6121 Copy-paste bug in mac_init_rings()
[unleashed.git] / usr / src / uts / common / io / mac / mac.c
blobc0a181a5271215d00616c55900669bcc68aa54be
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
28 * MAC Services Module
30 * The GLDv3 framework locking - The MAC layer
31 * --------------------------------------------
33 * The MAC layer is central to the GLD framework and can provide the locking
34 * framework needed for itself and for the use of MAC clients. MAC end points
35 * are fairly disjoint and don't share a lot of state. So a coarse grained
36 * multi-threading scheme is to single thread all create/modify/delete or set
37 * type of control operations on a per mac end point while allowing data threads
38 * concurrently.
40 * Control operations (set) that modify a mac end point are always serialized on
41 * a per mac end point basis, We have at most 1 such thread per mac end point
42 * at a time.
44 * All other operations that are not serialized are essentially multi-threaded.
45 * For example a control operation (get) like getting statistics which may not
46 * care about reading values atomically or data threads sending or receiving
47 * data. Mostly these type of operations don't modify the control state. Any
48 * state these operations care about are protected using traditional locks.
50 * The perimeter only serializes serial operations. It does not imply there
51 * aren't any other concurrent operations. However a serialized operation may
52 * sometimes need to make sure it is the only thread. In this case it needs
53 * to use reference counting mechanisms to cv_wait until any current data
54 * threads are done.
56 * The mac layer itself does not hold any locks across a call to another layer.
57 * The perimeter is however held across a down call to the driver to make the
58 * whole control operation atomic with respect to other control operations.
59 * Also the data path and get type control operations may proceed concurrently.
60 * These operations synchronize with the single serial operation on a given mac
61 * end point using regular locks. The perimeter ensures that conflicting
62 * operations like say a mac_multicast_add and a mac_multicast_remove on the
63 * same mac end point don't interfere with each other and also ensures that the
64 * changes in the mac layer and the call to the underlying driver to say add a
65 * multicast address are done atomically without interference from a thread
66 * trying to delete the same address.
68 * For example, consider
69 * mac_multicst_add()
70 * {
71 * mac_perimeter_enter(); serialize all control operations
73 * grab list lock protect against access by data threads
74 * add to list
75 * drop list lock
77 * call driver's mi_multicst
79 * mac_perimeter_exit();
80 * }
82 * To lessen the number of serialization locks and simplify the lock hierarchy,
83 * we serialize all the control operations on a per mac end point by using a
84 * single serialization lock called the perimeter. We allow recursive entry into
85 * the perimeter to facilitate use of this mechanism by both the mac client and
86 * the MAC layer itself.
88 * MAC client means an entity that does an operation on a mac handle
89 * obtained from a mac_open/mac_client_open. Similarly MAC driver means
90 * an entity that does an operation on a mac handle obtained from a
91 * mac_register. An entity could be both client and driver but on different
92 * handles eg. aggr. and should only make the corresponding mac interface calls
93 * i.e. mac driver interface or mac client interface as appropriate for that
94 * mac handle.
96 * General rules.
97 * -------------
99 * R1. The lock order of upcall threads is natually opposite to downcall
100 * threads. Hence upcalls must not hold any locks across layers for fear of
101 * recursive lock enter and lock order violation. This applies to all layers.
103 * R2. The perimeter is just another lock. Since it is held in the down
104 * direction, acquiring the perimeter in an upcall is prohibited as it would
105 * cause a deadlock. This applies to all layers.
107 * Note that upcalls that need to grab the mac perimeter (for example
108 * mac_notify upcalls) can still achieve that by posting the request to a
109 * thread, which can then grab all the required perimeters and locks in the
110 * right global order. Note that in the above example the mac layer iself
111 * won't grab the mac perimeter in the mac_notify upcall, instead the upcall
112 * to the client must do that. Please see the aggr code for an example.
114 * MAC client rules
115 * ----------------
117 * R3. A MAC client may use the MAC provided perimeter facility to serialize
118 * control operations on a per mac end point. It does this by by acquring
119 * and holding the perimeter across a sequence of calls to the mac layer.
120 * This ensures atomicity across the entire block of mac calls. In this
121 * model the MAC client must not hold any client locks across the calls to
122 * the mac layer. This model is the preferred solution.
124 * R4. However if a MAC client has a lot of global state across all mac end
125 * points the per mac end point serialization may not be sufficient. In this
126 * case the client may choose to use global locks or use its own serialization.
127 * To avoid deadlocks, these client layer locks held across the mac calls
128 * in the control path must never be acquired by the data path for the reason
129 * mentioned below.
131 * (Assume that a control operation that holds a client lock blocks in the
132 * mac layer waiting for upcall reference counts to drop to zero. If an upcall
133 * data thread that holds this reference count, tries to acquire the same
134 * client lock subsequently it will deadlock).
136 * A MAC client may follow either the R3 model or the R4 model, but can't
137 * mix both. In the former, the hierarchy is Perim -> client locks, but in
138 * the latter it is client locks -> Perim.
140 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able
141 * context since they may block while trying to acquire the perimeter.
142 * In addition some calls may block waiting for upcall refcnts to come down to
143 * zero.
145 * R6. MAC clients must make sure that they are single threaded and all threads
146 * from the top (in particular data threads) have finished before calling
147 * mac_client_close. The MAC framework does not track the number of client
148 * threads using the mac client handle. Also mac clients must make sure
149 * they have undone all the control operations before calling mac_client_close.
150 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding
151 * mac_unicast_add/mac_multicast_add.
153 * MAC framework rules
154 * -------------------
156 * R7. The mac layer itself must not hold any mac layer locks (except the mac
157 * perimeter) across a call to any other layer from the mac layer. The call to
158 * any other layer could be via mi_* entry points, classifier entry points into
159 * the driver or via upcall pointers into layers above. The mac perimeter may
160 * be acquired or held only in the down direction, for e.g. when calling into
161 * a mi_* driver enty point to provide atomicity of the operation.
163 * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across
164 * mac driver interfaces, the MAC layer must provide a cut out for control
165 * interfaces like upcall notifications and start them in a separate thread.
167 * R9. Note that locking order also implies a plumbing order. For example
168 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt
169 * to plumb in any other order must be failed at mac_open time, otherwise it
170 * could lead to deadlocks due to inverse locking order.
172 * R10. MAC driver interfaces must not block since the driver could call them
173 * in interrupt context.
175 * R11. Walkers must preferably not hold any locks while calling walker
176 * callbacks. Instead these can operate on reference counts. In simple
177 * callbacks it may be ok to hold a lock and call the callbacks, but this is
178 * harder to maintain in the general case of arbitrary callbacks.
180 * R12. The MAC layer must protect upcall notification callbacks using reference
181 * counts rather than holding locks across the callbacks.
183 * R13. Given the variety of drivers, it is preferable if the MAC layer can make
184 * sure that any pointers (such as mac ring pointers) it passes to the driver
185 * remain valid until mac unregister time. Currently the mac layer achieves
186 * this by using generation numbers for rings and freeing the mac rings only
187 * at unregister time. The MAC layer must provide a layer of indirection and
188 * must not expose underlying driver rings or driver data structures/pointers
189 * directly to MAC clients.
191 * MAC driver rules
192 * ----------------
194 * R14. It would be preferable if MAC drivers don't hold any locks across any
195 * mac call. However at a minimum they must not hold any locks across data
196 * upcalls. They must also make sure that all references to mac data structures
197 * are cleaned up and that it is single threaded at mac_unregister time.
199 * R15. MAC driver interfaces don't block and so the action may be done
200 * asynchronously in a separate thread as for example handling notifications.
201 * The driver must not assume that the action is complete when the call
202 * returns.
204 * R16. Drivers must maintain a generation number per Rx ring, and pass it
205 * back to mac_rx_ring(); They are expected to increment the generation
206 * number whenever the ring's stop routine is invoked.
207 * See comments in mac_rx_ring();
209 * R17 Similarly mi_stop is another synchronization point and the driver must
210 * ensure that all upcalls are done and there won't be any future upcall
211 * before returning from mi_stop.
213 * R18. The driver may assume that all set/modify control operations via
214 * the mi_* entry points are single threaded on a per mac end point.
216 * Lock and Perimeter hierarchy scenarios
217 * ---------------------------------------
219 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify]
221 * ft_lock -> fe_lock [mac_flow_lookup]
223 * mi_rw_lock -> fe_lock [mac_bcast_send]
225 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw]
227 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind]
229 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename]
231 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac
232 * client to driver. In the case of clients that explictly use the mac provided
233 * perimeter mechanism for its serialization, the hierarchy is
234 * Perimeter -> mac layer locks, since the client never holds any locks across
235 * the mac calls. In the case of clients that use its own locks the hierarchy
236 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly
237 * calls mac_perim_enter/exit in this case.
239 * Subflow creation rules
240 * ---------------------------
241 * o In case of a user specified cpulist present on underlying link and flows,
242 * the flows cpulist must be a subset of the underlying link.
243 * o In case of a user specified fanout mode present on link and flow, the
244 * subflow fanout count has to be less than or equal to that of the
245 * underlying link. The cpu-bindings for the subflows will be a subset of
246 * the underlying link.
247 * o In case if no cpulist specified on both underlying link and flow, the
248 * underlying link relies on a MAC tunable to provide out of box fanout.
249 * The subflow will have no cpulist (the subflow will be unbound)
250 * o In case if no cpulist is specified on the underlying link, a subflow can
251 * carry either a user-specified cpulist or fanout count. The cpu-bindings
252 * for the subflow will not adhere to restriction that they need to be subset
253 * of the underlying link.
254 * o In case where the underlying link is carrying either a user specified
255 * cpulist or fanout mode and for a unspecified subflow, the subflow will be
256 * created unbound.
257 * o While creating unbound subflows, bandwidth mode changes attempt to
258 * figure a right fanout count. In such cases the fanout count will override
259 * the unbound cpu-binding behavior.
260 * o In addition to this, while cycling between flow and link properties, we
261 * impose a restriction that if a link property has a subflow with
262 * user-specified attributes, we will not allow changing the link property.
263 * The administrator needs to reset all the user specified properties for the
264 * subflows before attempting a link property change.
265 * Some of the above rules can be overridden by specifying additional command
266 * line options while creating or modifying link or subflow properties.
268 * Datapath
269 * --------
271 * For information on the datapath, the world of soft rings, hardware rings, how
272 * it is structured, and the path of an mblk_t between a driver and a mac
273 * client, see mac_sched.c.
276 #include <sys/types.h>
277 #include <sys/conf.h>
278 #include <sys/id_space.h>
279 #include <sys/esunddi.h>
280 #include <sys/stat.h>
281 #include <sys/mkdev.h>
282 #include <sys/stream.h>
283 #include <sys/strsun.h>
284 #include <sys/strsubr.h>
285 #include <sys/dlpi.h>
286 #include <sys/list.h>
287 #include <sys/modhash.h>
288 #include <sys/mac_provider.h>
289 #include <sys/mac_client_impl.h>
290 #include <sys/mac_soft_ring.h>
291 #include <sys/mac_stat.h>
292 #include <sys/mac_impl.h>
293 #include <sys/mac.h>
294 #include <sys/dls.h>
295 #include <sys/dld.h>
296 #include <sys/modctl.h>
297 #include <sys/fs/dv_node.h>
298 #include <sys/thread.h>
299 #include <sys/proc.h>
300 #include <sys/callb.h>
301 #include <sys/cpuvar.h>
302 #include <sys/atomic.h>
303 #include <sys/bitmap.h>
304 #include <sys/sdt.h>
305 #include <sys/mac_flow.h>
306 #include <sys/ddi_intr_impl.h>
307 #include <sys/disp.h>
308 #include <sys/sdt.h>
309 #include <sys/vnic.h>
310 #include <sys/vnic_impl.h>
311 #include <sys/vlan.h>
312 #include <inet/ip.h>
313 #include <inet/ip6.h>
314 #include <sys/exacct.h>
315 #include <sys/exacct_impl.h>
316 #include <inet/nd.h>
317 #include <sys/ethernet.h>
318 #include <sys/pool.h>
319 #include <sys/pool_pset.h>
320 #include <sys/cpupart.h>
321 #include <inet/wifi_ioctl.h>
322 #include <net/wpa.h>
324 #define IMPL_HASHSZ 67 /* prime */
326 kmem_cache_t *i_mac_impl_cachep;
327 mod_hash_t *i_mac_impl_hash;
328 krwlock_t i_mac_impl_lock;
329 uint_t i_mac_impl_count;
330 static kmem_cache_t *mac_ring_cache;
331 static id_space_t *minor_ids;
332 static uint32_t minor_count;
333 static pool_event_cb_t mac_pool_event_reg;
336 * Logging stuff. Perhaps mac_logging_interval could be broken into
337 * mac_flow_log_interval and mac_link_log_interval if we want to be
338 * able to schedule them differently.
340 uint_t mac_logging_interval;
341 boolean_t mac_flow_log_enable;
342 boolean_t mac_link_log_enable;
343 timeout_id_t mac_logging_timer;
345 /* for debugging, see MAC_DBG_PRT() in mac_impl.h */
346 int mac_dbg = 0;
348 #define MACTYPE_KMODDIR "mac"
349 #define MACTYPE_HASHSZ 67
350 static mod_hash_t *i_mactype_hash;
352 * i_mactype_lock synchronizes threads that obtain references to mactype_t
353 * structures through i_mactype_getplugin().
355 static kmutex_t i_mactype_lock;
358 * mac_tx_percpu_cnt
360 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side
361 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init.
362 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2.
363 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1.
365 int mac_tx_percpu_cnt;
366 int mac_tx_percpu_cnt_max = 128;
369 * Call back functions for the bridge module. These are guaranteed to be valid
370 * when holding a reference on a link or when holding mip->mi_bridge_lock and
371 * mi_bridge_link is non-NULL.
373 mac_bridge_tx_t mac_bridge_tx_cb;
374 mac_bridge_rx_t mac_bridge_rx_cb;
375 mac_bridge_ref_t mac_bridge_ref_cb;
376 mac_bridge_ls_t mac_bridge_ls_cb;
378 static int i_mac_constructor(void *, void *, int);
379 static void i_mac_destructor(void *, void *);
380 static int i_mac_ring_ctor(void *, void *, int);
381 static void i_mac_ring_dtor(void *, void *);
382 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *);
383 void mac_tx_client_flush(mac_client_impl_t *);
384 void mac_tx_client_block(mac_client_impl_t *);
385 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t);
386 static int mac_start_group_and_rings(mac_group_t *);
387 static void mac_stop_group_and_rings(mac_group_t *);
388 static void mac_pool_event_cb(pool_event_t, int, void *);
390 typedef struct netinfo_s {
391 list_node_t ni_link;
392 void *ni_record;
393 int ni_size;
394 int ni_type;
395 } netinfo_t;
398 * Module initialization functions.
401 void
402 mac_init(void)
404 mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus :
405 boot_max_ncpus);
407 /* Upper bound is mac_tx_percpu_cnt_max */
408 if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max)
409 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max;
411 if (mac_tx_percpu_cnt < 1) {
412 /* Someone set max_tx_percpu_cnt_max to 0 or less */
413 mac_tx_percpu_cnt = 1;
416 ASSERT(mac_tx_percpu_cnt >= 1);
417 mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1));
419 * Make it of the form 2**N - 1 in the range
420 * [0 .. mac_tx_percpu_cnt_max - 1]
422 mac_tx_percpu_cnt--;
424 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache",
425 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor,
426 NULL, NULL, NULL, 0);
427 ASSERT(i_mac_impl_cachep != NULL);
429 mac_ring_cache = kmem_cache_create("mac_ring_cache",
430 sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL,
431 NULL, NULL, 0);
432 ASSERT(mac_ring_cache != NULL);
434 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash",
435 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor,
436 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
437 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL);
439 mac_flow_init();
440 mac_soft_ring_init();
441 mac_bcast_init();
442 mac_client_init();
444 i_mac_impl_count = 0;
446 i_mactype_hash = mod_hash_create_extended("mactype_hash",
447 MACTYPE_HASHSZ,
448 mod_hash_null_keydtor, mod_hash_null_valdtor,
449 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
452 * Allocate an id space to manage minor numbers. The range of the
453 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1. This
454 * leaves half of the 32-bit minors available for driver private use.
456 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1,
457 MAC_PRIVATE_MINOR-1);
458 ASSERT(minor_ids != NULL);
459 minor_count = 0;
461 /* Let's default to 20 seconds */
462 mac_logging_interval = 20;
463 mac_flow_log_enable = B_FALSE;
464 mac_link_log_enable = B_FALSE;
465 mac_logging_timer = 0;
467 /* Register to be notified of noteworthy pools events */
468 mac_pool_event_reg.pec_func = mac_pool_event_cb;
469 mac_pool_event_reg.pec_arg = NULL;
470 pool_event_cb_register(&mac_pool_event_reg);
474 mac_fini(void)
477 if (i_mac_impl_count > 0 || minor_count > 0)
478 return (EBUSY);
480 pool_event_cb_unregister(&mac_pool_event_reg);
482 id_space_destroy(minor_ids);
483 mac_flow_fini();
485 mod_hash_destroy_hash(i_mac_impl_hash);
486 rw_destroy(&i_mac_impl_lock);
488 mac_client_fini();
489 kmem_cache_destroy(mac_ring_cache);
491 mod_hash_destroy_hash(i_mactype_hash);
492 mac_soft_ring_finish();
495 return (0);
499 * Initialize a GLDv3 driver's device ops. A driver that manages its own ops
500 * (e.g. softmac) may pass in a NULL ops argument.
502 void
503 mac_init_ops(struct dev_ops *ops, const char *name)
505 major_t major = ddi_name_to_major((char *)name);
508 * By returning on error below, we are not letting the driver continue
509 * in an undefined context. The mac_register() function will faill if
510 * DN_GLDV3_DRIVER isn't set.
512 if (major == DDI_MAJOR_T_NONE)
513 return;
514 LOCK_DEV_OPS(&devnamesp[major].dn_lock);
515 devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER);
516 UNLOCK_DEV_OPS(&devnamesp[major].dn_lock);
517 if (ops != NULL)
518 dld_init_ops(ops, name);
521 void
522 mac_fini_ops(struct dev_ops *ops)
524 dld_fini_ops(ops);
527 /*ARGSUSED*/
528 static int
529 i_mac_constructor(void *buf, void *arg, int kmflag)
531 mac_impl_t *mip = buf;
533 bzero(buf, sizeof (mac_impl_t));
535 mip->mi_linkstate = LINK_STATE_UNKNOWN;
537 rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL);
538 mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL);
539 mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL);
540 mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL);
542 mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock;
543 cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
544 mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock;
545 cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
547 mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL);
549 return (0);
552 /*ARGSUSED*/
553 static void
554 i_mac_destructor(void *buf, void *arg)
556 mac_impl_t *mip = buf;
557 mac_cb_info_t *mcbi;
559 ASSERT(mip->mi_ref == 0);
560 ASSERT(mip->mi_active == 0);
561 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN);
562 ASSERT(mip->mi_devpromisc == 0);
563 ASSERT(mip->mi_ksp == NULL);
564 ASSERT(mip->mi_kstat_count == 0);
565 ASSERT(mip->mi_nclients == 0);
566 ASSERT(mip->mi_nactiveclients == 0);
567 ASSERT(mip->mi_single_active_client == NULL);
568 ASSERT(mip->mi_state_flags == 0);
569 ASSERT(mip->mi_factory_addr == NULL);
570 ASSERT(mip->mi_factory_addr_num == 0);
571 ASSERT(mip->mi_default_tx_ring == NULL);
573 mcbi = &mip->mi_notify_cb_info;
574 ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0);
575 ASSERT(mip->mi_notify_bits == 0);
576 ASSERT(mip->mi_notify_thread == NULL);
577 ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock);
578 mcbi->mcbi_lockp = NULL;
580 mcbi = &mip->mi_promisc_cb_info;
581 ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL);
582 ASSERT(mip->mi_promisc_list == NULL);
583 ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock);
584 mcbi->mcbi_lockp = NULL;
586 ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL);
587 ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0);
589 rw_destroy(&mip->mi_rw_lock);
591 mutex_destroy(&mip->mi_promisc_lock);
592 cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv);
593 mutex_destroy(&mip->mi_notify_lock);
594 cv_destroy(&mip->mi_notify_cb_info.mcbi_cv);
595 mutex_destroy(&mip->mi_ring_lock);
597 ASSERT(mip->mi_bridge_link == NULL);
600 /* ARGSUSED */
601 static int
602 i_mac_ring_ctor(void *buf, void *arg, int kmflag)
604 mac_ring_t *ring = (mac_ring_t *)buf;
606 bzero(ring, sizeof (mac_ring_t));
607 cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL);
608 mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL);
609 ring->mr_state = MR_FREE;
610 return (0);
613 /* ARGSUSED */
614 static void
615 i_mac_ring_dtor(void *buf, void *arg)
617 mac_ring_t *ring = (mac_ring_t *)buf;
619 cv_destroy(&ring->mr_cv);
620 mutex_destroy(&ring->mr_lock);
624 * Common functions to do mac callback addition and deletion. Currently this is
625 * used by promisc callbacks and notify callbacks. List addition and deletion
626 * need to take care of list walkers. List walkers in general, can't hold list
627 * locks and make upcall callbacks due to potential lock order and recursive
628 * reentry issues. Instead list walkers increment the list walker count to mark
629 * the presence of a walker thread. Addition can be carefully done to ensure
630 * that the list walker always sees either the old list or the new list.
631 * However the deletion can't be done while the walker is active, instead the
632 * deleting thread simply marks the entry as logically deleted. The last walker
633 * physically deletes and frees up the logically deleted entries when the walk
634 * is complete.
636 void
637 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
638 mac_cb_t *mcb_elem)
640 mac_cb_t *p;
641 mac_cb_t **pp;
643 /* Verify it is not already in the list */
644 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
645 if (p == mcb_elem)
646 break;
648 VERIFY(p == NULL);
651 * Add it to the head of the callback list. The membar ensures that
652 * the following list pointer manipulations reach global visibility
653 * in exactly the program order below.
655 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
657 mcb_elem->mcb_nextp = *mcb_head;
658 membar_producer();
659 *mcb_head = mcb_elem;
663 * Mark the entry as logically deleted. If there aren't any walkers unlink
664 * from the list. In either case return the corresponding status.
666 boolean_t
667 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
668 mac_cb_t *mcb_elem)
670 mac_cb_t *p;
671 mac_cb_t **pp;
673 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
675 * Search the callback list for the entry to be removed
677 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
678 if (p == mcb_elem)
679 break;
681 VERIFY(p != NULL);
684 * If there are walkers just mark it as deleted and the last walker
685 * will remove from the list and free it.
687 if (mcbi->mcbi_walker_cnt != 0) {
688 p->mcb_flags |= MCB_CONDEMNED;
689 mcbi->mcbi_del_cnt++;
690 return (B_FALSE);
693 ASSERT(mcbi->mcbi_del_cnt == 0);
694 *pp = p->mcb_nextp;
695 p->mcb_nextp = NULL;
696 return (B_TRUE);
700 * Wait for all pending callback removals to be completed
702 void
703 mac_callback_remove_wait(mac_cb_info_t *mcbi)
705 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
706 while (mcbi->mcbi_del_cnt != 0) {
707 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi);
708 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
713 * The last mac callback walker does the cleanup. Walk the list and unlik
714 * all the logically deleted entries and construct a temporary list of
715 * removed entries. Return the list of removed entries to the caller.
717 mac_cb_t *
718 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head)
720 mac_cb_t *p;
721 mac_cb_t **pp;
722 mac_cb_t *rmlist = NULL; /* List of removed elements */
723 int cnt = 0;
725 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
726 ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0);
728 pp = mcb_head;
729 while (*pp != NULL) {
730 if ((*pp)->mcb_flags & MCB_CONDEMNED) {
731 p = *pp;
732 *pp = p->mcb_nextp;
733 p->mcb_nextp = rmlist;
734 rmlist = p;
735 cnt++;
736 continue;
738 pp = &(*pp)->mcb_nextp;
741 ASSERT(mcbi->mcbi_del_cnt == cnt);
742 mcbi->mcbi_del_cnt = 0;
743 return (rmlist);
746 boolean_t
747 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
749 mac_cb_t *mcb;
751 /* Verify it is not already in the list */
752 for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) {
753 if (mcb == mcb_elem)
754 return (B_TRUE);
757 return (B_FALSE);
760 boolean_t
761 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
763 boolean_t found;
765 mutex_enter(mcbi->mcbi_lockp);
766 found = mac_callback_lookup(mcb_headp, mcb_elem);
767 mutex_exit(mcbi->mcbi_lockp);
769 return (found);
772 /* Free the list of removed callbacks */
773 void
774 mac_callback_free(mac_cb_t *rmlist)
776 mac_cb_t *mcb;
777 mac_cb_t *mcb_next;
779 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
780 mcb_next = mcb->mcb_nextp;
781 kmem_free(mcb->mcb_objp, mcb->mcb_objsize);
786 * The promisc callbacks are in 2 lists, one off the 'mip' and another off the
787 * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there
788 * is only a single shared total walker count, and an entry can't be physically
789 * unlinked if a walker is active on either list. The last walker does this
790 * cleanup of logically deleted entries.
792 void
793 i_mac_promisc_walker_cleanup(mac_impl_t *mip)
795 mac_cb_t *rmlist;
796 mac_cb_t *mcb;
797 mac_cb_t *mcb_next;
798 mac_promisc_impl_t *mpip;
801 * Construct a temporary list of deleted callbacks by walking the
802 * the mi_promisc_list. Then for each entry in the temporary list,
803 * remove it from the mci_promisc_list and free the entry.
805 rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info,
806 &mip->mi_promisc_list);
808 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
809 mcb_next = mcb->mcb_nextp;
810 mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
811 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
812 &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link));
813 mcb->mcb_flags = 0;
814 mcb->mcb_nextp = NULL;
815 kmem_cache_free(mac_promisc_impl_cache, mpip);
819 void
820 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type)
822 mac_cb_info_t *mcbi;
825 * Signal the notify thread even after mi_ref has become zero and
826 * mi_disabled is set. The synchronization with the notify thread
827 * happens in mac_unregister and that implies the driver must make
828 * sure it is single-threaded (with respect to mac calls) and that
829 * all pending mac calls have returned before it calls mac_unregister
831 rw_enter(&i_mac_impl_lock, RW_READER);
832 if (mip->mi_state_flags & MIS_DISABLED)
833 goto exit;
836 * Guard against incorrect notifications. (Running a newer
837 * mac client against an older implementation?)
839 if (type >= MAC_NNOTE)
840 goto exit;
842 mcbi = &mip->mi_notify_cb_info;
843 mutex_enter(mcbi->mcbi_lockp);
844 mip->mi_notify_bits |= (1 << type);
845 cv_broadcast(&mcbi->mcbi_cv);
846 mutex_exit(mcbi->mcbi_lockp);
848 exit:
849 rw_exit(&i_mac_impl_lock);
853 * Mac serialization primitives. Please see the block comment at the
854 * top of the file.
856 void
857 i_mac_perim_enter(mac_impl_t *mip)
859 mac_client_impl_t *mcip;
861 if (mip->mi_state_flags & MIS_IS_VNIC) {
863 * This is a VNIC. Return the lower mac since that is what
864 * we want to serialize on.
866 mcip = mac_vnic_lower(mip);
867 mip = mcip->mci_mip;
870 mutex_enter(&mip->mi_perim_lock);
871 if (mip->mi_perim_owner == curthread) {
872 mip->mi_perim_ocnt++;
873 mutex_exit(&mip->mi_perim_lock);
874 return;
877 while (mip->mi_perim_owner != NULL)
878 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock);
880 mip->mi_perim_owner = curthread;
881 ASSERT(mip->mi_perim_ocnt == 0);
882 mip->mi_perim_ocnt++;
883 #ifdef DEBUG
884 mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack,
885 MAC_PERIM_STACK_DEPTH);
886 #endif
887 mutex_exit(&mip->mi_perim_lock);
891 i_mac_perim_enter_nowait(mac_impl_t *mip)
894 * The vnic is a special case, since the serialization is done based
895 * on the lower mac. If the lower mac is busy, it does not imply the
896 * vnic can't be unregistered. But in the case of other drivers,
897 * a busy perimeter or open mac handles implies that the mac is busy
898 * and can't be unregistered.
900 if (mip->mi_state_flags & MIS_IS_VNIC) {
901 i_mac_perim_enter(mip);
902 return (0);
905 mutex_enter(&mip->mi_perim_lock);
906 if (mip->mi_perim_owner != NULL) {
907 mutex_exit(&mip->mi_perim_lock);
908 return (EBUSY);
910 ASSERT(mip->mi_perim_ocnt == 0);
911 mip->mi_perim_owner = curthread;
912 mip->mi_perim_ocnt++;
913 mutex_exit(&mip->mi_perim_lock);
915 return (0);
918 void
919 i_mac_perim_exit(mac_impl_t *mip)
921 mac_client_impl_t *mcip;
923 if (mip->mi_state_flags & MIS_IS_VNIC) {
925 * This is a VNIC. Return the lower mac since that is what
926 * we want to serialize on.
928 mcip = mac_vnic_lower(mip);
929 mip = mcip->mci_mip;
932 ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0);
934 mutex_enter(&mip->mi_perim_lock);
935 if (--mip->mi_perim_ocnt == 0) {
936 mip->mi_perim_owner = NULL;
937 cv_signal(&mip->mi_perim_cv);
939 mutex_exit(&mip->mi_perim_lock);
943 * Returns whether the current thread holds the mac perimeter. Used in making
944 * assertions.
946 boolean_t
947 mac_perim_held(mac_handle_t mh)
949 mac_impl_t *mip = (mac_impl_t *)mh;
950 mac_client_impl_t *mcip;
952 if (mip->mi_state_flags & MIS_IS_VNIC) {
954 * This is a VNIC. Return the lower mac since that is what
955 * we want to serialize on.
957 mcip = mac_vnic_lower(mip);
958 mip = mcip->mci_mip;
960 return (mip->mi_perim_owner == curthread);
964 * mac client interfaces to enter the mac perimeter of a mac end point, given
965 * its mac handle, or macname or linkid.
967 void
968 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp)
970 mac_impl_t *mip = (mac_impl_t *)mh;
972 i_mac_perim_enter(mip);
974 * The mac_perim_handle_t returned encodes the 'mip' and whether a
975 * mac_open has been done internally while entering the perimeter.
976 * This information is used in mac_perim_exit
978 MAC_ENCODE_MPH(*mphp, mip, 0);
982 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp)
984 int err;
985 mac_handle_t mh;
987 if ((err = mac_open(name, &mh)) != 0)
988 return (err);
990 mac_perim_enter_by_mh(mh, mphp);
991 MAC_ENCODE_MPH(*mphp, mh, 1);
992 return (0);
996 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp)
998 int err;
999 mac_handle_t mh;
1001 if ((err = mac_open_by_linkid(linkid, &mh)) != 0)
1002 return (err);
1004 mac_perim_enter_by_mh(mh, mphp);
1005 MAC_ENCODE_MPH(*mphp, mh, 1);
1006 return (0);
1009 void
1010 mac_perim_exit(mac_perim_handle_t mph)
1012 mac_impl_t *mip;
1013 boolean_t need_close;
1015 MAC_DECODE_MPH(mph, mip, need_close);
1016 i_mac_perim_exit(mip);
1017 if (need_close)
1018 mac_close((mac_handle_t)mip);
1022 mac_hold(const char *macname, mac_impl_t **pmip)
1024 mac_impl_t *mip;
1025 int err;
1028 * Check the device name length to make sure it won't overflow our
1029 * buffer.
1031 if (strlen(macname) >= MAXNAMELEN)
1032 return (EINVAL);
1035 * Look up its entry in the global hash table.
1037 rw_enter(&i_mac_impl_lock, RW_WRITER);
1038 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname,
1039 (mod_hash_val_t *)&mip);
1041 if (err != 0) {
1042 rw_exit(&i_mac_impl_lock);
1043 return (ENOENT);
1046 if (mip->mi_state_flags & MIS_DISABLED) {
1047 rw_exit(&i_mac_impl_lock);
1048 return (ENOENT);
1051 if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) {
1052 rw_exit(&i_mac_impl_lock);
1053 return (EBUSY);
1056 mip->mi_ref++;
1057 rw_exit(&i_mac_impl_lock);
1059 *pmip = mip;
1060 return (0);
1063 void
1064 mac_rele(mac_impl_t *mip)
1066 rw_enter(&i_mac_impl_lock, RW_WRITER);
1067 ASSERT(mip->mi_ref != 0);
1068 if (--mip->mi_ref == 0) {
1069 ASSERT(mip->mi_nactiveclients == 0 &&
1070 !(mip->mi_state_flags & MIS_EXCLUSIVE));
1072 rw_exit(&i_mac_impl_lock);
1076 * Private GLDv3 function to start a MAC instance.
1079 mac_start(mac_handle_t mh)
1081 mac_impl_t *mip = (mac_impl_t *)mh;
1082 int err = 0;
1083 mac_group_t *defgrp;
1085 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1086 ASSERT(mip->mi_start != NULL);
1089 * Check whether the device is already started.
1091 if (mip->mi_active++ == 0) {
1092 mac_ring_t *ring = NULL;
1095 * Start the device.
1097 err = mip->mi_start(mip->mi_driver);
1098 if (err != 0) {
1099 mip->mi_active--;
1100 return (err);
1104 * Start the default tx ring.
1106 if (mip->mi_default_tx_ring != NULL) {
1108 ring = (mac_ring_t *)mip->mi_default_tx_ring;
1109 if (ring->mr_state != MR_INUSE) {
1110 err = mac_start_ring(ring);
1111 if (err != 0) {
1112 mip->mi_active--;
1113 return (err);
1118 if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1120 * Start the default ring, since it will be needed
1121 * to receive broadcast and multicast traffic for
1122 * both primary and non-primary MAC clients.
1124 ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED);
1125 err = mac_start_group_and_rings(defgrp);
1126 if (err != 0) {
1127 mip->mi_active--;
1128 if ((ring != NULL) &&
1129 (ring->mr_state == MR_INUSE))
1130 mac_stop_ring(ring);
1131 return (err);
1133 mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED);
1137 return (err);
1141 * Private GLDv3 function to stop a MAC instance.
1143 void
1144 mac_stop(mac_handle_t mh)
1146 mac_impl_t *mip = (mac_impl_t *)mh;
1147 mac_group_t *grp;
1149 ASSERT(mip->mi_stop != NULL);
1150 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1153 * Check whether the device is still needed.
1155 ASSERT(mip->mi_active != 0);
1156 if (--mip->mi_active == 0) {
1157 if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1159 * There should be no more active clients since the
1160 * MAC is being stopped. Stop the default RX group
1161 * and transition it back to registered state.
1163 * When clients are torn down, the groups
1164 * are release via mac_release_rx_group which
1165 * knows the the default group is always in
1166 * started mode since broadcast uses it. So
1167 * we can assert that their are no clients
1168 * (since mac_bcast_add doesn't register itself
1169 * as a client) and group is in SHARED state.
1171 ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED);
1172 ASSERT(MAC_GROUP_NO_CLIENT(grp) &&
1173 mip->mi_nactiveclients == 0);
1174 mac_stop_group_and_rings(grp);
1175 mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED);
1178 if (mip->mi_default_tx_ring != NULL) {
1179 mac_ring_t *ring;
1181 ring = (mac_ring_t *)mip->mi_default_tx_ring;
1182 if (ring->mr_state == MR_INUSE) {
1183 mac_stop_ring(ring);
1184 ring->mr_flag = 0;
1189 * Stop the device.
1191 mip->mi_stop(mip->mi_driver);
1196 i_mac_promisc_set(mac_impl_t *mip, boolean_t on)
1198 int err = 0;
1200 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1201 ASSERT(mip->mi_setpromisc != NULL);
1203 if (on) {
1205 * Enable promiscuous mode on the device if not yet enabled.
1207 if (mip->mi_devpromisc++ == 0) {
1208 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE);
1209 if (err != 0) {
1210 mip->mi_devpromisc--;
1211 return (err);
1213 i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1215 } else {
1216 if (mip->mi_devpromisc == 0)
1217 return (EPROTO);
1220 * Disable promiscuous mode on the device if this is the last
1221 * enabling.
1223 if (--mip->mi_devpromisc == 0) {
1224 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE);
1225 if (err != 0) {
1226 mip->mi_devpromisc++;
1227 return (err);
1229 i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1233 return (0);
1237 * The promiscuity state can change any time. If the caller needs to take
1238 * actions that are atomic with the promiscuity state, then the caller needs
1239 * to bracket the entire sequence with mac_perim_enter/exit
1241 boolean_t
1242 mac_promisc_get(mac_handle_t mh)
1244 mac_impl_t *mip = (mac_impl_t *)mh;
1247 * Return the current promiscuity.
1249 return (mip->mi_devpromisc != 0);
1253 * Invoked at MAC instance attach time to initialize the list
1254 * of factory MAC addresses supported by a MAC instance. This function
1255 * builds a local cache in the mac_impl_t for the MAC addresses
1256 * supported by the underlying hardware. The MAC clients themselves
1257 * use the mac_addr_factory*() functions to query and reserve
1258 * factory MAC addresses.
1260 void
1261 mac_addr_factory_init(mac_impl_t *mip)
1263 mac_capab_multifactaddr_t capab;
1264 uint8_t *addr;
1265 int i;
1268 * First round to see how many factory MAC addresses are available.
1270 bzero(&capab, sizeof (capab));
1271 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR,
1272 &capab) || (capab.mcm_naddr == 0)) {
1274 * The MAC instance doesn't support multiple factory
1275 * MAC addresses, we're done here.
1277 return;
1281 * Allocate the space and get all the factory addresses.
1283 addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP);
1284 capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr);
1286 mip->mi_factory_addr_num = capab.mcm_naddr;
1287 mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num *
1288 sizeof (mac_factory_addr_t), KM_SLEEP);
1290 for (i = 0; i < capab.mcm_naddr; i++) {
1291 bcopy(addr + i * MAXMACADDRLEN,
1292 mip->mi_factory_addr[i].mfa_addr,
1293 mip->mi_type->mt_addr_length);
1294 mip->mi_factory_addr[i].mfa_in_use = B_FALSE;
1297 kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN);
1300 void
1301 mac_addr_factory_fini(mac_impl_t *mip)
1303 if (mip->mi_factory_addr == NULL) {
1304 ASSERT(mip->mi_factory_addr_num == 0);
1305 return;
1308 kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num *
1309 sizeof (mac_factory_addr_t));
1311 mip->mi_factory_addr = NULL;
1312 mip->mi_factory_addr_num = 0;
1316 * Reserve a factory MAC address. If *slot is set to -1, the function
1317 * attempts to reserve any of the available factory MAC addresses and
1318 * returns the reserved slot id. If no slots are available, the function
1319 * returns ENOSPC. If *slot is not set to -1, the function reserves
1320 * the specified slot if it is available, or returns EBUSY is the slot
1321 * is already used. Returns ENOTSUP if the underlying MAC does not
1322 * support multiple factory addresses. If the slot number is not -1 but
1323 * is invalid, returns EINVAL.
1326 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot)
1328 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1329 mac_impl_t *mip = mcip->mci_mip;
1330 int i, ret = 0;
1332 i_mac_perim_enter(mip);
1334 * Protect against concurrent readers that may need a self-consistent
1335 * view of the factory addresses
1337 rw_enter(&mip->mi_rw_lock, RW_WRITER);
1339 if (mip->mi_factory_addr_num == 0) {
1340 ret = ENOTSUP;
1341 goto bail;
1344 if (*slot != -1) {
1345 /* check the specified slot */
1346 if (*slot < 1 || *slot > mip->mi_factory_addr_num) {
1347 ret = EINVAL;
1348 goto bail;
1350 if (mip->mi_factory_addr[*slot-1].mfa_in_use) {
1351 ret = EBUSY;
1352 goto bail;
1354 } else {
1355 /* pick the next available slot */
1356 for (i = 0; i < mip->mi_factory_addr_num; i++) {
1357 if (!mip->mi_factory_addr[i].mfa_in_use)
1358 break;
1361 if (i == mip->mi_factory_addr_num) {
1362 ret = ENOSPC;
1363 goto bail;
1365 *slot = i+1;
1368 mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE;
1369 mip->mi_factory_addr[*slot-1].mfa_client = mcip;
1371 bail:
1372 rw_exit(&mip->mi_rw_lock);
1373 i_mac_perim_exit(mip);
1374 return (ret);
1378 * Release the specified factory MAC address slot.
1380 void
1381 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot)
1383 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1384 mac_impl_t *mip = mcip->mci_mip;
1386 i_mac_perim_enter(mip);
1388 * Protect against concurrent readers that may need a self-consistent
1389 * view of the factory addresses
1391 rw_enter(&mip->mi_rw_lock, RW_WRITER);
1393 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1394 ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use);
1396 mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE;
1398 rw_exit(&mip->mi_rw_lock);
1399 i_mac_perim_exit(mip);
1403 * Stores in mac_addr the value of the specified MAC address. Returns
1404 * 0 on success, or EINVAL if the slot number is not valid for the MAC.
1405 * The caller must provide a string of at least MAXNAMELEN bytes.
1407 void
1408 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr,
1409 uint_t *addr_len, char *client_name, boolean_t *in_use_arg)
1411 mac_impl_t *mip = (mac_impl_t *)mh;
1412 boolean_t in_use;
1414 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1417 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter
1418 * and mi_rw_lock
1420 rw_enter(&mip->mi_rw_lock, RW_READER);
1421 bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN);
1422 *addr_len = mip->mi_type->mt_addr_length;
1423 in_use = mip->mi_factory_addr[slot-1].mfa_in_use;
1424 if (in_use && client_name != NULL) {
1425 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name,
1426 client_name, MAXNAMELEN);
1428 if (in_use_arg != NULL)
1429 *in_use_arg = in_use;
1430 rw_exit(&mip->mi_rw_lock);
1434 * Returns the number of factory MAC addresses (in addition to the
1435 * primary MAC address), 0 if the underlying MAC doesn't support
1436 * that feature.
1438 uint_t
1439 mac_addr_factory_num(mac_handle_t mh)
1441 mac_impl_t *mip = (mac_impl_t *)mh;
1443 return (mip->mi_factory_addr_num);
1447 void
1448 mac_rx_group_unmark(mac_group_t *grp, uint_t flag)
1450 mac_ring_t *ring;
1452 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next)
1453 ring->mr_flag &= ~flag;
1457 * The following mac_hwrings_xxx() functions are private mac client functions
1458 * used by the aggr driver to access and control the underlying HW Rx group
1459 * and rings. In this case, the aggr driver has exclusive control of the
1460 * underlying HW Rx group/rings, it calls the following functions to
1461 * start/stop the HW Rx rings, disable/enable polling, add/remove mac'
1462 * addresses, or set up the Rx callback.
1464 /* ARGSUSED */
1465 static void
1466 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs,
1467 mblk_t *mp_chain, boolean_t loopback)
1469 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs;
1470 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx;
1471 mac_direct_rx_t proc;
1472 void *arg1;
1473 mac_resource_handle_t arg2;
1475 proc = srs_rx->sr_func;
1476 arg1 = srs_rx->sr_arg1;
1477 arg2 = mac_srs->srs_mrh;
1479 proc(arg1, arg2, mp_chain, NULL);
1483 * This function is called to get the list of HW rings that are reserved by
1484 * an exclusive mac client.
1486 * Return value: the number of HW rings.
1489 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh,
1490 mac_ring_handle_t *hwrh, mac_ring_type_t rtype)
1492 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1493 flow_entry_t *flent = mcip->mci_flent;
1494 mac_group_t *grp;
1495 mac_ring_t *ring;
1496 int cnt = 0;
1498 if (rtype == MAC_RING_TYPE_RX) {
1499 grp = flent->fe_rx_ring_group;
1500 } else if (rtype == MAC_RING_TYPE_TX) {
1501 grp = flent->fe_tx_ring_group;
1502 } else {
1503 ASSERT(B_FALSE);
1504 return (-1);
1507 * The mac client did not reserve any RX group, return directly.
1508 * This is probably because the underlying MAC does not support
1509 * any groups.
1511 if (hwgh != NULL)
1512 *hwgh = NULL;
1513 if (grp == NULL)
1514 return (0);
1516 * This group must be reserved by this mac client.
1518 ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) &&
1519 (mcip == MAC_GROUP_ONLY_CLIENT(grp)));
1521 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) {
1522 ASSERT(cnt < MAX_RINGS_PER_GROUP);
1523 hwrh[cnt] = (mac_ring_handle_t)ring;
1525 if (hwgh != NULL)
1526 *hwgh = (mac_group_handle_t)grp;
1528 return (cnt);
1532 * This function is called to get info about Tx/Rx rings.
1534 * Return value: returns uint_t which will have various bits set
1535 * that indicates different properties of the ring.
1537 uint_t
1538 mac_hwring_getinfo(mac_ring_handle_t rh)
1540 mac_ring_t *ring = (mac_ring_t *)rh;
1541 mac_ring_info_t *info = &ring->mr_info;
1543 return (info->mri_flags);
1547 * Export ddi interrupt handles from the HW ring to the pseudo ring and
1548 * setup the RX callback of the mac client which exclusively controls
1549 * HW ring.
1551 void
1552 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh,
1553 mac_ring_handle_t pseudo_rh)
1555 mac_ring_t *hw_ring = (mac_ring_t *)hwrh;
1556 mac_ring_t *pseudo_ring;
1557 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs;
1559 if (pseudo_rh != NULL) {
1560 pseudo_ring = (mac_ring_t *)pseudo_rh;
1561 /* Export the ddi handles to pseudo ring */
1562 pseudo_ring->mr_info.mri_intr.mi_ddi_handle =
1563 hw_ring->mr_info.mri_intr.mi_ddi_handle;
1564 pseudo_ring->mr_info.mri_intr.mi_ddi_shared =
1565 hw_ring->mr_info.mri_intr.mi_ddi_shared;
1567 * Save a pointer to pseudo ring in the hw ring. If
1568 * interrupt handle changes, the hw ring will be
1569 * notified of the change (see mac_ring_intr_set())
1570 * and the appropriate change has to be made to
1571 * the pseudo ring that has exported the ddi handle.
1573 hw_ring->mr_prh = pseudo_rh;
1576 if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1577 ASSERT(!(mac_srs->srs_type & SRST_TX));
1578 mac_srs->srs_mrh = prh;
1579 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process;
1583 void
1584 mac_hwring_teardown(mac_ring_handle_t hwrh)
1586 mac_ring_t *hw_ring = (mac_ring_t *)hwrh;
1587 mac_soft_ring_set_t *mac_srs;
1589 if (hw_ring == NULL)
1590 return;
1591 hw_ring->mr_prh = NULL;
1592 if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1593 mac_srs = hw_ring->mr_srs;
1594 ASSERT(!(mac_srs->srs_type & SRST_TX));
1595 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process;
1596 mac_srs->srs_mrh = NULL;
1601 mac_hwring_disable_intr(mac_ring_handle_t rh)
1603 mac_ring_t *rr_ring = (mac_ring_t *)rh;
1604 mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1606 return (intr->mi_disable(intr->mi_handle));
1610 mac_hwring_enable_intr(mac_ring_handle_t rh)
1612 mac_ring_t *rr_ring = (mac_ring_t *)rh;
1613 mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1615 return (intr->mi_enable(intr->mi_handle));
1619 mac_hwring_start(mac_ring_handle_t rh)
1621 mac_ring_t *rr_ring = (mac_ring_t *)rh;
1623 MAC_RING_UNMARK(rr_ring, MR_QUIESCE);
1624 return (0);
1627 void
1628 mac_hwring_stop(mac_ring_handle_t rh)
1630 mac_ring_t *rr_ring = (mac_ring_t *)rh;
1632 mac_rx_ring_quiesce(rr_ring, MR_QUIESCE);
1635 mblk_t *
1636 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup)
1638 mac_ring_t *rr_ring = (mac_ring_t *)rh;
1639 mac_ring_info_t *info = &rr_ring->mr_info;
1641 return (info->mri_poll(info->mri_driver, bytes_to_pickup));
1645 * Send packets through a selected tx ring.
1647 mblk_t *
1648 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp)
1650 mac_ring_t *ring = (mac_ring_t *)rh;
1651 mac_ring_info_t *info = &ring->mr_info;
1653 ASSERT(ring->mr_type == MAC_RING_TYPE_TX &&
1654 ring->mr_state >= MR_INUSE);
1655 return (info->mri_tx(info->mri_driver, mp));
1659 * Query stats for a particular rx/tx ring
1662 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val)
1664 mac_ring_t *ring = (mac_ring_t *)rh;
1665 mac_ring_info_t *info = &ring->mr_info;
1667 return (info->mri_stat(info->mri_driver, stat, val));
1671 * Private function that is only used by aggr to send packets through
1672 * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports
1673 * that does not expose Tx rings, aggr_ring_tx() entry point needs
1674 * access to mac_impl_t to send packets through m_tx() entry point.
1675 * It accomplishes this by calling mac_hwring_send_priv() function.
1677 mblk_t *
1678 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp)
1680 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1681 mac_impl_t *mip = mcip->mci_mip;
1683 MAC_TX(mip, rh, mp, mcip);
1684 return (mp);
1688 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr)
1690 mac_group_t *group = (mac_group_t *)gh;
1692 return (mac_group_addmac(group, addr));
1696 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr)
1698 mac_group_t *group = (mac_group_t *)gh;
1700 return (mac_group_remmac(group, addr));
1704 * Set the RX group to be shared/reserved. Note that the group must be
1705 * started/stopped outside of this function.
1707 void
1708 mac_set_group_state(mac_group_t *grp, mac_group_state_t state)
1711 * If there is no change in the group state, just return.
1713 if (grp->mrg_state == state)
1714 return;
1716 switch (state) {
1717 case MAC_GROUP_STATE_RESERVED:
1719 * Successfully reserved the group.
1721 * Given that there is an exclusive client controlling this
1722 * group, we enable the group level polling when available,
1723 * so that SRSs get to turn on/off individual rings they's
1724 * assigned to.
1726 ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1728 if (grp->mrg_type == MAC_RING_TYPE_RX &&
1729 GROUP_INTR_DISABLE_FUNC(grp) != NULL) {
1730 GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1732 break;
1734 case MAC_GROUP_STATE_SHARED:
1736 * Set all rings of this group to software classified.
1737 * If the group has an overriding interrupt, then re-enable it.
1739 ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1741 if (grp->mrg_type == MAC_RING_TYPE_RX &&
1742 GROUP_INTR_ENABLE_FUNC(grp) != NULL) {
1743 GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1745 /* The ring is not available for reservations any more */
1746 break;
1748 case MAC_GROUP_STATE_REGISTERED:
1749 /* Also callable from mac_register, perim is not held */
1750 break;
1752 default:
1753 ASSERT(B_FALSE);
1754 break;
1757 grp->mrg_state = state;
1761 * Quiesce future hardware classified packets for the specified Rx ring
1763 static void
1764 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag)
1766 ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER);
1767 ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE);
1769 mutex_enter(&rx_ring->mr_lock);
1770 rx_ring->mr_flag |= ring_flag;
1771 while (rx_ring->mr_refcnt != 0)
1772 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock);
1773 mutex_exit(&rx_ring->mr_lock);
1777 * Please see mac_tx for details about the per cpu locking scheme
1779 static void
1780 mac_tx_lock_all(mac_client_impl_t *mcip)
1782 int i;
1784 for (i = 0; i <= mac_tx_percpu_cnt; i++)
1785 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1788 static void
1789 mac_tx_unlock_all(mac_client_impl_t *mcip)
1791 int i;
1793 for (i = mac_tx_percpu_cnt; i >= 0; i--)
1794 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1797 static void
1798 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip)
1800 int i;
1802 for (i = mac_tx_percpu_cnt; i > 0; i--)
1803 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1806 static int
1807 mac_tx_sum_refcnt(mac_client_impl_t *mcip)
1809 int i;
1810 int refcnt = 0;
1812 for (i = 0; i <= mac_tx_percpu_cnt; i++)
1813 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt;
1815 return (refcnt);
1819 * Stop future Tx packets coming down from the client in preparation for
1820 * quiescing the Tx side. This is needed for dynamic reclaim and reassignment
1821 * of rings between clients
1823 void
1824 mac_tx_client_block(mac_client_impl_t *mcip)
1826 mac_tx_lock_all(mcip);
1827 mcip->mci_tx_flag |= MCI_TX_QUIESCE;
1828 while (mac_tx_sum_refcnt(mcip) != 0) {
1829 mac_tx_unlock_allbutzero(mcip);
1830 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1831 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1832 mac_tx_lock_all(mcip);
1834 mac_tx_unlock_all(mcip);
1837 void
1838 mac_tx_client_unblock(mac_client_impl_t *mcip)
1840 mac_tx_lock_all(mcip);
1841 mcip->mci_tx_flag &= ~MCI_TX_QUIESCE;
1842 mac_tx_unlock_all(mcip);
1844 * We may fail to disable flow control for the last MAC_NOTE_TX
1845 * notification because the MAC client is quiesced. Send the
1846 * notification again.
1848 i_mac_notify(mcip->mci_mip, MAC_NOTE_TX);
1852 * Wait for an SRS to quiesce. The SRS worker will signal us when the
1853 * quiesce is done.
1855 static void
1856 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag)
1858 mutex_enter(&srs->srs_lock);
1859 while (!(srs->srs_state & srs_flag))
1860 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock);
1861 mutex_exit(&srs->srs_lock);
1865 * Quiescing an Rx SRS is achieved by the following sequence. The protocol
1866 * works bottom up by cutting off packet flow from the bottommost point in the
1867 * mac, then the SRS, and then the soft rings. There are 2 use cases of this
1868 * mechanism. One is a temporary quiesce of the SRS, such as say while changing
1869 * the Rx callbacks. Another use case is Rx SRS teardown. In the former case
1870 * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used
1871 * for the SRS and MR flags. In the former case the threads pause waiting for
1872 * a restart, while in the latter case the threads exit. The Tx SRS teardown
1873 * is also mostly similar to the above.
1875 * 1. Stop future hardware classified packets at the lowest level in the mac.
1876 * Remove any hardware classification rule (CONDEMNED case) and mark the
1877 * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt
1878 * from increasing. Upcalls from the driver that come through hardware
1879 * classification will be dropped in mac_rx from now on. Then we wait for
1880 * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are
1881 * sure there aren't any upcall threads from the driver through hardware
1882 * classification. In the case of SRS teardown we also remove the
1883 * classification rule in the driver.
1885 * 2. Stop future software classified packets by marking the flow entry with
1886 * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from
1887 * increasing. We also remove the flow entry from the table in the latter
1888 * case. Then wait for the fe_refcnt to reach an appropriate quiescent value
1889 * that indicates there aren't any active threads using that flow entry.
1891 * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread,
1892 * SRS worker thread, and the soft ring threads are quiesced in sequence
1893 * with the SRS worker thread serving as a master controller. This
1894 * mechansim is explained in mac_srs_worker_quiesce().
1896 * The restart mechanism to reactivate the SRS and softrings is explained
1897 * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the
1898 * restart sequence.
1900 void
1901 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
1903 flow_entry_t *flent = srs->srs_flent;
1904 uint_t mr_flag, srs_done_flag;
1906 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
1907 ASSERT(!(srs->srs_type & SRST_TX));
1909 if (srs_quiesce_flag == SRS_CONDEMNED) {
1910 mr_flag = MR_CONDEMNED;
1911 srs_done_flag = SRS_CONDEMNED_DONE;
1912 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1913 mac_srs_client_poll_disable(srs->srs_mcip, srs);
1914 } else {
1915 ASSERT(srs_quiesce_flag == SRS_QUIESCE);
1916 mr_flag = MR_QUIESCE;
1917 srs_done_flag = SRS_QUIESCE_DONE;
1918 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1919 mac_srs_client_poll_quiesce(srs->srs_mcip, srs);
1922 if (srs->srs_ring != NULL) {
1923 mac_rx_ring_quiesce(srs->srs_ring, mr_flag);
1924 } else {
1926 * SRS is driven by software classification. In case
1927 * of CONDEMNED, the top level teardown functions will
1928 * deal with flow removal.
1930 if (srs_quiesce_flag != SRS_CONDEMNED) {
1931 FLOW_MARK(flent, FE_QUIESCE);
1932 mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
1937 * Signal the SRS to quiesce itself, and then cv_wait for the
1938 * SRS quiesce to complete. The SRS worker thread will wake us
1939 * up when the quiesce is complete
1941 mac_srs_signal(srs, srs_quiesce_flag);
1942 mac_srs_quiesce_wait(srs, srs_done_flag);
1946 * Remove an SRS.
1948 void
1949 mac_rx_srs_remove(mac_soft_ring_set_t *srs)
1951 flow_entry_t *flent = srs->srs_flent;
1952 int i;
1954 mac_rx_srs_quiesce(srs, SRS_CONDEMNED);
1956 * Locate and remove our entry in the fe_rx_srs[] array, and
1957 * adjust the fe_rx_srs array entries and array count by
1958 * moving the last entry into the vacated spot.
1960 mutex_enter(&flent->fe_lock);
1961 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1962 if (flent->fe_rx_srs[i] == srs)
1963 break;
1966 ASSERT(i != 0 && i < flent->fe_rx_srs_cnt);
1967 if (i != flent->fe_rx_srs_cnt - 1) {
1968 flent->fe_rx_srs[i] =
1969 flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1];
1970 i = flent->fe_rx_srs_cnt - 1;
1973 flent->fe_rx_srs[i] = NULL;
1974 flent->fe_rx_srs_cnt--;
1975 mutex_exit(&flent->fe_lock);
1977 mac_srs_free(srs);
1980 static void
1981 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag)
1983 mutex_enter(&srs->srs_lock);
1984 srs->srs_state &= ~flag;
1985 mutex_exit(&srs->srs_lock);
1988 void
1989 mac_rx_srs_restart(mac_soft_ring_set_t *srs)
1991 flow_entry_t *flent = srs->srs_flent;
1992 mac_ring_t *mr;
1994 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
1995 ASSERT((srs->srs_type & SRST_TX) == 0);
1998 * This handles a change in the number of SRSs between the quiesce and
1999 * and restart operation of a flow.
2001 if (!SRS_QUIESCED(srs))
2002 return;
2005 * Signal the SRS to restart itself. Wait for the restart to complete
2006 * Note that we only restart the SRS if it is not marked as
2007 * permanently quiesced.
2009 if (!SRS_QUIESCED_PERMANENT(srs)) {
2010 mac_srs_signal(srs, SRS_RESTART);
2011 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2012 mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2014 mac_srs_client_poll_restart(srs->srs_mcip, srs);
2017 /* Finally clear the flags to let the packets in */
2018 mr = srs->srs_ring;
2019 if (mr != NULL) {
2020 MAC_RING_UNMARK(mr, MR_QUIESCE);
2021 /* In case the ring was stopped, safely restart it */
2022 if (mr->mr_state != MR_INUSE)
2023 (void) mac_start_ring(mr);
2024 } else {
2025 FLOW_UNMARK(flent, FE_QUIESCE);
2030 * Temporary quiesce of a flow and associated Rx SRS.
2031 * Please see block comment above mac_rx_classify_flow_rem.
2033 /* ARGSUSED */
2035 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg)
2037 int i;
2039 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2040 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i],
2041 SRS_QUIESCE);
2043 return (0);
2047 * Restart a flow and associated Rx SRS that has been quiesced temporarily
2048 * Please see block comment above mac_rx_classify_flow_rem
2050 /* ARGSUSED */
2052 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg)
2054 int i;
2056 for (i = 0; i < flent->fe_rx_srs_cnt; i++)
2057 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]);
2059 return (0);
2062 void
2063 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on)
2065 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2066 flow_entry_t *flent = mcip->mci_flent;
2067 mac_impl_t *mip = mcip->mci_mip;
2068 mac_soft_ring_set_t *mac_srs;
2069 int i;
2071 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2073 if (flent == NULL)
2074 return;
2076 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2077 mac_srs = flent->fe_rx_srs[i];
2078 mutex_enter(&mac_srs->srs_lock);
2079 if (on)
2080 mac_srs->srs_state |= SRS_QUIESCE_PERM;
2081 else
2082 mac_srs->srs_state &= ~SRS_QUIESCE_PERM;
2083 mutex_exit(&mac_srs->srs_lock);
2087 void
2088 mac_rx_client_quiesce(mac_client_handle_t mch)
2090 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2091 mac_impl_t *mip = mcip->mci_mip;
2093 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2095 if (MCIP_DATAPATH_SETUP(mcip)) {
2096 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent,
2097 NULL);
2098 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2099 mac_rx_classify_flow_quiesce, NULL);
2103 void
2104 mac_rx_client_restart(mac_client_handle_t mch)
2106 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2107 mac_impl_t *mip = mcip->mci_mip;
2109 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2111 if (MCIP_DATAPATH_SETUP(mcip)) {
2112 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL);
2113 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2114 mac_rx_classify_flow_restart, NULL);
2119 * This function only quiesces the Tx SRS and softring worker threads. Callers
2120 * need to make sure that there aren't any mac client threads doing current or
2121 * future transmits in the mac before calling this function.
2123 void
2124 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
2126 mac_client_impl_t *mcip = srs->srs_mcip;
2128 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2130 ASSERT(srs->srs_type & SRST_TX);
2131 ASSERT(srs_quiesce_flag == SRS_CONDEMNED ||
2132 srs_quiesce_flag == SRS_QUIESCE);
2135 * Signal the SRS to quiesce itself, and then cv_wait for the
2136 * SRS quiesce to complete. The SRS worker thread will wake us
2137 * up when the quiesce is complete
2139 mac_srs_signal(srs, srs_quiesce_flag);
2140 mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ?
2141 SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE);
2144 void
2145 mac_tx_srs_restart(mac_soft_ring_set_t *srs)
2148 * Resizing the fanout could result in creation of new SRSs.
2149 * They may not necessarily be in the quiesced state in which
2150 * case it need be restarted
2152 if (!SRS_QUIESCED(srs))
2153 return;
2155 mac_srs_signal(srs, SRS_RESTART);
2156 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2157 mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2161 * Temporary quiesce of a flow and associated Rx SRS.
2162 * Please see block comment above mac_rx_srs_quiesce
2164 /* ARGSUSED */
2166 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg)
2169 * The fe_tx_srs is null for a subflow on an interface that is
2170 * not plumbed
2172 if (flent->fe_tx_srs != NULL)
2173 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE);
2174 return (0);
2177 /* ARGSUSED */
2179 mac_tx_flow_restart(flow_entry_t *flent, void *arg)
2182 * The fe_tx_srs is null for a subflow on an interface that is
2183 * not plumbed
2185 if (flent->fe_tx_srs != NULL)
2186 mac_tx_srs_restart(flent->fe_tx_srs);
2187 return (0);
2190 static void
2191 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag)
2193 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2195 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2197 mac_tx_client_block(mcip);
2198 if (MCIP_TX_SRS(mcip) != NULL) {
2199 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag);
2200 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2201 mac_tx_flow_quiesce, NULL);
2205 void
2206 mac_tx_client_quiesce(mac_client_handle_t mch)
2208 i_mac_tx_client_quiesce(mch, SRS_QUIESCE);
2211 void
2212 mac_tx_client_condemn(mac_client_handle_t mch)
2214 i_mac_tx_client_quiesce(mch, SRS_CONDEMNED);
2217 void
2218 mac_tx_client_restart(mac_client_handle_t mch)
2220 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2222 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2224 mac_tx_client_unblock(mcip);
2225 if (MCIP_TX_SRS(mcip) != NULL) {
2226 mac_tx_srs_restart(MCIP_TX_SRS(mcip));
2227 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2228 mac_tx_flow_restart, NULL);
2232 void
2233 mac_tx_client_flush(mac_client_impl_t *mcip)
2235 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2237 mac_tx_client_quiesce((mac_client_handle_t)mcip);
2238 mac_tx_client_restart((mac_client_handle_t)mcip);
2241 void
2242 mac_client_quiesce(mac_client_impl_t *mcip)
2244 mac_rx_client_quiesce((mac_client_handle_t)mcip);
2245 mac_tx_client_quiesce((mac_client_handle_t)mcip);
2248 void
2249 mac_client_restart(mac_client_impl_t *mcip)
2251 mac_rx_client_restart((mac_client_handle_t)mcip);
2252 mac_tx_client_restart((mac_client_handle_t)mcip);
2256 * Allocate a minor number.
2258 minor_t
2259 mac_minor_hold(boolean_t sleep)
2261 minor_t minor;
2264 * Grab a value from the arena.
2266 atomic_inc_32(&minor_count);
2268 if (sleep)
2269 minor = (uint_t)id_alloc(minor_ids);
2270 else
2271 minor = (uint_t)id_alloc_nosleep(minor_ids);
2273 if (minor == 0) {
2274 atomic_dec_32(&minor_count);
2275 return (0);
2278 return (minor);
2282 * Release a previously allocated minor number.
2284 void
2285 mac_minor_rele(minor_t minor)
2288 * Return the value to the arena.
2290 id_free(minor_ids, minor);
2291 atomic_dec_32(&minor_count);
2294 uint32_t
2295 mac_no_notification(mac_handle_t mh)
2297 mac_impl_t *mip = (mac_impl_t *)mh;
2299 return (((mip->mi_state_flags & MIS_LEGACY) != 0) ?
2300 mip->mi_capab_legacy.ml_unsup_note : 0);
2304 * Prevent any new opens of this mac in preparation for unregister
2307 i_mac_disable(mac_impl_t *mip)
2309 mac_client_impl_t *mcip;
2311 rw_enter(&i_mac_impl_lock, RW_WRITER);
2312 if (mip->mi_state_flags & MIS_DISABLED) {
2313 /* Already disabled, return success */
2314 rw_exit(&i_mac_impl_lock);
2315 return (0);
2318 * See if there are any other references to this mac_t (e.g., VLAN's).
2319 * If so return failure. If all the other checks below pass, then
2320 * set mi_disabled atomically under the i_mac_impl_lock to prevent
2321 * any new VLAN's from being created or new mac client opens of this
2322 * mac end point.
2324 if (mip->mi_ref > 0) {
2325 rw_exit(&i_mac_impl_lock);
2326 return (EBUSY);
2330 * mac clients must delete all multicast groups they join before
2331 * closing. bcast groups are reference counted, the last client
2332 * to delete the group will wait till the group is physically
2333 * deleted. Since all clients have closed this mac end point
2334 * mi_bcast_ngrps must be zero at this point
2336 ASSERT(mip->mi_bcast_ngrps == 0);
2339 * Don't let go of this if it has some flows.
2340 * All other code guarantees no flows are added to a disabled
2341 * mac, therefore it is sufficient to check for the flow table
2342 * only here.
2344 mcip = mac_primary_client_handle(mip);
2345 if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) {
2346 rw_exit(&i_mac_impl_lock);
2347 return (ENOTEMPTY);
2350 mip->mi_state_flags |= MIS_DISABLED;
2351 rw_exit(&i_mac_impl_lock);
2352 return (0);
2356 mac_disable_nowait(mac_handle_t mh)
2358 mac_impl_t *mip = (mac_impl_t *)mh;
2359 int err;
2361 if ((err = i_mac_perim_enter_nowait(mip)) != 0)
2362 return (err);
2363 err = i_mac_disable(mip);
2364 i_mac_perim_exit(mip);
2365 return (err);
2369 mac_disable(mac_handle_t mh)
2371 mac_impl_t *mip = (mac_impl_t *)mh;
2372 int err;
2374 i_mac_perim_enter(mip);
2375 err = i_mac_disable(mip);
2376 i_mac_perim_exit(mip);
2379 * Clean up notification thread and wait for it to exit.
2381 if (err == 0)
2382 i_mac_notify_exit(mip);
2384 return (err);
2388 * Called when the MAC instance has a non empty flow table, to de-multiplex
2389 * incoming packets to the right flow.
2390 * The MAC's rw lock is assumed held as a READER.
2392 /* ARGSUSED */
2393 static mblk_t *
2394 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp)
2396 flow_entry_t *flent = NULL;
2397 uint_t flags = FLOW_INBOUND;
2398 int err;
2401 * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN
2402 * to mac_flow_lookup() so that the VLAN packets can be successfully
2403 * passed to the non-VLAN aggregation flows.
2405 * Note that there is possibly a race between this and
2406 * mac_unicast_remove/add() and VLAN packets could be incorrectly
2407 * classified to non-VLAN flows of non-aggregation mac clients. These
2408 * VLAN packets will be then filtered out by the mac module.
2410 if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0)
2411 flags |= FLOW_IGNORE_VLAN;
2413 err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent);
2414 if (err != 0) {
2415 /* no registered receive function */
2416 return (mp);
2417 } else {
2418 mac_client_impl_t *mcip;
2421 * This flent might just be an additional one on the MAC client,
2422 * i.e. for classification purposes (different fdesc), however
2423 * the resources, SRS et. al., are in the mci_flent, so if
2424 * this isn't the mci_flent, we need to get it.
2426 if ((mcip = flent->fe_mcip) != NULL &&
2427 mcip->mci_flent != flent) {
2428 FLOW_REFRELE(flent);
2429 flent = mcip->mci_flent;
2430 FLOW_TRY_REFHOLD(flent, err);
2431 if (err != 0)
2432 return (mp);
2434 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp,
2435 B_FALSE);
2436 FLOW_REFRELE(flent);
2438 return (NULL);
2441 mblk_t *
2442 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
2444 mac_impl_t *mip = (mac_impl_t *)mh;
2445 mblk_t *bp, *bp1, **bpp, *list = NULL;
2448 * We walk the chain and attempt to classify each packet.
2449 * The packets that couldn't be classified will be returned
2450 * back to the caller.
2452 bp = mp_chain;
2453 bpp = &list;
2454 while (bp != NULL) {
2455 bp1 = bp;
2456 bp = bp->b_next;
2457 bp1->b_next = NULL;
2459 if (mac_rx_classify(mip, mrh, bp1) != NULL) {
2460 *bpp = bp1;
2461 bpp = &bp1->b_next;
2464 return (list);
2467 static int
2468 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg)
2470 mac_ring_handle_t ring = arg;
2472 if (flent->fe_tx_srs)
2473 mac_tx_srs_wakeup(flent->fe_tx_srs, ring);
2474 return (0);
2477 void
2478 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring)
2480 mac_client_impl_t *cclient;
2481 mac_soft_ring_set_t *mac_srs;
2484 * After grabbing the mi_rw_lock, the list of clients can't change.
2485 * If there are any clients mi_disabled must be B_FALSE and can't
2486 * get set since there are clients. If there aren't any clients we
2487 * don't do anything. In any case the mip has to be valid. The driver
2488 * must make sure that it goes single threaded (with respect to mac
2489 * calls) and wait for all pending mac calls to finish before calling
2490 * mac_unregister.
2492 rw_enter(&i_mac_impl_lock, RW_READER);
2493 if (mip->mi_state_flags & MIS_DISABLED) {
2494 rw_exit(&i_mac_impl_lock);
2495 return;
2499 * Get MAC tx srs from walking mac_client_handle list.
2501 rw_enter(&mip->mi_rw_lock, RW_READER);
2502 for (cclient = mip->mi_clients_list; cclient != NULL;
2503 cclient = cclient->mci_client_next) {
2504 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) {
2505 mac_tx_srs_wakeup(mac_srs, ring);
2506 } else {
2508 * Aggr opens underlying ports in exclusive mode
2509 * and registers flow control callbacks using
2510 * mac_tx_client_notify(). When opened in
2511 * exclusive mode, Tx SRS won't be created
2512 * during mac_unicast_add().
2514 if (cclient->mci_state_flags & MCIS_EXCLUSIVE) {
2515 mac_tx_invoke_callbacks(cclient,
2516 (mac_tx_cookie_t)ring);
2519 (void) mac_flow_walk(cclient->mci_subflow_tab,
2520 mac_tx_flow_srs_wakeup, ring);
2522 rw_exit(&mip->mi_rw_lock);
2523 rw_exit(&i_mac_impl_lock);
2526 /* ARGSUSED */
2527 void
2528 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg,
2529 boolean_t add)
2531 mac_impl_t *mip = (mac_impl_t *)mh;
2533 i_mac_perim_enter((mac_impl_t *)mh);
2535 * If no specific refresh function was given then default to the
2536 * driver's m_multicst entry point.
2538 if (refresh == NULL) {
2539 refresh = mip->mi_multicst;
2540 arg = mip->mi_driver;
2543 mac_bcast_refresh(mip, refresh, arg, add);
2544 i_mac_perim_exit((mac_impl_t *)mh);
2547 void
2548 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg)
2550 mac_impl_t *mip = (mac_impl_t *)mh;
2553 * If no specific refresh function was given then default to the
2554 * driver's m_promisc entry point.
2556 if (refresh == NULL) {
2557 refresh = mip->mi_setpromisc;
2558 arg = mip->mi_driver;
2560 ASSERT(refresh != NULL);
2563 * Call the refresh function with the current promiscuity.
2565 refresh(arg, (mip->mi_devpromisc != 0));
2569 * The mac client requests that the mac not to change its margin size to
2570 * be less than the specified value. If "current" is B_TRUE, then the client
2571 * requests the mac not to change its margin size to be smaller than the
2572 * current size. Further, return the current margin size value in this case.
2574 * We keep every requested size in an ordered list from largest to smallest.
2577 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current)
2579 mac_impl_t *mip = (mac_impl_t *)mh;
2580 mac_margin_req_t **pp, *p;
2581 int err = 0;
2583 rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2584 if (current)
2585 *marginp = mip->mi_margin;
2588 * If the current margin value cannot satisfy the margin requested,
2589 * return ENOTSUP directly.
2591 if (*marginp > mip->mi_margin) {
2592 err = ENOTSUP;
2593 goto done;
2597 * Check whether the given margin is already in the list. If so,
2598 * bump the reference count.
2600 for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) {
2601 if (p->mmr_margin == *marginp) {
2603 * The margin requested is already in the list,
2604 * so just bump the reference count.
2606 p->mmr_ref++;
2607 goto done;
2609 if (p->mmr_margin < *marginp)
2610 break;
2614 p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP);
2615 p->mmr_margin = *marginp;
2616 p->mmr_ref++;
2617 p->mmr_nextp = *pp;
2618 *pp = p;
2620 done:
2621 rw_exit(&(mip->mi_rw_lock));
2622 return (err);
2626 * The mac client requests to cancel its previous mac_margin_add() request.
2627 * We remove the requested margin size from the list.
2630 mac_margin_remove(mac_handle_t mh, uint32_t margin)
2632 mac_impl_t *mip = (mac_impl_t *)mh;
2633 mac_margin_req_t **pp, *p;
2634 int err = 0;
2636 rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2638 * Find the entry in the list for the given margin.
2640 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) {
2641 if (p->mmr_margin == margin) {
2642 if (--p->mmr_ref == 0)
2643 break;
2646 * There is still a reference to this address so
2647 * there's nothing more to do.
2649 goto done;
2654 * We did not find an entry for the given margin.
2656 if (p == NULL) {
2657 err = ENOENT;
2658 goto done;
2661 ASSERT(p->mmr_ref == 0);
2664 * Remove it from the list.
2666 *pp = p->mmr_nextp;
2667 kmem_free(p, sizeof (mac_margin_req_t));
2668 done:
2669 rw_exit(&(mip->mi_rw_lock));
2670 return (err);
2673 boolean_t
2674 mac_margin_update(mac_handle_t mh, uint32_t margin)
2676 mac_impl_t *mip = (mac_impl_t *)mh;
2677 uint32_t margin_needed = 0;
2679 rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2681 if (mip->mi_mmrp != NULL)
2682 margin_needed = mip->mi_mmrp->mmr_margin;
2684 if (margin_needed <= margin)
2685 mip->mi_margin = margin;
2687 rw_exit(&(mip->mi_rw_lock));
2689 if (margin_needed <= margin)
2690 i_mac_notify(mip, MAC_NOTE_MARGIN);
2692 return (margin_needed <= margin);
2696 * MAC clients use this interface to request that a MAC device not change its
2697 * MTU below the specified amount. At this time, that amount must be within the
2698 * range of the device's current minimum and the device's current maximum. eg. a
2699 * client cannot request a 3000 byte MTU when the device's MTU is currently
2700 * 2000.
2702 * If "current" is set to B_TRUE, then the request is to simply to reserve the
2703 * current underlying mac's maximum for this mac client and return it in mtup.
2706 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current)
2708 mac_impl_t *mip = (mac_impl_t *)mh;
2709 mac_mtu_req_t *prev, *cur;
2710 mac_propval_range_t mpr;
2711 int err;
2713 i_mac_perim_enter(mip);
2714 rw_enter(&mip->mi_rw_lock, RW_WRITER);
2716 if (current == B_TRUE)
2717 *mtup = mip->mi_sdu_max;
2718 mpr.mpr_count = 1;
2719 err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL);
2720 if (err != 0) {
2721 rw_exit(&mip->mi_rw_lock);
2722 i_mac_perim_exit(mip);
2723 return (err);
2726 if (*mtup > mip->mi_sdu_max ||
2727 *mtup < mpr.mpr_range_uint32[0].mpur_min) {
2728 rw_exit(&mip->mi_rw_lock);
2729 i_mac_perim_exit(mip);
2730 return (ENOTSUP);
2733 prev = NULL;
2734 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2735 if (*mtup == cur->mtr_mtu) {
2736 cur->mtr_ref++;
2737 rw_exit(&mip->mi_rw_lock);
2738 i_mac_perim_exit(mip);
2739 return (0);
2742 if (*mtup > cur->mtr_mtu)
2743 break;
2745 prev = cur;
2748 cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP);
2749 cur->mtr_mtu = *mtup;
2750 cur->mtr_ref = 1;
2751 if (prev != NULL) {
2752 cur->mtr_nextp = prev->mtr_nextp;
2753 prev->mtr_nextp = cur;
2754 } else {
2755 cur->mtr_nextp = mip->mi_mtrp;
2756 mip->mi_mtrp = cur;
2759 rw_exit(&mip->mi_rw_lock);
2760 i_mac_perim_exit(mip);
2761 return (0);
2765 mac_mtu_remove(mac_handle_t mh, uint32_t mtu)
2767 mac_impl_t *mip = (mac_impl_t *)mh;
2768 mac_mtu_req_t *cur, *prev;
2770 i_mac_perim_enter(mip);
2771 rw_enter(&mip->mi_rw_lock, RW_WRITER);
2773 prev = NULL;
2774 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
2775 if (cur->mtr_mtu == mtu) {
2776 ASSERT(cur->mtr_ref > 0);
2777 cur->mtr_ref--;
2778 if (cur->mtr_ref == 0) {
2779 if (prev == NULL) {
2780 mip->mi_mtrp = cur->mtr_nextp;
2781 } else {
2782 prev->mtr_nextp = cur->mtr_nextp;
2784 kmem_free(cur, sizeof (mac_mtu_req_t));
2786 rw_exit(&mip->mi_rw_lock);
2787 i_mac_perim_exit(mip);
2788 return (0);
2791 prev = cur;
2794 rw_exit(&mip->mi_rw_lock);
2795 i_mac_perim_exit(mip);
2796 return (ENOENT);
2800 * MAC Type Plugin functions.
2803 mactype_t *
2804 mactype_getplugin(const char *pname)
2806 mactype_t *mtype = NULL;
2807 boolean_t tried_modload = B_FALSE;
2809 mutex_enter(&i_mactype_lock);
2811 find_registered_mactype:
2812 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname,
2813 (mod_hash_val_t *)&mtype) != 0) {
2814 if (!tried_modload) {
2816 * If the plugin has not yet been loaded, then
2817 * attempt to load it now. If modload() succeeds,
2818 * the plugin should have registered using
2819 * mactype_register(), in which case we can go back
2820 * and attempt to find it again.
2822 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) {
2823 tried_modload = B_TRUE;
2824 goto find_registered_mactype;
2827 } else {
2829 * Note that there's no danger that the plugin we've loaded
2830 * could be unloaded between the modload() step and the
2831 * reference count bump here, as we're holding
2832 * i_mactype_lock, which mactype_unregister() also holds.
2834 atomic_inc_32(&mtype->mt_ref);
2837 mutex_exit(&i_mactype_lock);
2838 return (mtype);
2841 mactype_register_t *
2842 mactype_alloc(uint_t mactype_version)
2844 mactype_register_t *mtrp;
2847 * Make sure there isn't a version mismatch between the plugin and
2848 * the framework. In the future, if multiple versions are
2849 * supported, this check could become more sophisticated.
2851 if (mactype_version != MACTYPE_VERSION)
2852 return (NULL);
2854 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP);
2855 mtrp->mtr_version = mactype_version;
2856 return (mtrp);
2859 void
2860 mactype_free(mactype_register_t *mtrp)
2862 kmem_free(mtrp, sizeof (mactype_register_t));
2866 mactype_register(mactype_register_t *mtrp)
2868 mactype_t *mtp;
2869 mactype_ops_t *ops = mtrp->mtr_ops;
2871 /* Do some sanity checking before we register this MAC type. */
2872 if (mtrp->mtr_ident == NULL || ops == NULL)
2873 return (EINVAL);
2876 * Verify that all mandatory callbacks are set in the ops
2877 * vector.
2879 if (ops->mtops_unicst_verify == NULL ||
2880 ops->mtops_multicst_verify == NULL ||
2881 ops->mtops_sap_verify == NULL ||
2882 ops->mtops_header == NULL ||
2883 ops->mtops_header_info == NULL) {
2884 return (EINVAL);
2887 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP);
2888 mtp->mt_ident = mtrp->mtr_ident;
2889 mtp->mt_ops = *ops;
2890 mtp->mt_type = mtrp->mtr_mactype;
2891 mtp->mt_nativetype = mtrp->mtr_nativetype;
2892 mtp->mt_addr_length = mtrp->mtr_addrlen;
2893 if (mtrp->mtr_brdcst_addr != NULL) {
2894 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP);
2895 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr,
2896 mtrp->mtr_addrlen);
2899 mtp->mt_stats = mtrp->mtr_stats;
2900 mtp->mt_statcount = mtrp->mtr_statcount;
2902 mtp->mt_mapping = mtrp->mtr_mapping;
2903 mtp->mt_mappingcount = mtrp->mtr_mappingcount;
2905 if (mod_hash_insert(i_mactype_hash,
2906 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) {
2907 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2908 kmem_free(mtp, sizeof (*mtp));
2909 return (EEXIST);
2911 return (0);
2915 mactype_unregister(const char *ident)
2917 mactype_t *mtp;
2918 mod_hash_val_t val;
2919 int err;
2922 * Let's not allow MAC drivers to use this plugin while we're
2923 * trying to unregister it. Holding i_mactype_lock also prevents a
2924 * plugin from unregistering while a MAC driver is attempting to
2925 * hold a reference to it in i_mactype_getplugin().
2927 mutex_enter(&i_mactype_lock);
2929 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident,
2930 (mod_hash_val_t *)&mtp)) != 0) {
2931 /* A plugin is trying to unregister, but it never registered. */
2932 err = ENXIO;
2933 goto done;
2936 if (mtp->mt_ref != 0) {
2937 err = EBUSY;
2938 goto done;
2941 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val);
2942 ASSERT(err == 0);
2943 if (err != 0) {
2944 /* This should never happen, thus the ASSERT() above. */
2945 err = EINVAL;
2946 goto done;
2948 ASSERT(mtp == (mactype_t *)val);
2950 if (mtp->mt_brdcst_addr != NULL)
2951 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2952 kmem_free(mtp, sizeof (mactype_t));
2953 done:
2954 mutex_exit(&i_mactype_lock);
2955 return (err);
2959 * Checks the size of the value size specified for a property as
2960 * part of a property operation. Returns B_TRUE if the size is
2961 * correct, B_FALSE otherwise.
2963 boolean_t
2964 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range)
2966 uint_t minsize = 0;
2968 if (is_range)
2969 return (valsize >= sizeof (mac_propval_range_t));
2971 switch (id) {
2972 case MAC_PROP_ZONE:
2973 minsize = sizeof (dld_ioc_zid_t);
2974 break;
2975 case MAC_PROP_AUTOPUSH:
2976 if (valsize != 0)
2977 minsize = sizeof (struct dlautopush);
2978 break;
2979 case MAC_PROP_TAGMODE:
2980 minsize = sizeof (link_tagmode_t);
2981 break;
2982 case MAC_PROP_RESOURCE:
2983 case MAC_PROP_RESOURCE_EFF:
2984 minsize = sizeof (mac_resource_props_t);
2985 break;
2986 case MAC_PROP_DUPLEX:
2987 minsize = sizeof (link_duplex_t);
2988 break;
2989 case MAC_PROP_SPEED:
2990 minsize = sizeof (uint64_t);
2991 break;
2992 case MAC_PROP_STATUS:
2993 minsize = sizeof (link_state_t);
2994 break;
2995 case MAC_PROP_AUTONEG:
2996 case MAC_PROP_EN_AUTONEG:
2997 minsize = sizeof (uint8_t);
2998 break;
2999 case MAC_PROP_MTU:
3000 case MAC_PROP_LLIMIT:
3001 case MAC_PROP_LDECAY:
3002 minsize = sizeof (uint32_t);
3003 break;
3004 case MAC_PROP_FLOWCTRL:
3005 minsize = sizeof (link_flowctrl_t);
3006 break;
3007 case MAC_PROP_ADV_10GFDX_CAP:
3008 case MAC_PROP_EN_10GFDX_CAP:
3009 case MAC_PROP_ADV_1000HDX_CAP:
3010 case MAC_PROP_EN_1000HDX_CAP:
3011 case MAC_PROP_ADV_100FDX_CAP:
3012 case MAC_PROP_EN_100FDX_CAP:
3013 case MAC_PROP_ADV_100HDX_CAP:
3014 case MAC_PROP_EN_100HDX_CAP:
3015 case MAC_PROP_ADV_10FDX_CAP:
3016 case MAC_PROP_EN_10FDX_CAP:
3017 case MAC_PROP_ADV_10HDX_CAP:
3018 case MAC_PROP_EN_10HDX_CAP:
3019 case MAC_PROP_ADV_100T4_CAP:
3020 case MAC_PROP_EN_100T4_CAP:
3021 minsize = sizeof (uint8_t);
3022 break;
3023 case MAC_PROP_PVID:
3024 minsize = sizeof (uint16_t);
3025 break;
3026 case MAC_PROP_IPTUN_HOPLIMIT:
3027 minsize = sizeof (uint32_t);
3028 break;
3029 case MAC_PROP_IPTUN_ENCAPLIMIT:
3030 minsize = sizeof (uint32_t);
3031 break;
3032 case MAC_PROP_MAX_TX_RINGS_AVAIL:
3033 case MAC_PROP_MAX_RX_RINGS_AVAIL:
3034 case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3035 case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3036 minsize = sizeof (uint_t);
3037 break;
3038 case MAC_PROP_WL_ESSID:
3039 minsize = sizeof (wl_linkstatus_t);
3040 break;
3041 case MAC_PROP_WL_BSSID:
3042 minsize = sizeof (wl_bssid_t);
3043 break;
3044 case MAC_PROP_WL_BSSTYPE:
3045 minsize = sizeof (wl_bss_type_t);
3046 break;
3047 case MAC_PROP_WL_LINKSTATUS:
3048 minsize = sizeof (wl_linkstatus_t);
3049 break;
3050 case MAC_PROP_WL_DESIRED_RATES:
3051 minsize = sizeof (wl_rates_t);
3052 break;
3053 case MAC_PROP_WL_SUPPORTED_RATES:
3054 minsize = sizeof (wl_rates_t);
3055 break;
3056 case MAC_PROP_WL_AUTH_MODE:
3057 minsize = sizeof (wl_authmode_t);
3058 break;
3059 case MAC_PROP_WL_ENCRYPTION:
3060 minsize = sizeof (wl_encryption_t);
3061 break;
3062 case MAC_PROP_WL_RSSI:
3063 minsize = sizeof (wl_rssi_t);
3064 break;
3065 case MAC_PROP_WL_PHY_CONFIG:
3066 minsize = sizeof (wl_phy_conf_t);
3067 break;
3068 case MAC_PROP_WL_CAPABILITY:
3069 minsize = sizeof (wl_capability_t);
3070 break;
3071 case MAC_PROP_WL_WPA:
3072 minsize = sizeof (wl_wpa_t);
3073 break;
3074 case MAC_PROP_WL_SCANRESULTS:
3075 minsize = sizeof (wl_wpa_ess_t);
3076 break;
3077 case MAC_PROP_WL_POWER_MODE:
3078 minsize = sizeof (wl_ps_mode_t);
3079 break;
3080 case MAC_PROP_WL_RADIO:
3081 minsize = sizeof (wl_radio_t);
3082 break;
3083 case MAC_PROP_WL_ESS_LIST:
3084 minsize = sizeof (wl_ess_list_t);
3085 break;
3086 case MAC_PROP_WL_KEY_TAB:
3087 minsize = sizeof (wl_wep_key_tab_t);
3088 break;
3089 case MAC_PROP_WL_CREATE_IBSS:
3090 minsize = sizeof (wl_create_ibss_t);
3091 break;
3092 case MAC_PROP_WL_SETOPTIE:
3093 minsize = sizeof (wl_wpa_ie_t);
3094 break;
3095 case MAC_PROP_WL_DELKEY:
3096 minsize = sizeof (wl_del_key_t);
3097 break;
3098 case MAC_PROP_WL_KEY:
3099 minsize = sizeof (wl_key_t);
3100 break;
3101 case MAC_PROP_WL_MLME:
3102 minsize = sizeof (wl_mlme_t);
3103 break;
3106 return (valsize >= minsize);
3110 * mac_set_prop() sets MAC or hardware driver properties:
3112 * - MAC-managed properties such as resource properties include maxbw,
3113 * priority, and cpu binding list, as well as the default port VID
3114 * used by bridging. These properties are consumed by the MAC layer
3115 * itself and not passed down to the driver. For resource control
3116 * properties, this function invokes mac_set_resources() which will
3117 * cache the property value in mac_impl_t and may call
3118 * mac_client_set_resource() to update property value of the primary
3119 * mac client, if it exists.
3121 * - Properties which act on the hardware and must be passed to the
3122 * driver, such as MTU, through the driver's mc_setprop() entry point.
3125 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3126 uint_t valsize)
3128 int err = ENOTSUP;
3129 mac_impl_t *mip = (mac_impl_t *)mh;
3131 ASSERT(MAC_PERIM_HELD(mh));
3133 switch (id) {
3134 case MAC_PROP_RESOURCE: {
3135 mac_resource_props_t *mrp;
3137 /* call mac_set_resources() for MAC properties */
3138 ASSERT(valsize >= sizeof (mac_resource_props_t));
3139 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3140 bcopy(val, mrp, sizeof (*mrp));
3141 err = mac_set_resources(mh, mrp);
3142 kmem_free(mrp, sizeof (*mrp));
3143 break;
3146 case MAC_PROP_PVID:
3147 ASSERT(valsize >= sizeof (uint16_t));
3148 if (mip->mi_state_flags & MIS_IS_VNIC)
3149 return (EINVAL);
3150 err = mac_set_pvid(mh, *(uint16_t *)val);
3151 break;
3153 case MAC_PROP_MTU: {
3154 uint32_t mtu;
3156 ASSERT(valsize >= sizeof (uint32_t));
3157 bcopy(val, &mtu, sizeof (mtu));
3158 err = mac_set_mtu(mh, mtu, NULL);
3159 break;
3162 case MAC_PROP_LLIMIT:
3163 case MAC_PROP_LDECAY: {
3164 uint32_t learnval;
3166 if (valsize < sizeof (learnval) ||
3167 (mip->mi_state_flags & MIS_IS_VNIC))
3168 return (EINVAL);
3169 bcopy(val, &learnval, sizeof (learnval));
3170 if (learnval == 0 && id == MAC_PROP_LDECAY)
3171 return (EINVAL);
3172 if (id == MAC_PROP_LLIMIT)
3173 mip->mi_llimit = learnval;
3174 else
3175 mip->mi_ldecay = learnval;
3176 err = 0;
3177 break;
3180 default:
3181 /* For other driver properties, call driver's callback */
3182 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) {
3183 err = mip->mi_callbacks->mc_setprop(mip->mi_driver,
3184 name, id, valsize, val);
3187 return (err);
3191 * mac_get_prop() gets MAC or device driver properties.
3193 * If the property is a driver property, mac_get_prop() calls driver's callback
3194 * entry point to get it.
3195 * If the property is a MAC property, mac_get_prop() invokes mac_get_resources()
3196 * which returns the cached value in mac_impl_t.
3199 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3200 uint_t valsize)
3202 int err = ENOTSUP;
3203 mac_impl_t *mip = (mac_impl_t *)mh;
3204 uint_t rings;
3205 uint_t vlinks;
3207 bzero(val, valsize);
3209 switch (id) {
3210 case MAC_PROP_RESOURCE: {
3211 mac_resource_props_t *mrp;
3213 /* If mac property, read from cache */
3214 ASSERT(valsize >= sizeof (mac_resource_props_t));
3215 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3216 mac_get_resources(mh, mrp);
3217 bcopy(mrp, val, sizeof (*mrp));
3218 kmem_free(mrp, sizeof (*mrp));
3219 return (0);
3221 case MAC_PROP_RESOURCE_EFF: {
3222 mac_resource_props_t *mrp;
3224 /* If mac effective property, read from client */
3225 ASSERT(valsize >= sizeof (mac_resource_props_t));
3226 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3227 mac_get_effective_resources(mh, mrp);
3228 bcopy(mrp, val, sizeof (*mrp));
3229 kmem_free(mrp, sizeof (*mrp));
3230 return (0);
3233 case MAC_PROP_PVID:
3234 ASSERT(valsize >= sizeof (uint16_t));
3235 if (mip->mi_state_flags & MIS_IS_VNIC)
3236 return (EINVAL);
3237 *(uint16_t *)val = mac_get_pvid(mh);
3238 return (0);
3240 case MAC_PROP_LLIMIT:
3241 case MAC_PROP_LDECAY:
3242 ASSERT(valsize >= sizeof (uint32_t));
3243 if (mip->mi_state_flags & MIS_IS_VNIC)
3244 return (EINVAL);
3245 if (id == MAC_PROP_LLIMIT)
3246 bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit));
3247 else
3248 bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay));
3249 return (0);
3251 case MAC_PROP_MTU: {
3252 uint32_t sdu;
3254 ASSERT(valsize >= sizeof (uint32_t));
3255 mac_sdu_get2(mh, NULL, &sdu, NULL);
3256 bcopy(&sdu, val, sizeof (sdu));
3258 return (0);
3260 case MAC_PROP_STATUS: {
3261 link_state_t link_state;
3263 if (valsize < sizeof (link_state))
3264 return (EINVAL);
3265 link_state = mac_link_get(mh);
3266 bcopy(&link_state, val, sizeof (link_state));
3268 return (0);
3271 case MAC_PROP_MAX_RX_RINGS_AVAIL:
3272 case MAC_PROP_MAX_TX_RINGS_AVAIL:
3273 ASSERT(valsize >= sizeof (uint_t));
3274 rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ?
3275 mac_rxavail_get(mh) : mac_txavail_get(mh);
3276 bcopy(&rings, val, sizeof (uint_t));
3277 return (0);
3279 case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3280 case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3281 ASSERT(valsize >= sizeof (uint_t));
3282 vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ?
3283 mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh);
3284 bcopy(&vlinks, val, sizeof (uint_t));
3285 return (0);
3287 case MAC_PROP_RXRINGSRANGE:
3288 case MAC_PROP_TXRINGSRANGE:
3290 * The value for these properties are returned through
3291 * the MAC_PROP_RESOURCE property.
3293 return (0);
3295 default:
3296 break;
3300 /* If driver property, request from driver */
3301 if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) {
3302 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id,
3303 valsize, val);
3306 return (err);
3310 * Helper function to initialize the range structure for use in
3311 * mac_get_prop. If the type can be other than uint32, we can
3312 * pass that as an arg.
3314 static void
3315 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max)
3317 range->mpr_count = 1;
3318 range->mpr_type = MAC_PROPVAL_UINT32;
3319 range->mpr_range_uint32[0].mpur_min = min;
3320 range->mpr_range_uint32[0].mpur_max = max;
3324 * Returns information about the specified property, such as default
3325 * values or permissions.
3328 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name,
3329 void *default_val, uint_t default_size, mac_propval_range_t *range,
3330 uint_t *perm)
3332 mac_prop_info_state_t state;
3333 mac_impl_t *mip = (mac_impl_t *)mh;
3334 uint_t max;
3337 * A property is read/write by default unless the driver says
3338 * otherwise.
3340 if (perm != NULL)
3341 *perm = MAC_PROP_PERM_RW;
3343 if (default_val != NULL)
3344 bzero(default_val, default_size);
3347 * First, handle framework properties for which we don't need to
3348 * involve the driver.
3350 switch (id) {
3351 case MAC_PROP_RESOURCE:
3352 case MAC_PROP_PVID:
3353 case MAC_PROP_LLIMIT:
3354 case MAC_PROP_LDECAY:
3355 return (0);
3357 case MAC_PROP_MAX_RX_RINGS_AVAIL:
3358 case MAC_PROP_MAX_TX_RINGS_AVAIL:
3359 case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3360 case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3361 if (perm != NULL)
3362 *perm = MAC_PROP_PERM_READ;
3363 return (0);
3365 case MAC_PROP_RXRINGSRANGE:
3366 case MAC_PROP_TXRINGSRANGE:
3368 * Currently, we support range for RX and TX rings properties.
3369 * When we extend this support to maxbw, cpus and priority,
3370 * we should move this to mac_get_resources.
3371 * There is no default value for RX or TX rings.
3373 if ((mip->mi_state_flags & MIS_IS_VNIC) &&
3374 mac_is_vnic_primary(mh)) {
3376 * We don't support setting rings for a VLAN
3377 * data link because it shares its ring with the
3378 * primary MAC client.
3380 if (perm != NULL)
3381 *perm = MAC_PROP_PERM_READ;
3382 if (range != NULL)
3383 range->mpr_count = 0;
3384 } else if (range != NULL) {
3385 if (mip->mi_state_flags & MIS_IS_VNIC)
3386 mh = mac_get_lower_mac_handle(mh);
3387 mip = (mac_impl_t *)mh;
3388 if ((id == MAC_PROP_RXRINGSRANGE &&
3389 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) ||
3390 (id == MAC_PROP_TXRINGSRANGE &&
3391 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) {
3392 if (id == MAC_PROP_RXRINGSRANGE) {
3393 if ((mac_rxhwlnksavail_get(mh) +
3394 mac_rxhwlnksrsvd_get(mh)) <= 1) {
3396 * doesn't support groups or
3397 * rings
3399 range->mpr_count = 0;
3400 } else {
3402 * supports specifying groups,
3403 * but not rings
3405 _mac_set_range(range, 0, 0);
3407 } else {
3408 if ((mac_txhwlnksavail_get(mh) +
3409 mac_txhwlnksrsvd_get(mh)) <= 1) {
3411 * doesn't support groups or
3412 * rings
3414 range->mpr_count = 0;
3415 } else {
3417 * supports specifying groups,
3418 * but not rings
3420 _mac_set_range(range, 0, 0);
3423 } else {
3424 max = id == MAC_PROP_RXRINGSRANGE ?
3425 mac_rxavail_get(mh) + mac_rxrsvd_get(mh) :
3426 mac_txavail_get(mh) + mac_txrsvd_get(mh);
3427 if (max <= 1) {
3429 * doesn't support groups or
3430 * rings
3432 range->mpr_count = 0;
3433 } else {
3435 * -1 because we have to leave out the
3436 * default ring.
3438 _mac_set_range(range, 1, max - 1);
3442 return (0);
3444 case MAC_PROP_STATUS:
3445 if (perm != NULL)
3446 *perm = MAC_PROP_PERM_READ;
3447 return (0);
3451 * Get the property info from the driver if it implements the
3452 * property info entry point.
3454 bzero(&state, sizeof (state));
3456 if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) {
3457 state.pr_default = default_val;
3458 state.pr_default_size = default_size;
3461 * The caller specifies the maximum number of ranges
3462 * it can accomodate using mpr_count. We don't touch
3463 * this value until the driver returns from its
3464 * mc_propinfo() callback, and ensure we don't exceed
3465 * this number of range as the driver defines
3466 * supported range from its mc_propinfo().
3468 * pr_range_cur_count keeps track of how many ranges
3469 * were defined by the driver from its mc_propinfo()
3470 * entry point.
3472 * On exit, the user-specified range mpr_count returns
3473 * the number of ranges specified by the driver on
3474 * success, or the number of ranges it wanted to
3475 * define if that number of ranges could not be
3476 * accomodated by the specified range structure. In
3477 * the latter case, the caller will be able to
3478 * allocate a larger range structure, and query the
3479 * property again.
3481 state.pr_range_cur_count = 0;
3482 state.pr_range = range;
3484 mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id,
3485 (mac_prop_info_handle_t)&state);
3487 if (state.pr_flags & MAC_PROP_INFO_RANGE)
3488 range->mpr_count = state.pr_range_cur_count;
3491 * The operation could fail if the buffer supplied by
3492 * the user was too small for the range or default
3493 * value of the property.
3495 if (state.pr_errno != 0)
3496 return (state.pr_errno);
3498 if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM)
3499 *perm = state.pr_perm;
3503 * The MAC layer may want to provide default values or allowed
3504 * ranges for properties if the driver does not provide a
3505 * property info entry point, or that entry point exists, but
3506 * it did not provide a default value or allowed ranges for
3507 * that property.
3509 switch (id) {
3510 case MAC_PROP_MTU: {
3511 uint32_t sdu;
3513 mac_sdu_get2(mh, NULL, &sdu, NULL);
3515 if (range != NULL && !(state.pr_flags &
3516 MAC_PROP_INFO_RANGE)) {
3517 /* MTU range */
3518 _mac_set_range(range, sdu, sdu);
3521 if (default_val != NULL && !(state.pr_flags &
3522 MAC_PROP_INFO_DEFAULT)) {
3523 if (mip->mi_info.mi_media == DL_ETHER)
3524 sdu = ETHERMTU;
3525 /* default MTU value */
3526 bcopy(&sdu, default_val, sizeof (sdu));
3531 return (0);
3535 mac_fastpath_disable(mac_handle_t mh)
3537 mac_impl_t *mip = (mac_impl_t *)mh;
3539 if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3540 return (0);
3542 return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver));
3545 void
3546 mac_fastpath_enable(mac_handle_t mh)
3548 mac_impl_t *mip = (mac_impl_t *)mh;
3550 if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3551 return;
3553 mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver);
3556 void
3557 mac_register_priv_prop(mac_impl_t *mip, char **priv_props)
3559 uint_t nprops, i;
3561 if (priv_props == NULL)
3562 return;
3564 nprops = 0;
3565 while (priv_props[nprops] != NULL)
3566 nprops++;
3567 if (nprops == 0)
3568 return;
3571 mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP);
3573 for (i = 0; i < nprops; i++) {
3574 mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP);
3575 (void) strlcpy(mip->mi_priv_prop[i], priv_props[i],
3576 MAXLINKPROPNAME);
3579 mip->mi_priv_prop_count = nprops;
3582 void
3583 mac_unregister_priv_prop(mac_impl_t *mip)
3585 uint_t i;
3587 if (mip->mi_priv_prop_count == 0) {
3588 ASSERT(mip->mi_priv_prop == NULL);
3589 return;
3592 for (i = 0; i < mip->mi_priv_prop_count; i++)
3593 kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME);
3594 kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count *
3595 sizeof (char *));
3597 mip->mi_priv_prop = NULL;
3598 mip->mi_priv_prop_count = 0;
3602 * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure
3603 * (by invoking mac_rx()) even after processing mac_stop_ring(). In such
3604 * cases if MAC free's the ring structure after mac_stop_ring(), any
3605 * illegal access to the ring structure coming from the driver will panic
3606 * the system. In order to protect the system from such inadverent access,
3607 * we maintain a cache of rings in the mac_impl_t after they get free'd up.
3608 * When packets are received on free'd up rings, MAC (through the generation
3609 * count mechanism) will drop such packets.
3611 static mac_ring_t *
3612 mac_ring_alloc(mac_impl_t *mip)
3614 mac_ring_t *ring;
3616 mutex_enter(&mip->mi_ring_lock);
3617 if (mip->mi_ring_freelist != NULL) {
3618 ring = mip->mi_ring_freelist;
3619 mip->mi_ring_freelist = ring->mr_next;
3620 bzero(ring, sizeof (mac_ring_t));
3621 mutex_exit(&mip->mi_ring_lock);
3622 } else {
3623 mutex_exit(&mip->mi_ring_lock);
3624 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP);
3626 ASSERT((ring != NULL) && (ring->mr_state == MR_FREE));
3627 return (ring);
3630 static void
3631 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring)
3633 ASSERT(ring->mr_state == MR_FREE);
3635 mutex_enter(&mip->mi_ring_lock);
3636 ring->mr_state = MR_FREE;
3637 ring->mr_flag = 0;
3638 ring->mr_next = mip->mi_ring_freelist;
3639 ring->mr_mip = NULL;
3640 mip->mi_ring_freelist = ring;
3641 mac_ring_stat_delete(ring);
3642 mutex_exit(&mip->mi_ring_lock);
3645 static void
3646 mac_ring_freeall(mac_impl_t *mip)
3648 mac_ring_t *ring_next;
3649 mutex_enter(&mip->mi_ring_lock);
3650 mac_ring_t *ring = mip->mi_ring_freelist;
3651 while (ring != NULL) {
3652 ring_next = ring->mr_next;
3653 kmem_cache_free(mac_ring_cache, ring);
3654 ring = ring_next;
3656 mip->mi_ring_freelist = NULL;
3657 mutex_exit(&mip->mi_ring_lock);
3661 mac_start_ring(mac_ring_t *ring)
3663 int rv = 0;
3665 ASSERT(ring->mr_state == MR_FREE);
3667 if (ring->mr_start != NULL) {
3668 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num);
3669 if (rv != 0)
3670 return (rv);
3673 ring->mr_state = MR_INUSE;
3674 return (rv);
3677 void
3678 mac_stop_ring(mac_ring_t *ring)
3680 ASSERT(ring->mr_state == MR_INUSE);
3682 if (ring->mr_stop != NULL)
3683 ring->mr_stop(ring->mr_driver);
3685 ring->mr_state = MR_FREE;
3688 * Increment the ring generation number for this ring.
3690 ring->mr_gen_num++;
3694 mac_start_group(mac_group_t *group)
3696 int rv = 0;
3698 if (group->mrg_start != NULL)
3699 rv = group->mrg_start(group->mrg_driver);
3701 return (rv);
3704 void
3705 mac_stop_group(mac_group_t *group)
3707 if (group->mrg_stop != NULL)
3708 group->mrg_stop(group->mrg_driver);
3712 * Called from mac_start() on the default Rx group. Broadcast and multicast
3713 * packets are received only on the default group. Hence the default group
3714 * needs to be up even if the primary client is not up, for the other groups
3715 * to be functional. We do this by calling this function at mac_start time
3716 * itself. However the broadcast packets that are received can't make their
3717 * way beyond mac_rx until a mac client creates a broadcast flow.
3719 static int
3720 mac_start_group_and_rings(mac_group_t *group)
3722 mac_ring_t *ring;
3723 int rv = 0;
3725 ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED);
3726 if ((rv = mac_start_group(group)) != 0)
3727 return (rv);
3729 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3730 ASSERT(ring->mr_state == MR_FREE);
3731 if ((rv = mac_start_ring(ring)) != 0)
3732 goto error;
3733 ring->mr_classify_type = MAC_SW_CLASSIFIER;
3735 return (0);
3737 error:
3738 mac_stop_group_and_rings(group);
3739 return (rv);
3742 /* Called from mac_stop on the default Rx group */
3743 static void
3744 mac_stop_group_and_rings(mac_group_t *group)
3746 mac_ring_t *ring;
3748 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3749 if (ring->mr_state != MR_FREE) {
3750 mac_stop_ring(ring);
3751 ring->mr_flag = 0;
3752 ring->mr_classify_type = MAC_NO_CLASSIFIER;
3755 mac_stop_group(group);
3759 static mac_ring_t *
3760 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index,
3761 mac_capab_rings_t *cap_rings)
3763 mac_ring_t *ring, *rnext;
3764 mac_ring_info_t ring_info;
3765 ddi_intr_handle_t ddi_handle;
3767 ring = mac_ring_alloc(mip);
3769 /* Prepare basic information of ring */
3772 * Ring index is numbered to be unique across a particular device.
3773 * Ring index computation makes following assumptions:
3774 * - For drivers with static grouping (e.g. ixgbe, bge),
3775 * ring index exchanged with the driver (e.g. during mr_rget)
3776 * is unique only across the group the ring belongs to.
3777 * - Drivers with dynamic grouping (e.g. nxge), start
3778 * with single group (mrg_index = 0).
3780 ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index;
3781 ring->mr_type = group->mrg_type;
3782 ring->mr_gh = (mac_group_handle_t)group;
3784 /* Insert the new ring to the list. */
3785 ring->mr_next = group->mrg_rings;
3786 group->mrg_rings = ring;
3788 /* Zero to reuse the info data structure */
3789 bzero(&ring_info, sizeof (ring_info));
3791 /* Query ring information from driver */
3792 cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index,
3793 index, &ring_info, (mac_ring_handle_t)ring);
3795 ring->mr_info = ring_info;
3798 * The interrupt handle could be shared among multiple rings.
3799 * Thus if there is a bunch of rings that are sharing an
3800 * interrupt, then only one ring among the bunch will be made
3801 * available for interrupt re-targeting; the rest will have
3802 * ddi_shared flag set to TRUE and would not be available for
3803 * be interrupt re-targeting.
3805 if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) {
3806 rnext = ring->mr_next;
3807 while (rnext != NULL) {
3808 if (rnext->mr_info.mri_intr.mi_ddi_handle ==
3809 ddi_handle) {
3811 * If default ring (mr_index == 0) is part
3812 * of a group of rings sharing an
3813 * interrupt, then set ddi_shared flag for
3814 * the default ring and give another ring
3815 * the chance to be re-targeted.
3817 if (rnext->mr_index == 0 &&
3818 !rnext->mr_info.mri_intr.mi_ddi_shared) {
3819 rnext->mr_info.mri_intr.mi_ddi_shared =
3820 B_TRUE;
3821 } else {
3822 ring->mr_info.mri_intr.mi_ddi_shared =
3823 B_TRUE;
3825 break;
3827 rnext = rnext->mr_next;
3830 * If rnext is NULL, then no matching ddi_handle was found.
3831 * Rx rings get registered first. So if this is a Tx ring,
3832 * then go through all the Rx rings and see if there is a
3833 * matching ddi handle.
3835 if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) {
3836 mac_compare_ddi_handle(mip->mi_rx_groups,
3837 mip->mi_rx_group_count, ring);
3841 /* Update ring's status */
3842 ring->mr_state = MR_FREE;
3843 ring->mr_flag = 0;
3845 /* Update the ring count of the group */
3846 group->mrg_cur_count++;
3848 /* Create per ring kstats */
3849 if (ring->mr_stat != NULL) {
3850 ring->mr_mip = mip;
3851 mac_ring_stat_create(ring);
3854 return (ring);
3858 * Rings are chained together for easy regrouping.
3860 static void
3861 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size,
3862 mac_capab_rings_t *cap_rings)
3864 int index;
3867 * Initialize all ring members of this group. Size of zero will not
3868 * enter the loop, so it's safe for initializing an empty group.
3870 for (index = size - 1; index >= 0; index--)
3871 (void) mac_init_ring(mip, group, index, cap_rings);
3875 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype)
3877 mac_capab_rings_t *cap_rings;
3878 mac_group_t *group;
3879 mac_group_t *groups;
3880 mac_group_info_t group_info;
3881 uint_t group_free = 0;
3882 uint_t ring_left;
3883 mac_ring_t *ring;
3884 int g;
3885 int err = 0;
3886 uint_t grpcnt;
3887 boolean_t pseudo_txgrp = B_FALSE;
3889 switch (rtype) {
3890 case MAC_RING_TYPE_RX:
3891 ASSERT(mip->mi_rx_groups == NULL);
3893 cap_rings = &mip->mi_rx_rings_cap;
3894 cap_rings->mr_type = MAC_RING_TYPE_RX;
3895 break;
3896 case MAC_RING_TYPE_TX:
3897 ASSERT(mip->mi_tx_groups == NULL);
3899 cap_rings = &mip->mi_tx_rings_cap;
3900 cap_rings->mr_type = MAC_RING_TYPE_TX;
3901 break;
3902 default:
3903 ASSERT(B_FALSE);
3906 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings))
3907 return (0);
3908 grpcnt = cap_rings->mr_gnum;
3911 * If we have multiple TX rings, but only one TX group, we can
3912 * create pseudo TX groups (one per TX ring) in the MAC layer,
3913 * except for an aggr. For an aggr currently we maintain only
3914 * one group with all the rings (for all its ports), going
3915 * forwards we might change this.
3917 if (rtype == MAC_RING_TYPE_TX &&
3918 cap_rings->mr_gnum == 0 && cap_rings->mr_rnum > 0 &&
3919 (mip->mi_state_flags & MIS_IS_AGGR) == 0) {
3921 * The -1 here is because we create a default TX group
3922 * with all the rings in it.
3924 grpcnt = cap_rings->mr_rnum - 1;
3925 pseudo_txgrp = B_TRUE;
3929 * Allocate a contiguous buffer for all groups.
3931 groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP);
3933 ring_left = cap_rings->mr_rnum;
3936 * Get all ring groups if any, and get their ring members
3937 * if any.
3939 for (g = 0; g < grpcnt; g++) {
3940 group = groups + g;
3942 /* Prepare basic information of the group */
3943 group->mrg_index = g;
3944 group->mrg_type = rtype;
3945 group->mrg_state = MAC_GROUP_STATE_UNINIT;
3946 group->mrg_mh = (mac_handle_t)mip;
3947 group->mrg_next = group + 1;
3949 /* Zero to reuse the info data structure */
3950 bzero(&group_info, sizeof (group_info));
3952 if (pseudo_txgrp) {
3954 * This is a pseudo group that we created, apart
3955 * from setting the state there is nothing to be
3956 * done.
3958 group->mrg_state = MAC_GROUP_STATE_REGISTERED;
3959 group_free++;
3960 continue;
3962 /* Query group information from driver */
3963 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info,
3964 (mac_group_handle_t)group);
3966 switch (cap_rings->mr_group_type) {
3967 case MAC_GROUP_TYPE_DYNAMIC:
3968 if (cap_rings->mr_gaddring == NULL ||
3969 cap_rings->mr_gremring == NULL) {
3970 DTRACE_PROBE3(
3971 mac__init__rings_no_addremring,
3972 char *, mip->mi_name,
3973 mac_group_add_ring_t,
3974 cap_rings->mr_gaddring,
3975 mac_group_add_ring_t,
3976 cap_rings->mr_gremring);
3977 err = EINVAL;
3978 goto bail;
3981 switch (rtype) {
3982 case MAC_RING_TYPE_RX:
3984 * The first RX group must have non-zero
3985 * rings, and the following groups must
3986 * have zero rings.
3988 if (g == 0 && group_info.mgi_count == 0) {
3989 DTRACE_PROBE1(
3990 mac__init__rings__rx__def__zero,
3991 char *, mip->mi_name);
3992 err = EINVAL;
3993 goto bail;
3995 if (g > 0 && group_info.mgi_count != 0) {
3996 DTRACE_PROBE3(
3997 mac__init__rings__rx__nonzero,
3998 char *, mip->mi_name,
3999 int, g, int, group_info.mgi_count);
4000 err = EINVAL;
4001 goto bail;
4003 break;
4004 case MAC_RING_TYPE_TX:
4006 * All TX ring groups must have zero rings.
4008 if (group_info.mgi_count != 0) {
4009 DTRACE_PROBE3(
4010 mac__init__rings__tx__nonzero,
4011 char *, mip->mi_name,
4012 int, g, int, group_info.mgi_count);
4013 err = EINVAL;
4014 goto bail;
4016 break;
4018 break;
4019 case MAC_GROUP_TYPE_STATIC:
4021 * Note that an empty group is allowed, e.g., an aggr
4022 * would start with an empty group.
4024 break;
4025 default:
4026 /* unknown group type */
4027 DTRACE_PROBE2(mac__init__rings__unknown__type,
4028 char *, mip->mi_name,
4029 int, cap_rings->mr_group_type);
4030 err = EINVAL;
4031 goto bail;
4036 * Driver must register group->mgi_addmac/remmac() for rx groups
4037 * to support multiple MAC addresses.
4039 if (rtype == MAC_RING_TYPE_RX &&
4040 ((group_info.mgi_addmac == NULL) ||
4041 (group_info.mgi_remmac == NULL))) {
4042 err = EINVAL;
4043 goto bail;
4046 /* Cache driver-supplied information */
4047 group->mrg_info = group_info;
4049 /* Update the group's status and group count. */
4050 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4051 group_free++;
4053 group->mrg_rings = NULL;
4054 group->mrg_cur_count = 0;
4055 mac_init_group(mip, group, group_info.mgi_count, cap_rings);
4056 ring_left -= group_info.mgi_count;
4058 /* The current group size should be equal to default value */
4059 ASSERT(group->mrg_cur_count == group_info.mgi_count);
4062 /* Build up a dummy group for free resources as a pool */
4063 group = groups + grpcnt;
4065 /* Prepare basic information of the group */
4066 group->mrg_index = -1;
4067 group->mrg_type = rtype;
4068 group->mrg_state = MAC_GROUP_STATE_UNINIT;
4069 group->mrg_mh = (mac_handle_t)mip;
4070 group->mrg_next = NULL;
4073 * If there are ungrouped rings, allocate a continuous buffer for
4074 * remaining resources.
4076 if (ring_left != 0) {
4077 group->mrg_rings = NULL;
4078 group->mrg_cur_count = 0;
4079 mac_init_group(mip, group, ring_left, cap_rings);
4081 /* The current group size should be equal to ring_left */
4082 ASSERT(group->mrg_cur_count == ring_left);
4084 ring_left = 0;
4086 /* Update this group's status */
4087 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4088 } else
4089 group->mrg_rings = NULL;
4091 ASSERT(ring_left == 0);
4093 bail:
4095 /* Cache other important information to finalize the initialization */
4096 switch (rtype) {
4097 case MAC_RING_TYPE_RX:
4098 mip->mi_rx_group_type = cap_rings->mr_group_type;
4099 mip->mi_rx_group_count = cap_rings->mr_gnum;
4100 mip->mi_rx_groups = groups;
4101 mip->mi_rx_donor_grp = groups;
4102 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4104 * The default ring is reserved since it is
4105 * used for sending the broadcast etc. packets.
4107 mip->mi_rxrings_avail =
4108 mip->mi_rx_groups->mrg_cur_count - 1;
4109 mip->mi_rxrings_rsvd = 1;
4112 * The default group cannot be reserved. It is used by
4113 * all the clients that do not have an exclusive group.
4115 mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1;
4116 mip->mi_rxhwclnt_used = 1;
4117 break;
4118 case MAC_RING_TYPE_TX:
4119 mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC :
4120 cap_rings->mr_group_type;
4121 mip->mi_tx_group_count = grpcnt;
4122 mip->mi_tx_group_free = group_free;
4123 mip->mi_tx_groups = groups;
4125 group = groups + grpcnt;
4126 ring = group->mrg_rings;
4128 * The ring can be NULL in the case of aggr. Aggr will
4129 * have an empty Tx group which will get populated
4130 * later when pseudo Tx rings are added after
4131 * mac_register() is done.
4133 if (ring == NULL) {
4134 ASSERT(mip->mi_state_flags & MIS_IS_AGGR);
4136 * pass the group to aggr so it can add Tx
4137 * rings to the group later.
4139 cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL,
4140 (mac_group_handle_t)group);
4142 * Even though there are no rings at this time
4143 * (rings will come later), set the group
4144 * state to registered.
4146 group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4147 } else {
4149 * Ring 0 is used as the default one and it could be
4150 * assigned to a client as well.
4152 while ((ring->mr_index != 0) && (ring->mr_next != NULL))
4153 ring = ring->mr_next;
4154 ASSERT(ring->mr_index == 0);
4155 mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4157 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)
4158 mip->mi_txrings_avail = group->mrg_cur_count - 1;
4160 * The default ring cannot be reserved.
4162 mip->mi_txrings_rsvd = 1;
4164 * The default group cannot be reserved. It will be shared
4165 * by clients that do not have an exclusive group.
4167 mip->mi_txhwclnt_avail = mip->mi_tx_group_count;
4168 mip->mi_txhwclnt_used = 1;
4169 break;
4170 default:
4171 ASSERT(B_FALSE);
4174 if (err != 0)
4175 mac_free_rings(mip, rtype);
4177 return (err);
4181 * The ddi interrupt handle could be shared amoung rings. If so, compare
4182 * the new ring's ddi handle with the existing ones and set ddi_shared
4183 * flag.
4185 void
4186 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring)
4188 mac_group_t *group;
4189 mac_ring_t *ring;
4190 ddi_intr_handle_t ddi_handle;
4191 int g;
4193 ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle;
4194 for (g = 0; g < grpcnt; g++) {
4195 group = groups + g;
4196 for (ring = group->mrg_rings; ring != NULL;
4197 ring = ring->mr_next) {
4198 if (ring == cring)
4199 continue;
4200 if (ring->mr_info.mri_intr.mi_ddi_handle ==
4201 ddi_handle) {
4202 if (cring->mr_type == MAC_RING_TYPE_RX &&
4203 ring->mr_index == 0 &&
4204 !ring->mr_info.mri_intr.mi_ddi_shared) {
4205 ring->mr_info.mri_intr.mi_ddi_shared =
4206 B_TRUE;
4207 } else {
4208 cring->mr_info.mri_intr.mi_ddi_shared =
4209 B_TRUE;
4211 return;
4218 * Called to free all groups of particular type (RX or TX). It's assumed that
4219 * no clients are using these groups.
4221 void
4222 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype)
4224 mac_group_t *group, *groups;
4225 uint_t group_count;
4227 switch (rtype) {
4228 case MAC_RING_TYPE_RX:
4229 if (mip->mi_rx_groups == NULL)
4230 return;
4232 groups = mip->mi_rx_groups;
4233 group_count = mip->mi_rx_group_count;
4235 mip->mi_rx_groups = NULL;
4236 mip->mi_rx_donor_grp = NULL;
4237 mip->mi_rx_group_count = 0;
4238 break;
4239 case MAC_RING_TYPE_TX:
4240 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free);
4242 if (mip->mi_tx_groups == NULL)
4243 return;
4245 groups = mip->mi_tx_groups;
4246 group_count = mip->mi_tx_group_count;
4248 mip->mi_tx_groups = NULL;
4249 mip->mi_tx_group_count = 0;
4250 mip->mi_tx_group_free = 0;
4251 mip->mi_default_tx_ring = NULL;
4252 break;
4253 default:
4254 ASSERT(B_FALSE);
4257 for (group = groups; group != NULL; group = group->mrg_next) {
4258 mac_ring_t *ring;
4260 if (group->mrg_cur_count == 0)
4261 continue;
4263 ASSERT(group->mrg_rings != NULL);
4265 while ((ring = group->mrg_rings) != NULL) {
4266 group->mrg_rings = ring->mr_next;
4267 mac_ring_free(mip, ring);
4271 /* Free all the cached rings */
4272 mac_ring_freeall(mip);
4273 /* Free the block of group data strutures */
4274 kmem_free(groups, sizeof (mac_group_t) * (group_count + 1));
4278 * Associate a MAC address with a receive group.
4280 * The return value of this function should always be checked properly, because
4281 * any type of failure could cause unexpected results. A group can be added
4282 * or removed with a MAC address only after it has been reserved. Ideally,
4283 * a successful reservation always leads to calling mac_group_addmac() to
4284 * steer desired traffic. Failure of adding an unicast MAC address doesn't
4285 * always imply that the group is functioning abnormally.
4287 * Currently this function is called everywhere, and it reflects assumptions
4288 * about MAC addresses in the implementation. CR 6735196.
4291 mac_group_addmac(mac_group_t *group, const uint8_t *addr)
4293 ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
4294 ASSERT(group->mrg_info.mgi_addmac != NULL);
4296 return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr));
4300 * Remove the association between MAC address and receive group.
4303 mac_group_remmac(mac_group_t *group, const uint8_t *addr)
4305 ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
4306 ASSERT(group->mrg_info.mgi_remmac != NULL);
4308 return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr));
4312 * This is the entry point for packets transmitted through the bridging code.
4313 * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh'
4314 * pointer may be NULL to select the default ring.
4316 mblk_t *
4317 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp)
4319 mac_handle_t mh;
4322 * Once we take a reference on the bridge link, the bridge
4323 * module itself can't unload, so the callback pointers are
4324 * stable.
4326 mutex_enter(&mip->mi_bridge_lock);
4327 if ((mh = mip->mi_bridge_link) != NULL)
4328 mac_bridge_ref_cb(mh, B_TRUE);
4329 mutex_exit(&mip->mi_bridge_lock);
4330 if (mh == NULL) {
4331 MAC_RING_TX(mip, rh, mp, mp);
4332 } else {
4333 mp = mac_bridge_tx_cb(mh, rh, mp);
4334 mac_bridge_ref_cb(mh, B_FALSE);
4337 return (mp);
4341 * Find a ring from its index.
4343 mac_ring_handle_t
4344 mac_find_ring(mac_group_handle_t gh, int index)
4346 mac_group_t *group = (mac_group_t *)gh;
4347 mac_ring_t *ring = group->mrg_rings;
4349 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next)
4350 if (ring->mr_index == index)
4351 break;
4353 return ((mac_ring_handle_t)ring);
4356 * Add a ring to an existing group.
4358 * The ring must be either passed directly (for example if the ring
4359 * movement is initiated by the framework), or specified through a driver
4360 * index (for example when the ring is added by the driver.
4362 * The caller needs to call mac_perim_enter() before calling this function.
4365 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index)
4367 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4368 mac_capab_rings_t *cap_rings;
4369 boolean_t driver_call = (ring == NULL);
4370 mac_group_type_t group_type;
4371 int ret = 0;
4372 flow_entry_t *flent;
4374 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4376 switch (group->mrg_type) {
4377 case MAC_RING_TYPE_RX:
4378 cap_rings = &mip->mi_rx_rings_cap;
4379 group_type = mip->mi_rx_group_type;
4380 break;
4381 case MAC_RING_TYPE_TX:
4382 cap_rings = &mip->mi_tx_rings_cap;
4383 group_type = mip->mi_tx_group_type;
4384 break;
4385 default:
4386 ASSERT(B_FALSE);
4390 * There should be no ring with the same ring index in the target
4391 * group.
4393 ASSERT(mac_find_ring((mac_group_handle_t)group,
4394 driver_call ? index : ring->mr_index) == NULL);
4396 if (driver_call) {
4398 * The function is called as a result of a request from
4399 * a driver to add a ring to an existing group, for example
4400 * from the aggregation driver. Allocate a new mac_ring_t
4401 * for that ring.
4403 ring = mac_init_ring(mip, group, index, cap_rings);
4404 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT);
4405 } else {
4407 * The function is called as a result of a MAC layer request
4408 * to add a ring to an existing group. In this case the
4409 * ring is being moved between groups, which requires
4410 * the underlying driver to support dynamic grouping,
4411 * and the mac_ring_t already exists.
4413 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4414 ASSERT(group->mrg_driver == NULL ||
4415 cap_rings->mr_gaddring != NULL);
4416 ASSERT(ring->mr_gh == NULL);
4420 * At this point the ring should not be in use, and it should be
4421 * of the right for the target group.
4423 ASSERT(ring->mr_state < MR_INUSE);
4424 ASSERT(ring->mr_srs == NULL);
4425 ASSERT(ring->mr_type == group->mrg_type);
4427 if (!driver_call) {
4429 * Add the driver level hardware ring if the process was not
4430 * initiated by the driver, and the target group is not the
4431 * group.
4433 if (group->mrg_driver != NULL) {
4434 cap_rings->mr_gaddring(group->mrg_driver,
4435 ring->mr_driver, ring->mr_type);
4439 * Insert the ring ahead existing rings.
4441 ring->mr_next = group->mrg_rings;
4442 group->mrg_rings = ring;
4443 ring->mr_gh = (mac_group_handle_t)group;
4444 group->mrg_cur_count++;
4448 * If the group has not been actively used, we're done.
4450 if (group->mrg_index != -1 &&
4451 group->mrg_state < MAC_GROUP_STATE_RESERVED)
4452 return (0);
4455 * Start the ring if needed. Failure causes to undo the grouping action.
4457 if (ring->mr_state != MR_INUSE) {
4458 if ((ret = mac_start_ring(ring)) != 0) {
4459 if (!driver_call) {
4460 cap_rings->mr_gremring(group->mrg_driver,
4461 ring->mr_driver, ring->mr_type);
4463 group->mrg_cur_count--;
4464 group->mrg_rings = ring->mr_next;
4466 ring->mr_gh = NULL;
4468 if (driver_call)
4469 mac_ring_free(mip, ring);
4471 return (ret);
4476 * Set up SRS/SR according to the ring type.
4478 switch (ring->mr_type) {
4479 case MAC_RING_TYPE_RX:
4481 * Setup SRS on top of the new ring if the group is
4482 * reserved for someones exclusive use.
4484 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) {
4485 mac_client_impl_t *mcip;
4487 mcip = MAC_GROUP_ONLY_CLIENT(group);
4489 * Even though this group is reserved we migth still
4490 * have multiple clients, i.e a VLAN shares the
4491 * group with the primary mac client.
4493 if (mcip != NULL) {
4494 flent = mcip->mci_flent;
4495 ASSERT(flent->fe_rx_srs_cnt > 0);
4496 mac_rx_srs_group_setup(mcip, flent, SRST_LINK);
4497 mac_fanout_setup(mcip, flent,
4498 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver,
4499 mcip, NULL, NULL);
4500 } else {
4501 ring->mr_classify_type = MAC_SW_CLASSIFIER;
4504 break;
4505 case MAC_RING_TYPE_TX:
4507 mac_grp_client_t *mgcp = group->mrg_clients;
4508 mac_client_impl_t *mcip;
4509 mac_soft_ring_set_t *mac_srs;
4510 mac_srs_tx_t *tx;
4512 if (MAC_GROUP_NO_CLIENT(group)) {
4513 if (ring->mr_state == MR_INUSE)
4514 mac_stop_ring(ring);
4515 ring->mr_flag = 0;
4516 break;
4519 * If the rings are being moved to a group that has
4520 * clients using it, then add the new rings to the
4521 * clients SRS.
4523 while (mgcp != NULL) {
4524 boolean_t is_aggr;
4526 mcip = mgcp->mgc_client;
4527 flent = mcip->mci_flent;
4528 is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR);
4529 mac_srs = MCIP_TX_SRS(mcip);
4530 tx = &mac_srs->srs_tx;
4531 mac_tx_client_quiesce((mac_client_handle_t)mcip);
4533 * If we are growing from 1 to multiple rings.
4535 if (tx->st_mode == SRS_TX_BW ||
4536 tx->st_mode == SRS_TX_SERIALIZE ||
4537 tx->st_mode == SRS_TX_DEFAULT) {
4538 mac_ring_t *tx_ring = tx->st_arg2;
4540 tx->st_arg2 = NULL;
4541 mac_tx_srs_stat_recreate(mac_srs, B_TRUE);
4542 mac_tx_srs_add_ring(mac_srs, tx_ring);
4543 if (mac_srs->srs_type & SRST_BW_CONTROL) {
4544 tx->st_mode = is_aggr ? SRS_TX_BW_AGGR :
4545 SRS_TX_BW_FANOUT;
4546 } else {
4547 tx->st_mode = is_aggr ? SRS_TX_AGGR :
4548 SRS_TX_FANOUT;
4550 tx->st_func = mac_tx_get_func(tx->st_mode);
4552 mac_tx_srs_add_ring(mac_srs, ring);
4553 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
4554 mac_rx_deliver, mcip, NULL, NULL);
4555 mac_tx_client_restart((mac_client_handle_t)mcip);
4556 mgcp = mgcp->mgc_next;
4558 break;
4560 default:
4561 ASSERT(B_FALSE);
4564 * For aggr, the default ring will be NULL to begin with. If it
4565 * is NULL, then pick the first ring that gets added as the
4566 * default ring. Any ring in an aggregation can be removed at
4567 * any time (by the user action of removing a link) and if the
4568 * current default ring gets removed, then a new one gets
4569 * picked (see i_mac_group_rem_ring()).
4571 if (mip->mi_state_flags & MIS_IS_AGGR &&
4572 mip->mi_default_tx_ring == NULL &&
4573 ring->mr_type == MAC_RING_TYPE_TX) {
4574 mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4577 MAC_RING_UNMARK(ring, MR_INCIPIENT);
4578 return (0);
4582 * Remove a ring from it's current group. MAC internal function for dynamic
4583 * grouping.
4585 * The caller needs to call mac_perim_enter() before calling this function.
4587 void
4588 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring,
4589 boolean_t driver_call)
4591 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4592 mac_capab_rings_t *cap_rings = NULL;
4593 mac_group_type_t group_type;
4595 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4597 ASSERT(mac_find_ring((mac_group_handle_t)group,
4598 ring->mr_index) == (mac_ring_handle_t)ring);
4599 ASSERT((mac_group_t *)ring->mr_gh == group);
4600 ASSERT(ring->mr_type == group->mrg_type);
4602 if (ring->mr_state == MR_INUSE)
4603 mac_stop_ring(ring);
4604 switch (ring->mr_type) {
4605 case MAC_RING_TYPE_RX:
4606 group_type = mip->mi_rx_group_type;
4607 cap_rings = &mip->mi_rx_rings_cap;
4610 * Only hardware classified packets hold a reference to the
4611 * ring all the way up the Rx path. mac_rx_srs_remove()
4612 * will take care of quiescing the Rx path and removing the
4613 * SRS. The software classified path neither holds a reference
4614 * nor any association with the ring in mac_rx.
4616 if (ring->mr_srs != NULL) {
4617 mac_rx_srs_remove(ring->mr_srs);
4618 ring->mr_srs = NULL;
4621 break;
4622 case MAC_RING_TYPE_TX:
4624 mac_grp_client_t *mgcp;
4625 mac_client_impl_t *mcip;
4626 mac_soft_ring_set_t *mac_srs;
4627 mac_srs_tx_t *tx;
4628 mac_ring_t *rem_ring;
4629 mac_group_t *defgrp;
4630 uint_t ring_info = 0;
4633 * For TX this function is invoked in three
4634 * cases:
4636 * 1) In the case of a failure during the
4637 * initial creation of a group when a share is
4638 * associated with a MAC client. So the SRS is not
4639 * yet setup, and will be setup later after the
4640 * group has been reserved and populated.
4642 * 2) From mac_release_tx_group() when freeing
4643 * a TX SRS.
4645 * 3) In the case of aggr, when a port gets removed,
4646 * the pseudo Tx rings that it exposed gets removed.
4648 * In the first two cases the SRS and its soft
4649 * rings are already quiesced.
4651 if (driver_call) {
4652 mac_client_impl_t *mcip;
4653 mac_soft_ring_set_t *mac_srs;
4654 mac_soft_ring_t *sringp;
4655 mac_srs_tx_t *srs_tx;
4657 if (mip->mi_state_flags & MIS_IS_AGGR &&
4658 mip->mi_default_tx_ring ==
4659 (mac_ring_handle_t)ring) {
4660 /* pick a new default Tx ring */
4661 mip->mi_default_tx_ring =
4662 (group->mrg_rings != ring) ?
4663 (mac_ring_handle_t)group->mrg_rings :
4664 (mac_ring_handle_t)(ring->mr_next);
4666 /* Presently only aggr case comes here */
4667 if (group->mrg_state != MAC_GROUP_STATE_RESERVED)
4668 break;
4670 mcip = MAC_GROUP_ONLY_CLIENT(group);
4671 ASSERT(mcip != NULL);
4672 ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR);
4673 mac_srs = MCIP_TX_SRS(mcip);
4674 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR ||
4675 mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR);
4676 srs_tx = &mac_srs->srs_tx;
4678 * Wakeup any callers blocked on this
4679 * Tx ring due to flow control.
4681 sringp = srs_tx->st_soft_rings[ring->mr_index];
4682 ASSERT(sringp != NULL);
4683 mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp);
4684 mac_tx_client_quiesce((mac_client_handle_t)mcip);
4685 mac_tx_srs_del_ring(mac_srs, ring);
4686 mac_tx_client_restart((mac_client_handle_t)mcip);
4687 break;
4689 ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring);
4690 group_type = mip->mi_tx_group_type;
4691 cap_rings = &mip->mi_tx_rings_cap;
4693 * See if we need to take it out of the MAC clients using
4694 * this group
4696 if (MAC_GROUP_NO_CLIENT(group))
4697 break;
4698 mgcp = group->mrg_clients;
4699 defgrp = MAC_DEFAULT_TX_GROUP(mip);
4700 while (mgcp != NULL) {
4701 mcip = mgcp->mgc_client;
4702 mac_srs = MCIP_TX_SRS(mcip);
4703 tx = &mac_srs->srs_tx;
4704 mac_tx_client_quiesce((mac_client_handle_t)mcip);
4706 * If we are here when removing rings from the
4707 * defgroup, mac_reserve_tx_ring would have
4708 * already deleted the ring from the MAC
4709 * clients in the group.
4711 if (group != defgrp) {
4712 mac_tx_invoke_callbacks(mcip,
4713 (mac_tx_cookie_t)
4714 mac_tx_srs_get_soft_ring(mac_srs, ring));
4715 mac_tx_srs_del_ring(mac_srs, ring);
4718 * Additionally, if we are left with only
4719 * one ring in the group after this, we need
4720 * to modify the mode etc. to. (We haven't
4721 * yet taken the ring out, so we check with 2).
4723 if (group->mrg_cur_count == 2) {
4724 if (ring->mr_next == NULL)
4725 rem_ring = group->mrg_rings;
4726 else
4727 rem_ring = ring->mr_next;
4728 mac_tx_invoke_callbacks(mcip,
4729 (mac_tx_cookie_t)
4730 mac_tx_srs_get_soft_ring(mac_srs,
4731 rem_ring));
4732 mac_tx_srs_del_ring(mac_srs, rem_ring);
4733 if (rem_ring->mr_state != MR_INUSE) {
4734 (void) mac_start_ring(rem_ring);
4736 tx->st_arg2 = (void *)rem_ring;
4737 mac_tx_srs_stat_recreate(mac_srs, B_FALSE);
4738 ring_info = mac_hwring_getinfo(
4739 (mac_ring_handle_t)rem_ring);
4741 * We are shrinking from multiple
4742 * to 1 ring.
4744 if (mac_srs->srs_type & SRST_BW_CONTROL) {
4745 tx->st_mode = SRS_TX_BW;
4746 } else if (mac_tx_serialize ||
4747 (ring_info & MAC_RING_TX_SERIALIZE)) {
4748 tx->st_mode = SRS_TX_SERIALIZE;
4749 } else {
4750 tx->st_mode = SRS_TX_DEFAULT;
4752 tx->st_func = mac_tx_get_func(tx->st_mode);
4754 mac_tx_client_restart((mac_client_handle_t)mcip);
4755 mgcp = mgcp->mgc_next;
4757 break;
4759 default:
4760 ASSERT(B_FALSE);
4764 * Remove the ring from the group.
4766 if (ring == group->mrg_rings)
4767 group->mrg_rings = ring->mr_next;
4768 else {
4769 mac_ring_t *pre;
4771 pre = group->mrg_rings;
4772 while (pre->mr_next != ring)
4773 pre = pre->mr_next;
4774 pre->mr_next = ring->mr_next;
4776 group->mrg_cur_count--;
4778 if (!driver_call) {
4779 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4780 ASSERT(group->mrg_driver == NULL ||
4781 cap_rings->mr_gremring != NULL);
4784 * Remove the driver level hardware ring.
4786 if (group->mrg_driver != NULL) {
4787 cap_rings->mr_gremring(group->mrg_driver,
4788 ring->mr_driver, ring->mr_type);
4792 ring->mr_gh = NULL;
4793 if (driver_call)
4794 mac_ring_free(mip, ring);
4795 else
4796 ring->mr_flag = 0;
4800 * Move a ring to the target group. If needed, remove the ring from the group
4801 * that it currently belongs to.
4803 * The caller need to enter MAC's perimeter by calling mac_perim_enter().
4805 static int
4806 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring)
4808 mac_group_t *s_group = (mac_group_t *)ring->mr_gh;
4809 int rv;
4811 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4812 ASSERT(d_group != NULL);
4813 ASSERT(s_group->mrg_mh == d_group->mrg_mh);
4815 if (s_group == d_group)
4816 return (0);
4819 * Remove it from current group first.
4821 if (s_group != NULL)
4822 i_mac_group_rem_ring(s_group, ring, B_FALSE);
4825 * Add it to the new group.
4827 rv = i_mac_group_add_ring(d_group, ring, 0);
4828 if (rv != 0) {
4830 * Failed to add ring back to source group. If
4831 * that fails, the ring is stuck in limbo, log message.
4833 if (i_mac_group_add_ring(s_group, ring, 0)) {
4834 cmn_err(CE_WARN, "%s: failed to move ring %p\n",
4835 mip->mi_name, (void *)ring);
4839 return (rv);
4843 * Find a MAC address according to its value.
4845 mac_address_t *
4846 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr)
4848 mac_address_t *map;
4850 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4852 for (map = mip->mi_addresses; map != NULL; map = map->ma_next) {
4853 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0)
4854 break;
4857 return (map);
4861 * Check whether the MAC address is shared by multiple clients.
4863 boolean_t
4864 mac_check_macaddr_shared(mac_address_t *map)
4866 ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip));
4868 return (map->ma_nusers > 1);
4872 * Remove the specified MAC address from the MAC address list and free it.
4874 static void
4875 mac_free_macaddr(mac_address_t *map)
4877 mac_impl_t *mip = map->ma_mip;
4879 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4880 ASSERT(mip->mi_addresses != NULL);
4882 map = mac_find_macaddr(mip, map->ma_addr);
4884 ASSERT(map != NULL);
4885 ASSERT(map->ma_nusers == 0);
4887 if (map == mip->mi_addresses) {
4888 mip->mi_addresses = map->ma_next;
4889 } else {
4890 mac_address_t *pre;
4892 pre = mip->mi_addresses;
4893 while (pre->ma_next != map)
4894 pre = pre->ma_next;
4895 pre->ma_next = map->ma_next;
4898 kmem_free(map, sizeof (mac_address_t));
4902 * Add a MAC address reference for a client. If the desired MAC address
4903 * exists, add a reference to it. Otherwise, add the new address by adding
4904 * it to a reserved group or setting promiscuous mode. Won't try different
4905 * group is the group is non-NULL, so the caller must explictly share
4906 * default group when needed.
4908 * Note, the primary MAC address is initialized at registration time, so
4909 * to add it to default group only need to activate it if its reference
4910 * count is still zero. Also, some drivers may not have advertised RINGS
4911 * capability.
4914 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr,
4915 boolean_t use_hw)
4917 mac_address_t *map;
4918 int err = 0;
4919 boolean_t allocated_map = B_FALSE;
4921 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4923 map = mac_find_macaddr(mip, mac_addr);
4926 * If the new MAC address has not been added. Allocate a new one
4927 * and set it up.
4929 if (map == NULL) {
4930 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
4931 map->ma_len = mip->mi_type->mt_addr_length;
4932 bcopy(mac_addr, map->ma_addr, map->ma_len);
4933 map->ma_nusers = 0;
4934 map->ma_group = group;
4935 map->ma_mip = mip;
4937 /* add the new MAC address to the head of the address list */
4938 map->ma_next = mip->mi_addresses;
4939 mip->mi_addresses = map;
4941 allocated_map = B_TRUE;
4944 ASSERT(map->ma_group == NULL || map->ma_group == group);
4945 if (map->ma_group == NULL)
4946 map->ma_group = group;
4949 * If the MAC address is already in use, simply account for the
4950 * new client.
4952 if (map->ma_nusers++ > 0)
4953 return (0);
4956 * Activate this MAC address by adding it to the reserved group.
4958 if (group != NULL) {
4959 err = mac_group_addmac(group, (const uint8_t *)mac_addr);
4960 if (err == 0) {
4961 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
4962 return (0);
4967 * The MAC address addition failed. If the client requires a
4968 * hardware classified MAC address, fail the operation.
4970 if (use_hw) {
4971 err = ENOSPC;
4972 goto bail;
4976 * Try promiscuous mode.
4978 * For drivers that don't advertise RINGS capability, do
4979 * nothing for the primary address.
4981 if ((group == NULL) &&
4982 (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) {
4983 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
4984 return (0);
4988 * Enable promiscuous mode in order to receive traffic
4989 * to the new MAC address.
4991 if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) {
4992 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC;
4993 return (0);
4997 * Free the MAC address that could not be added. Don't free
4998 * a pre-existing address, it could have been the entry
4999 * for the primary MAC address which was pre-allocated by
5000 * mac_init_macaddr(), and which must remain on the list.
5002 bail:
5003 map->ma_nusers--;
5004 if (allocated_map)
5005 mac_free_macaddr(map);
5006 return (err);
5010 * Remove a reference to a MAC address. This may cause to remove the MAC
5011 * address from an associated group or to turn off promiscuous mode.
5012 * The caller needs to handle the failure properly.
5015 mac_remove_macaddr(mac_address_t *map)
5017 mac_impl_t *mip = map->ma_mip;
5018 int err = 0;
5020 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5022 ASSERT(map == mac_find_macaddr(mip, map->ma_addr));
5025 * If it's not the last client using this MAC address, only update
5026 * the MAC clients count.
5028 if (--map->ma_nusers > 0)
5029 return (0);
5032 * The MAC address is no longer used by any MAC client, so remove
5033 * it from its associated group, or turn off promiscuous mode
5034 * if it was enabled for the MAC address.
5036 switch (map->ma_type) {
5037 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5039 * Don't free the preset primary address for drivers that
5040 * don't advertise RINGS capability.
5042 if (map->ma_group == NULL)
5043 return (0);
5045 err = mac_group_remmac(map->ma_group, map->ma_addr);
5046 if (err == 0)
5047 map->ma_group = NULL;
5048 break;
5049 case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5050 err = i_mac_promisc_set(mip, B_FALSE);
5051 break;
5052 default:
5053 ASSERT(B_FALSE);
5056 if (err != 0)
5057 return (err);
5060 * We created MAC address for the primary one at registration, so we
5061 * won't free it here. mac_fini_macaddr() will take care of it.
5063 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0)
5064 mac_free_macaddr(map);
5066 return (0);
5070 * Update an existing MAC address. The caller need to make sure that the new
5071 * value has not been used.
5074 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr)
5076 mac_impl_t *mip = map->ma_mip;
5077 int err = 0;
5079 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5080 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5082 switch (map->ma_type) {
5083 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5085 * Update the primary address for drivers that are not
5086 * RINGS capable.
5088 if (mip->mi_rx_groups == NULL) {
5089 err = mip->mi_unicst(mip->mi_driver, (const uint8_t *)
5090 mac_addr);
5091 if (err != 0)
5092 return (err);
5093 break;
5097 * If this MAC address is not currently in use,
5098 * simply break out and update the value.
5100 if (map->ma_nusers == 0)
5101 break;
5104 * Need to replace the MAC address associated with a group.
5106 err = mac_group_remmac(map->ma_group, map->ma_addr);
5107 if (err != 0)
5108 return (err);
5110 err = mac_group_addmac(map->ma_group, mac_addr);
5113 * Failure hints hardware error. The MAC layer needs to
5114 * have error notification facility to handle this.
5115 * Now, simply try to restore the value.
5117 if (err != 0)
5118 (void) mac_group_addmac(map->ma_group, map->ma_addr);
5120 break;
5121 case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5123 * Need to do nothing more if in promiscuous mode.
5125 break;
5126 default:
5127 ASSERT(B_FALSE);
5131 * Successfully replaced the MAC address.
5133 if (err == 0)
5134 bcopy(mac_addr, map->ma_addr, map->ma_len);
5136 return (err);
5140 * Freshen the MAC address with new value. Its caller must have updated the
5141 * hardware MAC address before calling this function.
5142 * This funcitons is supposed to be used to handle the MAC address change
5143 * notification from underlying drivers.
5145 void
5146 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr)
5148 mac_impl_t *mip = map->ma_mip;
5150 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5151 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5154 * Freshen the MAC address with new value.
5156 bcopy(mac_addr, map->ma_addr, map->ma_len);
5157 bcopy(mac_addr, mip->mi_addr, map->ma_len);
5160 * Update all MAC clients that share this MAC address.
5162 mac_unicast_update_clients(mip, map);
5166 * Set up the primary MAC address.
5168 void
5169 mac_init_macaddr(mac_impl_t *mip)
5171 mac_address_t *map;
5174 * The reference count is initialized to zero, until it's really
5175 * activated.
5177 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
5178 map->ma_len = mip->mi_type->mt_addr_length;
5179 bcopy(mip->mi_addr, map->ma_addr, map->ma_len);
5182 * If driver advertises RINGS capability, it shouldn't have initialized
5183 * its primary MAC address. For other drivers, including VNIC, the
5184 * primary address must work after registration.
5186 if (mip->mi_rx_groups == NULL)
5187 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5189 map->ma_mip = mip;
5191 mip->mi_addresses = map;
5195 * Clean up the primary MAC address. Note, only one primary MAC address
5196 * is allowed. All other MAC addresses must have been freed appropriately.
5198 void
5199 mac_fini_macaddr(mac_impl_t *mip)
5201 mac_address_t *map = mip->mi_addresses;
5203 if (map == NULL)
5204 return;
5207 * If mi_addresses is initialized, there should be exactly one
5208 * entry left on the list with no users.
5210 ASSERT(map->ma_nusers == 0);
5211 ASSERT(map->ma_next == NULL);
5213 kmem_free(map, sizeof (mac_address_t));
5214 mip->mi_addresses = NULL;
5218 * Logging related functions.
5220 * Note that Kernel statistics have been extended to maintain fine
5221 * granularity of statistics viz. hardware lane, software lane, fanout
5222 * stats etc. However, extended accounting continues to support only
5223 * aggregate statistics like before.
5226 /* Write the flow description to a netinfo_t record */
5227 static netinfo_t *
5228 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip)
5230 netinfo_t *ninfo;
5231 net_desc_t *ndesc;
5232 flow_desc_t *fdesc;
5233 mac_resource_props_t *mrp;
5235 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5236 if (ninfo == NULL)
5237 return (NULL);
5238 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5239 if (ndesc == NULL) {
5240 kmem_free(ninfo, sizeof (netinfo_t));
5241 return (NULL);
5245 * Grab the fe_lock to see a self-consistent fe_flow_desc.
5246 * Updates to the fe_flow_desc are done under the fe_lock
5248 mutex_enter(&flent->fe_lock);
5249 fdesc = &flent->fe_flow_desc;
5250 mrp = &flent->fe_resource_props;
5252 ndesc->nd_name = flent->fe_flow_name;
5253 ndesc->nd_devname = mcip->mci_name;
5254 bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5255 bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL);
5256 ndesc->nd_sap = htonl(fdesc->fd_sap);
5257 ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION;
5258 ndesc->nd_bw_limit = mrp->mrp_maxbw;
5259 if (ndesc->nd_isv4) {
5260 ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]);
5261 ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]);
5262 } else {
5263 bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN);
5264 bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN);
5266 ndesc->nd_sport = htons(fdesc->fd_local_port);
5267 ndesc->nd_dport = htons(fdesc->fd_remote_port);
5268 ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol;
5269 mutex_exit(&flent->fe_lock);
5271 ninfo->ni_record = ndesc;
5272 ninfo->ni_size = sizeof (net_desc_t);
5273 ninfo->ni_type = EX_NET_FLDESC_REC;
5275 return (ninfo);
5278 /* Write the flow statistics to a netinfo_t record */
5279 static netinfo_t *
5280 mac_write_flow_stats(flow_entry_t *flent)
5282 netinfo_t *ninfo;
5283 net_stat_t *nstat;
5284 mac_soft_ring_set_t *mac_srs;
5285 mac_rx_stats_t *mac_rx_stat;
5286 mac_tx_stats_t *mac_tx_stat;
5287 int i;
5289 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5290 if (ninfo == NULL)
5291 return (NULL);
5292 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5293 if (nstat == NULL) {
5294 kmem_free(ninfo, sizeof (netinfo_t));
5295 return (NULL);
5298 nstat->ns_name = flent->fe_flow_name;
5299 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5300 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5301 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5303 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5304 mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes;
5305 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5306 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5307 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5310 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs);
5311 if (mac_srs != NULL) {
5312 mac_tx_stat = &mac_srs->srs_tx.st_stat;
5314 nstat->ns_obytes = mac_tx_stat->mts_obytes;
5315 nstat->ns_opackets = mac_tx_stat->mts_opackets;
5316 nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5319 ninfo->ni_record = nstat;
5320 ninfo->ni_size = sizeof (net_stat_t);
5321 ninfo->ni_type = EX_NET_FLSTAT_REC;
5323 return (ninfo);
5326 /* Write the link description to a netinfo_t record */
5327 static netinfo_t *
5328 mac_write_link_desc(mac_client_impl_t *mcip)
5330 netinfo_t *ninfo;
5331 net_desc_t *ndesc;
5332 flow_entry_t *flent = mcip->mci_flent;
5334 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5335 if (ninfo == NULL)
5336 return (NULL);
5337 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5338 if (ndesc == NULL) {
5339 kmem_free(ninfo, sizeof (netinfo_t));
5340 return (NULL);
5343 ndesc->nd_name = mcip->mci_name;
5344 ndesc->nd_devname = mcip->mci_name;
5345 ndesc->nd_isv4 = B_TRUE;
5347 * Grab the fe_lock to see a self-consistent fe_flow_desc.
5348 * Updates to the fe_flow_desc are done under the fe_lock
5349 * after removing the flent from the flow table.
5351 mutex_enter(&flent->fe_lock);
5352 bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5353 mutex_exit(&flent->fe_lock);
5355 ninfo->ni_record = ndesc;
5356 ninfo->ni_size = sizeof (net_desc_t);
5357 ninfo->ni_type = EX_NET_LNDESC_REC;
5359 return (ninfo);
5362 /* Write the link statistics to a netinfo_t record */
5363 static netinfo_t *
5364 mac_write_link_stats(mac_client_impl_t *mcip)
5366 netinfo_t *ninfo;
5367 net_stat_t *nstat;
5368 flow_entry_t *flent;
5369 mac_soft_ring_set_t *mac_srs;
5370 mac_rx_stats_t *mac_rx_stat;
5371 mac_tx_stats_t *mac_tx_stat;
5372 int i;
5374 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5375 if (ninfo == NULL)
5376 return (NULL);
5377 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5378 if (nstat == NULL) {
5379 kmem_free(ninfo, sizeof (netinfo_t));
5380 return (NULL);
5383 nstat->ns_name = mcip->mci_name;
5384 flent = mcip->mci_flent;
5385 if (flent != NULL) {
5386 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5387 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5388 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5390 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5391 mac_rx_stat->mrs_pollbytes +
5392 mac_rx_stat->mrs_lclbytes;
5393 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5394 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5395 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
5399 mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs);
5400 if (mac_srs != NULL) {
5401 mac_tx_stat = &mac_srs->srs_tx.st_stat;
5403 nstat->ns_obytes = mac_tx_stat->mts_obytes;
5404 nstat->ns_opackets = mac_tx_stat->mts_opackets;
5405 nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
5408 ninfo->ni_record = nstat;
5409 ninfo->ni_size = sizeof (net_stat_t);
5410 ninfo->ni_type = EX_NET_LNSTAT_REC;
5412 return (ninfo);
5415 typedef struct i_mac_log_state_s {
5416 boolean_t mi_last;
5417 int mi_fenable;
5418 int mi_lenable;
5419 list_t *mi_list;
5420 } i_mac_log_state_t;
5423 * For a given flow, if the description has not been logged before, do it now.
5424 * If it is a VNIC, then we have collected information about it from the MAC
5425 * table, so skip it.
5427 * Called through mac_flow_walk_nolock()
5429 * Return 0 if successful.
5431 static int
5432 mac_log_flowinfo(flow_entry_t *flent, void *arg)
5434 mac_client_impl_t *mcip = flent->fe_mcip;
5435 i_mac_log_state_t *lstate = arg;
5436 netinfo_t *ninfo;
5438 if (mcip == NULL)
5439 return (0);
5442 * If the name starts with "vnic", and fe_user_generated is true (to
5443 * exclude the mcast and active flow entries created implicitly for
5444 * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow,
5445 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active.
5447 if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 &&
5448 (flent->fe_type & FLOW_USER) != 0) {
5449 return (0);
5452 if (!flent->fe_desc_logged) {
5454 * We don't return error because we want to continue the
5455 * walk in case this is the last walk which means we
5456 * need to reset fe_desc_logged in all the flows.
5458 if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL)
5459 return (0);
5460 list_insert_tail(lstate->mi_list, ninfo);
5461 flent->fe_desc_logged = B_TRUE;
5465 * Regardless of the error, we want to proceed in case we have to
5466 * reset fe_desc_logged.
5468 ninfo = mac_write_flow_stats(flent);
5469 if (ninfo == NULL)
5470 return (-1);
5472 list_insert_tail(lstate->mi_list, ninfo);
5474 if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED))
5475 flent->fe_desc_logged = B_FALSE;
5477 return (0);
5481 * Log the description for each mac client of this mac_impl_t, if it
5482 * hasn't already been done. Additionally, log statistics for the link as
5483 * well. Walk the flow table and log information for each flow as well.
5484 * If it is the last walk (mci_last), then we turn off mci_desc_logged (and
5485 * also fe_desc_logged, if flow logging is on) since we want to log the
5486 * description if and when logging is restarted.
5488 * Return 0 upon success or -1 upon failure
5490 static int
5491 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate)
5493 mac_client_impl_t *mcip;
5494 netinfo_t *ninfo;
5496 i_mac_perim_enter(mip);
5498 * Only walk the client list for NIC and etherstub
5500 if ((mip->mi_state_flags & MIS_DISABLED) ||
5501 ((mip->mi_state_flags & MIS_IS_VNIC) &&
5502 (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) {
5503 i_mac_perim_exit(mip);
5504 return (0);
5507 for (mcip = mip->mi_clients_list; mcip != NULL;
5508 mcip = mcip->mci_client_next) {
5509 if (!MCIP_DATAPATH_SETUP(mcip))
5510 continue;
5511 if (lstate->mi_lenable) {
5512 if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) {
5513 ninfo = mac_write_link_desc(mcip);
5514 if (ninfo == NULL) {
5516 * We can't terminate it if this is the last
5517 * walk, else there might be some links with
5518 * mi_desc_logged set to true, which means
5519 * their description won't be logged the next
5520 * time logging is started (similarly for the
5521 * flows within such links). We can continue
5522 * without walking the flow table (i.e. to
5523 * set fe_desc_logged to false) because we
5524 * won't have written any flow stuff for this
5525 * link as we haven't logged the link itself.
5527 i_mac_perim_exit(mip);
5528 if (lstate->mi_last)
5529 return (0);
5530 else
5531 return (-1);
5533 mcip->mci_state_flags |= MCIS_DESC_LOGGED;
5534 list_insert_tail(lstate->mi_list, ninfo);
5538 ninfo = mac_write_link_stats(mcip);
5539 if (ninfo == NULL && !lstate->mi_last) {
5540 i_mac_perim_exit(mip);
5541 return (-1);
5543 list_insert_tail(lstate->mi_list, ninfo);
5545 if (lstate->mi_last)
5546 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
5548 if (lstate->mi_fenable) {
5549 if (mcip->mci_subflow_tab != NULL) {
5550 (void) mac_flow_walk_nolock(
5551 mcip->mci_subflow_tab, mac_log_flowinfo,
5552 lstate);
5556 i_mac_perim_exit(mip);
5557 return (0);
5561 * modhash walker function to add a mac_impl_t to a list
5563 /*ARGSUSED*/
5564 static uint_t
5565 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
5567 list_t *list = (list_t *)arg;
5568 mac_impl_t *mip = (mac_impl_t *)val;
5570 if ((mip->mi_state_flags & MIS_DISABLED) == 0) {
5571 list_insert_tail(list, mip);
5572 mip->mi_ref++;
5575 return (MH_WALK_CONTINUE);
5578 void
5579 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate)
5581 list_t mac_impl_list;
5582 mac_impl_t *mip;
5583 netinfo_t *ninfo;
5585 /* Create list of mac_impls */
5586 ASSERT(RW_LOCK_HELD(&i_mac_impl_lock));
5587 list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t,
5588 mi_node));
5589 mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list);
5590 rw_exit(&i_mac_impl_lock);
5592 /* Create log entries for each mac_impl */
5593 for (mip = list_head(&mac_impl_list); mip != NULL;
5594 mip = list_next(&mac_impl_list, mip)) {
5595 if (i_mac_impl_log(mip, lstate) != 0)
5596 continue;
5599 /* Remove elements and destroy list of mac_impls */
5600 rw_enter(&i_mac_impl_lock, RW_WRITER);
5601 while ((mip = list_remove_tail(&mac_impl_list)) != NULL) {
5602 mip->mi_ref--;
5604 rw_exit(&i_mac_impl_lock);
5605 list_destroy(&mac_impl_list);
5608 * Write log entries to files outside of locks, free associated
5609 * structures, and remove entries from the list.
5611 while ((ninfo = list_head(net_log_list)) != NULL) {
5612 (void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type);
5613 list_remove(net_log_list, ninfo);
5614 kmem_free(ninfo->ni_record, ninfo->ni_size);
5615 kmem_free(ninfo, sizeof (*ninfo));
5617 list_destroy(net_log_list);
5621 * The timer thread that runs every mac_logging_interval seconds and logs
5622 * link and/or flow information.
5624 /* ARGSUSED */
5625 void
5626 mac_log_linkinfo(void *arg)
5628 i_mac_log_state_t lstate;
5629 list_t net_log_list;
5631 list_create(&net_log_list, sizeof (netinfo_t),
5632 offsetof(netinfo_t, ni_link));
5634 rw_enter(&i_mac_impl_lock, RW_READER);
5635 if (!mac_flow_log_enable && !mac_link_log_enable) {
5636 rw_exit(&i_mac_impl_lock);
5637 return;
5639 lstate.mi_fenable = mac_flow_log_enable;
5640 lstate.mi_lenable = mac_link_log_enable;
5641 lstate.mi_last = B_FALSE;
5642 lstate.mi_list = &net_log_list;
5644 /* Write log entries for each mac_impl in the list */
5645 i_mac_log_info(&net_log_list, &lstate);
5647 if (mac_flow_log_enable || mac_link_log_enable) {
5648 mac_logging_timer = timeout(mac_log_linkinfo, NULL,
5649 SEC_TO_TICK(mac_logging_interval));
5653 typedef struct i_mac_fastpath_state_s {
5654 boolean_t mf_disable;
5655 int mf_err;
5656 } i_mac_fastpath_state_t;
5658 /* modhash walker function to enable or disable fastpath */
5659 /*ARGSUSED*/
5660 static uint_t
5661 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val,
5662 void *arg)
5664 i_mac_fastpath_state_t *state = arg;
5665 mac_handle_t mh = (mac_handle_t)val;
5667 if (state->mf_disable)
5668 state->mf_err = mac_fastpath_disable(mh);
5669 else
5670 mac_fastpath_enable(mh);
5672 return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE);
5676 * Start the logging timer.
5679 mac_start_logusage(mac_logtype_t type, uint_t interval)
5681 i_mac_fastpath_state_t dstate = {B_TRUE, 0};
5682 i_mac_fastpath_state_t estate = {B_FALSE, 0};
5683 int err;
5685 rw_enter(&i_mac_impl_lock, RW_WRITER);
5686 switch (type) {
5687 case MAC_LOGTYPE_FLOW:
5688 if (mac_flow_log_enable) {
5689 rw_exit(&i_mac_impl_lock);
5690 return (0);
5692 /* FALLTHRU */
5693 case MAC_LOGTYPE_LINK:
5694 if (mac_link_log_enable) {
5695 rw_exit(&i_mac_impl_lock);
5696 return (0);
5698 break;
5699 default:
5700 ASSERT(0);
5703 /* Disable fastpath */
5704 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate);
5705 if ((err = dstate.mf_err) != 0) {
5706 /* Reenable fastpath */
5707 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
5708 rw_exit(&i_mac_impl_lock);
5709 return (err);
5712 switch (type) {
5713 case MAC_LOGTYPE_FLOW:
5714 mac_flow_log_enable = B_TRUE;
5715 /* FALLTHRU */
5716 case MAC_LOGTYPE_LINK:
5717 mac_link_log_enable = B_TRUE;
5718 break;
5721 mac_logging_interval = interval;
5722 rw_exit(&i_mac_impl_lock);
5723 mac_log_linkinfo(NULL);
5724 return (0);
5728 * Stop the logging timer if both link and flow logging are turned off.
5730 void
5731 mac_stop_logusage(mac_logtype_t type)
5733 i_mac_log_state_t lstate;
5734 i_mac_fastpath_state_t estate = {B_FALSE, 0};
5735 list_t net_log_list;
5737 list_create(&net_log_list, sizeof (netinfo_t),
5738 offsetof(netinfo_t, ni_link));
5740 rw_enter(&i_mac_impl_lock, RW_WRITER);
5742 lstate.mi_fenable = mac_flow_log_enable;
5743 lstate.mi_lenable = mac_link_log_enable;
5744 lstate.mi_list = &net_log_list;
5746 /* Last walk */
5747 lstate.mi_last = B_TRUE;
5749 switch (type) {
5750 case MAC_LOGTYPE_FLOW:
5751 if (lstate.mi_fenable) {
5752 ASSERT(mac_link_log_enable);
5753 mac_flow_log_enable = B_FALSE;
5754 mac_link_log_enable = B_FALSE;
5755 break;
5757 /* FALLTHRU */
5758 case MAC_LOGTYPE_LINK:
5759 if (!lstate.mi_lenable || mac_flow_log_enable) {
5760 rw_exit(&i_mac_impl_lock);
5761 return;
5763 mac_link_log_enable = B_FALSE;
5764 break;
5765 default:
5766 ASSERT(0);
5769 /* Reenable fastpath */
5770 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
5772 (void) untimeout(mac_logging_timer);
5773 mac_logging_timer = 0;
5775 /* Write log entries for each mac_impl in the list */
5776 i_mac_log_info(&net_log_list, &lstate);
5780 * Walk the rx and tx SRS/SRs for a flow and update the priority value.
5782 void
5783 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent)
5785 pri_t pri;
5786 int count;
5787 mac_soft_ring_set_t *mac_srs;
5789 if (flent->fe_rx_srs_cnt <= 0)
5790 return;
5792 if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type ==
5793 SRST_FLOW) {
5794 pri = FLOW_PRIORITY(mcip->mci_min_pri,
5795 mcip->mci_max_pri,
5796 flent->fe_resource_props.mrp_priority);
5797 } else {
5798 pri = mcip->mci_max_pri;
5801 for (count = 0; count < flent->fe_rx_srs_cnt; count++) {
5802 mac_srs = flent->fe_rx_srs[count];
5803 mac_update_srs_priority(mac_srs, pri);
5806 * If we have a Tx SRS, we need to modify all the threads associated
5807 * with it.
5809 if (flent->fe_tx_srs != NULL)
5810 mac_update_srs_priority(flent->fe_tx_srs, pri);
5814 * RX and TX rings are reserved according to different semantics depending
5815 * on the requests from the MAC clients and type of rings:
5817 * On the Tx side, by default we reserve individual rings, independently from
5818 * the groups.
5820 * On the Rx side, the reservation is at the granularity of the group
5821 * of rings, and used for v12n level 1 only. It has a special case for the
5822 * primary client.
5824 * If a share is allocated to a MAC client, we allocate a TX group and an
5825 * RX group to the client, and assign TX rings and RX rings to these
5826 * groups according to information gathered from the driver through
5827 * the share capability.
5829 * The foreseable evolution of Rx rings will handle v12n level 2 and higher
5830 * to allocate individual rings out of a group and program the hw classifier
5831 * based on IP address or higher level criteria.
5835 * mac_reserve_tx_ring()
5836 * Reserve a unused ring by marking it with MR_INUSE state.
5837 * As reserved, the ring is ready to function.
5839 * Notes for Hybrid I/O:
5841 * If a specific ring is needed, it is specified through the desired_ring
5842 * argument. Otherwise that argument is set to NULL.
5843 * If the desired ring was previous allocated to another client, this
5844 * function swaps it with a new ring from the group of unassigned rings.
5846 mac_ring_t *
5847 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring)
5849 mac_group_t *group;
5850 mac_grp_client_t *mgcp;
5851 mac_client_impl_t *mcip;
5852 mac_soft_ring_set_t *srs;
5854 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5857 * Find an available ring and start it before changing its status.
5858 * The unassigned rings are at the end of the mi_tx_groups
5859 * array.
5861 group = MAC_DEFAULT_TX_GROUP(mip);
5863 /* Can't take the default ring out of the default group */
5864 ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring);
5866 if (desired_ring->mr_state == MR_FREE) {
5867 ASSERT(MAC_GROUP_NO_CLIENT(group));
5868 if (mac_start_ring(desired_ring) != 0)
5869 return (NULL);
5870 return (desired_ring);
5873 * There are clients using this ring, so let's move the clients
5874 * away from using this ring.
5876 for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
5877 mcip = mgcp->mgc_client;
5878 mac_tx_client_quiesce((mac_client_handle_t)mcip);
5879 srs = MCIP_TX_SRS(mcip);
5880 ASSERT(mac_tx_srs_ring_present(srs, desired_ring));
5881 mac_tx_invoke_callbacks(mcip,
5882 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs,
5883 desired_ring));
5884 mac_tx_srs_del_ring(srs, desired_ring);
5885 mac_tx_client_restart((mac_client_handle_t)mcip);
5887 return (desired_ring);
5891 * For a reserved group with multiple clients, return the primary client.
5893 static mac_client_impl_t *
5894 mac_get_grp_primary(mac_group_t *grp)
5896 mac_grp_client_t *mgcp = grp->mrg_clients;
5897 mac_client_impl_t *mcip;
5899 while (mgcp != NULL) {
5900 mcip = mgcp->mgc_client;
5901 if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC)
5902 return (mcip);
5903 mgcp = mgcp->mgc_next;
5905 return (NULL);
5909 * Hybrid I/O specifies the ring that should be given to a share.
5910 * If the ring is already used by clients, then we need to release
5911 * the ring back to the default group so that we can give it to
5912 * the share. This means the clients using this ring now get a
5913 * replacement ring. If there aren't any replacement rings, this
5914 * function returns a failure.
5916 static int
5917 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type,
5918 mac_ring_t *ring, mac_ring_t **rings, int nrings)
5920 mac_group_t *group = (mac_group_t *)ring->mr_gh;
5921 mac_resource_props_t *mrp;
5922 mac_client_impl_t *mcip;
5923 mac_group_t *defgrp;
5924 mac_ring_t *tring;
5925 mac_group_t *tgrp;
5926 int i;
5927 int j;
5929 mcip = MAC_GROUP_ONLY_CLIENT(group);
5930 if (mcip == NULL)
5931 mcip = mac_get_grp_primary(group);
5932 ASSERT(mcip != NULL);
5933 ASSERT(mcip->mci_share == NULL);
5935 mrp = MCIP_RESOURCE_PROPS(mcip);
5936 if (ring_type == MAC_RING_TYPE_RX) {
5937 defgrp = mip->mi_rx_donor_grp;
5938 if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) {
5939 /* Need to put this mac client in the default group */
5940 if (mac_rx_switch_group(mcip, group, defgrp) != 0)
5941 return (ENOSPC);
5942 } else {
5944 * Switch this ring with some other ring from
5945 * the default group.
5947 for (tring = defgrp->mrg_rings; tring != NULL;
5948 tring = tring->mr_next) {
5949 if (tring->mr_index == 0)
5950 continue;
5951 for (j = 0; j < nrings; j++) {
5952 if (rings[j] == tring)
5953 break;
5955 if (j >= nrings)
5956 break;
5958 if (tring == NULL)
5959 return (ENOSPC);
5960 if (mac_group_mov_ring(mip, group, tring) != 0)
5961 return (ENOSPC);
5962 if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
5963 (void) mac_group_mov_ring(mip, defgrp, tring);
5964 return (ENOSPC);
5967 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
5968 return (0);
5971 defgrp = MAC_DEFAULT_TX_GROUP(mip);
5972 if (ring == (mac_ring_t *)mip->mi_default_tx_ring) {
5974 * See if we can get a spare ring to replace the default
5975 * ring.
5977 if (defgrp->mrg_cur_count == 1) {
5979 * Need to get a ring from another client, see if
5980 * there are any clients that can be moved to
5981 * the default group, thereby freeing some rings.
5983 for (i = 0; i < mip->mi_tx_group_count; i++) {
5984 tgrp = &mip->mi_tx_groups[i];
5985 if (tgrp->mrg_state ==
5986 MAC_GROUP_STATE_REGISTERED) {
5987 continue;
5989 mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
5990 if (mcip == NULL)
5991 mcip = mac_get_grp_primary(tgrp);
5992 ASSERT(mcip != NULL);
5993 mrp = MCIP_RESOURCE_PROPS(mcip);
5994 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
5995 ASSERT(tgrp->mrg_cur_count == 1);
5997 * If this ring is part of the
5998 * rings asked by the share we cannot
5999 * use it as the default ring.
6001 for (j = 0; j < nrings; j++) {
6002 if (rings[j] == tgrp->mrg_rings)
6003 break;
6005 if (j < nrings)
6006 continue;
6007 mac_tx_client_quiesce(
6008 (mac_client_handle_t)mcip);
6009 mac_tx_switch_group(mcip, tgrp,
6010 defgrp);
6011 mac_tx_client_restart(
6012 (mac_client_handle_t)mcip);
6013 break;
6017 * All the rings are reserved, can't give up the
6018 * default ring.
6020 if (defgrp->mrg_cur_count <= 1)
6021 return (ENOSPC);
6024 * Swap the default ring with another.
6026 for (tring = defgrp->mrg_rings; tring != NULL;
6027 tring = tring->mr_next) {
6029 * If this ring is part of the rings asked by the
6030 * share we cannot use it as the default ring.
6032 for (j = 0; j < nrings; j++) {
6033 if (rings[j] == tring)
6034 break;
6036 if (j >= nrings)
6037 break;
6039 ASSERT(tring != NULL);
6040 mip->mi_default_tx_ring = (mac_ring_handle_t)tring;
6041 return (0);
6044 * The Tx ring is with a group reserved by a MAC client. See if
6045 * we can swap it.
6047 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6048 mcip = MAC_GROUP_ONLY_CLIENT(group);
6049 if (mcip == NULL)
6050 mcip = mac_get_grp_primary(group);
6051 ASSERT(mcip != NULL);
6052 mrp = MCIP_RESOURCE_PROPS(mcip);
6053 mac_tx_client_quiesce((mac_client_handle_t)mcip);
6054 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6055 ASSERT(group->mrg_cur_count == 1);
6056 /* Put this mac client in the default group */
6057 mac_tx_switch_group(mcip, group, defgrp);
6058 } else {
6060 * Switch this ring with some other ring from
6061 * the default group.
6063 for (tring = defgrp->mrg_rings; tring != NULL;
6064 tring = tring->mr_next) {
6065 if (tring == (mac_ring_t *)mip->mi_default_tx_ring)
6066 continue;
6068 * If this ring is part of the rings asked by the
6069 * share we cannot use it for swapping.
6071 for (j = 0; j < nrings; j++) {
6072 if (rings[j] == tring)
6073 break;
6075 if (j >= nrings)
6076 break;
6078 if (tring == NULL) {
6079 mac_tx_client_restart((mac_client_handle_t)mcip);
6080 return (ENOSPC);
6082 if (mac_group_mov_ring(mip, group, tring) != 0) {
6083 mac_tx_client_restart((mac_client_handle_t)mcip);
6084 return (ENOSPC);
6086 if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6087 (void) mac_group_mov_ring(mip, defgrp, tring);
6088 mac_tx_client_restart((mac_client_handle_t)mcip);
6089 return (ENOSPC);
6092 mac_tx_client_restart((mac_client_handle_t)mcip);
6093 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6094 return (0);
6098 * Populate a zero-ring group with rings. If the share is non-NULL,
6099 * the rings are chosen according to that share.
6100 * Invoked after allocating a new RX or TX group through
6101 * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively.
6102 * Returns zero on success, an errno otherwise.
6105 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type,
6106 mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share,
6107 uint32_t ringcnt)
6109 mac_ring_t **rings, *ring;
6110 uint_t nrings;
6111 int rv = 0, i = 0, j;
6113 ASSERT((ring_type == MAC_RING_TYPE_RX &&
6114 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) ||
6115 (ring_type == MAC_RING_TYPE_TX &&
6116 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC));
6119 * First find the rings to allocate to the group.
6121 if (share != NULL) {
6122 /* get rings through ms_squery() */
6123 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings);
6124 ASSERT(nrings != 0);
6125 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t),
6126 KM_SLEEP);
6127 mip->mi_share_capab.ms_squery(share, ring_type,
6128 (mac_ring_handle_t *)rings, &nrings);
6129 for (i = 0; i < nrings; i++) {
6131 * If we have given this ring to a non-default
6132 * group, we need to check if we can get this
6133 * ring.
6135 ring = rings[i];
6136 if (ring->mr_gh != (mac_group_handle_t)src_group ||
6137 ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6138 if (mac_reclaim_ring_from_grp(mip, ring_type,
6139 ring, rings, nrings) != 0) {
6140 rv = ENOSPC;
6141 goto bail;
6145 } else {
6147 * Pick one ring from default group.
6149 * for now pick the second ring which requires the first ring
6150 * at index 0 to stay in the default group, since it is the
6151 * ring which carries the multicast traffic.
6152 * We need a better way for a driver to indicate this,
6153 * for example a per-ring flag.
6155 rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t),
6156 KM_SLEEP);
6157 for (ring = src_group->mrg_rings; ring != NULL;
6158 ring = ring->mr_next) {
6159 if (ring_type == MAC_RING_TYPE_RX &&
6160 ring->mr_index == 0) {
6161 continue;
6163 if (ring_type == MAC_RING_TYPE_TX &&
6164 ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6165 continue;
6167 rings[i++] = ring;
6168 if (i == ringcnt)
6169 break;
6171 ASSERT(ring != NULL);
6172 nrings = i;
6173 /* Not enough rings as required */
6174 if (nrings != ringcnt) {
6175 rv = ENOSPC;
6176 goto bail;
6180 switch (ring_type) {
6181 case MAC_RING_TYPE_RX:
6182 if (src_group->mrg_cur_count - nrings < 1) {
6183 /* we ran out of rings */
6184 rv = ENOSPC;
6185 goto bail;
6188 /* move receive rings to new group */
6189 for (i = 0; i < nrings; i++) {
6190 rv = mac_group_mov_ring(mip, new_group, rings[i]);
6191 if (rv != 0) {
6192 /* move rings back on failure */
6193 for (j = 0; j < i; j++) {
6194 (void) mac_group_mov_ring(mip,
6195 src_group, rings[j]);
6197 goto bail;
6200 break;
6202 case MAC_RING_TYPE_TX: {
6203 mac_ring_t *tmp_ring;
6205 /* move the TX rings to the new group */
6206 for (i = 0; i < nrings; i++) {
6207 /* get the desired ring */
6208 tmp_ring = mac_reserve_tx_ring(mip, rings[i]);
6209 if (tmp_ring == NULL) {
6210 rv = ENOSPC;
6211 goto bail;
6213 ASSERT(tmp_ring == rings[i]);
6214 rv = mac_group_mov_ring(mip, new_group, rings[i]);
6215 if (rv != 0) {
6216 /* cleanup on failure */
6217 for (j = 0; j < i; j++) {
6218 (void) mac_group_mov_ring(mip,
6219 MAC_DEFAULT_TX_GROUP(mip),
6220 rings[j]);
6222 goto bail;
6225 break;
6229 /* add group to share */
6230 if (share != NULL)
6231 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver);
6233 bail:
6234 /* free temporary array of rings */
6235 kmem_free(rings, nrings * sizeof (mac_ring_handle_t));
6237 return (rv);
6240 void
6241 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip)
6243 mac_grp_client_t *mgcp;
6245 for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
6246 if (mgcp->mgc_client == mcip)
6247 break;
6250 VERIFY(mgcp == NULL);
6252 mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP);
6253 mgcp->mgc_client = mcip;
6254 mgcp->mgc_next = grp->mrg_clients;
6255 grp->mrg_clients = mgcp;
6259 void
6260 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip)
6262 mac_grp_client_t *mgcp, **pprev;
6264 for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL;
6265 pprev = &mgcp->mgc_next, mgcp = *pprev) {
6266 if (mgcp->mgc_client == mcip)
6267 break;
6270 ASSERT(mgcp != NULL);
6272 *pprev = mgcp->mgc_next;
6273 kmem_free(mgcp, sizeof (mac_grp_client_t));
6277 * mac_reserve_rx_group()
6279 * Finds an available group and exclusively reserves it for a client.
6280 * The group is chosen to suit the flow's resource controls (bandwidth and
6281 * fanout requirements) and the address type.
6282 * If the requestor is the pimary MAC then return the group with the
6283 * largest number of rings, otherwise the default ring when available.
6285 mac_group_t *
6286 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move)
6288 mac_share_handle_t share = mcip->mci_share;
6289 mac_impl_t *mip = mcip->mci_mip;
6290 mac_group_t *grp = NULL;
6291 int i;
6292 int err = 0;
6293 mac_address_t *map;
6294 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip);
6295 int nrings;
6296 int donor_grp_rcnt;
6297 boolean_t need_exclgrp = B_FALSE;
6298 int need_rings = 0;
6299 mac_group_t *candidate_grp = NULL;
6300 mac_client_impl_t *gclient;
6301 mac_resource_props_t *gmrp;
6302 mac_group_t *donorgrp = NULL;
6303 boolean_t rxhw = mrp->mrp_mask & MRP_RX_RINGS;
6304 boolean_t unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC;
6305 boolean_t isprimary;
6307 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
6309 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6312 * Check if a group already has this mac address (case of VLANs)
6313 * unless we are moving this MAC client from one group to another.
6315 if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) {
6316 if (map->ma_group != NULL)
6317 return (map->ma_group);
6319 if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0)
6320 return (NULL);
6322 * If exclusive open, return NULL which will enable the
6323 * caller to use the default group.
6325 if (mcip->mci_state_flags & MCIS_EXCLUSIVE)
6326 return (NULL);
6328 /* For dynamic groups default unspecified to 1 */
6329 if (rxhw && unspec &&
6330 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6331 mrp->mrp_nrxrings = 1;
6334 * For static grouping we allow only specifying rings=0 and
6335 * unspecified
6337 if (rxhw && mrp->mrp_nrxrings > 0 &&
6338 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) {
6339 return (NULL);
6341 if (rxhw) {
6343 * We have explicitly asked for a group (with nrxrings,
6344 * if unspec).
6346 if (unspec || mrp->mrp_nrxrings > 0) {
6347 need_exclgrp = B_TRUE;
6348 need_rings = mrp->mrp_nrxrings;
6349 } else if (mrp->mrp_nrxrings == 0) {
6351 * We have asked for a software group.
6353 return (NULL);
6355 } else if (isprimary && mip->mi_nactiveclients == 1 &&
6356 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6358 * If the primary is the only active client on this
6359 * mip and we have not asked for any rings, we give
6360 * it the default group so that the primary gets to
6361 * use all the rings.
6363 return (NULL);
6366 /* The group that can donate rings */
6367 donorgrp = mip->mi_rx_donor_grp;
6370 * The number of rings that the default group can donate.
6371 * We need to leave at least one ring.
6373 donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6376 * Try to exclusively reserve a RX group.
6378 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary
6379 * client), try to reserve the a non-default RX group and give
6380 * it all the rings from the donor group, except the default ring
6382 * For flows requiring HW_RING (unicast flow of other clients), try
6383 * to reserve non-default RX group with the specified number of
6384 * rings, if available.
6386 * For flows that have not asked for software or hardware ring,
6387 * try to reserve a non-default group with 1 ring, if available.
6389 for (i = 1; i < mip->mi_rx_group_count; i++) {
6390 grp = &mip->mi_rx_groups[i];
6392 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name,
6393 int, grp->mrg_index, mac_group_state_t, grp->mrg_state);
6396 * Check if this group could be a candidate group for
6397 * eviction if we need a group for this MAC client,
6398 * but there aren't any. A candidate group is one
6399 * that didn't ask for an exclusive group, but got
6400 * one and it has enough rings (combined with what
6401 * the donor group can donate) for the new MAC
6402 * client
6404 if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) {
6406 * If the primary/donor group is not the default
6407 * group, don't bother looking for a candidate group.
6408 * If we don't have enough rings we will check
6409 * if the primary group can be vacated.
6411 if (candidate_grp == NULL &&
6412 donorgrp == MAC_DEFAULT_RX_GROUP(mip)) {
6413 ASSERT(!MAC_GROUP_NO_CLIENT(grp));
6414 gclient = MAC_GROUP_ONLY_CLIENT(grp);
6415 if (gclient == NULL)
6416 gclient = mac_get_grp_primary(grp);
6417 ASSERT(gclient != NULL);
6418 gmrp = MCIP_RESOURCE_PROPS(gclient);
6419 if (gclient->mci_share == NULL &&
6420 (gmrp->mrp_mask & MRP_RX_RINGS) == 0 &&
6421 (unspec ||
6422 (grp->mrg_cur_count + donor_grp_rcnt >=
6423 need_rings))) {
6424 candidate_grp = grp;
6427 continue;
6430 * This group could already be SHARED by other multicast
6431 * flows on this client. In that case, the group would
6432 * be shared and has already been started.
6434 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT);
6436 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) &&
6437 (mac_start_group(grp) != 0)) {
6438 continue;
6441 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6442 break;
6443 ASSERT(grp->mrg_cur_count == 0);
6446 * Populate the group. Rings should be taken
6447 * from the donor group.
6449 nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1;
6452 * If the donor group can't donate, let's just walk and
6453 * see if someone can vacate a group, so that we have
6454 * enough rings for this, unless we already have
6455 * identified a candiate group..
6457 if (nrings <= donor_grp_rcnt) {
6458 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6459 donorgrp, grp, share, nrings);
6460 if (err == 0) {
6462 * For a share i_mac_group_allocate_rings gets
6463 * the rings from the driver, let's populate
6464 * the property for the client now.
6466 if (share != NULL) {
6467 mac_client_set_rings(
6468 (mac_client_handle_t)mcip,
6469 grp->mrg_cur_count, -1);
6471 if (mac_is_primary_client(mcip) && !rxhw)
6472 mip->mi_rx_donor_grp = grp;
6473 break;
6477 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6478 mip->mi_name, int, grp->mrg_index, int, err);
6481 * It's a dynamic group but the grouping operation
6482 * failed.
6484 mac_stop_group(grp);
6486 /* We didn't find an exclusive group for this MAC client */
6487 if (i >= mip->mi_rx_group_count) {
6489 if (!need_exclgrp)
6490 return (NULL);
6493 * If we found a candidate group then we switch the
6494 * MAC client from the candidate_group to the default
6495 * group and give the group to this MAC client. If
6496 * we didn't find a candidate_group, check if the
6497 * primary is in its own group and if it can make way
6498 * for this MAC client.
6500 if (candidate_grp == NULL &&
6501 donorgrp != MAC_DEFAULT_RX_GROUP(mip) &&
6502 donorgrp->mrg_cur_count >= need_rings) {
6503 candidate_grp = donorgrp;
6505 if (candidate_grp != NULL) {
6506 boolean_t prim_grp = B_FALSE;
6509 * Switch the MAC client from the candidate group
6510 * to the default group.. If this group was the
6511 * donor group, then after the switch we need
6512 * to update the donor group too.
6514 grp = candidate_grp;
6515 gclient = MAC_GROUP_ONLY_CLIENT(grp);
6516 if (gclient == NULL)
6517 gclient = mac_get_grp_primary(grp);
6518 if (grp == mip->mi_rx_donor_grp)
6519 prim_grp = B_TRUE;
6520 if (mac_rx_switch_group(gclient, grp,
6521 MAC_DEFAULT_RX_GROUP(mip)) != 0) {
6522 return (NULL);
6524 if (prim_grp) {
6525 mip->mi_rx_donor_grp =
6526 MAC_DEFAULT_RX_GROUP(mip);
6527 donorgrp = MAC_DEFAULT_RX_GROUP(mip);
6532 * Now give this group with the required rings
6533 * to this MAC client.
6535 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
6536 if (mac_start_group(grp) != 0)
6537 return (NULL);
6539 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
6540 return (grp);
6542 donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
6543 ASSERT(grp->mrg_cur_count == 0);
6544 ASSERT(donor_grp_rcnt >= need_rings);
6545 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
6546 donorgrp, grp, share, need_rings);
6547 if (err == 0) {
6549 * For a share i_mac_group_allocate_rings gets
6550 * the rings from the driver, let's populate
6551 * the property for the client now.
6553 if (share != NULL) {
6554 mac_client_set_rings(
6555 (mac_client_handle_t)mcip,
6556 grp->mrg_cur_count, -1);
6558 DTRACE_PROBE2(rx__group__reserved,
6559 char *, mip->mi_name, int, grp->mrg_index);
6560 return (grp);
6562 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
6563 mip->mi_name, int, grp->mrg_index, int, err);
6564 mac_stop_group(grp);
6566 return (NULL);
6568 ASSERT(grp != NULL);
6570 DTRACE_PROBE2(rx__group__reserved,
6571 char *, mip->mi_name, int, grp->mrg_index);
6572 return (grp);
6576 * mac_rx_release_group()
6578 * This is called when there are no clients left for the group.
6579 * The group is stopped and marked MAC_GROUP_STATE_REGISTERED,
6580 * and if it is a non default group, the shares are removed and
6581 * all rings are assigned back to default group.
6583 void
6584 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group)
6586 mac_impl_t *mip = mcip->mci_mip;
6587 mac_ring_t *ring;
6589 ASSERT(group != MAC_DEFAULT_RX_GROUP(mip));
6591 if (mip->mi_rx_donor_grp == group)
6592 mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip);
6595 * This is the case where there are no clients left. Any
6596 * SRS etc on this group have also be quiesced.
6598 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
6599 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) {
6600 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6602 * Remove the SRS associated with the HW ring.
6603 * As a result, polling will be disabled.
6605 ring->mr_srs = NULL;
6607 ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED ||
6608 ring->mr_state == MR_INUSE);
6609 if (ring->mr_state == MR_INUSE) {
6610 mac_stop_ring(ring);
6611 ring->mr_flag = 0;
6615 /* remove group from share */
6616 if (mcip->mci_share != NULL) {
6617 mip->mi_share_capab.ms_sremove(mcip->mci_share,
6618 group->mrg_driver);
6621 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6622 mac_ring_t *ring;
6625 * Rings were dynamically allocated to group.
6626 * Move rings back to default group.
6628 while ((ring = group->mrg_rings) != NULL) {
6629 (void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp,
6630 ring);
6633 mac_stop_group(group);
6635 * Possible improvement: See if we can assign the group just released
6636 * to a another client of the mip
6641 * When we move the primary's mac address between groups, we need to also
6642 * take all the clients sharing the same mac address along with it (VLANs)
6643 * We remove the mac address for such clients from the group after quiescing
6644 * them. When we add the mac address we restart the client. Note that
6645 * the primary's mac address is removed from the group after all the
6646 * other clients sharing the address are removed. Similarly, the primary's
6647 * mac address is added before all the other client's mac address are
6648 * added. While grp is the group where the clients reside, tgrp is
6649 * the group where the addresses have to be added.
6651 static void
6652 mac_rx_move_macaddr_prim(mac_client_impl_t *mcip, mac_group_t *grp,
6653 mac_group_t *tgrp, uint8_t *maddr, boolean_t add)
6655 mac_impl_t *mip = mcip->mci_mip;
6656 mac_grp_client_t *mgcp = grp->mrg_clients;
6657 mac_client_impl_t *gmcip;
6658 boolean_t prim;
6660 prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
6663 * If the clients are in a non-default group, we just have to
6664 * walk the group's client list. If it is in the default group
6665 * (which will be shared by other clients as well, we need to
6666 * check if the unicast address matches mcip's unicast.
6668 while (mgcp != NULL) {
6669 gmcip = mgcp->mgc_client;
6670 if (gmcip != mcip &&
6671 (grp != MAC_DEFAULT_RX_GROUP(mip) ||
6672 mcip->mci_unicast == gmcip->mci_unicast)) {
6673 if (!add) {
6674 mac_rx_client_quiesce(
6675 (mac_client_handle_t)gmcip);
6676 (void) mac_remove_macaddr(mcip->mci_unicast);
6677 } else {
6678 (void) mac_add_macaddr(mip, tgrp, maddr, prim);
6679 mac_rx_client_restart(
6680 (mac_client_handle_t)gmcip);
6683 mgcp = mgcp->mgc_next;
6689 * Move the MAC address from fgrp to tgrp. If this is the primary client,
6690 * we need to take any VLANs etc. together too.
6692 static int
6693 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp,
6694 mac_group_t *tgrp)
6696 mac_impl_t *mip = mcip->mci_mip;
6697 uint8_t maddr[MAXMACADDRLEN];
6698 int err = 0;
6699 boolean_t prim;
6700 boolean_t multiclnt = B_FALSE;
6702 mac_rx_client_quiesce((mac_client_handle_t)mcip);
6703 ASSERT(mcip->mci_unicast != NULL);
6704 bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len);
6706 prim = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
6707 if (mcip->mci_unicast->ma_nusers > 1) {
6708 mac_rx_move_macaddr_prim(mcip, fgrp, NULL, maddr, B_FALSE);
6709 multiclnt = B_TRUE;
6711 ASSERT(mcip->mci_unicast->ma_nusers == 1);
6712 err = mac_remove_macaddr(mcip->mci_unicast);
6713 if (err != 0) {
6714 mac_rx_client_restart((mac_client_handle_t)mcip);
6715 if (multiclnt) {
6716 mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr,
6717 B_TRUE);
6719 return (err);
6722 * Program the H/W Classifier first, if this fails we need
6723 * not proceed with the other stuff.
6725 if ((err = mac_add_macaddr(mip, tgrp, maddr, prim)) != 0) {
6726 /* Revert back the H/W Classifier */
6727 if ((err = mac_add_macaddr(mip, fgrp, maddr, prim)) != 0) {
6729 * This should not fail now since it worked earlier,
6730 * should we panic?
6732 cmn_err(CE_WARN,
6733 "mac_rx_switch_group: switching %p back"
6734 " to group %p failed!!", (void *)mcip,
6735 (void *)fgrp);
6737 mac_rx_client_restart((mac_client_handle_t)mcip);
6738 if (multiclnt) {
6739 mac_rx_move_macaddr_prim(mcip, fgrp, fgrp, maddr,
6740 B_TRUE);
6742 return (err);
6744 mcip->mci_unicast = mac_find_macaddr(mip, maddr);
6745 mac_rx_client_restart((mac_client_handle_t)mcip);
6746 if (multiclnt)
6747 mac_rx_move_macaddr_prim(mcip, fgrp, tgrp, maddr, B_TRUE);
6748 return (err);
6752 * Switch the MAC client from one group to another. This means we need
6753 * to remove the MAC address from the group, remove the MAC client,
6754 * teardown the SRSs and revert the group state. Then, we add the client
6755 * to the destination group, set the SRSs, and add the MAC address to the
6756 * group.
6759 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
6760 mac_group_t *tgrp)
6762 int err;
6763 mac_group_state_t next_state;
6764 mac_client_impl_t *group_only_mcip;
6765 mac_client_impl_t *gmcip;
6766 mac_impl_t *mip = mcip->mci_mip;
6767 mac_grp_client_t *mgcp;
6769 ASSERT(fgrp == mcip->mci_flent->fe_rx_ring_group);
6771 if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0)
6772 return (err);
6775 * The group might be reserved, but SRSs may not be set up, e.g.
6776 * primary and its vlans using a reserved group.
6778 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED &&
6779 MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
6780 mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE);
6782 if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) {
6783 mgcp = fgrp->mrg_clients;
6784 while (mgcp != NULL) {
6785 gmcip = mgcp->mgc_client;
6786 mgcp = mgcp->mgc_next;
6787 mac_group_remove_client(fgrp, gmcip);
6788 mac_group_add_client(tgrp, gmcip);
6789 gmcip->mci_flent->fe_rx_ring_group = tgrp;
6791 mac_release_rx_group(mcip, fgrp);
6792 ASSERT(MAC_GROUP_NO_CLIENT(fgrp));
6793 mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED);
6794 } else {
6795 mac_group_remove_client(fgrp, mcip);
6796 mac_group_add_client(tgrp, mcip);
6797 mcip->mci_flent->fe_rx_ring_group = tgrp;
6799 * If there are other clients (VLANs) sharing this address
6800 * we should be here only for the primary.
6802 if (mcip->mci_unicast->ma_nusers > 1) {
6804 * We need to move all the clients that are using
6805 * this h/w address.
6807 mgcp = fgrp->mrg_clients;
6808 while (mgcp != NULL) {
6809 gmcip = mgcp->mgc_client;
6810 mgcp = mgcp->mgc_next;
6811 if (mcip->mci_unicast == gmcip->mci_unicast) {
6812 mac_group_remove_client(fgrp, gmcip);
6813 mac_group_add_client(tgrp, gmcip);
6814 gmcip->mci_flent->fe_rx_ring_group =
6815 tgrp;
6820 * The default group will still take the multicast,
6821 * broadcast traffic etc., so it won't go to
6822 * MAC_GROUP_STATE_REGISTERED.
6824 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED)
6825 mac_rx_group_unmark(fgrp, MR_CONDEMNED);
6826 mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED);
6828 next_state = mac_group_next_state(tgrp, &group_only_mcip,
6829 MAC_DEFAULT_RX_GROUP(mip), B_TRUE);
6830 mac_set_group_state(tgrp, next_state);
6832 * If the destination group is reserved, setup the SRSs etc.
6834 if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
6835 mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK);
6836 mac_fanout_setup(mcip, mcip->mci_flent,
6837 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL,
6838 NULL);
6839 mac_rx_group_unmark(tgrp, MR_INCIPIENT);
6840 } else {
6841 mac_rx_switch_grp_to_sw(tgrp);
6843 return (0);
6847 * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup()
6848 * when a share was allocated to the client.
6850 mac_group_t *
6851 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move)
6853 mac_impl_t *mip = mcip->mci_mip;
6854 mac_group_t *grp = NULL;
6855 int rv;
6856 int i;
6857 int err;
6858 mac_group_t *defgrp;
6859 mac_share_handle_t share = mcip->mci_share;
6860 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip);
6861 int nrings;
6862 int defnrings;
6863 boolean_t need_exclgrp = B_FALSE;
6864 int need_rings = 0;
6865 mac_group_t *candidate_grp = NULL;
6866 mac_client_impl_t *gclient;
6867 mac_resource_props_t *gmrp;
6868 boolean_t txhw = mrp->mrp_mask & MRP_TX_RINGS;
6869 boolean_t unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC;
6870 boolean_t isprimary;
6872 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
6874 * When we come here for a VLAN on the primary (dladm create-vlan),
6875 * we need to pair it along with the primary (to keep it consistent
6876 * with the RX side). So, we check if the primary is already assigned
6877 * to a group and return the group if so. The other way is also
6878 * true, i.e. the VLAN is already created and now we are plumbing
6879 * the primary.
6881 if (!move && isprimary) {
6882 for (gclient = mip->mi_clients_list; gclient != NULL;
6883 gclient = gclient->mci_client_next) {
6884 if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC &&
6885 gclient->mci_flent->fe_tx_ring_group != NULL) {
6886 return (gclient->mci_flent->fe_tx_ring_group);
6891 if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0)
6892 return (NULL);
6894 /* For dynamic groups, default unspec to 1 */
6895 if (txhw && unspec &&
6896 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
6897 mrp->mrp_ntxrings = 1;
6900 * For static grouping we allow only specifying rings=0 and
6901 * unspecified
6903 if (txhw && mrp->mrp_ntxrings > 0 &&
6904 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) {
6905 return (NULL);
6908 if (txhw) {
6910 * We have explicitly asked for a group (with ntxrings,
6911 * if unspec).
6913 if (unspec || mrp->mrp_ntxrings > 0) {
6914 need_exclgrp = B_TRUE;
6915 need_rings = mrp->mrp_ntxrings;
6916 } else if (mrp->mrp_ntxrings == 0) {
6918 * We have asked for a software group.
6920 return (NULL);
6923 defgrp = MAC_DEFAULT_TX_GROUP(mip);
6925 * The number of rings that the default group can donate.
6926 * We need to leave at least one ring - the default ring - in
6927 * this group.
6929 defnrings = defgrp->mrg_cur_count - 1;
6932 * Primary gets default group unless explicitly told not
6933 * to (i.e. rings > 0).
6935 if (isprimary && !need_exclgrp)
6936 return (NULL);
6938 nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1;
6939 for (i = 0; i < mip->mi_tx_group_count; i++) {
6940 grp = &mip->mi_tx_groups[i];
6941 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) ||
6942 (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) {
6944 * Select a candidate for replacement if we don't
6945 * get an exclusive group. A candidate group is one
6946 * that didn't ask for an exclusive group, but got
6947 * one and it has enough rings (combined with what
6948 * the default group can donate) for the new MAC
6949 * client.
6951 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED &&
6952 candidate_grp == NULL) {
6953 gclient = MAC_GROUP_ONLY_CLIENT(grp);
6954 if (gclient == NULL)
6955 gclient = mac_get_grp_primary(grp);
6956 gmrp = MCIP_RESOURCE_PROPS(gclient);
6957 if (gclient->mci_share == NULL &&
6958 (gmrp->mrp_mask & MRP_TX_RINGS) == 0 &&
6959 (unspec ||
6960 (grp->mrg_cur_count + defnrings) >=
6961 need_rings)) {
6962 candidate_grp = grp;
6965 continue;
6968 * If the default can't donate let's just walk and
6969 * see if someone can vacate a group, so that we have
6970 * enough rings for this.
6972 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC ||
6973 nrings <= defnrings) {
6974 if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) {
6975 rv = mac_start_group(grp);
6976 ASSERT(rv == 0);
6978 break;
6982 /* The default group */
6983 if (i >= mip->mi_tx_group_count) {
6985 * If we need an exclusive group and have identified a
6986 * candidate group we switch the MAC client from the
6987 * candidate group to the default group and give the
6988 * candidate group to this client.
6990 if (need_exclgrp && candidate_grp != NULL) {
6992 * Switch the MAC client from the candidate group
6993 * to the default group.
6995 grp = candidate_grp;
6996 gclient = MAC_GROUP_ONLY_CLIENT(grp);
6997 if (gclient == NULL)
6998 gclient = mac_get_grp_primary(grp);
6999 mac_tx_client_quiesce((mac_client_handle_t)gclient);
7000 mac_tx_switch_group(gclient, grp, defgrp);
7001 mac_tx_client_restart((mac_client_handle_t)gclient);
7004 * Give the candidate group with the specified number
7005 * of rings to this MAC client.
7007 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
7008 rv = mac_start_group(grp);
7009 ASSERT(rv == 0);
7011 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7012 return (grp);
7014 ASSERT(grp->mrg_cur_count == 0);
7015 ASSERT(defgrp->mrg_cur_count > need_rings);
7017 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX,
7018 defgrp, grp, share, need_rings);
7019 if (err == 0) {
7021 * For a share i_mac_group_allocate_rings gets
7022 * the rings from the driver, let's populate
7023 * the property for the client now.
7025 if (share != NULL) {
7026 mac_client_set_rings(
7027 (mac_client_handle_t)mcip, -1,
7028 grp->mrg_cur_count);
7030 mip->mi_tx_group_free--;
7031 return (grp);
7033 DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *,
7034 mip->mi_name, int, grp->mrg_index, int, err);
7035 mac_stop_group(grp);
7037 return (NULL);
7040 * We got an exclusive group, but it is not dynamic.
7042 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
7043 mip->mi_tx_group_free--;
7044 return (grp);
7047 rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp,
7048 share, nrings);
7049 if (rv != 0) {
7050 DTRACE_PROBE3(tx__group__reserve__alloc__rings,
7051 char *, mip->mi_name, int, grp->mrg_index, int, rv);
7052 mac_stop_group(grp);
7053 return (NULL);
7056 * For a share i_mac_group_allocate_rings gets the rings from the
7057 * driver, let's populate the property for the client now.
7059 if (share != NULL) {
7060 mac_client_set_rings((mac_client_handle_t)mcip, -1,
7061 grp->mrg_cur_count);
7063 mip->mi_tx_group_free--;
7064 return (grp);
7067 void
7068 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp)
7070 mac_impl_t *mip = mcip->mci_mip;
7071 mac_share_handle_t share = mcip->mci_share;
7072 mac_ring_t *ring;
7073 mac_soft_ring_set_t *srs = MCIP_TX_SRS(mcip);
7074 mac_group_t *defgrp;
7076 defgrp = MAC_DEFAULT_TX_GROUP(mip);
7077 if (srs != NULL) {
7078 if (srs->srs_soft_ring_count > 0) {
7079 for (ring = grp->mrg_rings; ring != NULL;
7080 ring = ring->mr_next) {
7081 ASSERT(mac_tx_srs_ring_present(srs, ring));
7082 mac_tx_invoke_callbacks(mcip,
7083 (mac_tx_cookie_t)
7084 mac_tx_srs_get_soft_ring(srs, ring));
7085 mac_tx_srs_del_ring(srs, ring);
7087 } else {
7088 ASSERT(srs->srs_tx.st_arg2 != NULL);
7089 srs->srs_tx.st_arg2 = NULL;
7090 mac_srs_stat_delete(srs);
7093 if (share != NULL)
7094 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver);
7096 /* move the ring back to the pool */
7097 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7098 while ((ring = grp->mrg_rings) != NULL)
7099 (void) mac_group_mov_ring(mip, defgrp, ring);
7101 mac_stop_group(grp);
7102 mip->mi_tx_group_free++;
7106 * Disassociate a MAC client from a group, i.e go through the rings in the
7107 * group and delete all the soft rings tied to them.
7109 static void
7110 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent)
7112 mac_client_impl_t *mcip = flent->fe_mcip;
7113 mac_soft_ring_set_t *tx_srs;
7114 mac_srs_tx_t *tx;
7115 mac_ring_t *ring;
7117 tx_srs = flent->fe_tx_srs;
7118 tx = &tx_srs->srs_tx;
7120 /* Single ring case we haven't created any soft rings */
7121 if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE ||
7122 tx->st_mode == SRS_TX_DEFAULT) {
7123 tx->st_arg2 = NULL;
7124 mac_srs_stat_delete(tx_srs);
7125 /* Fanout case, where we have to dismantle the soft rings */
7126 } else {
7127 for (ring = fgrp->mrg_rings; ring != NULL;
7128 ring = ring->mr_next) {
7129 ASSERT(mac_tx_srs_ring_present(tx_srs, ring));
7130 mac_tx_invoke_callbacks(mcip,
7131 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs,
7132 ring));
7133 mac_tx_srs_del_ring(tx_srs, ring);
7135 ASSERT(tx->st_arg2 == NULL);
7140 * Switch the MAC client from one group to another. This means we need
7141 * to remove the MAC client, teardown the SRSs and revert the group state.
7142 * Then, we add the client to the destination roup, set the SRSs etc.
7144 void
7145 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
7146 mac_group_t *tgrp)
7148 mac_client_impl_t *group_only_mcip;
7149 mac_impl_t *mip = mcip->mci_mip;
7150 flow_entry_t *flent = mcip->mci_flent;
7151 mac_group_t *defgrp;
7152 mac_grp_client_t *mgcp;
7153 mac_client_impl_t *gmcip;
7154 flow_entry_t *gflent;
7156 defgrp = MAC_DEFAULT_TX_GROUP(mip);
7157 ASSERT(fgrp == flent->fe_tx_ring_group);
7159 if (fgrp == defgrp) {
7161 * If this is the primary we need to find any VLANs on
7162 * the primary and move them too.
7164 mac_group_remove_client(fgrp, mcip);
7165 mac_tx_dismantle_soft_rings(fgrp, flent);
7166 if (mcip->mci_unicast->ma_nusers > 1) {
7167 mgcp = fgrp->mrg_clients;
7168 while (mgcp != NULL) {
7169 gmcip = mgcp->mgc_client;
7170 mgcp = mgcp->mgc_next;
7171 if (mcip->mci_unicast != gmcip->mci_unicast)
7172 continue;
7173 mac_tx_client_quiesce(
7174 (mac_client_handle_t)gmcip);
7176 gflent = gmcip->mci_flent;
7177 mac_group_remove_client(fgrp, gmcip);
7178 mac_tx_dismantle_soft_rings(fgrp, gflent);
7180 mac_group_add_client(tgrp, gmcip);
7181 gflent->fe_tx_ring_group = tgrp;
7182 /* We could directly set this to SHARED */
7183 tgrp->mrg_state = mac_group_next_state(tgrp,
7184 &group_only_mcip, defgrp, B_FALSE);
7186 mac_tx_srs_group_setup(gmcip, gflent,
7187 SRST_LINK);
7188 mac_fanout_setup(gmcip, gflent,
7189 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7190 gmcip, NULL, NULL);
7192 mac_tx_client_restart(
7193 (mac_client_handle_t)gmcip);
7196 if (MAC_GROUP_NO_CLIENT(fgrp)) {
7197 mac_ring_t *ring;
7198 int cnt;
7199 int ringcnt;
7201 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7203 * Additionally, we also need to stop all
7204 * the rings in the default group, except
7205 * the default ring. The reason being
7206 * this group won't be released since it is
7207 * the default group, so the rings won't
7208 * be stopped otherwise.
7210 ringcnt = fgrp->mrg_cur_count;
7211 ring = fgrp->mrg_rings;
7212 for (cnt = 0; cnt < ringcnt; cnt++) {
7213 if (ring->mr_state == MR_INUSE &&
7214 ring !=
7215 (mac_ring_t *)mip->mi_default_tx_ring) {
7216 mac_stop_ring(ring);
7217 ring->mr_flag = 0;
7219 ring = ring->mr_next;
7221 } else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
7222 fgrp->mrg_state = MAC_GROUP_STATE_RESERVED;
7223 } else {
7224 ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED);
7226 } else {
7228 * We could have VLANs sharing the non-default group with
7229 * the primary.
7231 mgcp = fgrp->mrg_clients;
7232 while (mgcp != NULL) {
7233 gmcip = mgcp->mgc_client;
7234 mgcp = mgcp->mgc_next;
7235 if (gmcip == mcip)
7236 continue;
7237 mac_tx_client_quiesce((mac_client_handle_t)gmcip);
7238 gflent = gmcip->mci_flent;
7240 mac_group_remove_client(fgrp, gmcip);
7241 mac_tx_dismantle_soft_rings(fgrp, gflent);
7243 mac_group_add_client(tgrp, gmcip);
7244 gflent->fe_tx_ring_group = tgrp;
7245 /* We could directly set this to SHARED */
7246 tgrp->mrg_state = mac_group_next_state(tgrp,
7247 &group_only_mcip, defgrp, B_FALSE);
7248 mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK);
7249 mac_fanout_setup(gmcip, gflent,
7250 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7251 gmcip, NULL, NULL);
7253 mac_tx_client_restart((mac_client_handle_t)gmcip);
7255 mac_group_remove_client(fgrp, mcip);
7256 mac_release_tx_group(mcip, fgrp);
7257 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7260 /* Add it to the tgroup */
7261 mac_group_add_client(tgrp, mcip);
7262 flent->fe_tx_ring_group = tgrp;
7263 tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip,
7264 defgrp, B_FALSE);
7266 mac_tx_srs_group_setup(mcip, flent, SRST_LINK);
7267 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
7268 mac_rx_deliver, mcip, NULL, NULL);
7272 * This is a 1-time control path activity initiated by the client (IP).
7273 * The mac perimeter protects against other simultaneous control activities,
7274 * for example an ioctl that attempts to change the degree of fanout and
7275 * increase or decrease the number of softrings associated with this Tx SRS.
7277 static mac_tx_notify_cb_t *
7278 mac_client_tx_notify_add(mac_client_impl_t *mcip,
7279 mac_tx_notify_t notify, void *arg)
7281 mac_cb_info_t *mcbi;
7282 mac_tx_notify_cb_t *mtnfp;
7284 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7286 mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP);
7287 mtnfp->mtnf_fn = notify;
7288 mtnfp->mtnf_arg = arg;
7289 mtnfp->mtnf_link.mcb_objp = mtnfp;
7290 mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t);
7291 mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T;
7293 mcbi = &mcip->mci_tx_notify_cb_info;
7294 mutex_enter(mcbi->mcbi_lockp);
7295 mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link);
7296 mutex_exit(mcbi->mcbi_lockp);
7297 return (mtnfp);
7300 static void
7301 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp)
7303 mac_cb_info_t *mcbi;
7304 mac_cb_t **cblist;
7306 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7308 if (!mac_callback_find(&mcip->mci_tx_notify_cb_info,
7309 &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) {
7310 cmn_err(CE_WARN,
7311 "mac_client_tx_notify_remove: callback not "
7312 "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp);
7313 return;
7316 mcbi = &mcip->mci_tx_notify_cb_info;
7317 cblist = &mcip->mci_tx_notify_cb_list;
7318 mutex_enter(mcbi->mcbi_lockp);
7319 if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link))
7320 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t));
7321 else
7322 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info);
7323 mutex_exit(mcbi->mcbi_lockp);
7327 * mac_client_tx_notify():
7328 * call to add and remove flow control callback routine.
7330 mac_tx_notify_handle_t
7331 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func,
7332 void *ptr)
7334 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
7335 mac_tx_notify_cb_t *mtnfp = NULL;
7337 i_mac_perim_enter(mcip->mci_mip);
7339 if (callb_func != NULL) {
7340 /* Add a notify callback */
7341 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr);
7342 } else {
7343 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr);
7345 i_mac_perim_exit(mcip->mci_mip);
7347 return ((mac_tx_notify_handle_t)mtnfp);
7350 void
7351 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf,
7352 mac_bridge_ref_t reff, mac_bridge_ls_t lsf)
7354 mac_bridge_tx_cb = txf;
7355 mac_bridge_rx_cb = rxf;
7356 mac_bridge_ref_cb = reff;
7357 mac_bridge_ls_cb = lsf;
7361 mac_bridge_set(mac_handle_t mh, mac_handle_t link)
7363 mac_impl_t *mip = (mac_impl_t *)mh;
7364 int retv;
7366 mutex_enter(&mip->mi_bridge_lock);
7367 if (mip->mi_bridge_link == NULL) {
7368 mip->mi_bridge_link = link;
7369 retv = 0;
7370 } else {
7371 retv = EBUSY;
7373 mutex_exit(&mip->mi_bridge_lock);
7374 if (retv == 0) {
7375 mac_poll_state_change(mh, B_FALSE);
7376 mac_capab_update(mh);
7378 return (retv);
7382 * Disable bridging on the indicated link.
7384 void
7385 mac_bridge_clear(mac_handle_t mh, mac_handle_t link)
7387 mac_impl_t *mip = (mac_impl_t *)mh;
7389 mutex_enter(&mip->mi_bridge_lock);
7390 ASSERT(mip->mi_bridge_link == link);
7391 mip->mi_bridge_link = NULL;
7392 mutex_exit(&mip->mi_bridge_lock);
7393 mac_poll_state_change(mh, B_TRUE);
7394 mac_capab_update(mh);
7397 void
7398 mac_no_active(mac_handle_t mh)
7400 mac_impl_t *mip = (mac_impl_t *)mh;
7402 i_mac_perim_enter(mip);
7403 mip->mi_state_flags |= MIS_NO_ACTIVE;
7404 i_mac_perim_exit(mip);
7408 * Walk the primary VLAN clients whenever the primary's rings property
7409 * changes and update the mac_resource_props_t for the VLAN's client.
7410 * We need to do this since we don't support setting these properties
7411 * on the primary's VLAN clients, but the VLAN clients have to
7412 * follow the primary w.r.t the rings property;
7414 void
7415 mac_set_prim_vlan_rings(mac_impl_t *mip, mac_resource_props_t *mrp)
7417 mac_client_impl_t *vmcip;
7418 mac_resource_props_t *vmrp;
7420 for (vmcip = mip->mi_clients_list; vmcip != NULL;
7421 vmcip = vmcip->mci_client_next) {
7422 if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) ||
7423 mac_client_vid((mac_client_handle_t)vmcip) ==
7424 VLAN_ID_NONE) {
7425 continue;
7427 vmrp = MCIP_RESOURCE_PROPS(vmcip);
7429 vmrp->mrp_nrxrings = mrp->mrp_nrxrings;
7430 if (mrp->mrp_mask & MRP_RX_RINGS)
7431 vmrp->mrp_mask |= MRP_RX_RINGS;
7432 else if (vmrp->mrp_mask & MRP_RX_RINGS)
7433 vmrp->mrp_mask &= ~MRP_RX_RINGS;
7435 vmrp->mrp_ntxrings = mrp->mrp_ntxrings;
7436 if (mrp->mrp_mask & MRP_TX_RINGS)
7437 vmrp->mrp_mask |= MRP_TX_RINGS;
7438 else if (vmrp->mrp_mask & MRP_TX_RINGS)
7439 vmrp->mrp_mask &= ~MRP_TX_RINGS;
7441 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC)
7442 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
7443 else
7444 vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
7446 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC)
7447 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
7448 else
7449 vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
7454 * We are adding or removing ring(s) from a group. The source for taking
7455 * rings is the default group. The destination for giving rings back is
7456 * the default group.
7459 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group,
7460 mac_group_t *defgrp)
7462 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip);
7463 uint_t modify;
7464 int count;
7465 mac_ring_t *ring;
7466 mac_ring_t *next;
7467 mac_impl_t *mip = mcip->mci_mip;
7468 mac_ring_t **rings;
7469 uint_t ringcnt;
7470 int i = 0;
7471 boolean_t rx_group = group->mrg_type == MAC_RING_TYPE_RX;
7472 int start;
7473 int end;
7474 mac_group_t *tgrp;
7475 int j;
7476 int rv = 0;
7479 * If we are asked for just a group, we give 1 ring, else
7480 * the specified number of rings.
7482 if (rx_group) {
7483 ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1:
7484 mrp->mrp_nrxrings;
7485 } else {
7486 ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1:
7487 mrp->mrp_ntxrings;
7490 /* don't allow modifying rings for a share for now. */
7491 ASSERT(mcip->mci_share == NULL);
7493 if (ringcnt == group->mrg_cur_count)
7494 return (0);
7496 if (group->mrg_cur_count > ringcnt) {
7497 modify = group->mrg_cur_count - ringcnt;
7498 if (rx_group) {
7499 if (mip->mi_rx_donor_grp == group) {
7500 ASSERT(mac_is_primary_client(mcip));
7501 mip->mi_rx_donor_grp = defgrp;
7502 } else {
7503 defgrp = mip->mi_rx_donor_grp;
7506 ring = group->mrg_rings;
7507 rings = kmem_alloc(modify * sizeof (mac_ring_handle_t),
7508 KM_SLEEP);
7509 j = 0;
7510 for (count = 0; count < modify; count++) {
7511 next = ring->mr_next;
7512 rv = mac_group_mov_ring(mip, defgrp, ring);
7513 if (rv != 0) {
7514 /* cleanup on failure */
7515 for (j = 0; j < count; j++) {
7516 (void) mac_group_mov_ring(mip, group,
7517 rings[j]);
7519 break;
7521 rings[j++] = ring;
7522 ring = next;
7524 kmem_free(rings, modify * sizeof (mac_ring_handle_t));
7525 return (rv);
7527 if (ringcnt >= MAX_RINGS_PER_GROUP)
7528 return (EINVAL);
7530 modify = ringcnt - group->mrg_cur_count;
7532 if (rx_group) {
7533 if (group != mip->mi_rx_donor_grp)
7534 defgrp = mip->mi_rx_donor_grp;
7535 else
7537 * This is the donor group with all the remaining
7538 * rings. Default group now gets to be the donor
7540 mip->mi_rx_donor_grp = defgrp;
7541 start = 1;
7542 end = mip->mi_rx_group_count;
7543 } else {
7544 start = 0;
7545 end = mip->mi_tx_group_count - 1;
7548 * If the default doesn't have any rings, lets see if we can
7549 * take rings given to an h/w client that doesn't need it.
7550 * For now, we just see if there is any one client that can donate
7551 * all the required rings.
7553 if (defgrp->mrg_cur_count < (modify + 1)) {
7554 for (i = start; i < end; i++) {
7555 if (rx_group) {
7556 tgrp = &mip->mi_rx_groups[i];
7557 if (tgrp == group || tgrp->mrg_state <
7558 MAC_GROUP_STATE_RESERVED) {
7559 continue;
7561 mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
7562 if (mcip == NULL)
7563 mcip = mac_get_grp_primary(tgrp);
7564 ASSERT(mcip != NULL);
7565 mrp = MCIP_RESOURCE_PROPS(mcip);
7566 if ((mrp->mrp_mask & MRP_RX_RINGS) != 0)
7567 continue;
7568 if ((tgrp->mrg_cur_count +
7569 defgrp->mrg_cur_count) < (modify + 1)) {
7570 continue;
7572 if (mac_rx_switch_group(mcip, tgrp,
7573 defgrp) != 0) {
7574 return (ENOSPC);
7576 } else {
7577 tgrp = &mip->mi_tx_groups[i];
7578 if (tgrp == group || tgrp->mrg_state <
7579 MAC_GROUP_STATE_RESERVED) {
7580 continue;
7582 mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
7583 if (mcip == NULL)
7584 mcip = mac_get_grp_primary(tgrp);
7585 mrp = MCIP_RESOURCE_PROPS(mcip);
7586 if ((mrp->mrp_mask & MRP_TX_RINGS) != 0)
7587 continue;
7588 if ((tgrp->mrg_cur_count +
7589 defgrp->mrg_cur_count) < (modify + 1)) {
7590 continue;
7592 /* OK, we can switch this to s/w */
7593 mac_tx_client_quiesce(
7594 (mac_client_handle_t)mcip);
7595 mac_tx_switch_group(mcip, tgrp, defgrp);
7596 mac_tx_client_restart(
7597 (mac_client_handle_t)mcip);
7600 if (defgrp->mrg_cur_count < (modify + 1))
7601 return (ENOSPC);
7603 if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp,
7604 group, mcip->mci_share, modify)) != 0) {
7605 return (rv);
7607 return (0);
7611 * Given the poolname in mac_resource_props, find the cpupart
7612 * that is associated with this pool. The cpupart will be used
7613 * later for finding the cpus to be bound to the networking threads.
7615 * use_default is set B_TRUE if pools are enabled and pool_default
7616 * is returned. This avoids a 2nd lookup to set the poolname
7617 * for pool-effective.
7619 * returns:
7621 * NULL - pools are disabled or if the 'cpus' property is set.
7622 * cpupart of pool_default - pools are enabled and the pool
7623 * is not available or poolname is blank
7624 * cpupart of named pool - pools are enabled and the pool
7625 * is available.
7627 cpupart_t *
7628 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default)
7630 pool_t *pool;
7631 cpupart_t *cpupart;
7633 *use_default = B_FALSE;
7635 /* CPUs property is set */
7636 if (mrp->mrp_mask & MRP_CPUS)
7637 return (NULL);
7639 ASSERT(pool_lock_held());
7641 /* Pools are disabled, no pset */
7642 if (pool_state == POOL_DISABLED)
7643 return (NULL);
7645 /* Pools property is set */
7646 if (mrp->mrp_mask & MRP_POOL) {
7647 if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) {
7648 /* Pool not found */
7649 DTRACE_PROBE1(mac_pset_find_no_pool, char *,
7650 mrp->mrp_pool);
7651 *use_default = B_TRUE;
7652 pool = pool_default;
7654 /* Pools property is not set */
7655 } else {
7656 *use_default = B_TRUE;
7657 pool = pool_default;
7660 /* Find the CPU pset that corresponds to the pool */
7661 mutex_enter(&cpu_lock);
7662 if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) {
7663 DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t,
7664 pool->pool_pset->pset_id);
7666 mutex_exit(&cpu_lock);
7668 return (cpupart);
7671 void
7672 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart,
7673 mac_resource_props_t *mrp, mac_resource_props_t *emrp)
7675 ASSERT(pool_lock_held());
7677 if (cpupart != NULL) {
7678 emrp->mrp_mask |= MRP_POOL;
7679 if (use_default) {
7680 (void) strcpy(emrp->mrp_pool,
7681 "pool_default");
7682 } else {
7683 ASSERT(strlen(mrp->mrp_pool) != 0);
7684 (void) strcpy(emrp->mrp_pool,
7685 mrp->mrp_pool);
7687 } else {
7688 emrp->mrp_mask &= ~MRP_POOL;
7689 bzero(emrp->mrp_pool, MAXPATHLEN);
7693 struct mac_pool_arg {
7694 char mpa_poolname[MAXPATHLEN];
7695 pool_event_t mpa_what;
7698 /*ARGSUSED*/
7699 static uint_t
7700 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
7702 struct mac_pool_arg *mpa = arg;
7703 mac_impl_t *mip = (mac_impl_t *)val;
7704 mac_client_impl_t *mcip;
7705 mac_resource_props_t *mrp, *emrp;
7706 boolean_t pool_update = B_FALSE;
7707 boolean_t pool_clear = B_FALSE;
7708 boolean_t use_default = B_FALSE;
7709 cpupart_t *cpupart = NULL;
7711 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
7712 i_mac_perim_enter(mip);
7713 for (mcip = mip->mi_clients_list; mcip != NULL;
7714 mcip = mcip->mci_client_next) {
7715 pool_update = B_FALSE;
7716 pool_clear = B_FALSE;
7717 use_default = B_FALSE;
7718 mac_client_get_resources((mac_client_handle_t)mcip, mrp);
7719 emrp = MCIP_EFFECTIVE_PROPS(mcip);
7722 * When pools are enabled
7724 if ((mpa->mpa_what == POOL_E_ENABLE) &&
7725 ((mrp->mrp_mask & MRP_CPUS) == 0)) {
7726 mrp->mrp_mask |= MRP_POOL;
7727 pool_update = B_TRUE;
7731 * When pools are disabled
7733 if ((mpa->mpa_what == POOL_E_DISABLE) &&
7734 ((mrp->mrp_mask & MRP_CPUS) == 0)) {
7735 mrp->mrp_mask |= MRP_POOL;
7736 pool_clear = B_TRUE;
7740 * Look for links with the pool property set and the poolname
7741 * matching the one which is changing.
7743 if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) {
7745 * The pool associated with the link has changed.
7747 if (mpa->mpa_what == POOL_E_CHANGE) {
7748 mrp->mrp_mask |= MRP_POOL;
7749 pool_update = B_TRUE;
7754 * This link is associated with pool_default and
7755 * pool_default has changed.
7757 if ((mpa->mpa_what == POOL_E_CHANGE) &&
7758 (strcmp(emrp->mrp_pool, "pool_default") == 0) &&
7759 (strcmp(mpa->mpa_poolname, "pool_default") == 0)) {
7760 mrp->mrp_mask |= MRP_POOL;
7761 pool_update = B_TRUE;
7765 * Get new list of cpus for the pool, bind network
7766 * threads to new list of cpus and update resources.
7768 if (pool_update) {
7769 if (MCIP_DATAPATH_SETUP(mcip)) {
7770 pool_lock();
7771 cpupart = mac_pset_find(mrp, &use_default);
7772 mac_fanout_setup(mcip, mcip->mci_flent, mrp,
7773 mac_rx_deliver, mcip, NULL, cpupart);
7774 mac_set_pool_effective(use_default, cpupart,
7775 mrp, emrp);
7776 pool_unlock();
7778 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
7779 B_FALSE);
7783 * Clear the effective pool and bind network threads
7784 * to any available CPU.
7786 if (pool_clear) {
7787 if (MCIP_DATAPATH_SETUP(mcip)) {
7788 emrp->mrp_mask &= ~MRP_POOL;
7789 bzero(emrp->mrp_pool, MAXPATHLEN);
7790 mac_fanout_setup(mcip, mcip->mci_flent, mrp,
7791 mac_rx_deliver, mcip, NULL, NULL);
7793 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
7794 B_FALSE);
7797 i_mac_perim_exit(mip);
7798 kmem_free(mrp, sizeof (*mrp));
7799 return (MH_WALK_CONTINUE);
7802 static void
7803 mac_pool_update(void *arg)
7805 mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg);
7806 kmem_free(arg, sizeof (struct mac_pool_arg));
7810 * Callback function to be executed when a noteworthy pool event
7811 * takes place.
7813 /* ARGSUSED */
7814 static void
7815 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg)
7817 pool_t *pool;
7818 char *poolname = NULL;
7819 struct mac_pool_arg *mpa;
7821 pool_lock();
7822 mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP);
7824 switch (what) {
7825 case POOL_E_ENABLE:
7826 case POOL_E_DISABLE:
7827 break;
7829 case POOL_E_CHANGE:
7830 pool = pool_lookup_pool_by_id(id);
7831 if (pool == NULL) {
7832 kmem_free(mpa, sizeof (struct mac_pool_arg));
7833 pool_unlock();
7834 return;
7836 pool_get_name(pool, &poolname);
7837 (void) strlcpy(mpa->mpa_poolname, poolname,
7838 sizeof (mpa->mpa_poolname));
7839 break;
7841 default:
7842 kmem_free(mpa, sizeof (struct mac_pool_arg));
7843 pool_unlock();
7844 return;
7846 pool_unlock();
7848 mpa->mpa_what = what;
7850 mac_pool_update(mpa);
7854 * Set effective rings property. This could be called from datapath_setup/
7855 * datapath_teardown or set-linkprop.
7856 * If the group is reserved we just go ahead and set the effective rings.
7857 * Additionally, for TX this could mean the default group has lost/gained
7858 * some rings, so if the default group is reserved, we need to adjust the
7859 * effective rings for the default group clients. For RX, if we are working
7860 * with the non-default group, we just need * to reset the effective props
7861 * for the default group clients.
7863 void
7864 mac_set_rings_effective(mac_client_impl_t *mcip)
7866 mac_impl_t *mip = mcip->mci_mip;
7867 mac_group_t *grp;
7868 mac_group_t *defgrp;
7869 flow_entry_t *flent = mcip->mci_flent;
7870 mac_resource_props_t *emrp = MCIP_EFFECTIVE_PROPS(mcip);
7871 mac_grp_client_t *mgcp;
7872 mac_client_impl_t *gmcip;
7874 grp = flent->fe_rx_ring_group;
7875 if (grp != NULL) {
7876 defgrp = MAC_DEFAULT_RX_GROUP(mip);
7878 * If we have reserved a group, set the effective rings
7879 * to the ring count in the group.
7881 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7882 emrp->mrp_mask |= MRP_RX_RINGS;
7883 emrp->mrp_nrxrings = grp->mrg_cur_count;
7887 * We go through the clients in the shared group and
7888 * reset the effective properties. It is possible this
7889 * might have already been done for some client (i.e.
7890 * if some client is being moved to a group that is
7891 * already shared). The case where the default group is
7892 * RESERVED is taken care of above (note in the RX side if
7893 * there is a non-default group, the default group is always
7894 * SHARED).
7896 if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) {
7897 if (grp->mrg_state == MAC_GROUP_STATE_SHARED)
7898 mgcp = grp->mrg_clients;
7899 else
7900 mgcp = defgrp->mrg_clients;
7901 while (mgcp != NULL) {
7902 gmcip = mgcp->mgc_client;
7903 emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7904 if (emrp->mrp_mask & MRP_RX_RINGS) {
7905 emrp->mrp_mask &= ~MRP_RX_RINGS;
7906 emrp->mrp_nrxrings = 0;
7908 mgcp = mgcp->mgc_next;
7913 /* Now the TX side */
7914 grp = flent->fe_tx_ring_group;
7915 if (grp != NULL) {
7916 defgrp = MAC_DEFAULT_TX_GROUP(mip);
7918 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7919 emrp->mrp_mask |= MRP_TX_RINGS;
7920 emrp->mrp_ntxrings = grp->mrg_cur_count;
7921 } else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) {
7922 mgcp = grp->mrg_clients;
7923 while (mgcp != NULL) {
7924 gmcip = mgcp->mgc_client;
7925 emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7926 if (emrp->mrp_mask & MRP_TX_RINGS) {
7927 emrp->mrp_mask &= ~MRP_TX_RINGS;
7928 emrp->mrp_ntxrings = 0;
7930 mgcp = mgcp->mgc_next;
7935 * If the group is not the default group and the default
7936 * group is reserved, the ring count in the default group
7937 * might have changed, update it.
7939 if (grp != defgrp &&
7940 defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7941 gmcip = MAC_GROUP_ONLY_CLIENT(defgrp);
7942 emrp = MCIP_EFFECTIVE_PROPS(gmcip);
7943 emrp->mrp_ntxrings = defgrp->mrg_cur_count;
7946 emrp = MCIP_EFFECTIVE_PROPS(mcip);
7950 * Check if the primary is in the default group. If so, see if we
7951 * can give it a an exclusive group now that another client is
7952 * being configured. We take the primary out of the default group
7953 * because the multicast/broadcast packets for the all the clients
7954 * will land in the default ring in the default group which means
7955 * any client in the default group, even if it is the only on in
7956 * the group, will lose exclusive access to the rings, hence
7957 * polling.
7959 mac_client_impl_t *
7960 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw)
7962 mac_impl_t *mip = mcip->mci_mip;
7963 mac_group_t *defgrp = MAC_DEFAULT_RX_GROUP(mip);
7964 flow_entry_t *flent = mcip->mci_flent;
7965 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip);
7966 uint8_t *mac_addr;
7967 mac_group_t *ngrp;
7970 * Check if the primary is in the default group, if not
7971 * or if it is explicitly configured to be in the default
7972 * group OR set the RX rings property, return.
7974 if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS)
7975 return (NULL);
7978 * If the new client needs an exclusive group and we
7979 * don't have another for the primary, return.
7981 if (rxhw && mip->mi_rxhwclnt_avail < 2)
7982 return (NULL);
7984 mac_addr = flent->fe_flow_desc.fd_dst_mac;
7986 * We call this when we are setting up the datapath for
7987 * the first non-primary.
7989 ASSERT(mip->mi_nactiveclients == 2);
7991 * OK, now we have the primary that needs to be relocated.
7993 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE);
7994 if (ngrp == NULL)
7995 return (NULL);
7996 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) {
7997 mac_stop_group(ngrp);
7998 return (NULL);
8000 return (mcip);