may be checked twice
3135 * because of BIN_STEP skip
3137 do {
3138 plw_initialized = 0;
3140 for (plw.plw_count = 0;
3141 plw.plw_count < page_colors; plw.plw_count++) {
3143 if (PAGE_FREELISTS(mnode, szc, bin, mtype) == NULL)
3144 goto nextfreebin;
3146 pcm = PC_BIN_MUTEX(mnode, bin, PG_FREE_LIST);
3147 mutex_enter(pcm);
3148 pp = PAGE_FREELISTS(mnode, szc, bin, mtype);
3149 first_pp = pp;
3150 while (pp != NULL) {
3151 if (IS_DUMP_PAGE(pp) || page_trylock(pp,
3152 SE_EXCL) == 0) {
3153 pp = pp->p_next;
3154 if (pp == first_pp) {
3155 pp = NULL;
3157 continue;
3160 ASSERT(PP_ISFREE(pp));
3161 ASSERT(PP_ISAGED(pp));
3162 ASSERT(pp->p_vnode == NULL);
3163 ASSERT(pp->p_hash == NULL);
3164 ASSERT(pp->p_offset == (u_offset_t)-1);
3165 ASSERT(pp->p_szc == szc);
3166 ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode);
3167 /* check if page within DMA attributes */
3168 pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum));
3169 if ((pgaddr >= dma_attr->dma_attr_addr_lo) &&
3170 (pgaddr + MMU_PAGESIZE - 1 <=
3171 dma_attr->dma_attr_addr_hi)) {
3172 break;
3175 /* continue looking */
3176 page_unlock(pp);
3177 pp = pp->p_next;
3178 if (pp == first_pp)
3179 pp = NULL;
3182 if (pp != NULL) {
3183 ASSERT(mtype == PP_2_MTYPE(pp));
3184 ASSERT(pp->p_szc == 0);
3186 /* found a page with specified DMA attributes */
3187 page_sub(&PAGE_FREELISTS(mnode, szc, bin,
3188 mtype), pp);
3189 page_ctr_sub(mnode, mtype, pp, PG_FREE_LIST);
3191 if ((PP_ISFREE(pp) == 0) ||
3192 (PP_ISAGED(pp) == 0)) {
3193 cmn_err(CE_PANIC, "page %p is not free",
3194 (void *)pp);
3197 mutex_exit(pcm);
3198 check_dma(dma_attr, pp, 1);
3199 VM_STAT_ADD(pga_vmstats.pgma_allocok);
3200 return (pp);
3202 mutex_exit(pcm);
3203 nextfreebin:
3204 if (plw_initialized == 0) {
3205 page_list_walk_init(szc, 0, bin, 1, 0, &plw);
3206 ASSERT(plw.plw_ceq_dif == page_colors);
3207 plw_initialized = 1;
3210 if (plw.plw_do_split) {
3211 pp = page_freelist_split(szc, bin, mnode,
3212 mtype,
3213 mmu_btop(dma_attr->dma_attr_addr_lo),
3214 mmu_btop(dma_attr->dma_attr_addr_hi + 1),
3215 &plw);
3216 if (pp != NULL) {
3217 check_dma(dma_attr, pp, 1);
3218 return (pp);
3222 bin = page_list_walk_next_bin(szc, bin, &plw);
3225 MTYPE_NEXT(mnode, mtype, flags);
3226 } while (mtype >= 0);
3228 /* failed to find a page in the freelist; try it in the cachelist */
3230 /* reset mtype start for cachelist search */
3231 mtype = mtypestart;
3232 ASSERT(mtype >= 0);
3234 /* start with the bin of matching color */
3235 bin = origbin;
3237 do {
3238 for (i = 0; i <= page_colors; i++) {
3239 if (PAGE_CACHELISTS(mnode, bin, mtype) == NULL)
3240 goto nextcachebin;
3241 pcm = PC_BIN_MUTEX(mnode, bin, PG_CACHE_LIST);
3242 mutex_enter(pcm);
3243 pp = PAGE_CACHELISTS(mnode, bin, mtype);
3244 first_pp = pp;
3245 while (pp != NULL) {
3246 if (IS_DUMP_PAGE(pp) || page_trylock(pp,
3247 SE_EXCL) == 0) {
3248 pp = pp->p_next;
3249 if (pp == first_pp)
3250 pp = NULL;
3251 continue;
3253 ASSERT(pp->p_vnode);
3254 ASSERT(PP_ISAGED(pp) == 0);
3255 ASSERT(pp->p_szc == 0);
3256 ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode);
3258 /* check if page within DMA attributes */
3260 pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum));
3261 if ((pgaddr >= dma_attr->dma_attr_addr_lo) &&
3262 (pgaddr + MMU_PAGESIZE - 1 <=
3263 dma_attr->dma_attr_addr_hi)) {
3264 break;
3267 /* continue looking */
3268 page_unlock(pp);
3269 pp = pp->p_next;
3270 if (pp == first_pp)
3271 pp = NULL;
3274 if (pp != NULL) {
3275 ASSERT(mtype == PP_2_MTYPE(pp));
3276 ASSERT(pp->p_szc == 0);
3278 /* found a page with specified DMA attributes */
3279 page_sub(&PAGE_CACHELISTS(mnode, bin,
3280 mtype), pp);
3281 page_ctr_sub(mnode, mtype, pp, PG_CACHE_LIST);
3283 mutex_exit(pcm);
3284 ASSERT(pp->p_vnode);
3285 ASSERT(PP_ISAGED(pp) == 0);
3286 check_dma(dma_attr, pp, 1);
3287 VM_STAT_ADD(pga_vmstats.pgma_allocok);
3288 return (pp);
3290 mutex_exit(pcm);
3291 nextcachebin:
3292 bin += (i == 0) ? BIN_STEP : 1;
3293 bin &= page_colors_mask;
3295 MTYPE_NEXT(mnode, mtype, flags);
3296 } while (mtype >= 0);
3298 VM_STAT_ADD(pga_vmstats.pgma_allocfailed);
3299 return (NULL);
3303 * This function is similar to page_get_freelist()/page_get_cachelist()
3304 * but it searches both the lists to find a page with the specified
3305 * color (or no color) and DMA attributes. The search is done in the
3306 * freelist first and then in the cache list within the highest memory
3307 * range (based on DMA attributes) before searching in the lower
3308 * memory ranges.
3310 * Note: This function is called only by page_create_io().
3312 /*ARGSUSED*/
3313 static page_t *
3314 page_get_anylist(struct vnode *vp, u_offset_t off, struct as *as, caddr_t vaddr,
3315 size_t size, uint_t flags, ddi_dma_attr_t *dma_attr, lgrp_t *lgrp)
3317 uint_t bin;
3318 int mtype;
3319 page_t *pp;
3320 int n;
3321 int m;
3322 int szc;
3323 int fullrange;
3324 int mnode;
3325 int local_failed_stat = 0;
3326 lgrp_mnode_cookie_t lgrp_cookie;
3328 VM_STAT_ADD(pga_vmstats.pga_alloc);
3330 /* only base pagesize currently supported */
3331 if (size != MMU_PAGESIZE)
3332 return (NULL);
3335 * If we're passed a specific lgroup, we use it. Otherwise,
3336 * assume first-touch placement is desired.
3338 if (!LGRP_EXISTS(lgrp))
3339 lgrp = lgrp_home_lgrp();
3341 /* LINTED */
3342 AS_2_BIN(as, seg, vp, vaddr, bin, 0);
3345 * Only hold one freelist or cachelist lock at a time, that way we
3346 * can start anywhere and not have to worry about lock
3347 * ordering.
3349 if (dma_attr == NULL) {
3350 n = mtype16m;
3351 m = mtypetop;
3352 fullrange = 1;
3353 VM_STAT_ADD(pga_vmstats.pga_nulldmaattr);
3354 } else {
3355 pfn_t pfnlo = mmu_btop(dma_attr->dma_attr_addr_lo);
3356 pfn_t pfnhi = mmu_btop(dma_attr->dma_attr_addr_hi);
3359 * We can guarantee alignment only for page boundary.
3361 if (dma_attr->dma_attr_align > MMU_PAGESIZE)
3362 return (NULL);
3364 /* Sanity check the dma_attr */
3365 if (pfnlo > pfnhi)
3366 return (NULL);
3368 n = pfn_2_mtype(pfnlo);
3369 m = pfn_2_mtype(pfnhi);
3371 fullrange = ((pfnlo == mnoderanges[n].mnr_pfnlo) &&
3372 (pfnhi >= mnoderanges[m].mnr_pfnhi));
3374 VM_STAT_COND_ADD(fullrange == 0, pga_vmstats.pga_notfullrange);
3376 szc = 0;
3378 /* cylcing thru mtype handled by RANGE0 if n == mtype16m */
3379 if (n == mtype16m) {
3380 flags |= PGI_MT_RANGE0;
3381 n = m;
3385 * Try local memory node first, but try remote if we can't
3386 * get a page of the right color.
3388 LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp, LGRP_SRCH_HIER);
3389 while ((mnode = lgrp_memnode_choose(&lgrp_cookie)) >= 0) {
3391 * allocate pages from high pfn to low.
3393 mtype = m;
3394 do {
3395 if (fullrange != 0) {
3396 pp = page_get_mnode_freelist(mnode,
3397 bin, mtype, szc, flags);
3398 if (pp == NULL) {
3399 pp = page_get_mnode_cachelist(
3400 bin, flags, mnode, mtype);
3402 } else {
3403 pp = page_get_mnode_anylist(bin, szc,
3404 flags, mnode, mtype, dma_attr);
3406 if (pp != NULL) {
3407 VM_STAT_ADD(pga_vmstats.pga_allocok);
3408 check_dma(dma_attr, pp, 1);
3409 return (pp);
3411 } while (mtype != n &&
3412 (mtype = mnoderanges[mtype].mnr_next) != -1);
3413 if (!local_failed_stat) {
3414 lgrp_stat_add(lgrp->lgrp_id, LGRP_NUM_ALLOC_FAIL, 1);
3415 local_failed_stat = 1;
3418 VM_STAT_ADD(pga_vmstats.pga_allocfailed);
3420 return (NULL);
3424 * page_create_io()
3426 * This function is a copy of page_create_va() with an additional
3427 * argument 'mattr' that specifies DMA memory requirements to
3428 * the page list functions. This function is used by the segkmem
3429 * allocator so it is only to create new pages (i.e PG_EXCL is
3430 * set).
3432 * Note: This interface is currently used by x86 PSM only and is
3433 * not fully specified so the commitment level is only for
3434 * private interface specific to x86. This interface uses PSM
3435 * specific page_get_anylist() interface.
3438 #define PAGE_HASH_SEARCH(index, pp, vp, off) { \
3439 for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \
3440 if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
3441 break; \
3446 page_t *
3447 page_create_io(
3448 struct vnode *vp,
3449 u_offset_t off,
3450 uint_t bytes,
3451 uint_t flags,
3452 struct as *as,
3453 caddr_t vaddr,
3454 ddi_dma_attr_t *mattr) /* DMA memory attributes if any */
3456 page_t *plist = NULL;
3457 uint_t plist_len = 0;
3458 pgcnt_t npages;
3459 page_t *npp = NULL;
3460 uint_t pages_req;
3461 page_t *pp;
3462 kmutex_t *phm = NULL;
3463 uint_t index;
3465 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
3466 "page_create_start:vp %p off %llx bytes %u flags %x",
3467 vp, off, bytes, flags);
3469 ASSERT((flags & ~(PG_EXCL | PG_WAIT | PG_PHYSCONTIG)) == 0);
3471 pages_req = npages = mmu_btopr(bytes);
3474 * Do the freemem and pcf accounting.
3476 if (!page_create_wait(npages, flags)) {
3477 return (NULL);
3480 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
3481 "page_create_success:vp %p off %llx", vp, off);
3484 * If satisfying this request has left us with too little
3485 * memory, start the wheels turning to get some back. The
3486 * first clause of the test prevents waking up the pageout
3487 * daemon in situations where it would decide that there's
3488 * nothing to do.
3490 if (nscan < desscan && freemem < minfree) {
3491 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
3492 "pageout_cv_signal:freemem %ld", freemem);
3493 cv_signal(&proc_pageout->p_cv);
3496 if (flags & PG_PHYSCONTIG) {
3498 plist = page_get_contigpage(&npages, mattr, 1);
3499 if (plist == NULL) {
3500 page_create_putback(npages);
3501 return (NULL);
3504 pp = plist;
3506 do {
3507 if (!page_hashin(pp, vp, off, NULL)) {
3508 panic("pg_creat_io: hashin failed %p %p %llx",
3509 (void *)pp, (void *)vp, off);
3511 VM_STAT_ADD(page_create_new);
3512 off += MMU_PAGESIZE;
3513 PP_CLRFREE(pp);
3514 PP_CLRAGED(pp);
3515 page_set_props(pp, P_REF);
3516 pp = pp->p_next;
3517 } while (pp != plist);
3519 if (!npages) {
3520 check_dma(mattr, plist, pages_req);
3521 return (plist);
3522 } else {
3523 vaddr += (pages_req - npages) << MMU_PAGESHIFT;
3527 * fall-thru:
3529 * page_get_contigpage returns when npages <= sgllen.
3530 * Grab the rest of the non-contig pages below from anylist.
3535 * Loop around collecting the requested number of pages.
3536 * Most of the time, we have to `create' a new page. With
3537 * this in mind, pull the page off the free list before
3538 * getting the hash lock. This will minimize the hash
3539 * lock hold time, nesting, and the like. If it turns
3540 * out we don't need the page, we put it back at the end.
3542 while (npages--) {
3543 phm = NULL;
3545 index = PAGE_HASH_FUNC(vp, off);
3546 top:
3547 ASSERT(phm == NULL);
3548 ASSERT(index == PAGE_HASH_FUNC(vp, off));
3549 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3551 if (npp == NULL) {
3553 * Try to get the page of any color either from
3554 * the freelist or from the cache list.
3556 npp = page_get_anylist(vp, off, as, vaddr, MMU_PAGESIZE,
3557 flags & ~PG_MATCH_COLOR, mattr, NULL);
3558 if (npp == NULL) {
3559 if (mattr == NULL) {
3561 * Not looking for a special page;
3562 * panic!
3564 panic("no page found %d", (int)npages);
3567 * No page found! This can happen
3568 * if we are looking for a page
3569 * within a specific memory range
3570 * for DMA purposes. If PG_WAIT is
3571 * specified then we wait for a
3572 * while and then try again. The
3573 * wait could be forever if we
3574 * don't get the page(s) we need.
3576 * Note: XXX We really need a mechanism
3577 * to wait for pages in the desired
3578 * range. For now, we wait for any
3579 * pages and see if we can use it.
3582 if ((mattr != NULL) && (flags & PG_WAIT)) {
3583 delay(10);
3584 goto top;
3586 goto fail; /* undo accounting stuff */
3589 if (PP_ISAGED(npp) == 0) {
3591 * Since this page came from the
3592 * cachelist, we must destroy the
3593 * old vnode association.
3595 page_hashout(npp, (kmutex_t *)NULL);
3600 * We own this page!
3602 ASSERT(PAGE_EXCL(npp));
3603 ASSERT(npp->p_vnode == NULL);
3604 ASSERT(!hat_page_is_mapped(npp));
3605 PP_CLRFREE(npp);
3606 PP_CLRAGED(npp);
3609 * Here we have a page in our hot little mits and are
3610 * just waiting to stuff it on the appropriate lists.
3611 * Get the mutex and check to see if it really does
3612 * not exist.
3614 phm = PAGE_HASH_MUTEX(index);
3615 mutex_enter(phm);
3616 PAGE_HASH_SEARCH(index, pp, vp, off);
3617 if (pp == NULL) {
3618 VM_STAT_ADD(page_create_new);
3619 pp = npp;
3620 npp = NULL;
3621 if (!page_hashin(pp, vp, off, phm)) {
3623 * Since we hold the page hash mutex and
3624 * just searched for this page, page_hashin
3625 * had better not fail. If it does, that
3626 * means somethread did not follow the
3627 * page hash mutex rules. Panic now and
3628 * get it over with. As usual, go down
3629 * holding all the locks.
3631 ASSERT(MUTEX_HELD(phm));
3632 panic("page_create: hashin fail %p %p %llx %p",
3633 (void *)pp, (void *)vp, off, (void *)phm);
3636 ASSERT(MUTEX_HELD(phm));
3637 mutex_exit(phm);
3638 phm = NULL;
3641 * Hat layer locking need not be done to set
3642 * the following bits since the page is not hashed
3643 * and was on the free list (i.e., had no mappings).
3645 * Set the reference bit to protect
3646 * against immediate pageout
3648 * XXXmh modify freelist code to set reference
3649 * bit so we don't have to do it here.
3651 page_set_props(pp, P_REF);
3652 } else {
3653 ASSERT(MUTEX_HELD(phm));
3654 mutex_exit(phm);
3655 phm = NULL;
3657 * NOTE: This should not happen for pages associated
3658 * with kernel vnode 'kvp'.
3660 /* XX64 - to debug why this happens! */
3661 ASSERT(!VN_ISKAS(vp));
3662 if (VN_ISKAS(vp))
3663 cmn_err(CE_NOTE,
3664 "page_create: page not expected "
3665 "in hash list for kernel vnode - pp 0x%p",
3666 (void *)pp);
3667 VM_STAT_ADD(page_create_exists);
3668 goto fail;
3672 * Got a page! It is locked. Acquire the i/o
3673 * lock since we are going to use the p_next and
3674 * p_prev fields to link the requested pages together.
3676 page_io_lock(pp);
3677 page_add(&plist, pp);
3678 plist = plist->p_next;
3679 off += MMU_PAGESIZE;
3680 vaddr += MMU_PAGESIZE;
3683 check_dma(mattr, plist, pages_req);
3684 return (plist);
3686 fail:
3687 if (npp != NULL) {
3689 * Did not need this page after all.
3690 * Put it back on the free list.
3692 VM_STAT_ADD(page_create_putbacks);
3693 PP_SETFREE(npp);
3694 PP_SETAGED(npp);
3695 npp->p_offset = (u_offset_t)-1;
3696 page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
3697 page_unlock(npp);
3701 * Give up the pages we already got.
3703 while (plist != NULL) {
3704 pp = plist;
3705 page_sub(&plist, pp);
3706 page_io_unlock(pp);
3707 plist_len++;
3708 /*LINTED: constant in conditional ctx*/
3709 VN_DISPOSE(pp, B_INVAL, 0, kcred);
3713 * VN_DISPOSE does freemem accounting for the pages in plist
3714 * by calling page_free. So, we need to undo the pcf accounting
3715 * for only the remaining pages.
3717 VM_STAT_ADD(page_create_putbacks);
3718 page_create_putback(pages_req - plist_len);
3720 return (NULL);
3722 #endif /* !__xpv */
3726 * Copy the data from the physical page represented by "frompp" to
3727 * that represented by "topp". ppcopy uses CPU->cpu_caddr1 and
3728 * CPU->cpu_caddr2. It assumes that no one uses either map at interrupt
3729 * level and no one sleeps with an active mapping there.
3731 * Note that the ref/mod bits in the page_t's are not affected by
3732 * this operation, hence it is up to the caller to update them appropriately.
3735 ppcopy(page_t *frompp, page_t *topp)
3737 caddr_t pp_addr1;
3738 caddr_t pp_addr2;
3739 hat_mempte_t pte1;
3740 hat_mempte_t pte2;
3741 kmutex_t *ppaddr_mutex;
3742 label_t ljb;
3743 int ret = 1;
3745 ASSERT_STACK_ALIGNED();
3746 ASSERT(PAGE_LOCKED(frompp));
3747 ASSERT(PAGE_LOCKED(topp));
3749 if (kpm_enable) {
3750 pp_addr1 = hat_kpm_page2va(frompp, 0);
3751 pp_addr2 = hat_kpm_page2va(topp, 0);
3752 kpreempt_disable();
3753 } else {
3755 * disable pre-emption so that CPU can't change
3757 kpreempt_disable();
3759 pp_addr1 = CPU->cpu_caddr1;
3760 pp_addr2 = CPU->cpu_caddr2;
3761 pte1 = CPU->cpu_caddr1pte;
3762 pte2 = CPU->cpu_caddr2pte;
3764 ppaddr_mutex = &CPU->cpu_ppaddr_mutex;
3765 mutex_enter(ppaddr_mutex);
3767 hat_mempte_remap(page_pptonum(frompp), pp_addr1, pte1,
3768 PROT_READ | HAT_STORECACHING_OK, HAT_LOAD_NOCONSIST);
3769 hat_mempte_remap(page_pptonum(topp), pp_addr2, pte2,
3770 PROT_READ | PROT_WRITE | HAT_STORECACHING_OK,
3771 HAT_LOAD_NOCONSIST);
3774 if (on_fault(&ljb)) {
3775 ret = 0;
3776 goto faulted;
3778 if (use_sse_pagecopy)
3779 #ifdef __xpv
3780 page_copy_no_xmm(pp_addr2, pp_addr1);
3781 #else
3782 hwblkpagecopy(pp_addr1, pp_addr2);
3783 #endif
3784 else
3785 bcopy(pp_addr1, pp_addr2, PAGESIZE);
3787 no_fault();
3788 faulted:
3789 if (!kpm_enable) {
3790 #ifdef __xpv
3792 * We can't leave unused mappings laying about under the
3793 * hypervisor, so blow them away.
3795 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr1, 0,
3796 UVMF_INVLPG | UVMF_LOCAL) < 0)
3797 panic("HYPERVISOR_update_va_mapping() failed");
3798 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0,
3799 UVMF_INVLPG | UVMF_LOCAL) < 0)
3800 panic("HYPERVISOR_update_va_mapping() failed");
3801 #endif
3802 mutex_exit(ppaddr_mutex);
3804 kpreempt_enable();
3805 return (ret);
3808 void
3809 pagezero(page_t *pp, uint_t off, uint_t len)
3811 ASSERT(PAGE_LOCKED(pp));
3812 pfnzero(page_pptonum(pp), off, len);
3816 * Zero the physical page from off to off + len given by pfn
3817 * without changing the reference and modified bits of page.
3819 * We use this using CPU private page address #2, see ppcopy() for more info.
3820 * pfnzero() must not be called at interrupt level.
3822 void
3823 pfnzero(pfn_t pfn, uint_t off, uint_t len)
3825 caddr_t pp_addr2;
3826 hat_mempte_t pte2;
3827 kmutex_t *ppaddr_mutex = NULL;
3829 ASSERT_STACK_ALIGNED();
3830 ASSERT(len <= MMU_PAGESIZE);
3831 ASSERT(off <= MMU_PAGESIZE);
3832 ASSERT(off + len <= MMU_PAGESIZE);
3834 if (kpm_enable && !pfn_is_foreign(pfn)) {
3835 pp_addr2 = hat_kpm_pfn2va(pfn);
3836 kpreempt_disable();
3837 } else {
3838 kpreempt_disable();
3840 pp_addr2 = CPU->cpu_caddr2;
3841 pte2 = CPU->cpu_caddr2pte;
3843 ppaddr_mutex = &CPU->cpu_ppaddr_mutex;
3844 mutex_enter(ppaddr_mutex);
3846 hat_mempte_remap(pfn, pp_addr2, pte2,
3847 PROT_READ | PROT_WRITE | HAT_STORECACHING_OK,
3848 HAT_LOAD_NOCONSIST);
3851 if (use_sse_pagezero) {
3852 #ifdef __xpv
3853 uint_t rem;
3856 * zero a byte at a time until properly aligned for
3857 * block_zero_no_xmm().
3859 while (!P2NPHASE(off, ((uint_t)BLOCKZEROALIGN)) && len-- > 0)
3860 pp_addr2[off++] = 0;
3863 * Now use faster block_zero_no_xmm() for any range
3864 * that is properly aligned and sized.
3866 rem = P2PHASE(len, ((uint_t)BLOCKZEROALIGN));
3867 len -= rem;
3868 if (len != 0) {
3869 block_zero_no_xmm(pp_addr2 + off, len);
3870 off += len;
3874 * zero remainder with byte stores.
3876 while (rem-- > 0)
3877 pp_addr2[off++] = 0;
3878 #else
3879 hwblkclr(pp_addr2 + off, len);
3880 #endif
3881 } else {
3882 bzero(pp_addr2 + off, len);
3885 if (!kpm_enable || pfn_is_foreign(pfn)) {
3886 #ifdef __xpv
3888 * On the hypervisor this page might get used for a page
3889 * table before any intervening change to this mapping,
3890 * so blow it away.
3892 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0,
3893 UVMF_INVLPG) < 0)
3894 panic("HYPERVISOR_update_va_mapping() failed");
3895 #endif
3896 mutex_exit(ppaddr_mutex);
3899 kpreempt_enable();
3903 * Platform-dependent page scrub call.
3905 void
3906 pagescrub(page_t *pp, uint_t off, uint_t len)
3909 * For now, we rely on the fact that pagezero() will
3910 * always clear UEs.
3912 pagezero(pp, off, len);
3916 * set up two private addresses for use on a given CPU for use in ppcopy()
3918 void
3919 setup_vaddr_for_ppcopy(struct cpu *cpup)
3921 void *addr;
3922 hat_mempte_t pte_pa;
3924 addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP);
3925 pte_pa = hat_mempte_setup(addr);
3926 cpup->cpu_caddr1 = addr;
3927 cpup->cpu_caddr1pte = pte_pa;
3929 addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP);
3930 pte_pa = hat_mempte_setup(addr);
3931 cpup->cpu_caddr2 = addr;
3932 cpup->cpu_caddr2pte = pte_pa;
3934 mutex_init(&cpup->cpu_ppaddr_mutex, NULL, MUTEX_DEFAULT, NULL);
3938 * Undo setup_vaddr_for_ppcopy
3940 void
3941 teardown_vaddr_for_ppcopy(struct cpu *cpup)
3943 mutex_destroy(&cpup->cpu_ppaddr_mutex);
3945 hat_mempte_release(cpup->cpu_caddr2, cpup->cpu_caddr2pte);
3946 cpup->cpu_caddr2pte = 0;
3947 vmem_free(heap_arena, cpup->cpu_caddr2, mmu_ptob(1));
3948 cpup->cpu_caddr2 = 0;
3950 hat_mempte_release(cpup->cpu_caddr1, cpup->cpu_caddr1pte);
3951 cpup->cpu_caddr1pte = 0;
3952 vmem_free(heap_arena, cpup->cpu_caddr1, mmu_ptob(1));
3953 cpup->cpu_caddr1 = 0;
3957 * Function for flushing D-cache when performing module relocations
3958 * to an alternate mapping. Unnecessary on Intel / AMD platforms.
3960 void
3961 dcache_flushall()
3965 * Allocate a memory page. The argument 'seed' can be any pseudo-random
3966 * number to vary where the pages come from. This is quite a hacked up
3967 * method -- it works for now, but really needs to be fixed up a bit.
3969 * We currently use page_create_va() on the kvp with fake offsets,
3970 * segments and virt address. This is pretty bogus, but was copied from the
3971 * old hat_i86.c code. A better approach would be to specify either mnode
3972 * random or mnode local and takes a page from whatever color has the MOST
3973 * available - this would have a minimal impact on page coloring.
3975 page_t *
3976 page_get_physical(uintptr_t seed)
3978 page_t *pp;
3979 u_offset_t offset;
3980 static struct seg tmpseg;
3981 static uintptr_t ctr = 0;
3984 * This code is gross, we really need a simpler page allocator.
3986 * We need to assign an offset for the page to call page_create_va()
3987 * To avoid conflicts with other pages, we get creative with the offset.
3988 * For 32 bits, we need an offset > 4Gig
3989 * For 64 bits, need an offset somewhere in the VA hole.
3991 offset = seed;
3992 if (offset > kernelbase)
3993 offset -= kernelbase;
3994 offset <<= MMU_PAGESHIFT;
3995 #if defined(__amd64)
3996 offset += mmu.hole_start; /* something in VA hole */
3997 #else
3998 offset += 1ULL << 40; /* something > 4 Gig */
3999 #endif
4001 if (page_resv(1, KM_NOSLEEP) == 0)
4002 return (NULL);
4004 #ifdef DEBUG
4005 pp = page_exists(&kvp, offset);
4006 if (pp != NULL)
4007 panic("page already exists %p", (void *)pp);
4008 #endif
4010 pp = page_create_va(&kvp, offset, MMU_PAGESIZE, PG_EXCL,
4011 &tmpseg, (caddr_t)(ctr += MMU_PAGESIZE)); /* changing VA usage */
4012 if (pp != NULL) {
4013 page_io_unlock(pp);
4014 page_downgrade(pp);
4016 return (pp);