6939 add sysevents to zfs core for commands
[unleashed.git] / usr / src / uts / common / fs / zfs / vdev.c
blob98e1c4833ed7c304572bf55e16258daecdb6d61e
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
31 #include <sys/zfs_context.h>
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/spa.h>
34 #include <sys/spa_impl.h>
35 #include <sys/dmu.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/uberblock_impl.h>
39 #include <sys/metaslab.h>
40 #include <sys/metaslab_impl.h>
41 #include <sys/space_map.h>
42 #include <sys/space_reftree.h>
43 #include <sys/zio.h>
44 #include <sys/zap.h>
45 #include <sys/fs/zfs.h>
46 #include <sys/arc.h>
47 #include <sys/zil.h>
48 #include <sys/dsl_scan.h>
49 #include <sys/abd.h>
52 * Virtual device management.
55 static vdev_ops_t *vdev_ops_table[] = {
56 &vdev_root_ops,
57 &vdev_raidz_ops,
58 &vdev_mirror_ops,
59 &vdev_replacing_ops,
60 &vdev_spare_ops,
61 &vdev_disk_ops,
62 &vdev_file_ops,
63 &vdev_missing_ops,
64 &vdev_hole_ops,
65 NULL
68 /* maximum scrub/resilver I/O queue per leaf vdev */
69 int zfs_scrub_limit = 10;
72 * When a vdev is added, it will be divided into approximately (but no
73 * more than) this number of metaslabs.
75 int metaslabs_per_vdev = 200;
78 * Given a vdev type, return the appropriate ops vector.
80 static vdev_ops_t *
81 vdev_getops(const char *type)
83 vdev_ops_t *ops, **opspp;
85 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
86 if (strcmp(ops->vdev_op_type, type) == 0)
87 break;
89 return (ops);
93 * Default asize function: return the MAX of psize with the asize of
94 * all children. This is what's used by anything other than RAID-Z.
96 uint64_t
97 vdev_default_asize(vdev_t *vd, uint64_t psize)
99 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
100 uint64_t csize;
102 for (int c = 0; c < vd->vdev_children; c++) {
103 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
104 asize = MAX(asize, csize);
107 return (asize);
111 * Get the minimum allocatable size. We define the allocatable size as
112 * the vdev's asize rounded to the nearest metaslab. This allows us to
113 * replace or attach devices which don't have the same physical size but
114 * can still satisfy the same number of allocations.
116 uint64_t
117 vdev_get_min_asize(vdev_t *vd)
119 vdev_t *pvd = vd->vdev_parent;
122 * If our parent is NULL (inactive spare or cache) or is the root,
123 * just return our own asize.
125 if (pvd == NULL)
126 return (vd->vdev_asize);
129 * The top-level vdev just returns the allocatable size rounded
130 * to the nearest metaslab.
132 if (vd == vd->vdev_top)
133 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
136 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
137 * so each child must provide at least 1/Nth of its asize.
139 if (pvd->vdev_ops == &vdev_raidz_ops)
140 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
141 pvd->vdev_children);
143 return (pvd->vdev_min_asize);
146 void
147 vdev_set_min_asize(vdev_t *vd)
149 vd->vdev_min_asize = vdev_get_min_asize(vd);
151 for (int c = 0; c < vd->vdev_children; c++)
152 vdev_set_min_asize(vd->vdev_child[c]);
155 vdev_t *
156 vdev_lookup_top(spa_t *spa, uint64_t vdev)
158 vdev_t *rvd = spa->spa_root_vdev;
160 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
162 if (vdev < rvd->vdev_children) {
163 ASSERT(rvd->vdev_child[vdev] != NULL);
164 return (rvd->vdev_child[vdev]);
167 return (NULL);
170 vdev_t *
171 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
173 vdev_t *mvd;
175 if (vd->vdev_guid == guid)
176 return (vd);
178 for (int c = 0; c < vd->vdev_children; c++)
179 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
180 NULL)
181 return (mvd);
183 return (NULL);
186 static int
187 vdev_count_leaves_impl(vdev_t *vd)
189 int n = 0;
191 if (vd->vdev_ops->vdev_op_leaf)
192 return (1);
194 for (int c = 0; c < vd->vdev_children; c++)
195 n += vdev_count_leaves_impl(vd->vdev_child[c]);
197 return (n);
201 vdev_count_leaves(spa_t *spa)
203 return (vdev_count_leaves_impl(spa->spa_root_vdev));
206 void
207 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
209 size_t oldsize, newsize;
210 uint64_t id = cvd->vdev_id;
211 vdev_t **newchild;
212 spa_t *spa = cvd->vdev_spa;
214 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
215 ASSERT(cvd->vdev_parent == NULL);
217 cvd->vdev_parent = pvd;
219 if (pvd == NULL)
220 return;
222 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
224 oldsize = pvd->vdev_children * sizeof (vdev_t *);
225 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
226 newsize = pvd->vdev_children * sizeof (vdev_t *);
228 newchild = kmem_zalloc(newsize, KM_SLEEP);
229 if (pvd->vdev_child != NULL) {
230 bcopy(pvd->vdev_child, newchild, oldsize);
231 kmem_free(pvd->vdev_child, oldsize);
234 pvd->vdev_child = newchild;
235 pvd->vdev_child[id] = cvd;
237 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
238 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
241 * Walk up all ancestors to update guid sum.
243 for (; pvd != NULL; pvd = pvd->vdev_parent)
244 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
247 void
248 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
250 int c;
251 uint_t id = cvd->vdev_id;
253 ASSERT(cvd->vdev_parent == pvd);
255 if (pvd == NULL)
256 return;
258 ASSERT(id < pvd->vdev_children);
259 ASSERT(pvd->vdev_child[id] == cvd);
261 pvd->vdev_child[id] = NULL;
262 cvd->vdev_parent = NULL;
264 for (c = 0; c < pvd->vdev_children; c++)
265 if (pvd->vdev_child[c])
266 break;
268 if (c == pvd->vdev_children) {
269 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
270 pvd->vdev_child = NULL;
271 pvd->vdev_children = 0;
275 * Walk up all ancestors to update guid sum.
277 for (; pvd != NULL; pvd = pvd->vdev_parent)
278 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
282 * Remove any holes in the child array.
284 void
285 vdev_compact_children(vdev_t *pvd)
287 vdev_t **newchild, *cvd;
288 int oldc = pvd->vdev_children;
289 int newc;
291 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
293 for (int c = newc = 0; c < oldc; c++)
294 if (pvd->vdev_child[c])
295 newc++;
297 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
299 for (int c = newc = 0; c < oldc; c++) {
300 if ((cvd = pvd->vdev_child[c]) != NULL) {
301 newchild[newc] = cvd;
302 cvd->vdev_id = newc++;
306 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
307 pvd->vdev_child = newchild;
308 pvd->vdev_children = newc;
312 * Allocate and minimally initialize a vdev_t.
314 vdev_t *
315 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
317 vdev_t *vd;
319 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
321 if (spa->spa_root_vdev == NULL) {
322 ASSERT(ops == &vdev_root_ops);
323 spa->spa_root_vdev = vd;
324 spa->spa_load_guid = spa_generate_guid(NULL);
327 if (guid == 0 && ops != &vdev_hole_ops) {
328 if (spa->spa_root_vdev == vd) {
330 * The root vdev's guid will also be the pool guid,
331 * which must be unique among all pools.
333 guid = spa_generate_guid(NULL);
334 } else {
336 * Any other vdev's guid must be unique within the pool.
338 guid = spa_generate_guid(spa);
340 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
343 vd->vdev_spa = spa;
344 vd->vdev_id = id;
345 vd->vdev_guid = guid;
346 vd->vdev_guid_sum = guid;
347 vd->vdev_ops = ops;
348 vd->vdev_state = VDEV_STATE_CLOSED;
349 vd->vdev_ishole = (ops == &vdev_hole_ops);
351 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
352 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
353 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
354 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
355 for (int t = 0; t < DTL_TYPES; t++) {
356 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
357 &vd->vdev_dtl_lock);
359 txg_list_create(&vd->vdev_ms_list, spa,
360 offsetof(struct metaslab, ms_txg_node));
361 txg_list_create(&vd->vdev_dtl_list, spa,
362 offsetof(struct vdev, vdev_dtl_node));
363 vd->vdev_stat.vs_timestamp = gethrtime();
364 vdev_queue_init(vd);
365 vdev_cache_init(vd);
367 return (vd);
371 * Allocate a new vdev. The 'alloctype' is used to control whether we are
372 * creating a new vdev or loading an existing one - the behavior is slightly
373 * different for each case.
376 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
377 int alloctype)
379 vdev_ops_t *ops;
380 char *type;
381 uint64_t guid = 0, islog, nparity;
382 vdev_t *vd;
384 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
386 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
387 return (SET_ERROR(EINVAL));
389 if ((ops = vdev_getops(type)) == NULL)
390 return (SET_ERROR(EINVAL));
393 * If this is a load, get the vdev guid from the nvlist.
394 * Otherwise, vdev_alloc_common() will generate one for us.
396 if (alloctype == VDEV_ALLOC_LOAD) {
397 uint64_t label_id;
399 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
400 label_id != id)
401 return (SET_ERROR(EINVAL));
403 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
404 return (SET_ERROR(EINVAL));
405 } else if (alloctype == VDEV_ALLOC_SPARE) {
406 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
407 return (SET_ERROR(EINVAL));
408 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
409 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
410 return (SET_ERROR(EINVAL));
411 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
412 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
413 return (SET_ERROR(EINVAL));
417 * The first allocated vdev must be of type 'root'.
419 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
420 return (SET_ERROR(EINVAL));
423 * Determine whether we're a log vdev.
425 islog = 0;
426 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
427 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
428 return (SET_ERROR(ENOTSUP));
430 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
431 return (SET_ERROR(ENOTSUP));
434 * Set the nparity property for RAID-Z vdevs.
436 nparity = -1ULL;
437 if (ops == &vdev_raidz_ops) {
438 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
439 &nparity) == 0) {
440 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
441 return (SET_ERROR(EINVAL));
443 * Previous versions could only support 1 or 2 parity
444 * device.
446 if (nparity > 1 &&
447 spa_version(spa) < SPA_VERSION_RAIDZ2)
448 return (SET_ERROR(ENOTSUP));
449 if (nparity > 2 &&
450 spa_version(spa) < SPA_VERSION_RAIDZ3)
451 return (SET_ERROR(ENOTSUP));
452 } else {
454 * We require the parity to be specified for SPAs that
455 * support multiple parity levels.
457 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
458 return (SET_ERROR(EINVAL));
460 * Otherwise, we default to 1 parity device for RAID-Z.
462 nparity = 1;
464 } else {
465 nparity = 0;
467 ASSERT(nparity != -1ULL);
469 vd = vdev_alloc_common(spa, id, guid, ops);
471 vd->vdev_islog = islog;
472 vd->vdev_nparity = nparity;
474 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
475 vd->vdev_path = spa_strdup(vd->vdev_path);
476 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
477 vd->vdev_devid = spa_strdup(vd->vdev_devid);
478 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
479 &vd->vdev_physpath) == 0)
480 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
481 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
482 vd->vdev_fru = spa_strdup(vd->vdev_fru);
485 * Set the whole_disk property. If it's not specified, leave the value
486 * as -1.
488 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
489 &vd->vdev_wholedisk) != 0)
490 vd->vdev_wholedisk = -1ULL;
493 * Look for the 'not present' flag. This will only be set if the device
494 * was not present at the time of import.
496 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
497 &vd->vdev_not_present);
500 * Get the alignment requirement.
502 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
505 * Retrieve the vdev creation time.
507 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
508 &vd->vdev_crtxg);
511 * If we're a top-level vdev, try to load the allocation parameters.
513 if (parent && !parent->vdev_parent &&
514 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
515 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
516 &vd->vdev_ms_array);
517 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
518 &vd->vdev_ms_shift);
519 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
520 &vd->vdev_asize);
521 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
522 &vd->vdev_removing);
523 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
524 &vd->vdev_top_zap);
525 } else {
526 ASSERT0(vd->vdev_top_zap);
529 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
530 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
531 alloctype == VDEV_ALLOC_ADD ||
532 alloctype == VDEV_ALLOC_SPLIT ||
533 alloctype == VDEV_ALLOC_ROOTPOOL);
534 vd->vdev_mg = metaslab_group_create(islog ?
535 spa_log_class(spa) : spa_normal_class(spa), vd);
538 if (vd->vdev_ops->vdev_op_leaf &&
539 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
540 (void) nvlist_lookup_uint64(nv,
541 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
542 } else {
543 ASSERT0(vd->vdev_leaf_zap);
547 * If we're a leaf vdev, try to load the DTL object and other state.
550 if (vd->vdev_ops->vdev_op_leaf &&
551 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
552 alloctype == VDEV_ALLOC_ROOTPOOL)) {
553 if (alloctype == VDEV_ALLOC_LOAD) {
554 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
555 &vd->vdev_dtl_object);
556 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
557 &vd->vdev_unspare);
560 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
561 uint64_t spare = 0;
563 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
564 &spare) == 0 && spare)
565 spa_spare_add(vd);
568 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
569 &vd->vdev_offline);
571 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
572 &vd->vdev_resilver_txg);
575 * When importing a pool, we want to ignore the persistent fault
576 * state, as the diagnosis made on another system may not be
577 * valid in the current context. Local vdevs will
578 * remain in the faulted state.
580 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
581 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
582 &vd->vdev_faulted);
583 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
584 &vd->vdev_degraded);
585 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
586 &vd->vdev_removed);
588 if (vd->vdev_faulted || vd->vdev_degraded) {
589 char *aux;
591 vd->vdev_label_aux =
592 VDEV_AUX_ERR_EXCEEDED;
593 if (nvlist_lookup_string(nv,
594 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
595 strcmp(aux, "external") == 0)
596 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
602 * Add ourselves to the parent's list of children.
604 vdev_add_child(parent, vd);
606 *vdp = vd;
608 return (0);
611 void
612 vdev_free(vdev_t *vd)
614 spa_t *spa = vd->vdev_spa;
617 * vdev_free() implies closing the vdev first. This is simpler than
618 * trying to ensure complicated semantics for all callers.
620 vdev_close(vd);
622 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
623 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
626 * Free all children.
628 for (int c = 0; c < vd->vdev_children; c++)
629 vdev_free(vd->vdev_child[c]);
631 ASSERT(vd->vdev_child == NULL);
632 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
635 * Discard allocation state.
637 if (vd->vdev_mg != NULL) {
638 vdev_metaslab_fini(vd);
639 metaslab_group_destroy(vd->vdev_mg);
642 ASSERT0(vd->vdev_stat.vs_space);
643 ASSERT0(vd->vdev_stat.vs_dspace);
644 ASSERT0(vd->vdev_stat.vs_alloc);
647 * Remove this vdev from its parent's child list.
649 vdev_remove_child(vd->vdev_parent, vd);
651 ASSERT(vd->vdev_parent == NULL);
654 * Clean up vdev structure.
656 vdev_queue_fini(vd);
657 vdev_cache_fini(vd);
659 if (vd->vdev_path)
660 spa_strfree(vd->vdev_path);
661 if (vd->vdev_devid)
662 spa_strfree(vd->vdev_devid);
663 if (vd->vdev_physpath)
664 spa_strfree(vd->vdev_physpath);
665 if (vd->vdev_fru)
666 spa_strfree(vd->vdev_fru);
668 if (vd->vdev_isspare)
669 spa_spare_remove(vd);
670 if (vd->vdev_isl2cache)
671 spa_l2cache_remove(vd);
673 txg_list_destroy(&vd->vdev_ms_list);
674 txg_list_destroy(&vd->vdev_dtl_list);
676 mutex_enter(&vd->vdev_dtl_lock);
677 space_map_close(vd->vdev_dtl_sm);
678 for (int t = 0; t < DTL_TYPES; t++) {
679 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
680 range_tree_destroy(vd->vdev_dtl[t]);
682 mutex_exit(&vd->vdev_dtl_lock);
684 mutex_destroy(&vd->vdev_queue_lock);
685 mutex_destroy(&vd->vdev_dtl_lock);
686 mutex_destroy(&vd->vdev_stat_lock);
687 mutex_destroy(&vd->vdev_probe_lock);
689 if (vd == spa->spa_root_vdev)
690 spa->spa_root_vdev = NULL;
692 kmem_free(vd, sizeof (vdev_t));
696 * Transfer top-level vdev state from svd to tvd.
698 static void
699 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
701 spa_t *spa = svd->vdev_spa;
702 metaslab_t *msp;
703 vdev_t *vd;
704 int t;
706 ASSERT(tvd == tvd->vdev_top);
708 tvd->vdev_ms_array = svd->vdev_ms_array;
709 tvd->vdev_ms_shift = svd->vdev_ms_shift;
710 tvd->vdev_ms_count = svd->vdev_ms_count;
711 tvd->vdev_top_zap = svd->vdev_top_zap;
713 svd->vdev_ms_array = 0;
714 svd->vdev_ms_shift = 0;
715 svd->vdev_ms_count = 0;
716 svd->vdev_top_zap = 0;
718 if (tvd->vdev_mg)
719 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
720 tvd->vdev_mg = svd->vdev_mg;
721 tvd->vdev_ms = svd->vdev_ms;
723 svd->vdev_mg = NULL;
724 svd->vdev_ms = NULL;
726 if (tvd->vdev_mg != NULL)
727 tvd->vdev_mg->mg_vd = tvd;
729 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
730 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
731 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
733 svd->vdev_stat.vs_alloc = 0;
734 svd->vdev_stat.vs_space = 0;
735 svd->vdev_stat.vs_dspace = 0;
737 for (t = 0; t < TXG_SIZE; t++) {
738 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
739 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
740 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
741 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
742 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
743 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
746 if (list_link_active(&svd->vdev_config_dirty_node)) {
747 vdev_config_clean(svd);
748 vdev_config_dirty(tvd);
751 if (list_link_active(&svd->vdev_state_dirty_node)) {
752 vdev_state_clean(svd);
753 vdev_state_dirty(tvd);
756 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
757 svd->vdev_deflate_ratio = 0;
759 tvd->vdev_islog = svd->vdev_islog;
760 svd->vdev_islog = 0;
763 static void
764 vdev_top_update(vdev_t *tvd, vdev_t *vd)
766 if (vd == NULL)
767 return;
769 vd->vdev_top = tvd;
771 for (int c = 0; c < vd->vdev_children; c++)
772 vdev_top_update(tvd, vd->vdev_child[c]);
776 * Add a mirror/replacing vdev above an existing vdev.
778 vdev_t *
779 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
781 spa_t *spa = cvd->vdev_spa;
782 vdev_t *pvd = cvd->vdev_parent;
783 vdev_t *mvd;
785 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
787 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
789 mvd->vdev_asize = cvd->vdev_asize;
790 mvd->vdev_min_asize = cvd->vdev_min_asize;
791 mvd->vdev_max_asize = cvd->vdev_max_asize;
792 mvd->vdev_ashift = cvd->vdev_ashift;
793 mvd->vdev_state = cvd->vdev_state;
794 mvd->vdev_crtxg = cvd->vdev_crtxg;
796 vdev_remove_child(pvd, cvd);
797 vdev_add_child(pvd, mvd);
798 cvd->vdev_id = mvd->vdev_children;
799 vdev_add_child(mvd, cvd);
800 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
802 if (mvd == mvd->vdev_top)
803 vdev_top_transfer(cvd, mvd);
805 return (mvd);
809 * Remove a 1-way mirror/replacing vdev from the tree.
811 void
812 vdev_remove_parent(vdev_t *cvd)
814 vdev_t *mvd = cvd->vdev_parent;
815 vdev_t *pvd = mvd->vdev_parent;
817 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
819 ASSERT(mvd->vdev_children == 1);
820 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
821 mvd->vdev_ops == &vdev_replacing_ops ||
822 mvd->vdev_ops == &vdev_spare_ops);
823 cvd->vdev_ashift = mvd->vdev_ashift;
825 vdev_remove_child(mvd, cvd);
826 vdev_remove_child(pvd, mvd);
829 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
830 * Otherwise, we could have detached an offline device, and when we
831 * go to import the pool we'll think we have two top-level vdevs,
832 * instead of a different version of the same top-level vdev.
834 if (mvd->vdev_top == mvd) {
835 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
836 cvd->vdev_orig_guid = cvd->vdev_guid;
837 cvd->vdev_guid += guid_delta;
838 cvd->vdev_guid_sum += guid_delta;
840 cvd->vdev_id = mvd->vdev_id;
841 vdev_add_child(pvd, cvd);
842 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
844 if (cvd == cvd->vdev_top)
845 vdev_top_transfer(mvd, cvd);
847 ASSERT(mvd->vdev_children == 0);
848 vdev_free(mvd);
852 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
854 spa_t *spa = vd->vdev_spa;
855 objset_t *mos = spa->spa_meta_objset;
856 uint64_t m;
857 uint64_t oldc = vd->vdev_ms_count;
858 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
859 metaslab_t **mspp;
860 int error;
862 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
865 * This vdev is not being allocated from yet or is a hole.
867 if (vd->vdev_ms_shift == 0)
868 return (0);
870 ASSERT(!vd->vdev_ishole);
873 * Compute the raidz-deflation ratio. Note, we hard-code
874 * in 128k (1 << 17) because it is the "typical" blocksize.
875 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
876 * otherwise it would inconsistently account for existing bp's.
878 vd->vdev_deflate_ratio = (1 << 17) /
879 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
881 ASSERT(oldc <= newc);
883 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
885 if (oldc != 0) {
886 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
887 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
890 vd->vdev_ms = mspp;
891 vd->vdev_ms_count = newc;
893 for (m = oldc; m < newc; m++) {
894 uint64_t object = 0;
896 if (txg == 0) {
897 error = dmu_read(mos, vd->vdev_ms_array,
898 m * sizeof (uint64_t), sizeof (uint64_t), &object,
899 DMU_READ_PREFETCH);
900 if (error)
901 return (error);
904 error = metaslab_init(vd->vdev_mg, m, object, txg,
905 &(vd->vdev_ms[m]));
906 if (error)
907 return (error);
910 if (txg == 0)
911 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
914 * If the vdev is being removed we don't activate
915 * the metaslabs since we want to ensure that no new
916 * allocations are performed on this device.
918 if (oldc == 0 && !vd->vdev_removing)
919 metaslab_group_activate(vd->vdev_mg);
921 if (txg == 0)
922 spa_config_exit(spa, SCL_ALLOC, FTAG);
924 return (0);
927 void
928 vdev_metaslab_fini(vdev_t *vd)
930 uint64_t m;
931 uint64_t count = vd->vdev_ms_count;
933 if (vd->vdev_ms != NULL) {
934 metaslab_group_passivate(vd->vdev_mg);
935 for (m = 0; m < count; m++) {
936 metaslab_t *msp = vd->vdev_ms[m];
938 if (msp != NULL)
939 metaslab_fini(msp);
941 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
942 vd->vdev_ms = NULL;
946 typedef struct vdev_probe_stats {
947 boolean_t vps_readable;
948 boolean_t vps_writeable;
949 int vps_flags;
950 } vdev_probe_stats_t;
952 static void
953 vdev_probe_done(zio_t *zio)
955 spa_t *spa = zio->io_spa;
956 vdev_t *vd = zio->io_vd;
957 vdev_probe_stats_t *vps = zio->io_private;
959 ASSERT(vd->vdev_probe_zio != NULL);
961 if (zio->io_type == ZIO_TYPE_READ) {
962 if (zio->io_error == 0)
963 vps->vps_readable = 1;
964 if (zio->io_error == 0 && spa_writeable(spa)) {
965 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
966 zio->io_offset, zio->io_size, zio->io_abd,
967 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
968 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
969 } else {
970 abd_free(zio->io_abd);
972 } else if (zio->io_type == ZIO_TYPE_WRITE) {
973 if (zio->io_error == 0)
974 vps->vps_writeable = 1;
975 abd_free(zio->io_abd);
976 } else if (zio->io_type == ZIO_TYPE_NULL) {
977 zio_t *pio;
979 vd->vdev_cant_read |= !vps->vps_readable;
980 vd->vdev_cant_write |= !vps->vps_writeable;
982 if (vdev_readable(vd) &&
983 (vdev_writeable(vd) || !spa_writeable(spa))) {
984 zio->io_error = 0;
985 } else {
986 ASSERT(zio->io_error != 0);
987 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
988 spa, vd, NULL, 0, 0);
989 zio->io_error = SET_ERROR(ENXIO);
992 mutex_enter(&vd->vdev_probe_lock);
993 ASSERT(vd->vdev_probe_zio == zio);
994 vd->vdev_probe_zio = NULL;
995 mutex_exit(&vd->vdev_probe_lock);
997 zio_link_t *zl = NULL;
998 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
999 if (!vdev_accessible(vd, pio))
1000 pio->io_error = SET_ERROR(ENXIO);
1002 kmem_free(vps, sizeof (*vps));
1007 * Determine whether this device is accessible.
1009 * Read and write to several known locations: the pad regions of each
1010 * vdev label but the first, which we leave alone in case it contains
1011 * a VTOC.
1013 zio_t *
1014 vdev_probe(vdev_t *vd, zio_t *zio)
1016 spa_t *spa = vd->vdev_spa;
1017 vdev_probe_stats_t *vps = NULL;
1018 zio_t *pio;
1020 ASSERT(vd->vdev_ops->vdev_op_leaf);
1023 * Don't probe the probe.
1025 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1026 return (NULL);
1029 * To prevent 'probe storms' when a device fails, we create
1030 * just one probe i/o at a time. All zios that want to probe
1031 * this vdev will become parents of the probe io.
1033 mutex_enter(&vd->vdev_probe_lock);
1035 if ((pio = vd->vdev_probe_zio) == NULL) {
1036 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1038 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1039 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1040 ZIO_FLAG_TRYHARD;
1042 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1044 * vdev_cant_read and vdev_cant_write can only
1045 * transition from TRUE to FALSE when we have the
1046 * SCL_ZIO lock as writer; otherwise they can only
1047 * transition from FALSE to TRUE. This ensures that
1048 * any zio looking at these values can assume that
1049 * failures persist for the life of the I/O. That's
1050 * important because when a device has intermittent
1051 * connectivity problems, we want to ensure that
1052 * they're ascribed to the device (ENXIO) and not
1053 * the zio (EIO).
1055 * Since we hold SCL_ZIO as writer here, clear both
1056 * values so the probe can reevaluate from first
1057 * principles.
1059 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1060 vd->vdev_cant_read = B_FALSE;
1061 vd->vdev_cant_write = B_FALSE;
1064 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1065 vdev_probe_done, vps,
1066 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1069 * We can't change the vdev state in this context, so we
1070 * kick off an async task to do it on our behalf.
1072 if (zio != NULL) {
1073 vd->vdev_probe_wanted = B_TRUE;
1074 spa_async_request(spa, SPA_ASYNC_PROBE);
1078 if (zio != NULL)
1079 zio_add_child(zio, pio);
1081 mutex_exit(&vd->vdev_probe_lock);
1083 if (vps == NULL) {
1084 ASSERT(zio != NULL);
1085 return (NULL);
1088 for (int l = 1; l < VDEV_LABELS; l++) {
1089 zio_nowait(zio_read_phys(pio, vd,
1090 vdev_label_offset(vd->vdev_psize, l,
1091 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1092 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1093 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1094 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1097 if (zio == NULL)
1098 return (pio);
1100 zio_nowait(pio);
1101 return (NULL);
1104 static void
1105 vdev_open_child(void *arg)
1107 vdev_t *vd = arg;
1109 vd->vdev_open_thread = curthread;
1110 vd->vdev_open_error = vdev_open(vd);
1111 vd->vdev_open_thread = NULL;
1114 boolean_t
1115 vdev_uses_zvols(vdev_t *vd)
1117 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1118 strlen(ZVOL_DIR)) == 0)
1119 return (B_TRUE);
1120 for (int c = 0; c < vd->vdev_children; c++)
1121 if (vdev_uses_zvols(vd->vdev_child[c]))
1122 return (B_TRUE);
1123 return (B_FALSE);
1126 void
1127 vdev_open_children(vdev_t *vd)
1129 taskq_t *tq;
1130 int children = vd->vdev_children;
1133 * in order to handle pools on top of zvols, do the opens
1134 * in a single thread so that the same thread holds the
1135 * spa_namespace_lock
1137 if (vdev_uses_zvols(vd)) {
1138 for (int c = 0; c < children; c++)
1139 vd->vdev_child[c]->vdev_open_error =
1140 vdev_open(vd->vdev_child[c]);
1141 return;
1143 tq = taskq_create("vdev_open", children, minclsyspri,
1144 children, children, TASKQ_PREPOPULATE);
1146 for (int c = 0; c < children; c++)
1147 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1148 TQ_SLEEP) != NULL);
1150 taskq_destroy(tq);
1154 * Prepare a virtual device for access.
1157 vdev_open(vdev_t *vd)
1159 spa_t *spa = vd->vdev_spa;
1160 int error;
1161 uint64_t osize = 0;
1162 uint64_t max_osize = 0;
1163 uint64_t asize, max_asize, psize;
1164 uint64_t ashift = 0;
1166 ASSERT(vd->vdev_open_thread == curthread ||
1167 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1168 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1169 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1170 vd->vdev_state == VDEV_STATE_OFFLINE);
1172 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1173 vd->vdev_cant_read = B_FALSE;
1174 vd->vdev_cant_write = B_FALSE;
1175 vd->vdev_min_asize = vdev_get_min_asize(vd);
1178 * If this vdev is not removed, check its fault status. If it's
1179 * faulted, bail out of the open.
1181 if (!vd->vdev_removed && vd->vdev_faulted) {
1182 ASSERT(vd->vdev_children == 0);
1183 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1184 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1185 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1186 vd->vdev_label_aux);
1187 return (SET_ERROR(ENXIO));
1188 } else if (vd->vdev_offline) {
1189 ASSERT(vd->vdev_children == 0);
1190 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1191 return (SET_ERROR(ENXIO));
1194 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1197 * Reset the vdev_reopening flag so that we actually close
1198 * the vdev on error.
1200 vd->vdev_reopening = B_FALSE;
1201 if (zio_injection_enabled && error == 0)
1202 error = zio_handle_device_injection(vd, NULL, ENXIO);
1204 if (error) {
1205 if (vd->vdev_removed &&
1206 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1207 vd->vdev_removed = B_FALSE;
1209 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1210 vd->vdev_stat.vs_aux);
1211 return (error);
1214 vd->vdev_removed = B_FALSE;
1217 * Recheck the faulted flag now that we have confirmed that
1218 * the vdev is accessible. If we're faulted, bail.
1220 if (vd->vdev_faulted) {
1221 ASSERT(vd->vdev_children == 0);
1222 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1223 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1224 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1225 vd->vdev_label_aux);
1226 return (SET_ERROR(ENXIO));
1229 if (vd->vdev_degraded) {
1230 ASSERT(vd->vdev_children == 0);
1231 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1232 VDEV_AUX_ERR_EXCEEDED);
1233 } else {
1234 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1238 * For hole or missing vdevs we just return success.
1240 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1241 return (0);
1243 for (int c = 0; c < vd->vdev_children; c++) {
1244 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1245 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1246 VDEV_AUX_NONE);
1247 break;
1251 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1252 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1254 if (vd->vdev_children == 0) {
1255 if (osize < SPA_MINDEVSIZE) {
1256 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1257 VDEV_AUX_TOO_SMALL);
1258 return (SET_ERROR(EOVERFLOW));
1260 psize = osize;
1261 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1262 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1263 VDEV_LABEL_END_SIZE);
1264 } else {
1265 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1266 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1267 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1268 VDEV_AUX_TOO_SMALL);
1269 return (SET_ERROR(EOVERFLOW));
1271 psize = 0;
1272 asize = osize;
1273 max_asize = max_osize;
1276 vd->vdev_psize = psize;
1279 * Make sure the allocatable size hasn't shrunk too much.
1281 if (asize < vd->vdev_min_asize) {
1282 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1283 VDEV_AUX_BAD_LABEL);
1284 return (SET_ERROR(EINVAL));
1287 if (vd->vdev_asize == 0) {
1289 * This is the first-ever open, so use the computed values.
1290 * For testing purposes, a higher ashift can be requested.
1292 vd->vdev_asize = asize;
1293 vd->vdev_max_asize = max_asize;
1294 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1295 } else {
1297 * Detect if the alignment requirement has increased.
1298 * We don't want to make the pool unavailable, just
1299 * issue a warning instead.
1301 if (ashift > vd->vdev_top->vdev_ashift &&
1302 vd->vdev_ops->vdev_op_leaf) {
1303 cmn_err(CE_WARN,
1304 "Disk, '%s', has a block alignment that is "
1305 "larger than the pool's alignment\n",
1306 vd->vdev_path);
1308 vd->vdev_max_asize = max_asize;
1312 * If all children are healthy we update asize if either:
1313 * The asize has increased, due to a device expansion caused by dynamic
1314 * LUN growth or vdev replacement, and automatic expansion is enabled;
1315 * making the additional space available.
1317 * The asize has decreased, due to a device shrink usually caused by a
1318 * vdev replace with a smaller device. This ensures that calculations
1319 * based of max_asize and asize e.g. esize are always valid. It's safe
1320 * to do this as we've already validated that asize is greater than
1321 * vdev_min_asize.
1323 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1324 ((asize > vd->vdev_asize &&
1325 (vd->vdev_expanding || spa->spa_autoexpand)) ||
1326 (asize < vd->vdev_asize)))
1327 vd->vdev_asize = asize;
1329 vdev_set_min_asize(vd);
1332 * Ensure we can issue some IO before declaring the
1333 * vdev open for business.
1335 if (vd->vdev_ops->vdev_op_leaf &&
1336 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1337 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1338 VDEV_AUX_ERR_EXCEEDED);
1339 return (error);
1343 * Track the min and max ashift values for normal data devices.
1345 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1346 !vd->vdev_islog && vd->vdev_aux == NULL) {
1347 if (vd->vdev_ashift > spa->spa_max_ashift)
1348 spa->spa_max_ashift = vd->vdev_ashift;
1349 if (vd->vdev_ashift < spa->spa_min_ashift)
1350 spa->spa_min_ashift = vd->vdev_ashift;
1354 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1355 * resilver. But don't do this if we are doing a reopen for a scrub,
1356 * since this would just restart the scrub we are already doing.
1358 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1359 vdev_resilver_needed(vd, NULL, NULL))
1360 spa_async_request(spa, SPA_ASYNC_RESILVER);
1362 return (0);
1366 * Called once the vdevs are all opened, this routine validates the label
1367 * contents. This needs to be done before vdev_load() so that we don't
1368 * inadvertently do repair I/Os to the wrong device.
1370 * If 'strict' is false ignore the spa guid check. This is necessary because
1371 * if the machine crashed during a re-guid the new guid might have been written
1372 * to all of the vdev labels, but not the cached config. The strict check
1373 * will be performed when the pool is opened again using the mos config.
1375 * This function will only return failure if one of the vdevs indicates that it
1376 * has since been destroyed or exported. This is only possible if
1377 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1378 * will be updated but the function will return 0.
1381 vdev_validate(vdev_t *vd, boolean_t strict)
1383 spa_t *spa = vd->vdev_spa;
1384 nvlist_t *label;
1385 uint64_t guid = 0, top_guid;
1386 uint64_t state;
1388 for (int c = 0; c < vd->vdev_children; c++)
1389 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1390 return (SET_ERROR(EBADF));
1393 * If the device has already failed, or was marked offline, don't do
1394 * any further validation. Otherwise, label I/O will fail and we will
1395 * overwrite the previous state.
1397 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1398 uint64_t aux_guid = 0;
1399 nvlist_t *nvl;
1400 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1401 spa_last_synced_txg(spa) : -1ULL;
1403 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1404 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1405 VDEV_AUX_BAD_LABEL);
1406 return (0);
1410 * Determine if this vdev has been split off into another
1411 * pool. If so, then refuse to open it.
1413 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1414 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1415 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1416 VDEV_AUX_SPLIT_POOL);
1417 nvlist_free(label);
1418 return (0);
1421 if (strict && (nvlist_lookup_uint64(label,
1422 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1423 guid != spa_guid(spa))) {
1424 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1425 VDEV_AUX_CORRUPT_DATA);
1426 nvlist_free(label);
1427 return (0);
1430 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1431 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1432 &aux_guid) != 0)
1433 aux_guid = 0;
1436 * If this vdev just became a top-level vdev because its
1437 * sibling was detached, it will have adopted the parent's
1438 * vdev guid -- but the label may or may not be on disk yet.
1439 * Fortunately, either version of the label will have the
1440 * same top guid, so if we're a top-level vdev, we can
1441 * safely compare to that instead.
1443 * If we split this vdev off instead, then we also check the
1444 * original pool's guid. We don't want to consider the vdev
1445 * corrupt if it is partway through a split operation.
1447 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1448 &guid) != 0 ||
1449 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1450 &top_guid) != 0 ||
1451 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1452 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1453 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1454 VDEV_AUX_CORRUPT_DATA);
1455 nvlist_free(label);
1456 return (0);
1459 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1460 &state) != 0) {
1461 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1462 VDEV_AUX_CORRUPT_DATA);
1463 nvlist_free(label);
1464 return (0);
1467 nvlist_free(label);
1470 * If this is a verbatim import, no need to check the
1471 * state of the pool.
1473 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1474 spa_load_state(spa) == SPA_LOAD_OPEN &&
1475 state != POOL_STATE_ACTIVE)
1476 return (SET_ERROR(EBADF));
1479 * If we were able to open and validate a vdev that was
1480 * previously marked permanently unavailable, clear that state
1481 * now.
1483 if (vd->vdev_not_present)
1484 vd->vdev_not_present = 0;
1487 return (0);
1491 * Close a virtual device.
1493 void
1494 vdev_close(vdev_t *vd)
1496 spa_t *spa = vd->vdev_spa;
1497 vdev_t *pvd = vd->vdev_parent;
1499 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1502 * If our parent is reopening, then we are as well, unless we are
1503 * going offline.
1505 if (pvd != NULL && pvd->vdev_reopening)
1506 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1508 vd->vdev_ops->vdev_op_close(vd);
1510 vdev_cache_purge(vd);
1513 * We record the previous state before we close it, so that if we are
1514 * doing a reopen(), we don't generate FMA ereports if we notice that
1515 * it's still faulted.
1517 vd->vdev_prevstate = vd->vdev_state;
1519 if (vd->vdev_offline)
1520 vd->vdev_state = VDEV_STATE_OFFLINE;
1521 else
1522 vd->vdev_state = VDEV_STATE_CLOSED;
1523 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1526 void
1527 vdev_hold(vdev_t *vd)
1529 spa_t *spa = vd->vdev_spa;
1531 ASSERT(spa_is_root(spa));
1532 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1533 return;
1535 for (int c = 0; c < vd->vdev_children; c++)
1536 vdev_hold(vd->vdev_child[c]);
1538 if (vd->vdev_ops->vdev_op_leaf)
1539 vd->vdev_ops->vdev_op_hold(vd);
1542 void
1543 vdev_rele(vdev_t *vd)
1545 spa_t *spa = vd->vdev_spa;
1547 ASSERT(spa_is_root(spa));
1548 for (int c = 0; c < vd->vdev_children; c++)
1549 vdev_rele(vd->vdev_child[c]);
1551 if (vd->vdev_ops->vdev_op_leaf)
1552 vd->vdev_ops->vdev_op_rele(vd);
1556 * Reopen all interior vdevs and any unopened leaves. We don't actually
1557 * reopen leaf vdevs which had previously been opened as they might deadlock
1558 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1559 * If the leaf has never been opened then open it, as usual.
1561 void
1562 vdev_reopen(vdev_t *vd)
1564 spa_t *spa = vd->vdev_spa;
1566 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1568 /* set the reopening flag unless we're taking the vdev offline */
1569 vd->vdev_reopening = !vd->vdev_offline;
1570 vdev_close(vd);
1571 (void) vdev_open(vd);
1574 * Call vdev_validate() here to make sure we have the same device.
1575 * Otherwise, a device with an invalid label could be successfully
1576 * opened in response to vdev_reopen().
1578 if (vd->vdev_aux) {
1579 (void) vdev_validate_aux(vd);
1580 if (vdev_readable(vd) && vdev_writeable(vd) &&
1581 vd->vdev_aux == &spa->spa_l2cache &&
1582 !l2arc_vdev_present(vd))
1583 l2arc_add_vdev(spa, vd);
1584 } else {
1585 (void) vdev_validate(vd, B_TRUE);
1589 * Reassess parent vdev's health.
1591 vdev_propagate_state(vd);
1595 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1597 int error;
1600 * Normally, partial opens (e.g. of a mirror) are allowed.
1601 * For a create, however, we want to fail the request if
1602 * there are any components we can't open.
1604 error = vdev_open(vd);
1606 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1607 vdev_close(vd);
1608 return (error ? error : ENXIO);
1612 * Recursively load DTLs and initialize all labels.
1614 if ((error = vdev_dtl_load(vd)) != 0 ||
1615 (error = vdev_label_init(vd, txg, isreplacing ?
1616 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1617 vdev_close(vd);
1618 return (error);
1621 return (0);
1624 void
1625 vdev_metaslab_set_size(vdev_t *vd)
1628 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1630 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1631 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1634 void
1635 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1637 ASSERT(vd == vd->vdev_top);
1638 ASSERT(!vd->vdev_ishole);
1639 ASSERT(ISP2(flags));
1640 ASSERT(spa_writeable(vd->vdev_spa));
1642 if (flags & VDD_METASLAB)
1643 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1645 if (flags & VDD_DTL)
1646 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1648 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1651 void
1652 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1654 for (int c = 0; c < vd->vdev_children; c++)
1655 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1657 if (vd->vdev_ops->vdev_op_leaf)
1658 vdev_dirty(vd->vdev_top, flags, vd, txg);
1662 * DTLs.
1664 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1665 * the vdev has less than perfect replication. There are four kinds of DTL:
1667 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1669 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1671 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1672 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1673 * txgs that was scrubbed.
1675 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1676 * persistent errors or just some device being offline.
1677 * Unlike the other three, the DTL_OUTAGE map is not generally
1678 * maintained; it's only computed when needed, typically to
1679 * determine whether a device can be detached.
1681 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1682 * either has the data or it doesn't.
1684 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1685 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1686 * if any child is less than fully replicated, then so is its parent.
1687 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1688 * comprising only those txgs which appear in 'maxfaults' or more children;
1689 * those are the txgs we don't have enough replication to read. For example,
1690 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1691 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1692 * two child DTL_MISSING maps.
1694 * It should be clear from the above that to compute the DTLs and outage maps
1695 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1696 * Therefore, that is all we keep on disk. When loading the pool, or after
1697 * a configuration change, we generate all other DTLs from first principles.
1699 void
1700 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1702 range_tree_t *rt = vd->vdev_dtl[t];
1704 ASSERT(t < DTL_TYPES);
1705 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1706 ASSERT(spa_writeable(vd->vdev_spa));
1708 mutex_enter(rt->rt_lock);
1709 if (!range_tree_contains(rt, txg, size))
1710 range_tree_add(rt, txg, size);
1711 mutex_exit(rt->rt_lock);
1714 boolean_t
1715 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1717 range_tree_t *rt = vd->vdev_dtl[t];
1718 boolean_t dirty = B_FALSE;
1720 ASSERT(t < DTL_TYPES);
1721 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1723 mutex_enter(rt->rt_lock);
1724 if (range_tree_space(rt) != 0)
1725 dirty = range_tree_contains(rt, txg, size);
1726 mutex_exit(rt->rt_lock);
1728 return (dirty);
1731 boolean_t
1732 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1734 range_tree_t *rt = vd->vdev_dtl[t];
1735 boolean_t empty;
1737 mutex_enter(rt->rt_lock);
1738 empty = (range_tree_space(rt) == 0);
1739 mutex_exit(rt->rt_lock);
1741 return (empty);
1745 * Returns the lowest txg in the DTL range.
1747 static uint64_t
1748 vdev_dtl_min(vdev_t *vd)
1750 range_seg_t *rs;
1752 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1753 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1754 ASSERT0(vd->vdev_children);
1756 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1757 return (rs->rs_start - 1);
1761 * Returns the highest txg in the DTL.
1763 static uint64_t
1764 vdev_dtl_max(vdev_t *vd)
1766 range_seg_t *rs;
1768 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1769 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1770 ASSERT0(vd->vdev_children);
1772 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1773 return (rs->rs_end);
1777 * Determine if a resilvering vdev should remove any DTL entries from
1778 * its range. If the vdev was resilvering for the entire duration of the
1779 * scan then it should excise that range from its DTLs. Otherwise, this
1780 * vdev is considered partially resilvered and should leave its DTL
1781 * entries intact. The comment in vdev_dtl_reassess() describes how we
1782 * excise the DTLs.
1784 static boolean_t
1785 vdev_dtl_should_excise(vdev_t *vd)
1787 spa_t *spa = vd->vdev_spa;
1788 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1790 ASSERT0(scn->scn_phys.scn_errors);
1791 ASSERT0(vd->vdev_children);
1793 if (vd->vdev_state < VDEV_STATE_DEGRADED)
1794 return (B_FALSE);
1796 if (vd->vdev_resilver_txg == 0 ||
1797 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1798 return (B_TRUE);
1801 * When a resilver is initiated the scan will assign the scn_max_txg
1802 * value to the highest txg value that exists in all DTLs. If this
1803 * device's max DTL is not part of this scan (i.e. it is not in
1804 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1805 * for excision.
1807 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1808 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1809 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1810 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1811 return (B_TRUE);
1813 return (B_FALSE);
1817 * Reassess DTLs after a config change or scrub completion.
1819 void
1820 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1822 spa_t *spa = vd->vdev_spa;
1823 avl_tree_t reftree;
1824 int minref;
1826 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1828 for (int c = 0; c < vd->vdev_children; c++)
1829 vdev_dtl_reassess(vd->vdev_child[c], txg,
1830 scrub_txg, scrub_done);
1832 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1833 return;
1835 if (vd->vdev_ops->vdev_op_leaf) {
1836 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1838 mutex_enter(&vd->vdev_dtl_lock);
1841 * If we've completed a scan cleanly then determine
1842 * if this vdev should remove any DTLs. We only want to
1843 * excise regions on vdevs that were available during
1844 * the entire duration of this scan.
1846 if (scrub_txg != 0 &&
1847 (spa->spa_scrub_started ||
1848 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1849 vdev_dtl_should_excise(vd)) {
1851 * We completed a scrub up to scrub_txg. If we
1852 * did it without rebooting, then the scrub dtl
1853 * will be valid, so excise the old region and
1854 * fold in the scrub dtl. Otherwise, leave the
1855 * dtl as-is if there was an error.
1857 * There's little trick here: to excise the beginning
1858 * of the DTL_MISSING map, we put it into a reference
1859 * tree and then add a segment with refcnt -1 that
1860 * covers the range [0, scrub_txg). This means
1861 * that each txg in that range has refcnt -1 or 0.
1862 * We then add DTL_SCRUB with a refcnt of 2, so that
1863 * entries in the range [0, scrub_txg) will have a
1864 * positive refcnt -- either 1 or 2. We then convert
1865 * the reference tree into the new DTL_MISSING map.
1867 space_reftree_create(&reftree);
1868 space_reftree_add_map(&reftree,
1869 vd->vdev_dtl[DTL_MISSING], 1);
1870 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1871 space_reftree_add_map(&reftree,
1872 vd->vdev_dtl[DTL_SCRUB], 2);
1873 space_reftree_generate_map(&reftree,
1874 vd->vdev_dtl[DTL_MISSING], 1);
1875 space_reftree_destroy(&reftree);
1877 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1878 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1879 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1880 if (scrub_done)
1881 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1882 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1883 if (!vdev_readable(vd))
1884 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1885 else
1886 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1887 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1890 * If the vdev was resilvering and no longer has any
1891 * DTLs then reset its resilvering flag.
1893 if (vd->vdev_resilver_txg != 0 &&
1894 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1895 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1896 vd->vdev_resilver_txg = 0;
1898 mutex_exit(&vd->vdev_dtl_lock);
1900 if (txg != 0)
1901 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1902 return;
1905 mutex_enter(&vd->vdev_dtl_lock);
1906 for (int t = 0; t < DTL_TYPES; t++) {
1907 /* account for child's outage in parent's missing map */
1908 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1909 if (t == DTL_SCRUB)
1910 continue; /* leaf vdevs only */
1911 if (t == DTL_PARTIAL)
1912 minref = 1; /* i.e. non-zero */
1913 else if (vd->vdev_nparity != 0)
1914 minref = vd->vdev_nparity + 1; /* RAID-Z */
1915 else
1916 minref = vd->vdev_children; /* any kind of mirror */
1917 space_reftree_create(&reftree);
1918 for (int c = 0; c < vd->vdev_children; c++) {
1919 vdev_t *cvd = vd->vdev_child[c];
1920 mutex_enter(&cvd->vdev_dtl_lock);
1921 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1922 mutex_exit(&cvd->vdev_dtl_lock);
1924 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1925 space_reftree_destroy(&reftree);
1927 mutex_exit(&vd->vdev_dtl_lock);
1931 vdev_dtl_load(vdev_t *vd)
1933 spa_t *spa = vd->vdev_spa;
1934 objset_t *mos = spa->spa_meta_objset;
1935 int error = 0;
1937 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1938 ASSERT(!vd->vdev_ishole);
1940 error = space_map_open(&vd->vdev_dtl_sm, mos,
1941 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1942 if (error)
1943 return (error);
1944 ASSERT(vd->vdev_dtl_sm != NULL);
1946 mutex_enter(&vd->vdev_dtl_lock);
1949 * Now that we've opened the space_map we need to update
1950 * the in-core DTL.
1952 space_map_update(vd->vdev_dtl_sm);
1954 error = space_map_load(vd->vdev_dtl_sm,
1955 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1956 mutex_exit(&vd->vdev_dtl_lock);
1958 return (error);
1961 for (int c = 0; c < vd->vdev_children; c++) {
1962 error = vdev_dtl_load(vd->vdev_child[c]);
1963 if (error != 0)
1964 break;
1967 return (error);
1970 void
1971 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
1973 spa_t *spa = vd->vdev_spa;
1975 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
1976 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
1977 zapobj, tx));
1980 uint64_t
1981 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
1983 spa_t *spa = vd->vdev_spa;
1984 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
1985 DMU_OT_NONE, 0, tx);
1987 ASSERT(zap != 0);
1988 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
1989 zap, tx));
1991 return (zap);
1994 void
1995 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
1997 if (vd->vdev_ops != &vdev_hole_ops &&
1998 vd->vdev_ops != &vdev_missing_ops &&
1999 vd->vdev_ops != &vdev_root_ops &&
2000 !vd->vdev_top->vdev_removing) {
2001 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2002 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2004 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2005 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2008 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2009 vdev_construct_zaps(vd->vdev_child[i], tx);
2013 void
2014 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2016 spa_t *spa = vd->vdev_spa;
2017 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2018 objset_t *mos = spa->spa_meta_objset;
2019 range_tree_t *rtsync;
2020 kmutex_t rtlock;
2021 dmu_tx_t *tx;
2022 uint64_t object = space_map_object(vd->vdev_dtl_sm);
2024 ASSERT(!vd->vdev_ishole);
2025 ASSERT(vd->vdev_ops->vdev_op_leaf);
2027 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2029 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2030 mutex_enter(&vd->vdev_dtl_lock);
2031 space_map_free(vd->vdev_dtl_sm, tx);
2032 space_map_close(vd->vdev_dtl_sm);
2033 vd->vdev_dtl_sm = NULL;
2034 mutex_exit(&vd->vdev_dtl_lock);
2037 * We only destroy the leaf ZAP for detached leaves or for
2038 * removed log devices. Removed data devices handle leaf ZAP
2039 * cleanup later, once cancellation is no longer possible.
2041 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2042 vd->vdev_top->vdev_islog)) {
2043 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2044 vd->vdev_leaf_zap = 0;
2047 dmu_tx_commit(tx);
2048 return;
2051 if (vd->vdev_dtl_sm == NULL) {
2052 uint64_t new_object;
2054 new_object = space_map_alloc(mos, tx);
2055 VERIFY3U(new_object, !=, 0);
2057 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2058 0, -1ULL, 0, &vd->vdev_dtl_lock));
2059 ASSERT(vd->vdev_dtl_sm != NULL);
2062 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2064 rtsync = range_tree_create(NULL, NULL, &rtlock);
2066 mutex_enter(&rtlock);
2068 mutex_enter(&vd->vdev_dtl_lock);
2069 range_tree_walk(rt, range_tree_add, rtsync);
2070 mutex_exit(&vd->vdev_dtl_lock);
2072 space_map_truncate(vd->vdev_dtl_sm, tx);
2073 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2074 range_tree_vacate(rtsync, NULL, NULL);
2076 range_tree_destroy(rtsync);
2078 mutex_exit(&rtlock);
2079 mutex_destroy(&rtlock);
2082 * If the object for the space map has changed then dirty
2083 * the top level so that we update the config.
2085 if (object != space_map_object(vd->vdev_dtl_sm)) {
2086 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2087 "new object %llu", txg, spa_name(spa), object,
2088 space_map_object(vd->vdev_dtl_sm));
2089 vdev_config_dirty(vd->vdev_top);
2092 dmu_tx_commit(tx);
2094 mutex_enter(&vd->vdev_dtl_lock);
2095 space_map_update(vd->vdev_dtl_sm);
2096 mutex_exit(&vd->vdev_dtl_lock);
2100 * Determine whether the specified vdev can be offlined/detached/removed
2101 * without losing data.
2103 boolean_t
2104 vdev_dtl_required(vdev_t *vd)
2106 spa_t *spa = vd->vdev_spa;
2107 vdev_t *tvd = vd->vdev_top;
2108 uint8_t cant_read = vd->vdev_cant_read;
2109 boolean_t required;
2111 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2113 if (vd == spa->spa_root_vdev || vd == tvd)
2114 return (B_TRUE);
2117 * Temporarily mark the device as unreadable, and then determine
2118 * whether this results in any DTL outages in the top-level vdev.
2119 * If not, we can safely offline/detach/remove the device.
2121 vd->vdev_cant_read = B_TRUE;
2122 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2123 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2124 vd->vdev_cant_read = cant_read;
2125 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2127 if (!required && zio_injection_enabled)
2128 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2130 return (required);
2134 * Determine if resilver is needed, and if so the txg range.
2136 boolean_t
2137 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2139 boolean_t needed = B_FALSE;
2140 uint64_t thismin = UINT64_MAX;
2141 uint64_t thismax = 0;
2143 if (vd->vdev_children == 0) {
2144 mutex_enter(&vd->vdev_dtl_lock);
2145 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2146 vdev_writeable(vd)) {
2148 thismin = vdev_dtl_min(vd);
2149 thismax = vdev_dtl_max(vd);
2150 needed = B_TRUE;
2152 mutex_exit(&vd->vdev_dtl_lock);
2153 } else {
2154 for (int c = 0; c < vd->vdev_children; c++) {
2155 vdev_t *cvd = vd->vdev_child[c];
2156 uint64_t cmin, cmax;
2158 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2159 thismin = MIN(thismin, cmin);
2160 thismax = MAX(thismax, cmax);
2161 needed = B_TRUE;
2166 if (needed && minp) {
2167 *minp = thismin;
2168 *maxp = thismax;
2170 return (needed);
2173 void
2174 vdev_load(vdev_t *vd)
2177 * Recursively load all children.
2179 for (int c = 0; c < vd->vdev_children; c++)
2180 vdev_load(vd->vdev_child[c]);
2183 * If this is a top-level vdev, initialize its metaslabs.
2185 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2186 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2187 vdev_metaslab_init(vd, 0) != 0))
2188 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2189 VDEV_AUX_CORRUPT_DATA);
2192 * If this is a leaf vdev, load its DTL.
2194 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2195 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2196 VDEV_AUX_CORRUPT_DATA);
2200 * The special vdev case is used for hot spares and l2cache devices. Its
2201 * sole purpose it to set the vdev state for the associated vdev. To do this,
2202 * we make sure that we can open the underlying device, then try to read the
2203 * label, and make sure that the label is sane and that it hasn't been
2204 * repurposed to another pool.
2207 vdev_validate_aux(vdev_t *vd)
2209 nvlist_t *label;
2210 uint64_t guid, version;
2211 uint64_t state;
2213 if (!vdev_readable(vd))
2214 return (0);
2216 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2217 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2218 VDEV_AUX_CORRUPT_DATA);
2219 return (-1);
2222 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2223 !SPA_VERSION_IS_SUPPORTED(version) ||
2224 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2225 guid != vd->vdev_guid ||
2226 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2227 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2228 VDEV_AUX_CORRUPT_DATA);
2229 nvlist_free(label);
2230 return (-1);
2234 * We don't actually check the pool state here. If it's in fact in
2235 * use by another pool, we update this fact on the fly when requested.
2237 nvlist_free(label);
2238 return (0);
2241 void
2242 vdev_remove(vdev_t *vd, uint64_t txg)
2244 spa_t *spa = vd->vdev_spa;
2245 objset_t *mos = spa->spa_meta_objset;
2246 dmu_tx_t *tx;
2248 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2249 ASSERT(vd == vd->vdev_top);
2250 ASSERT3U(txg, ==, spa_syncing_txg(spa));
2252 if (vd->vdev_ms != NULL) {
2253 metaslab_group_t *mg = vd->vdev_mg;
2255 metaslab_group_histogram_verify(mg);
2256 metaslab_class_histogram_verify(mg->mg_class);
2258 for (int m = 0; m < vd->vdev_ms_count; m++) {
2259 metaslab_t *msp = vd->vdev_ms[m];
2261 if (msp == NULL || msp->ms_sm == NULL)
2262 continue;
2264 mutex_enter(&msp->ms_lock);
2266 * If the metaslab was not loaded when the vdev
2267 * was removed then the histogram accounting may
2268 * not be accurate. Update the histogram information
2269 * here so that we ensure that the metaslab group
2270 * and metaslab class are up-to-date.
2272 metaslab_group_histogram_remove(mg, msp);
2274 VERIFY0(space_map_allocated(msp->ms_sm));
2275 space_map_free(msp->ms_sm, tx);
2276 space_map_close(msp->ms_sm);
2277 msp->ms_sm = NULL;
2278 mutex_exit(&msp->ms_lock);
2281 metaslab_group_histogram_verify(mg);
2282 metaslab_class_histogram_verify(mg->mg_class);
2283 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2284 ASSERT0(mg->mg_histogram[i]);
2288 if (vd->vdev_ms_array) {
2289 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2290 vd->vdev_ms_array = 0;
2293 if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2294 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2295 vd->vdev_top_zap = 0;
2297 dmu_tx_commit(tx);
2300 void
2301 vdev_sync_done(vdev_t *vd, uint64_t txg)
2303 metaslab_t *msp;
2304 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2306 ASSERT(!vd->vdev_ishole);
2308 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2309 metaslab_sync_done(msp, txg);
2311 if (reassess)
2312 metaslab_sync_reassess(vd->vdev_mg);
2315 void
2316 vdev_sync(vdev_t *vd, uint64_t txg)
2318 spa_t *spa = vd->vdev_spa;
2319 vdev_t *lvd;
2320 metaslab_t *msp;
2321 dmu_tx_t *tx;
2323 ASSERT(!vd->vdev_ishole);
2325 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2326 ASSERT(vd == vd->vdev_top);
2327 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2328 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2329 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2330 ASSERT(vd->vdev_ms_array != 0);
2331 vdev_config_dirty(vd);
2332 dmu_tx_commit(tx);
2336 * Remove the metadata associated with this vdev once it's empty.
2338 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2339 vdev_remove(vd, txg);
2341 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2342 metaslab_sync(msp, txg);
2343 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2346 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2347 vdev_dtl_sync(lvd, txg);
2349 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2352 uint64_t
2353 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2355 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2359 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2360 * not be opened, and no I/O is attempted.
2363 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2365 vdev_t *vd, *tvd;
2367 spa_vdev_state_enter(spa, SCL_NONE);
2369 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2370 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2372 if (!vd->vdev_ops->vdev_op_leaf)
2373 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2375 tvd = vd->vdev_top;
2378 * We don't directly use the aux state here, but if we do a
2379 * vdev_reopen(), we need this value to be present to remember why we
2380 * were faulted.
2382 vd->vdev_label_aux = aux;
2385 * Faulted state takes precedence over degraded.
2387 vd->vdev_delayed_close = B_FALSE;
2388 vd->vdev_faulted = 1ULL;
2389 vd->vdev_degraded = 0ULL;
2390 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2393 * If this device has the only valid copy of the data, then
2394 * back off and simply mark the vdev as degraded instead.
2396 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2397 vd->vdev_degraded = 1ULL;
2398 vd->vdev_faulted = 0ULL;
2401 * If we reopen the device and it's not dead, only then do we
2402 * mark it degraded.
2404 vdev_reopen(tvd);
2406 if (vdev_readable(vd))
2407 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2410 return (spa_vdev_state_exit(spa, vd, 0));
2414 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2415 * user that something is wrong. The vdev continues to operate as normal as far
2416 * as I/O is concerned.
2419 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2421 vdev_t *vd;
2423 spa_vdev_state_enter(spa, SCL_NONE);
2425 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2426 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2428 if (!vd->vdev_ops->vdev_op_leaf)
2429 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2432 * If the vdev is already faulted, then don't do anything.
2434 if (vd->vdev_faulted || vd->vdev_degraded)
2435 return (spa_vdev_state_exit(spa, NULL, 0));
2437 vd->vdev_degraded = 1ULL;
2438 if (!vdev_is_dead(vd))
2439 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2440 aux);
2442 return (spa_vdev_state_exit(spa, vd, 0));
2446 * Online the given vdev.
2448 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2449 * spare device should be detached when the device finishes resilvering.
2450 * Second, the online should be treated like a 'test' online case, so no FMA
2451 * events are generated if the device fails to open.
2454 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2456 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2457 boolean_t wasoffline;
2458 vdev_state_t oldstate;
2460 spa_vdev_state_enter(spa, SCL_NONE);
2462 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2463 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2465 if (!vd->vdev_ops->vdev_op_leaf)
2466 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2468 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
2469 oldstate = vd->vdev_state;
2471 tvd = vd->vdev_top;
2472 vd->vdev_offline = B_FALSE;
2473 vd->vdev_tmpoffline = B_FALSE;
2474 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2475 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2477 /* XXX - L2ARC 1.0 does not support expansion */
2478 if (!vd->vdev_aux) {
2479 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2480 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2483 vdev_reopen(tvd);
2484 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2486 if (!vd->vdev_aux) {
2487 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2488 pvd->vdev_expanding = B_FALSE;
2491 if (newstate)
2492 *newstate = vd->vdev_state;
2493 if ((flags & ZFS_ONLINE_UNSPARE) &&
2494 !vdev_is_dead(vd) && vd->vdev_parent &&
2495 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2496 vd->vdev_parent->vdev_child[0] == vd)
2497 vd->vdev_unspare = B_TRUE;
2499 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2501 /* XXX - L2ARC 1.0 does not support expansion */
2502 if (vd->vdev_aux)
2503 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2504 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2507 if (wasoffline ||
2508 (oldstate < VDEV_STATE_DEGRADED &&
2509 vd->vdev_state >= VDEV_STATE_DEGRADED))
2510 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
2512 return (spa_vdev_state_exit(spa, vd, 0));
2515 static int
2516 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2518 vdev_t *vd, *tvd;
2519 int error = 0;
2520 uint64_t generation;
2521 metaslab_group_t *mg;
2523 top:
2524 spa_vdev_state_enter(spa, SCL_ALLOC);
2526 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2527 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2529 if (!vd->vdev_ops->vdev_op_leaf)
2530 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2532 tvd = vd->vdev_top;
2533 mg = tvd->vdev_mg;
2534 generation = spa->spa_config_generation + 1;
2537 * If the device isn't already offline, try to offline it.
2539 if (!vd->vdev_offline) {
2541 * If this device has the only valid copy of some data,
2542 * don't allow it to be offlined. Log devices are always
2543 * expendable.
2545 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2546 vdev_dtl_required(vd))
2547 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2550 * If the top-level is a slog and it has had allocations
2551 * then proceed. We check that the vdev's metaslab group
2552 * is not NULL since it's possible that we may have just
2553 * added this vdev but not yet initialized its metaslabs.
2555 if (tvd->vdev_islog && mg != NULL) {
2557 * Prevent any future allocations.
2559 metaslab_group_passivate(mg);
2560 (void) spa_vdev_state_exit(spa, vd, 0);
2562 error = spa_offline_log(spa);
2564 spa_vdev_state_enter(spa, SCL_ALLOC);
2567 * Check to see if the config has changed.
2569 if (error || generation != spa->spa_config_generation) {
2570 metaslab_group_activate(mg);
2571 if (error)
2572 return (spa_vdev_state_exit(spa,
2573 vd, error));
2574 (void) spa_vdev_state_exit(spa, vd, 0);
2575 goto top;
2577 ASSERT0(tvd->vdev_stat.vs_alloc);
2581 * Offline this device and reopen its top-level vdev.
2582 * If the top-level vdev is a log device then just offline
2583 * it. Otherwise, if this action results in the top-level
2584 * vdev becoming unusable, undo it and fail the request.
2586 vd->vdev_offline = B_TRUE;
2587 vdev_reopen(tvd);
2589 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2590 vdev_is_dead(tvd)) {
2591 vd->vdev_offline = B_FALSE;
2592 vdev_reopen(tvd);
2593 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2597 * Add the device back into the metaslab rotor so that
2598 * once we online the device it's open for business.
2600 if (tvd->vdev_islog && mg != NULL)
2601 metaslab_group_activate(mg);
2604 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2606 return (spa_vdev_state_exit(spa, vd, 0));
2610 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2612 int error;
2614 mutex_enter(&spa->spa_vdev_top_lock);
2615 error = vdev_offline_locked(spa, guid, flags);
2616 mutex_exit(&spa->spa_vdev_top_lock);
2618 return (error);
2622 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2623 * vdev_offline(), we assume the spa config is locked. We also clear all
2624 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2626 void
2627 vdev_clear(spa_t *spa, vdev_t *vd)
2629 vdev_t *rvd = spa->spa_root_vdev;
2631 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2633 if (vd == NULL)
2634 vd = rvd;
2636 vd->vdev_stat.vs_read_errors = 0;
2637 vd->vdev_stat.vs_write_errors = 0;
2638 vd->vdev_stat.vs_checksum_errors = 0;
2640 for (int c = 0; c < vd->vdev_children; c++)
2641 vdev_clear(spa, vd->vdev_child[c]);
2644 * If we're in the FAULTED state or have experienced failed I/O, then
2645 * clear the persistent state and attempt to reopen the device. We
2646 * also mark the vdev config dirty, so that the new faulted state is
2647 * written out to disk.
2649 if (vd->vdev_faulted || vd->vdev_degraded ||
2650 !vdev_readable(vd) || !vdev_writeable(vd)) {
2653 * When reopening in reponse to a clear event, it may be due to
2654 * a fmadm repair request. In this case, if the device is
2655 * still broken, we want to still post the ereport again.
2657 vd->vdev_forcefault = B_TRUE;
2659 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2660 vd->vdev_cant_read = B_FALSE;
2661 vd->vdev_cant_write = B_FALSE;
2663 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2665 vd->vdev_forcefault = B_FALSE;
2667 if (vd != rvd && vdev_writeable(vd->vdev_top))
2668 vdev_state_dirty(vd->vdev_top);
2670 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2671 spa_async_request(spa, SPA_ASYNC_RESILVER);
2673 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
2677 * When clearing a FMA-diagnosed fault, we always want to
2678 * unspare the device, as we assume that the original spare was
2679 * done in response to the FMA fault.
2681 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2682 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2683 vd->vdev_parent->vdev_child[0] == vd)
2684 vd->vdev_unspare = B_TRUE;
2687 boolean_t
2688 vdev_is_dead(vdev_t *vd)
2691 * Holes and missing devices are always considered "dead".
2692 * This simplifies the code since we don't have to check for
2693 * these types of devices in the various code paths.
2694 * Instead we rely on the fact that we skip over dead devices
2695 * before issuing I/O to them.
2697 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2698 vd->vdev_ops == &vdev_missing_ops);
2701 boolean_t
2702 vdev_readable(vdev_t *vd)
2704 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2707 boolean_t
2708 vdev_writeable(vdev_t *vd)
2710 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2713 boolean_t
2714 vdev_allocatable(vdev_t *vd)
2716 uint64_t state = vd->vdev_state;
2719 * We currently allow allocations from vdevs which may be in the
2720 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2721 * fails to reopen then we'll catch it later when we're holding
2722 * the proper locks. Note that we have to get the vdev state
2723 * in a local variable because although it changes atomically,
2724 * we're asking two separate questions about it.
2726 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2727 !vd->vdev_cant_write && !vd->vdev_ishole &&
2728 vd->vdev_mg->mg_initialized);
2731 boolean_t
2732 vdev_accessible(vdev_t *vd, zio_t *zio)
2734 ASSERT(zio->io_vd == vd);
2736 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2737 return (B_FALSE);
2739 if (zio->io_type == ZIO_TYPE_READ)
2740 return (!vd->vdev_cant_read);
2742 if (zio->io_type == ZIO_TYPE_WRITE)
2743 return (!vd->vdev_cant_write);
2745 return (B_TRUE);
2749 * Get statistics for the given vdev.
2751 void
2752 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2754 spa_t *spa = vd->vdev_spa;
2755 vdev_t *rvd = spa->spa_root_vdev;
2756 vdev_t *tvd = vd->vdev_top;
2758 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2760 mutex_enter(&vd->vdev_stat_lock);
2761 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2762 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2763 vs->vs_state = vd->vdev_state;
2764 vs->vs_rsize = vdev_get_min_asize(vd);
2765 if (vd->vdev_ops->vdev_op_leaf)
2766 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2768 * Report expandable space on top-level, non-auxillary devices only.
2769 * The expandable space is reported in terms of metaslab sized units
2770 * since that determines how much space the pool can expand.
2772 if (vd->vdev_aux == NULL && tvd != NULL) {
2773 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
2774 spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
2776 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2777 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2781 * If we're getting stats on the root vdev, aggregate the I/O counts
2782 * over all top-level vdevs (i.e. the direct children of the root).
2784 if (vd == rvd) {
2785 for (int c = 0; c < rvd->vdev_children; c++) {
2786 vdev_t *cvd = rvd->vdev_child[c];
2787 vdev_stat_t *cvs = &cvd->vdev_stat;
2789 for (int t = 0; t < ZIO_TYPES; t++) {
2790 vs->vs_ops[t] += cvs->vs_ops[t];
2791 vs->vs_bytes[t] += cvs->vs_bytes[t];
2793 cvs->vs_scan_removing = cvd->vdev_removing;
2796 mutex_exit(&vd->vdev_stat_lock);
2799 void
2800 vdev_clear_stats(vdev_t *vd)
2802 mutex_enter(&vd->vdev_stat_lock);
2803 vd->vdev_stat.vs_space = 0;
2804 vd->vdev_stat.vs_dspace = 0;
2805 vd->vdev_stat.vs_alloc = 0;
2806 mutex_exit(&vd->vdev_stat_lock);
2809 void
2810 vdev_scan_stat_init(vdev_t *vd)
2812 vdev_stat_t *vs = &vd->vdev_stat;
2814 for (int c = 0; c < vd->vdev_children; c++)
2815 vdev_scan_stat_init(vd->vdev_child[c]);
2817 mutex_enter(&vd->vdev_stat_lock);
2818 vs->vs_scan_processed = 0;
2819 mutex_exit(&vd->vdev_stat_lock);
2822 void
2823 vdev_stat_update(zio_t *zio, uint64_t psize)
2825 spa_t *spa = zio->io_spa;
2826 vdev_t *rvd = spa->spa_root_vdev;
2827 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2828 vdev_t *pvd;
2829 uint64_t txg = zio->io_txg;
2830 vdev_stat_t *vs = &vd->vdev_stat;
2831 zio_type_t type = zio->io_type;
2832 int flags = zio->io_flags;
2835 * If this i/o is a gang leader, it didn't do any actual work.
2837 if (zio->io_gang_tree)
2838 return;
2840 if (zio->io_error == 0) {
2842 * If this is a root i/o, don't count it -- we've already
2843 * counted the top-level vdevs, and vdev_get_stats() will
2844 * aggregate them when asked. This reduces contention on
2845 * the root vdev_stat_lock and implicitly handles blocks
2846 * that compress away to holes, for which there is no i/o.
2847 * (Holes never create vdev children, so all the counters
2848 * remain zero, which is what we want.)
2850 * Note: this only applies to successful i/o (io_error == 0)
2851 * because unlike i/o counts, errors are not additive.
2852 * When reading a ditto block, for example, failure of
2853 * one top-level vdev does not imply a root-level error.
2855 if (vd == rvd)
2856 return;
2858 ASSERT(vd == zio->io_vd);
2860 if (flags & ZIO_FLAG_IO_BYPASS)
2861 return;
2863 mutex_enter(&vd->vdev_stat_lock);
2865 if (flags & ZIO_FLAG_IO_REPAIR) {
2866 if (flags & ZIO_FLAG_SCAN_THREAD) {
2867 dsl_scan_phys_t *scn_phys =
2868 &spa->spa_dsl_pool->dp_scan->scn_phys;
2869 uint64_t *processed = &scn_phys->scn_processed;
2871 /* XXX cleanup? */
2872 if (vd->vdev_ops->vdev_op_leaf)
2873 atomic_add_64(processed, psize);
2874 vs->vs_scan_processed += psize;
2877 if (flags & ZIO_FLAG_SELF_HEAL)
2878 vs->vs_self_healed += psize;
2881 vs->vs_ops[type]++;
2882 vs->vs_bytes[type] += psize;
2884 mutex_exit(&vd->vdev_stat_lock);
2885 return;
2888 if (flags & ZIO_FLAG_SPECULATIVE)
2889 return;
2892 * If this is an I/O error that is going to be retried, then ignore the
2893 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2894 * hard errors, when in reality they can happen for any number of
2895 * innocuous reasons (bus resets, MPxIO link failure, etc).
2897 if (zio->io_error == EIO &&
2898 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2899 return;
2902 * Intent logs writes won't propagate their error to the root
2903 * I/O so don't mark these types of failures as pool-level
2904 * errors.
2906 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2907 return;
2909 mutex_enter(&vd->vdev_stat_lock);
2910 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2911 if (zio->io_error == ECKSUM)
2912 vs->vs_checksum_errors++;
2913 else
2914 vs->vs_read_errors++;
2916 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2917 vs->vs_write_errors++;
2918 mutex_exit(&vd->vdev_stat_lock);
2920 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2921 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2922 (flags & ZIO_FLAG_SCAN_THREAD) ||
2923 spa->spa_claiming)) {
2925 * This is either a normal write (not a repair), or it's
2926 * a repair induced by the scrub thread, or it's a repair
2927 * made by zil_claim() during spa_load() in the first txg.
2928 * In the normal case, we commit the DTL change in the same
2929 * txg as the block was born. In the scrub-induced repair
2930 * case, we know that scrubs run in first-pass syncing context,
2931 * so we commit the DTL change in spa_syncing_txg(spa).
2932 * In the zil_claim() case, we commit in spa_first_txg(spa).
2934 * We currently do not make DTL entries for failed spontaneous
2935 * self-healing writes triggered by normal (non-scrubbing)
2936 * reads, because we have no transactional context in which to
2937 * do so -- and it's not clear that it'd be desirable anyway.
2939 if (vd->vdev_ops->vdev_op_leaf) {
2940 uint64_t commit_txg = txg;
2941 if (flags & ZIO_FLAG_SCAN_THREAD) {
2942 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2943 ASSERT(spa_sync_pass(spa) == 1);
2944 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2945 commit_txg = spa_syncing_txg(spa);
2946 } else if (spa->spa_claiming) {
2947 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2948 commit_txg = spa_first_txg(spa);
2950 ASSERT(commit_txg >= spa_syncing_txg(spa));
2951 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2952 return;
2953 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2954 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2955 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2957 if (vd != rvd)
2958 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2963 * Update the in-core space usage stats for this vdev, its metaslab class,
2964 * and the root vdev.
2966 void
2967 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2968 int64_t space_delta)
2970 int64_t dspace_delta = space_delta;
2971 spa_t *spa = vd->vdev_spa;
2972 vdev_t *rvd = spa->spa_root_vdev;
2973 metaslab_group_t *mg = vd->vdev_mg;
2974 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2976 ASSERT(vd == vd->vdev_top);
2979 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2980 * factor. We must calculate this here and not at the root vdev
2981 * because the root vdev's psize-to-asize is simply the max of its
2982 * childrens', thus not accurate enough for us.
2984 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2985 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2986 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2987 vd->vdev_deflate_ratio;
2989 mutex_enter(&vd->vdev_stat_lock);
2990 vd->vdev_stat.vs_alloc += alloc_delta;
2991 vd->vdev_stat.vs_space += space_delta;
2992 vd->vdev_stat.vs_dspace += dspace_delta;
2993 mutex_exit(&vd->vdev_stat_lock);
2995 if (mc == spa_normal_class(spa)) {
2996 mutex_enter(&rvd->vdev_stat_lock);
2997 rvd->vdev_stat.vs_alloc += alloc_delta;
2998 rvd->vdev_stat.vs_space += space_delta;
2999 rvd->vdev_stat.vs_dspace += dspace_delta;
3000 mutex_exit(&rvd->vdev_stat_lock);
3003 if (mc != NULL) {
3004 ASSERT(rvd == vd->vdev_parent);
3005 ASSERT(vd->vdev_ms_count != 0);
3007 metaslab_class_space_update(mc,
3008 alloc_delta, defer_delta, space_delta, dspace_delta);
3013 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3014 * so that it will be written out next time the vdev configuration is synced.
3015 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3017 void
3018 vdev_config_dirty(vdev_t *vd)
3020 spa_t *spa = vd->vdev_spa;
3021 vdev_t *rvd = spa->spa_root_vdev;
3022 int c;
3024 ASSERT(spa_writeable(spa));
3027 * If this is an aux vdev (as with l2cache and spare devices), then we
3028 * update the vdev config manually and set the sync flag.
3030 if (vd->vdev_aux != NULL) {
3031 spa_aux_vdev_t *sav = vd->vdev_aux;
3032 nvlist_t **aux;
3033 uint_t naux;
3035 for (c = 0; c < sav->sav_count; c++) {
3036 if (sav->sav_vdevs[c] == vd)
3037 break;
3040 if (c == sav->sav_count) {
3042 * We're being removed. There's nothing more to do.
3044 ASSERT(sav->sav_sync == B_TRUE);
3045 return;
3048 sav->sav_sync = B_TRUE;
3050 if (nvlist_lookup_nvlist_array(sav->sav_config,
3051 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3052 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3053 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3056 ASSERT(c < naux);
3059 * Setting the nvlist in the middle if the array is a little
3060 * sketchy, but it will work.
3062 nvlist_free(aux[c]);
3063 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3065 return;
3069 * The dirty list is protected by the SCL_CONFIG lock. The caller
3070 * must either hold SCL_CONFIG as writer, or must be the sync thread
3071 * (which holds SCL_CONFIG as reader). There's only one sync thread,
3072 * so this is sufficient to ensure mutual exclusion.
3074 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3075 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3076 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3078 if (vd == rvd) {
3079 for (c = 0; c < rvd->vdev_children; c++)
3080 vdev_config_dirty(rvd->vdev_child[c]);
3081 } else {
3082 ASSERT(vd == vd->vdev_top);
3084 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3085 !vd->vdev_ishole)
3086 list_insert_head(&spa->spa_config_dirty_list, vd);
3090 void
3091 vdev_config_clean(vdev_t *vd)
3093 spa_t *spa = vd->vdev_spa;
3095 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3096 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3097 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3099 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3100 list_remove(&spa->spa_config_dirty_list, vd);
3104 * Mark a top-level vdev's state as dirty, so that the next pass of
3105 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3106 * the state changes from larger config changes because they require
3107 * much less locking, and are often needed for administrative actions.
3109 void
3110 vdev_state_dirty(vdev_t *vd)
3112 spa_t *spa = vd->vdev_spa;
3114 ASSERT(spa_writeable(spa));
3115 ASSERT(vd == vd->vdev_top);
3118 * The state list is protected by the SCL_STATE lock. The caller
3119 * must either hold SCL_STATE as writer, or must be the sync thread
3120 * (which holds SCL_STATE as reader). There's only one sync thread,
3121 * so this is sufficient to ensure mutual exclusion.
3123 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3124 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3125 spa_config_held(spa, SCL_STATE, RW_READER)));
3127 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3128 list_insert_head(&spa->spa_state_dirty_list, vd);
3131 void
3132 vdev_state_clean(vdev_t *vd)
3134 spa_t *spa = vd->vdev_spa;
3136 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3137 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3138 spa_config_held(spa, SCL_STATE, RW_READER)));
3140 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3141 list_remove(&spa->spa_state_dirty_list, vd);
3145 * Propagate vdev state up from children to parent.
3147 void
3148 vdev_propagate_state(vdev_t *vd)
3150 spa_t *spa = vd->vdev_spa;
3151 vdev_t *rvd = spa->spa_root_vdev;
3152 int degraded = 0, faulted = 0;
3153 int corrupted = 0;
3154 vdev_t *child;
3156 if (vd->vdev_children > 0) {
3157 for (int c = 0; c < vd->vdev_children; c++) {
3158 child = vd->vdev_child[c];
3161 * Don't factor holes into the decision.
3163 if (child->vdev_ishole)
3164 continue;
3166 if (!vdev_readable(child) ||
3167 (!vdev_writeable(child) && spa_writeable(spa))) {
3169 * Root special: if there is a top-level log
3170 * device, treat the root vdev as if it were
3171 * degraded.
3173 if (child->vdev_islog && vd == rvd)
3174 degraded++;
3175 else
3176 faulted++;
3177 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3178 degraded++;
3181 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3182 corrupted++;
3185 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3188 * Root special: if there is a top-level vdev that cannot be
3189 * opened due to corrupted metadata, then propagate the root
3190 * vdev's aux state as 'corrupt' rather than 'insufficient
3191 * replicas'.
3193 if (corrupted && vd == rvd &&
3194 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3195 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3196 VDEV_AUX_CORRUPT_DATA);
3199 if (vd->vdev_parent)
3200 vdev_propagate_state(vd->vdev_parent);
3204 * Set a vdev's state. If this is during an open, we don't update the parent
3205 * state, because we're in the process of opening children depth-first.
3206 * Otherwise, we propagate the change to the parent.
3208 * If this routine places a device in a faulted state, an appropriate ereport is
3209 * generated.
3211 void
3212 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3214 uint64_t save_state;
3215 spa_t *spa = vd->vdev_spa;
3217 if (state == vd->vdev_state) {
3218 vd->vdev_stat.vs_aux = aux;
3219 return;
3222 save_state = vd->vdev_state;
3224 vd->vdev_state = state;
3225 vd->vdev_stat.vs_aux = aux;
3228 * If we are setting the vdev state to anything but an open state, then
3229 * always close the underlying device unless the device has requested
3230 * a delayed close (i.e. we're about to remove or fault the device).
3231 * Otherwise, we keep accessible but invalid devices open forever.
3232 * We don't call vdev_close() itself, because that implies some extra
3233 * checks (offline, etc) that we don't want here. This is limited to
3234 * leaf devices, because otherwise closing the device will affect other
3235 * children.
3237 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3238 vd->vdev_ops->vdev_op_leaf)
3239 vd->vdev_ops->vdev_op_close(vd);
3242 * If we have brought this vdev back into service, we need
3243 * to notify fmd so that it can gracefully repair any outstanding
3244 * cases due to a missing device. We do this in all cases, even those
3245 * that probably don't correlate to a repaired fault. This is sure to
3246 * catch all cases, and we let the zfs-retire agent sort it out. If
3247 * this is a transient state it's OK, as the retire agent will
3248 * double-check the state of the vdev before repairing it.
3250 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3251 vd->vdev_prevstate != state)
3252 zfs_post_state_change(spa, vd);
3254 if (vd->vdev_removed &&
3255 state == VDEV_STATE_CANT_OPEN &&
3256 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3258 * If the previous state is set to VDEV_STATE_REMOVED, then this
3259 * device was previously marked removed and someone attempted to
3260 * reopen it. If this failed due to a nonexistent device, then
3261 * keep the device in the REMOVED state. We also let this be if
3262 * it is one of our special test online cases, which is only
3263 * attempting to online the device and shouldn't generate an FMA
3264 * fault.
3266 vd->vdev_state = VDEV_STATE_REMOVED;
3267 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3268 } else if (state == VDEV_STATE_REMOVED) {
3269 vd->vdev_removed = B_TRUE;
3270 } else if (state == VDEV_STATE_CANT_OPEN) {
3272 * If we fail to open a vdev during an import or recovery, we
3273 * mark it as "not available", which signifies that it was
3274 * never there to begin with. Failure to open such a device
3275 * is not considered an error.
3277 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3278 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3279 vd->vdev_ops->vdev_op_leaf)
3280 vd->vdev_not_present = 1;
3283 * Post the appropriate ereport. If the 'prevstate' field is
3284 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3285 * that this is part of a vdev_reopen(). In this case, we don't
3286 * want to post the ereport if the device was already in the
3287 * CANT_OPEN state beforehand.
3289 * If the 'checkremove' flag is set, then this is an attempt to
3290 * online the device in response to an insertion event. If we
3291 * hit this case, then we have detected an insertion event for a
3292 * faulted or offline device that wasn't in the removed state.
3293 * In this scenario, we don't post an ereport because we are
3294 * about to replace the device, or attempt an online with
3295 * vdev_forcefault, which will generate the fault for us.
3297 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3298 !vd->vdev_not_present && !vd->vdev_checkremove &&
3299 vd != spa->spa_root_vdev) {
3300 const char *class;
3302 switch (aux) {
3303 case VDEV_AUX_OPEN_FAILED:
3304 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3305 break;
3306 case VDEV_AUX_CORRUPT_DATA:
3307 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3308 break;
3309 case VDEV_AUX_NO_REPLICAS:
3310 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3311 break;
3312 case VDEV_AUX_BAD_GUID_SUM:
3313 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3314 break;
3315 case VDEV_AUX_TOO_SMALL:
3316 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3317 break;
3318 case VDEV_AUX_BAD_LABEL:
3319 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3320 break;
3321 default:
3322 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3325 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3328 /* Erase any notion of persistent removed state */
3329 vd->vdev_removed = B_FALSE;
3330 } else {
3331 vd->vdev_removed = B_FALSE;
3334 if (!isopen && vd->vdev_parent)
3335 vdev_propagate_state(vd->vdev_parent);
3339 * Check the vdev configuration to ensure that it's capable of supporting
3340 * a root pool. We do not support partial configuration.
3341 * In addition, only a single top-level vdev is allowed.
3343 boolean_t
3344 vdev_is_bootable(vdev_t *vd)
3346 if (!vd->vdev_ops->vdev_op_leaf) {
3347 char *vdev_type = vd->vdev_ops->vdev_op_type;
3349 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3350 vd->vdev_children > 1) {
3351 return (B_FALSE);
3352 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3353 return (B_FALSE);
3357 for (int c = 0; c < vd->vdev_children; c++) {
3358 if (!vdev_is_bootable(vd->vdev_child[c]))
3359 return (B_FALSE);
3361 return (B_TRUE);
3365 * Load the state from the original vdev tree (ovd) which
3366 * we've retrieved from the MOS config object. If the original
3367 * vdev was offline or faulted then we transfer that state to the
3368 * device in the current vdev tree (nvd).
3370 void
3371 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3373 spa_t *spa = nvd->vdev_spa;
3375 ASSERT(nvd->vdev_top->vdev_islog);
3376 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3377 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3379 for (int c = 0; c < nvd->vdev_children; c++)
3380 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3382 if (nvd->vdev_ops->vdev_op_leaf) {
3384 * Restore the persistent vdev state
3386 nvd->vdev_offline = ovd->vdev_offline;
3387 nvd->vdev_faulted = ovd->vdev_faulted;
3388 nvd->vdev_degraded = ovd->vdev_degraded;
3389 nvd->vdev_removed = ovd->vdev_removed;
3394 * Determine if a log device has valid content. If the vdev was
3395 * removed or faulted in the MOS config then we know that
3396 * the content on the log device has already been written to the pool.
3398 boolean_t
3399 vdev_log_state_valid(vdev_t *vd)
3401 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3402 !vd->vdev_removed)
3403 return (B_TRUE);
3405 for (int c = 0; c < vd->vdev_children; c++)
3406 if (vdev_log_state_valid(vd->vdev_child[c]))
3407 return (B_TRUE);
3409 return (B_FALSE);
3413 * Expand a vdev if possible.
3415 void
3416 vdev_expand(vdev_t *vd, uint64_t txg)
3418 ASSERT(vd->vdev_top == vd);
3419 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3421 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3422 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3423 vdev_config_dirty(vd);
3428 * Split a vdev.
3430 void
3431 vdev_split(vdev_t *vd)
3433 vdev_t *cvd, *pvd = vd->vdev_parent;
3435 vdev_remove_child(pvd, vd);
3436 vdev_compact_children(pvd);
3438 cvd = pvd->vdev_child[0];
3439 if (pvd->vdev_children == 1) {
3440 vdev_remove_parent(cvd);
3441 cvd->vdev_splitting = B_TRUE;
3443 vdev_propagate_state(cvd);
3446 void
3447 vdev_deadman(vdev_t *vd)
3449 for (int c = 0; c < vd->vdev_children; c++) {
3450 vdev_t *cvd = vd->vdev_child[c];
3452 vdev_deadman(cvd);
3455 if (vd->vdev_ops->vdev_op_leaf) {
3456 vdev_queue_t *vq = &vd->vdev_queue;
3458 mutex_enter(&vq->vq_lock);
3459 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3460 spa_t *spa = vd->vdev_spa;
3461 zio_t *fio;
3462 uint64_t delta;
3465 * Look at the head of all the pending queues,
3466 * if any I/O has been outstanding for longer than
3467 * the spa_deadman_synctime we panic the system.
3469 fio = avl_first(&vq->vq_active_tree);
3470 delta = gethrtime() - fio->io_timestamp;
3471 if (delta > spa_deadman_synctime(spa)) {
3472 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3473 "delta %lluns, last io %lluns",
3474 fio->io_timestamp, delta,
3475 vq->vq_io_complete_ts);
3476 fm_panic("I/O to pool '%s' appears to be "
3477 "hung.", spa_name(spa));
3480 mutex_exit(&vq->vq_lock);