4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2013, Joyent, Inc. All rights reserved.
27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/sysmacros.h>
35 #include <sys/session.h>
36 #include <sys/strsubr.h>
37 #include <sys/signal.h>
39 #include <sys/priocntl.h>
40 #include <sys/class.h>
42 #include <sys/procset.h>
43 #include <sys/debug.h>
45 #include <sys/tspriocntl.h>
46 #include <sys/iapriocntl.h>
48 #include <sys/errno.h>
49 #include <sys/cpuvar.h>
50 #include <sys/systm.h> /* for lbolt */
51 #include <sys/vtrace.h>
52 #include <sys/vmsystm.h>
53 #include <sys/schedctl.h>
54 #include <sys/tnf_probe.h>
55 #include <sys/atomic.h>
56 #include <sys/policy.h>
58 #include <sys/cpupart.h>
60 #include <vm/seg_kmem.h>
61 #include <sys/modctl.h>
62 #include <sys/cpucaps.h>
64 static pri_t
ts_init(id_t
, int, classfuncs_t
**);
66 static struct sclass csw
= {
72 static struct modlsched modlsched
= {
73 &mod_schedops
, "time sharing sched class", &csw
76 static struct modlinkage modlinkage
= {
77 MODREV_1
, (void *)&modlsched
, NULL
83 return (mod_install(&modlinkage
));
89 return (EBUSY
); /* don't remove TS for now */
93 _info(struct modinfo
*modinfop
)
95 return (mod_info(&modlinkage
, modinfop
));
99 * Class specific code for the time-sharing class
104 * Extern declarations for variables defined in the ts master file
108 pri_t ts_maxupri
= TSMAXUPRI
; /* max time-sharing user priority */
109 pri_t ts_maxumdpri
; /* maximum user mode ts priority */
111 pri_t ia_maxupri
= IAMAXUPRI
; /* max interactive user priority */
112 pri_t ia_boost
= IA_BOOST
; /* boost value for interactive */
114 tsdpent_t
*ts_dptbl
; /* time-sharing disp parameter table */
115 pri_t
*ts_kmdpris
; /* array of global pris used by ts procs when */
116 /* sleeping or running in kernel after sleep */
120 int ts_sleep_promote
= 1;
122 #define tsmedumdpri (ts_maxumdpri >> 1)
124 #define TS_NEWUMDPRI(tspp) \
127 pri = (tspp)->ts_cpupri + (tspp)->ts_upri + (tspp)->ts_boost; \
128 if (pri > ts_maxumdpri) \
129 (tspp)->ts_umdpri = ts_maxumdpri; \
131 (tspp)->ts_umdpri = 0; \
133 (tspp)->ts_umdpri = pri; \
134 ASSERT((tspp)->ts_umdpri >= 0 && (tspp)->ts_umdpri <= ts_maxumdpri); \
138 * The tsproc_t structures are kept in an array of circular doubly linked
139 * lists. A hash on the thread pointer is used to determine which list
140 * each thread should be placed. Each list has a dummy "head" which is
141 * never removed, so the list is never empty. ts_update traverses these
142 * lists to update the priorities of threads that have been waiting on
146 #define TS_LISTS 16 /* number of lists, must be power of 2 */
148 /* hash function, argument is a thread pointer */
149 #define TS_LIST_HASH(tp) (((uintptr_t)(tp) >> 9) & (TS_LISTS - 1))
151 /* iterate to the next list */
152 #define TS_LIST_NEXT(i) (((i) + 1) & (TS_LISTS - 1))
155 * Insert thread into the appropriate tsproc list.
157 #define TS_LIST_INSERT(tspp) \
159 int index = TS_LIST_HASH(tspp->ts_tp); \
160 kmutex_t *lockp = &ts_list_lock[index]; \
161 tsproc_t *headp = &ts_plisthead[index]; \
162 mutex_enter(lockp); \
163 tspp->ts_next = headp->ts_next; \
164 tspp->ts_prev = headp; \
165 headp->ts_next->ts_prev = tspp; \
166 headp->ts_next = tspp; \
171 * Remove thread from tsproc list.
173 #define TS_LIST_DELETE(tspp) \
175 int index = TS_LIST_HASH(tspp->ts_tp); \
176 kmutex_t *lockp = &ts_list_lock[index]; \
177 mutex_enter(lockp); \
178 tspp->ts_prev->ts_next = tspp->ts_next; \
179 tspp->ts_next->ts_prev = tspp->ts_prev; \
184 static int ts_admin(caddr_t
, cred_t
*);
185 static int ts_enterclass(kthread_t
*, id_t
, void *, cred_t
*, void *);
186 static int ts_fork(kthread_t
*, kthread_t
*, void *);
187 static int ts_getclinfo(void *);
188 static int ts_getclpri(pcpri_t
*);
189 static int ts_parmsin(void *);
190 static int ts_parmsout(void *, pc_vaparms_t
*);
191 static int ts_vaparmsin(void *, pc_vaparms_t
*);
192 static int ts_vaparmsout(void *, pc_vaparms_t
*);
193 static int ts_parmsset(kthread_t
*, void *, id_t
, cred_t
*);
194 static void ts_exit(kthread_t
*);
195 static int ts_donice(kthread_t
*, cred_t
*, int, int *);
196 static int ts_doprio(kthread_t
*, cred_t
*, int, int *);
197 static void ts_exitclass(void *);
198 static int ts_canexit(kthread_t
*, cred_t
*);
199 static void ts_forkret(kthread_t
*, kthread_t
*);
200 static void ts_nullsys();
201 static void ts_parmsget(kthread_t
*, void *);
202 static void ts_preempt(kthread_t
*);
203 static void ts_setrun(kthread_t
*);
204 static void ts_sleep(kthread_t
*);
205 static pri_t
ts_swapin(kthread_t
*, int);
206 static pri_t
ts_swapout(kthread_t
*, int);
207 static void ts_tick(kthread_t
*);
208 static void ts_trapret(kthread_t
*);
209 static void ts_update(void *);
210 static int ts_update_list(int);
211 static void ts_wakeup(kthread_t
*);
212 static pri_t
ts_globpri(kthread_t
*);
213 static void ts_yield(kthread_t
*);
214 extern tsdpent_t
*ts_getdptbl(void);
215 extern pri_t
*ts_getkmdpris(void);
216 extern pri_t
td_getmaxumdpri(void);
217 static int ts_alloc(void **, int);
218 static void ts_free(void *);
220 pri_t
ia_init(id_t
, int, classfuncs_t
**);
221 static int ia_getclinfo(void *);
222 static int ia_getclpri(pcpri_t
*);
223 static int ia_parmsin(void *);
224 static int ia_vaparmsin(void *, pc_vaparms_t
*);
225 static int ia_vaparmsout(void *, pc_vaparms_t
*);
226 static int ia_parmsset(kthread_t
*, void *, id_t
, cred_t
*);
227 static void ia_parmsget(kthread_t
*, void *);
228 static void ia_set_process_group(pid_t
, pid_t
, pid_t
);
230 static void ts_change_priority(kthread_t
*, tsproc_t
*);
232 extern pri_t ts_maxkmdpri
; /* maximum kernel mode ts priority */
233 static pri_t ts_maxglobpri
; /* maximum global priority used by ts class */
234 static kmutex_t ts_dptblock
; /* protects time sharing dispatch table */
235 static kmutex_t ts_list_lock
[TS_LISTS
]; /* protects tsproc lists */
236 static tsproc_t ts_plisthead
[TS_LISTS
]; /* dummy tsproc at head of lists */
238 static gid_t IA_gid
= 0;
240 static struct classfuncs ts_classfuncs
= {
241 /* class functions */
252 /* thread functions */
260 ts_nullsys
, /* stop */
262 ts_nullsys
, /* active */
263 ts_nullsys
, /* inactive */
274 ts_nullsys
, /* set_process_group */
280 * ia_classfuncs is used for interactive class threads; IA threads are stored
281 * on the same class list as TS threads, and most of the class functions are
282 * identical, but a few have different enough functionality to require their
285 static struct classfuncs ia_classfuncs
= {
286 /* class functions */
297 /* thread functions */
305 ts_nullsys
, /* stop */
307 ts_nullsys
, /* active */
308 ts_nullsys
, /* inactive */
319 ia_set_process_group
,
326 * Time sharing class initialization. Called by dispinit() at boot time.
327 * We can ignore the clparmsz argument since we know that the smallest
328 * possible parameter buffer is big enough for us.
332 ts_init(id_t cid
, int clparmsz
, classfuncs_t
**clfuncspp
)
335 extern pri_t
ts_getmaxumdpri(void);
337 ts_dptbl
= ts_getdptbl();
338 ts_kmdpris
= ts_getkmdpris();
339 ts_maxumdpri
= ts_getmaxumdpri();
340 ts_maxglobpri
= MAX(ts_kmdpris
[0], ts_dptbl
[ts_maxumdpri
].ts_globpri
);
343 * Initialize the tsproc lists.
345 for (i
= 0; i
< TS_LISTS
; i
++) {
346 ts_plisthead
[i
].ts_next
= ts_plisthead
[i
].ts_prev
=
351 * We're required to return a pointer to our classfuncs
352 * structure and the highest global priority value we use.
354 *clfuncspp
= &ts_classfuncs
;
355 return (ts_maxglobpri
);
360 * Interactive class scheduler initialization
364 ia_init(id_t cid
, int clparmsz
, classfuncs_t
**clfuncspp
)
367 * We're required to return a pointer to our classfuncs
368 * structure and the highest global priority value we use.
371 *clfuncspp
= &ia_classfuncs
;
372 return (ts_maxglobpri
);
377 * Get or reset the ts_dptbl values per the user's request.
380 ts_admin(caddr_t uaddr
, cred_t
*reqpcredp
)
388 if (get_udatamodel() == DATAMODEL_NATIVE
) {
389 if (copyin(uaddr
, &tsadmin
, sizeof (tsadmin_t
)))
392 #ifdef _SYSCALL32_IMPL
394 /* get tsadmin struct from ILP32 caller */
395 tsadmin32_t tsadmin32
;
396 if (copyin(uaddr
, &tsadmin32
, sizeof (tsadmin32_t
)))
399 (struct tsdpent
*)(uintptr_t)tsadmin32
.ts_dpents
;
400 tsadmin
.ts_ndpents
= tsadmin32
.ts_ndpents
;
401 tsadmin
.ts_cmd
= tsadmin32
.ts_cmd
;
403 #endif /* _SYSCALL32_IMPL */
405 tsdpsz
= (ts_maxumdpri
+ 1) * sizeof (tsdpent_t
);
407 switch (tsadmin
.ts_cmd
) {
409 tsadmin
.ts_ndpents
= ts_maxumdpri
+ 1;
411 if (get_udatamodel() == DATAMODEL_NATIVE
) {
412 if (copyout(&tsadmin
, uaddr
, sizeof (tsadmin_t
)))
415 #ifdef _SYSCALL32_IMPL
417 /* return tsadmin struct to ILP32 caller */
418 tsadmin32_t tsadmin32
;
419 tsadmin32
.ts_dpents
=
420 (caddr32_t
)(uintptr_t)tsadmin
.ts_dpents
;
421 tsadmin32
.ts_ndpents
= tsadmin
.ts_ndpents
;
422 tsadmin32
.ts_cmd
= tsadmin
.ts_cmd
;
423 if (copyout(&tsadmin32
, uaddr
, sizeof (tsadmin32_t
)))
426 #endif /* _SYSCALL32_IMPL */
430 userdpsz
= MIN(tsadmin
.ts_ndpents
* sizeof (tsdpent_t
),
432 if (copyout(ts_dptbl
, tsadmin
.ts_dpents
, userdpsz
))
435 tsadmin
.ts_ndpents
= userdpsz
/ sizeof (tsdpent_t
);
437 if (get_udatamodel() == DATAMODEL_NATIVE
) {
438 if (copyout(&tsadmin
, uaddr
, sizeof (tsadmin_t
)))
441 #ifdef _SYSCALL32_IMPL
443 /* return tsadmin struct to ILP32 callers */
444 tsadmin32_t tsadmin32
;
445 tsadmin32
.ts_dpents
=
446 (caddr32_t
)(uintptr_t)tsadmin
.ts_dpents
;
447 tsadmin32
.ts_ndpents
= tsadmin
.ts_ndpents
;
448 tsadmin32
.ts_cmd
= tsadmin
.ts_cmd
;
449 if (copyout(&tsadmin32
, uaddr
, sizeof (tsadmin32_t
)))
452 #endif /* _SYSCALL32_IMPL */
457 * We require that the requesting process has sufficient
458 * priveleges. We also require that the table supplied by
459 * the user exactly match the current ts_dptbl in size.
461 if (secpolicy_dispadm(reqpcredp
) != 0)
464 if (tsadmin
.ts_ndpents
* sizeof (tsdpent_t
) != tsdpsz
) {
469 * We read the user supplied table into a temporary buffer
470 * where it is validated before being copied over the
473 tmpdpp
= kmem_alloc(tsdpsz
, KM_SLEEP
);
474 if (copyin((caddr_t
)tsadmin
.ts_dpents
, (caddr_t
)tmpdpp
,
476 kmem_free(tmpdpp
, tsdpsz
);
479 for (i
= 0; i
< tsadmin
.ts_ndpents
; i
++) {
482 * Validate the user supplied values. All we are doing
483 * here is verifying that the values are within their
484 * allowable ranges and will not panic the system. We
485 * make no attempt to ensure that the resulting
486 * configuration makes sense or results in reasonable
489 if (tmpdpp
[i
].ts_quantum
<= 0) {
490 kmem_free(tmpdpp
, tsdpsz
);
493 if (tmpdpp
[i
].ts_tqexp
> ts_maxumdpri
||
494 tmpdpp
[i
].ts_tqexp
< 0) {
495 kmem_free(tmpdpp
, tsdpsz
);
498 if (tmpdpp
[i
].ts_slpret
> ts_maxumdpri
||
499 tmpdpp
[i
].ts_slpret
< 0) {
500 kmem_free(tmpdpp
, tsdpsz
);
503 if (tmpdpp
[i
].ts_maxwait
< 0) {
504 kmem_free(tmpdpp
, tsdpsz
);
507 if (tmpdpp
[i
].ts_lwait
> ts_maxumdpri
||
508 tmpdpp
[i
].ts_lwait
< 0) {
509 kmem_free(tmpdpp
, tsdpsz
);
515 * Copy the user supplied values over the current ts_dptbl
516 * values. The ts_globpri member is read-only so we don't
519 mutex_enter(&ts_dptblock
);
520 for (i
= 0; i
< tsadmin
.ts_ndpents
; i
++) {
521 ts_dptbl
[i
].ts_quantum
= tmpdpp
[i
].ts_quantum
;
522 ts_dptbl
[i
].ts_tqexp
= tmpdpp
[i
].ts_tqexp
;
523 ts_dptbl
[i
].ts_slpret
= tmpdpp
[i
].ts_slpret
;
524 ts_dptbl
[i
].ts_maxwait
= tmpdpp
[i
].ts_maxwait
;
525 ts_dptbl
[i
].ts_lwait
= tmpdpp
[i
].ts_lwait
;
527 mutex_exit(&ts_dptblock
);
528 kmem_free(tmpdpp
, tsdpsz
);
539 * Allocate a time-sharing class specific thread structure and
540 * initialize it with the parameters supplied. Also move the thread
541 * to specified time-sharing priority.
544 ts_enterclass(kthread_t
*t
, id_t cid
, void *parmsp
,
545 cred_t
*reqpcredp
, void *bufp
)
547 tsparms_t
*tsparmsp
= (tsparms_t
*)parmsp
;
551 static uint32_t tspexists
= 0; /* set on first occurrence of */
552 /* a time-sharing process */
554 tspp
= (tsproc_t
*)bufp
;
555 ASSERT(tspp
!= NULL
);
558 * Initialize the tsproc structure.
560 tspp
->ts_cpupri
= tsmedumdpri
;
563 * Check to make sure caller is either privileged or the
564 * window system. When the window system is converted
565 * to using privileges, the second check can go away.
567 if (reqpcredp
!= NULL
&& !groupmember(IA_gid
, reqpcredp
) &&
568 secpolicy_setpriority(reqpcredp
) != 0)
571 * Belongs to IA "class", so set appropriate flags.
572 * Mark as 'on' so it will not be a swap victim
575 tspp
->ts_flags
= TSIA
| TSIASET
;
576 tspp
->ts_boost
= ia_boost
;
582 if (tsparmsp
== NULL
) {
584 * Use default values.
586 tspp
->ts_uprilim
= tspp
->ts_upri
= 0;
587 tspp
->ts_nice
= NZERO
;
590 * Use supplied values.
592 if (tsparmsp
->ts_uprilim
== TS_NOCHANGE
)
595 if (tsparmsp
->ts_uprilim
> 0 &&
596 secpolicy_setpriority(reqpcredp
) != 0)
598 reqtsuprilim
= tsparmsp
->ts_uprilim
;
601 if (tsparmsp
->ts_upri
== TS_NOCHANGE
) {
602 reqtsupri
= reqtsuprilim
;
604 if (tsparmsp
->ts_upri
> 0 &&
605 secpolicy_setpriority(reqpcredp
) != 0)
608 * Set the user priority to the requested value
609 * or the upri limit, whichever is lower.
611 reqtsupri
= tsparmsp
->ts_upri
;
612 if (reqtsupri
> reqtsuprilim
)
613 reqtsupri
= reqtsuprilim
;
617 tspp
->ts_uprilim
= reqtsuprilim
;
618 tspp
->ts_upri
= reqtsupri
;
619 tspp
->ts_nice
= NZERO
- (NZERO
* reqtsupri
) / ts_maxupri
;
623 tspp
->ts_dispwait
= 0;
624 tspp
->ts_timeleft
= ts_dptbl
[tspp
->ts_cpupri
].ts_quantum
;
626 cpucaps_sc_init(&tspp
->ts_caps
);
629 * Reset priority. Process goes to a "user mode" priority
630 * here regardless of whether or not it has slept since
631 * entering the kernel.
633 thread_lock(t
); /* get dispatcher lock on thread */
634 t
->t_clfuncs
= &(sclass
[cid
].cl_funcs
->thread
);
636 t
->t_cldata
= (void *)tspp
;
637 t
->t_schedflag
&= ~TS_RUNQMATCH
;
638 ts_change_priority(t
, tspp
);
642 * Link new structure into tsproc list.
644 TS_LIST_INSERT(tspp
);
647 * If this is the first time-sharing thread to occur since
648 * boot we set up the initial call to ts_update() here.
649 * Use an atomic compare-and-swap since that's easier and
650 * faster than a mutex (but check with an ordinary load first
651 * since most of the time this will already be done).
653 if (tspexists
== 0 && atomic_cas_32(&tspexists
, 0, 1) == 0)
654 (void) timeout(ts_update
, NULL
, hz
);
661 * Free tsproc structure of thread.
664 ts_exitclass(void *procp
)
666 tsproc_t
*tspp
= (tsproc_t
*)procp
;
668 /* Remove tsproc_t structure from list */
669 TS_LIST_DELETE(tspp
);
670 kmem_free(tspp
, sizeof (tsproc_t
));
675 ts_canexit(kthread_t
*t
, cred_t
*cred
)
678 * A thread can always leave a TS/IA class
684 ts_fork(kthread_t
*t
, kthread_t
*ct
, void *bufp
)
686 tsproc_t
*ptspp
; /* ptr to parent's tsproc structure */
687 tsproc_t
*ctspp
; /* ptr to child's tsproc structure */
689 ASSERT(MUTEX_HELD(&ttoproc(t
)->p_lock
));
691 ctspp
= (tsproc_t
*)bufp
;
692 ASSERT(ctspp
!= NULL
);
693 ptspp
= (tsproc_t
*)t
->t_cldata
;
695 * Initialize child's tsproc structure.
698 ctspp
->ts_timeleft
= ts_dptbl
[ptspp
->ts_cpupri
].ts_quantum
;
699 ctspp
->ts_cpupri
= ptspp
->ts_cpupri
;
700 ctspp
->ts_boost
= ptspp
->ts_boost
;
701 ctspp
->ts_uprilim
= ptspp
->ts_uprilim
;
702 ctspp
->ts_upri
= ptspp
->ts_upri
;
704 ctspp
->ts_nice
= ptspp
->ts_nice
;
705 ctspp
->ts_dispwait
= 0;
706 ctspp
->ts_flags
= ptspp
->ts_flags
& ~(TSKPRI
| TSBACKQ
| TSRESTORE
);
708 cpucaps_sc_init(&ctspp
->ts_caps
);
712 * Link new structure into tsproc list.
714 ct
->t_cldata
= (void *)ctspp
;
715 TS_LIST_INSERT(ctspp
);
721 * Child is placed at back of dispatcher queue and parent gives
722 * up processor so that the child runs first after the fork.
723 * This allows the child immediately execing to break the multiple
724 * use of copy on write pages with no disk home. The parent will
725 * get to steal them back rather than uselessly copying them.
728 ts_forkret(kthread_t
*t
, kthread_t
*ct
)
730 proc_t
*pp
= ttoproc(t
);
731 proc_t
*cp
= ttoproc(ct
);
734 ASSERT(t
== curthread
);
735 ASSERT(MUTEX_HELD(&pidlock
));
738 * Grab the child's p_lock before dropping pidlock to ensure
739 * the process does not disappear before we set it running.
741 mutex_enter(&cp
->p_lock
);
743 mutex_exit(&cp
->p_lock
);
745 mutex_enter(&pp
->p_lock
);
746 mutex_exit(&pidlock
);
750 tspp
= (tsproc_t
*)(t
->t_cldata
);
751 tspp
->ts_cpupri
= ts_dptbl
[tspp
->ts_cpupri
].ts_tqexp
;
753 tspp
->ts_timeleft
= ts_dptbl
[tspp
->ts_cpupri
].ts_quantum
;
754 tspp
->ts_dispwait
= 0;
755 t
->t_pri
= ts_dptbl
[tspp
->ts_umdpri
].ts_globpri
;
756 ASSERT(t
->t_pri
>= 0 && t
->t_pri
<= ts_maxglobpri
);
757 tspp
->ts_flags
&= ~TSKPRI
;
758 THREAD_TRANSITION(t
);
762 * Safe to drop p_lock now since since it is safe to change
763 * the scheduling class after this point.
765 mutex_exit(&pp
->p_lock
);
772 * Get information about the time-sharing class into the buffer
773 * pointed to by tsinfop. The maximum configured user priority
774 * is the only information we supply. ts_getclinfo() is called
775 * for TS threads, and ia_getclinfo() is called for IA threads.
778 ts_getclinfo(void *infop
)
780 tsinfo_t
*tsinfop
= (tsinfo_t
*)infop
;
781 tsinfop
->ts_maxupri
= ts_maxupri
;
786 ia_getclinfo(void *infop
)
788 iainfo_t
*iainfop
= (iainfo_t
*)infop
;
789 iainfop
->ia_maxupri
= ia_maxupri
;
795 * Return the user mode scheduling priority range.
798 ts_getclpri(pcpri_t
*pcprip
)
800 pcprip
->pc_clpmax
= ts_maxupri
;
801 pcprip
->pc_clpmin
= -ts_maxupri
;
807 ia_getclpri(pcpri_t
*pcprip
)
809 pcprip
->pc_clpmax
= ia_maxupri
;
810 pcprip
->pc_clpmin
= -ia_maxupri
;
821 * Get the time-sharing parameters of the thread pointed to by
822 * tsprocp into the buffer pointed to by tsparmsp. ts_parmsget()
823 * is called for TS threads, and ia_parmsget() is called for IA
827 ts_parmsget(kthread_t
*t
, void *parmsp
)
829 tsproc_t
*tspp
= (tsproc_t
*)t
->t_cldata
;
830 tsparms_t
*tsparmsp
= (tsparms_t
*)parmsp
;
832 tsparmsp
->ts_uprilim
= tspp
->ts_uprilim
;
833 tsparmsp
->ts_upri
= tspp
->ts_upri
;
837 ia_parmsget(kthread_t
*t
, void *parmsp
)
839 tsproc_t
*tspp
= (tsproc_t
*)t
->t_cldata
;
840 iaparms_t
*iaparmsp
= (iaparms_t
*)parmsp
;
842 iaparmsp
->ia_uprilim
= tspp
->ts_uprilim
;
843 iaparmsp
->ia_upri
= tspp
->ts_upri
;
844 if (tspp
->ts_flags
& TSIASET
)
845 iaparmsp
->ia_mode
= IA_SET_INTERACTIVE
;
847 iaparmsp
->ia_mode
= IA_INTERACTIVE_OFF
;
852 * Check the validity of the time-sharing parameters in the buffer
853 * pointed to by tsparmsp.
854 * ts_parmsin() is called for TS threads, and ia_parmsin() is called
858 ts_parmsin(void *parmsp
)
860 tsparms_t
*tsparmsp
= (tsparms_t
*)parmsp
;
862 * Check validity of parameters.
864 if ((tsparmsp
->ts_uprilim
> ts_maxupri
||
865 tsparmsp
->ts_uprilim
< -ts_maxupri
) &&
866 tsparmsp
->ts_uprilim
!= TS_NOCHANGE
)
869 if ((tsparmsp
->ts_upri
> ts_maxupri
||
870 tsparmsp
->ts_upri
< -ts_maxupri
) &&
871 tsparmsp
->ts_upri
!= TS_NOCHANGE
)
878 ia_parmsin(void *parmsp
)
880 iaparms_t
*iaparmsp
= (iaparms_t
*)parmsp
;
882 if ((iaparmsp
->ia_uprilim
> ia_maxupri
||
883 iaparmsp
->ia_uprilim
< -ia_maxupri
) &&
884 iaparmsp
->ia_uprilim
!= IA_NOCHANGE
) {
888 if ((iaparmsp
->ia_upri
> ia_maxupri
||
889 iaparmsp
->ia_upri
< -ia_maxupri
) &&
890 iaparmsp
->ia_upri
!= IA_NOCHANGE
) {
899 * Check the validity of the time-sharing parameters in the pc_vaparms_t
900 * structure vaparmsp and put them in the buffer pointed to by tsparmsp.
901 * pc_vaparms_t contains (key, value) pairs of parameter.
902 * ts_vaparmsin() is called for TS threads, and ia_vaparmsin() is called
903 * for IA threads. ts_vaparmsin() is the variable parameter version of
904 * ts_parmsin() and ia_vaparmsin() is the variable parameter version of
908 ts_vaparmsin(void *parmsp
, pc_vaparms_t
*vaparmsp
)
910 tsparms_t
*tsparmsp
= (tsparms_t
*)parmsp
;
914 pc_vaparm_t
*vpp
= &vaparmsp
->pc_parms
[0];
918 * TS_NOCHANGE (-32768) is outside of the range of values for
919 * ts_uprilim and ts_upri. If the structure tsparms_t is changed,
920 * TS_NOCHANGE should be replaced by a flag word (in the same manner
923 tsparmsp
->ts_uprilim
= TS_NOCHANGE
;
924 tsparmsp
->ts_upri
= TS_NOCHANGE
;
927 * Get the varargs parameter and check validity of parameters.
929 if (vaparmsp
->pc_vaparmscnt
> PC_VAPARMCNT
)
932 for (cnt
= 0; cnt
< vaparmsp
->pc_vaparmscnt
; cnt
++, vpp
++) {
934 switch (vpp
->pc_key
) {
938 tsparmsp
->ts_uprilim
= (pri_t
)vpp
->pc_parm
;
939 if (tsparmsp
->ts_uprilim
> ts_maxupri
||
940 tsparmsp
->ts_uprilim
< -ts_maxupri
)
947 tsparmsp
->ts_upri
= (pri_t
)vpp
->pc_parm
;
948 if (tsparmsp
->ts_upri
> ts_maxupri
||
949 tsparmsp
->ts_upri
< -ts_maxupri
)
958 if (vaparmsp
->pc_vaparmscnt
== 0) {
960 * Use default parameters.
962 tsparmsp
->ts_upri
= tsparmsp
->ts_uprilim
= 0;
969 ia_vaparmsin(void *parmsp
, pc_vaparms_t
*vaparmsp
)
971 iaparms_t
*iaparmsp
= (iaparms_t
*)parmsp
;
976 pc_vaparm_t
*vpp
= &vaparmsp
->pc_parms
[0];
979 * IA_NOCHANGE (-32768) is outside of the range of values for
980 * ia_uprilim, ia_upri and ia_mode. If the structure iaparms_t is
981 * changed, IA_NOCHANGE should be replaced by a flag word (in the
982 * same manner as in rt.c).
984 iaparmsp
->ia_uprilim
= IA_NOCHANGE
;
985 iaparmsp
->ia_upri
= IA_NOCHANGE
;
986 iaparmsp
->ia_mode
= IA_NOCHANGE
;
989 * Get the varargs parameter and check validity of parameters.
991 if (vaparmsp
->pc_vaparmscnt
> PC_VAPARMCNT
)
994 for (cnt
= 0; cnt
< vaparmsp
->pc_vaparmscnt
; cnt
++, vpp
++) {
996 switch (vpp
->pc_key
) {
1000 iaparmsp
->ia_uprilim
= (pri_t
)vpp
->pc_parm
;
1001 if (iaparmsp
->ia_uprilim
> ia_maxupri
||
1002 iaparmsp
->ia_uprilim
< -ia_maxupri
)
1009 iaparmsp
->ia_upri
= (pri_t
)vpp
->pc_parm
;
1010 if (iaparmsp
->ia_upri
> ia_maxupri
||
1011 iaparmsp
->ia_upri
< -ia_maxupri
)
1018 iaparmsp
->ia_mode
= (int)vpp
->pc_parm
;
1019 if (iaparmsp
->ia_mode
!= IA_SET_INTERACTIVE
&&
1020 iaparmsp
->ia_mode
!= IA_INTERACTIVE_OFF
)
1029 if (vaparmsp
->pc_vaparmscnt
== 0) {
1031 * Use default parameters.
1033 iaparmsp
->ia_upri
= iaparmsp
->ia_uprilim
= 0;
1034 iaparmsp
->ia_mode
= IA_SET_INTERACTIVE
;
1041 * Nothing to do here but return success.
1045 ts_parmsout(void *parmsp
, pc_vaparms_t
*vaparmsp
)
1052 * Copy all selected time-sharing class parameters to the user.
1053 * The parameters are specified by a key.
1056 ts_vaparmsout(void *prmsp
, pc_vaparms_t
*vaparmsp
)
1058 tsparms_t
*tsprmsp
= (tsparms_t
*)prmsp
;
1062 pc_vaparm_t
*vpp
= &vaparmsp
->pc_parms
[0];
1064 ASSERT(MUTEX_NOT_HELD(&curproc
->p_lock
));
1066 if (vaparmsp
->pc_vaparmscnt
> PC_VAPARMCNT
)
1069 for (cnt
= 0; cnt
< vaparmsp
->pc_vaparmscnt
; cnt
++, vpp
++) {
1071 switch (vpp
->pc_key
) {
1075 if (copyout(&tsprmsp
->ts_uprilim
,
1076 (caddr_t
)(uintptr_t)vpp
->pc_parm
, sizeof (pri_t
)))
1083 if (copyout(&tsprmsp
->ts_upri
,
1084 (caddr_t
)(uintptr_t)vpp
->pc_parm
, sizeof (pri_t
)))
1098 * Copy all selected interactive class parameters to the user.
1099 * The parameters are specified by a key.
1102 ia_vaparmsout(void *prmsp
, pc_vaparms_t
*vaparmsp
)
1104 iaparms_t
*iaprmsp
= (iaparms_t
*)prmsp
;
1109 pc_vaparm_t
*vpp
= &vaparmsp
->pc_parms
[0];
1111 ASSERT(MUTEX_NOT_HELD(&curproc
->p_lock
));
1113 if (vaparmsp
->pc_vaparmscnt
> PC_VAPARMCNT
)
1116 for (cnt
= 0; cnt
< vaparmsp
->pc_vaparmscnt
; cnt
++, vpp
++) {
1118 switch (vpp
->pc_key
) {
1122 if (copyout(&iaprmsp
->ia_uprilim
,
1123 (caddr_t
)(uintptr_t)vpp
->pc_parm
, sizeof (pri_t
)))
1130 if (copyout(&iaprmsp
->ia_upri
,
1131 (caddr_t
)(uintptr_t)vpp
->pc_parm
, sizeof (pri_t
)))
1138 if (copyout(&iaprmsp
->ia_mode
,
1139 (caddr_t
)(uintptr_t)vpp
->pc_parm
, sizeof (int)))
1152 * Set the scheduling parameters of the thread pointed to by tsprocp
1153 * to those specified in the buffer pointed to by tsparmsp.
1154 * ts_parmsset() is called for TS threads, and ia_parmsset() is
1155 * called for IA threads.
1159 ts_parmsset(kthread_t
*tx
, void *parmsp
, id_t reqpcid
, cred_t
*reqpcredp
)
1164 tsparms_t
*tsparmsp
= (tsparms_t
*)parmsp
;
1165 tsproc_t
*tspp
= (tsproc_t
*)tx
->t_cldata
;
1167 ASSERT(MUTEX_HELD(&(ttoproc(tx
))->p_lock
));
1169 if (tsparmsp
->ts_uprilim
== TS_NOCHANGE
)
1170 reqtsuprilim
= tspp
->ts_uprilim
;
1172 reqtsuprilim
= tsparmsp
->ts_uprilim
;
1174 if (tsparmsp
->ts_upri
== TS_NOCHANGE
)
1175 reqtsupri
= tspp
->ts_upri
;
1177 reqtsupri
= tsparmsp
->ts_upri
;
1180 * Make sure the user priority doesn't exceed the upri limit.
1182 if (reqtsupri
> reqtsuprilim
)
1183 reqtsupri
= reqtsuprilim
;
1186 * Basic permissions enforced by generic kernel code
1187 * for all classes require that a thread attempting
1188 * to change the scheduling parameters of a target
1189 * thread be privileged or have a real or effective
1190 * UID matching that of the target thread. We are not
1191 * called unless these basic permission checks have
1192 * already passed. The time-sharing class requires in
1193 * addition that the calling thread be privileged if it
1194 * is attempting to raise the upri limit above its current
1195 * value This may have been checked previously but if our
1196 * caller passed us a non-NULL credential pointer we assume
1197 * it hasn't and we check it here.
1199 if (reqpcredp
!= NULL
&&
1200 reqtsuprilim
> tspp
->ts_uprilim
&&
1201 secpolicy_raisepriority(reqpcredp
) != 0)
1205 * Set ts_nice to the nice value corresponding to the user
1206 * priority we are setting. Note that setting the nice field
1207 * of the parameter struct won't affect upri or nice.
1209 nice
= NZERO
- (reqtsupri
* NZERO
) / ts_maxupri
;
1210 if (nice
>= 2 * NZERO
)
1211 nice
= 2 * NZERO
- 1;
1215 tspp
->ts_uprilim
= reqtsuprilim
;
1216 tspp
->ts_upri
= reqtsupri
;
1218 tspp
->ts_nice
= nice
;
1220 if ((tspp
->ts_flags
& TSKPRI
) != 0) {
1225 tspp
->ts_dispwait
= 0;
1226 ts_change_priority(tx
, tspp
);
1233 ia_parmsset(kthread_t
*tx
, void *parmsp
, id_t reqpcid
, cred_t
*reqpcredp
)
1235 tsproc_t
*tspp
= (tsproc_t
*)tx
->t_cldata
;
1236 iaparms_t
*iaparmsp
= (iaparms_t
*)parmsp
;
1238 pid_t pid
, pgid
, sid
;
1244 * Handle user priority changes
1246 if (iaparmsp
->ia_mode
== IA_NOCHANGE
)
1247 return (ts_parmsset(tx
, parmsp
, reqpcid
, reqpcredp
));
1250 * Check permissions for changing modes.
1253 if (reqpcredp
!= NULL
&& !groupmember(IA_gid
, reqpcredp
) &&
1254 secpolicy_raisepriority(reqpcredp
) != 0) {
1256 * Silently fail in case this is just a priocntl
1257 * call with upri and uprilim set to IA_NOCHANGE.
1262 ASSERT(MUTEX_HELD(&pidlock
));
1263 if ((p
= ttoproc(tx
)) == NULL
) {
1266 ASSERT(MUTEX_HELD(&p
->p_lock
));
1267 if (p
->p_stat
== SIDL
) {
1271 sid
= p
->p_sessp
->s_sid
;
1273 if (iaparmsp
->ia_mode
== IA_SET_INTERACTIVE
) {
1275 * session leaders must be turned on now so all processes
1276 * in the group controlling the tty will be turned on or off.
1277 * if the ia_mode is off for the session leader,
1278 * ia_set_process_group will return without setting the
1279 * processes in the group controlling the tty on.
1282 tspp
->ts_flags
|= TSIASET
;
1285 mutex_enter(&p
->p_sessp
->s_lock
);
1287 if ((pid
== sid
) && (p
->p_sessp
->s_vp
!= NULL
) &&
1288 ((stp
= p
->p_sessp
->s_vp
->v_stream
) != NULL
)) {
1289 if ((stp
->sd_pgidp
!= NULL
) && (stp
->sd_sidp
!= NULL
)) {
1290 pgid
= stp
->sd_pgidp
->pid_id
;
1292 mutex_exit(&p
->p_sessp
->s_lock
);
1293 if (iaparmsp
->ia_mode
==
1294 IA_SET_INTERACTIVE
) {
1301 TRACE_3(TR_FAC_IA
, TR_ACTIVE_CHAIN
,
1302 "active chain:pid %d gid %d %p",
1304 ia_set_process_group(sid
, off
, on
);
1308 mutex_exit(&p
->p_sessp
->s_lock
);
1312 if (iaparmsp
->ia_mode
== IA_SET_INTERACTIVE
) {
1313 tspp
->ts_flags
|= TSIASET
;
1314 tspp
->ts_boost
= ia_boost
;
1316 tspp
->ts_flags
&= ~TSIASET
;
1317 tspp
->ts_boost
= -ia_boost
;
1321 return (ts_parmsset(tx
, parmsp
, reqpcid
, reqpcredp
));
1325 ts_exit(kthread_t
*t
)
1331 * A thread could be exiting in between clock ticks,
1332 * so we need to calculate how much CPU time it used
1333 * since it was charged last time.
1335 * CPU caps are not enforced on exiting processes - it is
1336 * usually desirable to exit as soon as possible to free
1340 tspp
= (tsproc_t
*)t
->t_cldata
;
1341 (void) cpucaps_charge(t
, &tspp
->ts_caps
, CPUCAPS_CHARGE_ONLY
);
1347 * Return the global scheduling priority that would be assigned
1348 * to a thread entering the time-sharing class with the ts_upri.
1351 ts_globpri(kthread_t
*t
)
1356 ASSERT(MUTEX_HELD(&ttoproc(t
)->p_lock
));
1357 tspp
= (tsproc_t
*)t
->t_cldata
;
1358 tspri
= tsmedumdpri
+ tspp
->ts_upri
;
1359 if (tspri
> ts_maxumdpri
)
1360 tspri
= ts_maxumdpri
;
1363 return (ts_dptbl
[tspri
].ts_globpri
);
1367 * Arrange for thread to be placed in appropriate location
1368 * on dispatcher queue.
1370 * This is called with the current thread in TS_ONPROC and locked.
1373 ts_preempt(kthread_t
*t
)
1375 tsproc_t
*tspp
= (tsproc_t
*)(t
->t_cldata
);
1376 klwp_t
*lwp
= curthread
->t_lwp
;
1377 pri_t oldpri
= t
->t_pri
;
1379 ASSERT(t
== curthread
);
1380 ASSERT(THREAD_LOCK_HELD(curthread
));
1383 * If preempted in the kernel, make sure the thread has
1384 * a kernel priority if needed.
1386 if (!(tspp
->ts_flags
& TSKPRI
) && lwp
!= NULL
&& t
->t_kpri_req
) {
1387 tspp
->ts_flags
|= TSKPRI
;
1388 THREAD_CHANGE_PRI(t
, ts_kmdpris
[0]);
1389 ASSERT(t
->t_pri
>= 0 && t
->t_pri
<= ts_maxglobpri
);
1390 t
->t_trapret
= 1; /* so ts_trapret will run */
1395 * This thread may be placed on wait queue by CPU Caps. In this case we
1396 * do not need to do anything until it is removed from the wait queue.
1397 * Do not enforce CPU caps on threads running at a kernel priority
1400 (void) cpucaps_charge(t
, &tspp
->ts_caps
,
1401 CPUCAPS_CHARGE_ENFORCE
);
1402 if (!(tspp
->ts_flags
& TSKPRI
) && CPUCAPS_ENFORCE(t
))
1407 * If thread got preempted in the user-land then we know
1408 * it isn't holding any locks. Mark it as swappable.
1410 ASSERT(t
->t_schedflag
& TS_DONT_SWAP
);
1411 if (lwp
!= NULL
&& lwp
->lwp_state
== LWP_USER
)
1412 t
->t_schedflag
&= ~TS_DONT_SWAP
;
1415 * Check to see if we're doing "preemption control" here. If
1416 * we are, and if the user has requested that this thread not
1417 * be preempted, and if preemptions haven't been put off for
1418 * too long, let the preemption happen here but try to make
1419 * sure the thread is rescheduled as soon as possible. We do
1420 * this by putting it on the front of the highest priority run
1421 * queue in the TS class. If the preemption has been put off
1422 * for too long, clear the "nopreempt" bit and let the thread
1425 if (t
->t_schedctl
&& schedctl_get_nopreempt(t
)) {
1426 if (tspp
->ts_timeleft
> -SC_MAX_TICKS
) {
1427 DTRACE_SCHED1(schedctl__nopreempt
, kthread_t
*, t
);
1428 if (!(tspp
->ts_flags
& TSKPRI
)) {
1430 * If not already remembered, remember current
1431 * priority for restoration in ts_yield().
1433 if (!(tspp
->ts_flags
& TSRESTORE
)) {
1434 tspp
->ts_scpri
= t
->t_pri
;
1435 tspp
->ts_flags
|= TSRESTORE
;
1437 THREAD_CHANGE_PRI(t
, ts_maxumdpri
);
1438 t
->t_schedflag
|= TS_DONT_SWAP
;
1440 schedctl_set_yield(t
, 1);
1444 if (tspp
->ts_flags
& TSRESTORE
) {
1445 THREAD_CHANGE_PRI(t
, tspp
->ts_scpri
);
1446 tspp
->ts_flags
&= ~TSRESTORE
;
1448 schedctl_set_nopreempt(t
, 0);
1449 DTRACE_SCHED1(schedctl__preempt
, kthread_t
*, t
);
1450 TNF_PROBE_2(schedctl_preempt
, "schedctl TS ts_preempt",
1451 /* CSTYLED */, tnf_pid
, pid
, ttoproc(t
)->p_pid
,
1452 tnf_lwpid
, lwpid
, t
->t_tid
);
1454 * Fall through and be preempted below.
1459 if ((tspp
->ts_flags
& (TSBACKQ
|TSKPRI
)) == TSBACKQ
) {
1460 tspp
->ts_timeleft
= ts_dptbl
[tspp
->ts_cpupri
].ts_quantum
;
1461 tspp
->ts_dispwait
= 0;
1462 tspp
->ts_flags
&= ~TSBACKQ
;
1464 } else if ((tspp
->ts_flags
& (TSBACKQ
|TSKPRI
)) == (TSBACKQ
|TSKPRI
)) {
1465 tspp
->ts_flags
&= ~TSBACKQ
;
1472 TRACE_2(TR_FAC_DISP
, TR_PREEMPT
,
1473 "preempt:tid %p old pri %d", t
, oldpri
);
1477 ts_setrun(kthread_t
*t
)
1479 tsproc_t
*tspp
= (tsproc_t
*)(t
->t_cldata
);
1481 ASSERT(THREAD_LOCK_HELD(t
)); /* t should be in transition */
1483 if (tspp
->ts_dispwait
> ts_dptbl
[tspp
->ts_umdpri
].ts_maxwait
) {
1484 tspp
->ts_cpupri
= ts_dptbl
[tspp
->ts_cpupri
].ts_slpret
;
1486 tspp
->ts_timeleft
= ts_dptbl
[tspp
->ts_cpupri
].ts_quantum
;
1487 tspp
->ts_dispwait
= 0;
1488 if ((tspp
->ts_flags
& TSKPRI
) == 0) {
1489 THREAD_CHANGE_PRI(t
,
1490 ts_dptbl
[tspp
->ts_umdpri
].ts_globpri
);
1491 ASSERT(t
->t_pri
>= 0 && t
->t_pri
<= ts_maxglobpri
);
1495 tspp
->ts_flags
&= ~TSBACKQ
;
1497 if (tspp
->ts_flags
& TSIA
) {
1498 if (tspp
->ts_flags
& TSIASET
)
1503 if (t
->t_disp_time
!= ddi_get_lbolt())
1512 * Prepare thread for sleep. We reset the thread priority so it will
1513 * run at the kernel priority level when it wakes up.
1516 ts_sleep(kthread_t
*t
)
1518 tsproc_t
*tspp
= (tsproc_t
*)(t
->t_cldata
);
1520 pri_t old_pri
= t
->t_pri
;
1522 ASSERT(t
== curthread
);
1523 ASSERT(THREAD_LOCK_HELD(t
));
1526 * Account for time spent on CPU before going to sleep.
1528 (void) CPUCAPS_CHARGE(t
, &tspp
->ts_caps
, CPUCAPS_CHARGE_ENFORCE
);
1530 flags
= tspp
->ts_flags
;
1531 if (t
->t_kpri_req
) {
1532 tspp
->ts_flags
= flags
| TSKPRI
;
1533 THREAD_CHANGE_PRI(t
, ts_kmdpris
[0]);
1534 ASSERT(t
->t_pri
>= 0 && t
->t_pri
<= ts_maxglobpri
);
1535 t
->t_trapret
= 1; /* so ts_trapret will run */
1537 } else if (tspp
->ts_dispwait
> ts_dptbl
[tspp
->ts_umdpri
].ts_maxwait
) {
1539 * If thread has blocked in the kernel (as opposed to
1540 * being merely preempted), recompute the user mode priority.
1542 tspp
->ts_cpupri
= ts_dptbl
[tspp
->ts_cpupri
].ts_slpret
;
1544 tspp
->ts_timeleft
= ts_dptbl
[tspp
->ts_cpupri
].ts_quantum
;
1545 tspp
->ts_dispwait
= 0;
1547 THREAD_CHANGE_PRI(curthread
,
1548 ts_dptbl
[tspp
->ts_umdpri
].ts_globpri
);
1549 ASSERT(curthread
->t_pri
>= 0 &&
1550 curthread
->t_pri
<= ts_maxglobpri
);
1551 tspp
->ts_flags
= flags
& ~TSKPRI
;
1553 if (DISP_MUST_SURRENDER(curthread
))
1554 cpu_surrender(curthread
);
1555 } else if (flags
& TSKPRI
) {
1556 THREAD_CHANGE_PRI(curthread
,
1557 ts_dptbl
[tspp
->ts_umdpri
].ts_globpri
);
1558 ASSERT(curthread
->t_pri
>= 0 &&
1559 curthread
->t_pri
<= ts_maxglobpri
);
1560 tspp
->ts_flags
= flags
& ~TSKPRI
;
1562 if (DISP_MUST_SURRENDER(curthread
))
1563 cpu_surrender(curthread
);
1565 t
->t_stime
= ddi_get_lbolt(); /* time stamp for the swapper */
1566 TRACE_2(TR_FAC_DISP
, TR_SLEEP
,
1567 "sleep:tid %p old pri %d", t
, old_pri
);
1574 * -1 if the thread is loaded or is not eligible to be swapped in.
1576 * effective priority of the specified thread based on swapout time
1577 * and size of process (epri >= 0 , epri <= SHRT_MAX).
1581 ts_swapin(kthread_t
*t
, int flags
)
1583 tsproc_t
*tspp
= (tsproc_t
*)(t
->t_cldata
);
1585 proc_t
*pp
= ttoproc(t
);
1587 ASSERT(THREAD_LOCK_HELD(t
));
1590 * We know that pri_t is a short.
1591 * Be sure not to overrun its range.
1593 if (t
->t_state
== TS_RUN
&& (t
->t_schedflag
& TS_LOAD
) == 0) {
1594 time_t swapout_time
;
1596 swapout_time
= (ddi_get_lbolt() - t
->t_stime
) / hz
;
1597 if (INHERITED(t
) || (tspp
->ts_flags
& (TSKPRI
| TSIASET
)))
1598 epri
= (long)DISP_PRIO(t
) + swapout_time
;
1601 * Threads which have been out for a long time,
1602 * have high user mode priority and are associated
1603 * with a small address space are more deserving
1605 epri
= ts_dptbl
[tspp
->ts_umdpri
].ts_globpri
;
1606 ASSERT(epri
>= 0 && epri
<= ts_maxumdpri
);
1607 epri
+= swapout_time
- pp
->p_swrss
/ nz(maxpgio
)/2;
1610 * Scale epri so SHRT_MAX/2 represents zero priority.
1615 else if (epri
> SHRT_MAX
)
1618 return ((pri_t
)epri
);
1623 * -1 if the thread isn't loaded or is not eligible to be swapped out.
1625 * effective priority of the specified thread based on if the swapper
1626 * is in softswap or hardswap mode.
1628 * Softswap: Return a low effective priority for threads
1629 * sleeping for more than maxslp secs.
1631 * Hardswap: Return an effective priority such that threads
1632 * which have been in memory for a while and are
1633 * associated with a small address space are swapped
1636 * (epri >= 0 , epri <= SHRT_MAX).
1638 time_t ts_minrun
= 2; /* XXX - t_pri becomes 59 within 2 secs */
1639 time_t ts_minslp
= 2; /* min time on sleep queue for hardswap */
1642 ts_swapout(kthread_t
*t
, int flags
)
1644 tsproc_t
*tspp
= (tsproc_t
*)(t
->t_cldata
);
1646 proc_t
*pp
= ttoproc(t
);
1649 ASSERT(THREAD_LOCK_HELD(t
));
1651 if (INHERITED(t
) || (tspp
->ts_flags
& (TSKPRI
| TSIASET
)) ||
1652 (t
->t_proc_flag
& TP_LWPEXIT
) ||
1653 (t
->t_state
& (TS_ZOMB
| TS_FREE
| TS_STOPPED
|
1654 TS_ONPROC
| TS_WAIT
)) ||
1655 !(t
->t_schedflag
& TS_LOAD
) || !SWAP_OK(t
))
1658 ASSERT(t
->t_state
& (TS_SLEEP
| TS_RUN
));
1661 * We know that pri_t is a short.
1662 * Be sure not to overrun its range.
1664 swapin_time
= (ddi_get_lbolt() - t
->t_stime
) / hz
;
1665 if (flags
== SOFTSWAP
) {
1666 if (t
->t_state
== TS_SLEEP
&& swapin_time
> maxslp
) {
1669 return ((pri_t
)epri
);
1674 if ((t
->t_state
== TS_SLEEP
&& swapin_time
> ts_minslp
) ||
1675 (t
->t_state
== TS_RUN
&& swapin_time
> ts_minrun
)) {
1676 pri
= ts_dptbl
[tspp
->ts_umdpri
].ts_globpri
;
1677 ASSERT(pri
>= 0 && pri
<= ts_maxumdpri
);
1678 epri
= swapin_time
-
1679 (rm_asrss(pp
->p_as
) / nz(maxpgio
)/2) - (long)pri
;
1681 return ((pri_t
)epri
);
1686 * Scale epri so SHRT_MAX/2 represents zero priority.
1691 else if (epri
> SHRT_MAX
)
1694 return ((pri_t
)epri
);
1698 * Check for time slice expiration. If time slice has expired
1699 * move thread to priority specified in tsdptbl for time slice expiration
1700 * and set runrun to cause preemption.
1703 ts_tick(kthread_t
*t
)
1705 tsproc_t
*tspp
= (tsproc_t
*)(t
->t_cldata
);
1707 boolean_t call_cpu_surrender
= B_FALSE
;
1708 pri_t oldpri
= t
->t_pri
;
1710 ASSERT(MUTEX_HELD(&(ttoproc(t
))->p_lock
));
1715 * Keep track of thread's project CPU usage. Note that projects
1716 * get charged even when threads are running in the kernel.
1719 call_cpu_surrender
= cpucaps_charge(t
, &tspp
->ts_caps
,
1720 CPUCAPS_CHARGE_ENFORCE
) && !(tspp
->ts_flags
& TSKPRI
);
1723 if ((tspp
->ts_flags
& TSKPRI
) == 0) {
1724 if (--tspp
->ts_timeleft
<= 0) {
1728 * If we're doing preemption control and trying to
1729 * avoid preempting this thread, just note that
1730 * the thread should yield soon and let it keep
1731 * running (unless it's been a while).
1733 if (t
->t_schedctl
&& schedctl_get_nopreempt(t
)) {
1734 if (tspp
->ts_timeleft
> -SC_MAX_TICKS
) {
1735 DTRACE_SCHED1(schedctl__nopreempt
,
1737 schedctl_set_yield(t
, 1);
1738 thread_unlock_nopreempt(t
);
1742 TNF_PROBE_2(schedctl_failsafe
,
1743 "schedctl TS ts_tick", /* CSTYLED */,
1744 tnf_pid
, pid
, ttoproc(t
)->p_pid
,
1745 tnf_lwpid
, lwpid
, t
->t_tid
);
1747 tspp
->ts_flags
&= ~TSRESTORE
;
1748 tspp
->ts_cpupri
= ts_dptbl
[tspp
->ts_cpupri
].ts_tqexp
;
1750 tspp
->ts_dispwait
= 0;
1751 new_pri
= ts_dptbl
[tspp
->ts_umdpri
].ts_globpri
;
1752 ASSERT(new_pri
>= 0 && new_pri
<= ts_maxglobpri
);
1754 * When the priority of a thread is changed,
1755 * it may be necessary to adjust its position
1756 * on a sleep queue or dispatch queue.
1757 * The function thread_change_pri accomplishes
1760 if (thread_change_pri(t
, new_pri
, 0)) {
1761 if ((t
->t_schedflag
& TS_LOAD
) &&
1763 lwp
->lwp_state
== LWP_USER
)
1764 t
->t_schedflag
&= ~TS_DONT_SWAP
;
1766 ts_dptbl
[tspp
->ts_cpupri
].ts_quantum
;
1768 call_cpu_surrender
= B_TRUE
;
1770 TRACE_2(TR_FAC_DISP
, TR_TICK
,
1771 "tick:tid %p old pri %d", t
, oldpri
);
1772 } else if (t
->t_state
== TS_ONPROC
&&
1773 t
->t_pri
< t
->t_disp_queue
->disp_maxrunpri
) {
1774 call_cpu_surrender
= B_TRUE
;
1778 if (call_cpu_surrender
) {
1779 tspp
->ts_flags
|= TSBACKQ
;
1783 thread_unlock_nopreempt(t
); /* clock thread can't be preempted */
1788 * If thread is currently at a kernel mode priority (has slept)
1789 * we assign it the appropriate user mode priority and time quantum
1790 * here. If we are lowering the thread's priority below that of
1791 * other runnable threads we will normally set runrun via cpu_surrender() to
1795 ts_trapret(kthread_t
*t
)
1797 tsproc_t
*tspp
= (tsproc_t
*)t
->t_cldata
;
1799 pri_t old_pri
= curthread
->t_pri
;
1801 ASSERT(THREAD_LOCK_HELD(t
));
1802 ASSERT(t
== curthread
);
1803 ASSERT(cp
->cpu_dispthread
== t
);
1804 ASSERT(t
->t_state
== TS_ONPROC
);
1807 if (tspp
->ts_dispwait
> ts_dptbl
[tspp
->ts_umdpri
].ts_maxwait
) {
1808 tspp
->ts_cpupri
= ts_dptbl
[tspp
->ts_cpupri
].ts_slpret
;
1810 tspp
->ts_timeleft
= ts_dptbl
[tspp
->ts_cpupri
].ts_quantum
;
1811 tspp
->ts_dispwait
= 0;
1814 * If thread has blocked in the kernel (as opposed to
1815 * being merely preempted), recompute the user mode priority.
1817 THREAD_CHANGE_PRI(t
, ts_dptbl
[tspp
->ts_umdpri
].ts_globpri
);
1818 cp
->cpu_dispatch_pri
= DISP_PRIO(t
);
1819 ASSERT(t
->t_pri
>= 0 && t
->t_pri
<= ts_maxglobpri
);
1820 tspp
->ts_flags
&= ~TSKPRI
;
1822 if (DISP_MUST_SURRENDER(t
))
1824 } else if (tspp
->ts_flags
& TSKPRI
) {
1826 * If thread has blocked in the kernel (as opposed to
1827 * being merely preempted), recompute the user mode priority.
1829 THREAD_CHANGE_PRI(t
, ts_dptbl
[tspp
->ts_umdpri
].ts_globpri
);
1830 cp
->cpu_dispatch_pri
= DISP_PRIO(t
);
1831 ASSERT(t
->t_pri
>= 0 && t
->t_pri
<= ts_maxglobpri
);
1832 tspp
->ts_flags
&= ~TSKPRI
;
1834 if (DISP_MUST_SURRENDER(t
))
1839 * Swapout lwp if the swapper is waiting for this thread to
1840 * reach a safe point.
1842 if ((t
->t_schedflag
& TS_SWAPENQ
) && !(tspp
->ts_flags
& TSIASET
)) {
1844 swapout_lwp(ttolwp(t
));
1848 TRACE_2(TR_FAC_DISP
, TR_TRAPRET
,
1849 "trapret:tid %p old pri %d", t
, old_pri
);
1854 * Update the ts_dispwait values of all time sharing threads that
1855 * are currently runnable at a user mode priority and bump the priority
1856 * if ts_dispwait exceeds ts_maxwait. Called once per second via
1857 * timeout which we reset here.
1859 * There are several lists of time sharing threads broken up by a hash on
1860 * the thread pointer. Each list has its own lock. This avoids blocking
1861 * all ts_enterclass, ts_fork, and ts_exitclass operations while ts_update
1862 * runs. ts_update traverses each list in turn.
1864 * If multiple threads have their priorities updated to the same value,
1865 * the system implicitly favors the one that is updated first (since it
1866 * winds up first on the run queue). To avoid this unfairness, the
1867 * traversal of threads starts at the list indicated by a marker. When
1868 * threads in more than one list have their priorities updated, the marker
1869 * is moved. This changes the order the threads will be placed on the run
1870 * queue the next time ts_update is called and preserves fairness over the
1871 * long run. The marker doesn't need to be protected by a lock since it's
1872 * only accessed by ts_update, which is inherently single-threaded (only
1873 * one instance can be running at a time).
1876 ts_update(void *arg
)
1879 int new_marker
= -1;
1880 static int ts_update_marker
;
1883 * Start with the ts_update_marker list, then do the rest.
1885 i
= ts_update_marker
;
1888 * If this is the first list after the current marker to
1889 * have threads with priorities updated, advance the marker
1890 * to this list for the next time ts_update runs.
1892 if (ts_update_list(i
) && new_marker
== -1 &&
1893 i
!= ts_update_marker
) {
1896 } while ((i
= TS_LIST_NEXT(i
)) != ts_update_marker
);
1898 /* advance marker for next ts_update call */
1899 if (new_marker
!= -1)
1900 ts_update_marker
= new_marker
;
1902 (void) timeout(ts_update
, arg
, hz
);
1906 * Updates priority for a list of threads. Returns 1 if the priority of
1907 * one of the threads was actually updated, 0 if none were for various
1908 * reasons (thread is no longer in the TS or IA class, isn't runnable,
1909 * hasn't waited long enough, has the preemption control no-preempt bit
1913 ts_update_list(int i
)
1919 mutex_enter(&ts_list_lock
[i
]);
1920 for (tspp
= ts_plisthead
[i
].ts_next
; tspp
!= &ts_plisthead
[i
];
1921 tspp
= tspp
->ts_next
) {
1924 * Lock the thread and verify state.
1928 * Skip the thread if it is no longer in the TS (or IA) class.
1930 if (tx
->t_clfuncs
!= &ts_classfuncs
.thread
&&
1931 tx
->t_clfuncs
!= &ia_classfuncs
.thread
)
1933 tspp
->ts_dispwait
++;
1934 if ((tspp
->ts_flags
& TSKPRI
) != 0)
1936 if (tspp
->ts_dispwait
<= ts_dptbl
[tspp
->ts_umdpri
].ts_maxwait
)
1938 if (tx
->t_schedctl
&& schedctl_get_nopreempt(tx
))
1940 if (tx
->t_state
!= TS_RUN
&& tx
->t_state
!= TS_WAIT
&&
1941 (tx
->t_state
!= TS_SLEEP
|| !ts_sleep_promote
)) {
1942 /* make next syscall/trap do CL_TRAPRET */
1947 tspp
->ts_cpupri
= ts_dptbl
[tspp
->ts_cpupri
].ts_lwait
;
1949 tspp
->ts_dispwait
= 0;
1953 * Only dequeue it if needs to move; otherwise it should
1954 * just round-robin here.
1956 if (tx
->t_pri
!= ts_dptbl
[tspp
->ts_umdpri
].ts_globpri
) {
1957 pri_t oldpri
= tx
->t_pri
;
1958 ts_change_priority(tx
, tspp
);
1959 TRACE_2(TR_FAC_DISP
, TR_UPDATE
,
1960 "update:tid %p old pri %d", tx
, oldpri
);
1965 mutex_exit(&ts_list_lock
[i
]);
1971 * Processes waking up go to the back of their queue. We don't
1972 * need to assign a time quantum here because thread is still
1973 * at a kernel mode priority and the time slicing is not done
1974 * for threads running in the kernel after sleeping. The proper
1975 * time quantum will be assigned by ts_trapret before the thread
1976 * returns to user mode.
1979 ts_wakeup(kthread_t
*t
)
1981 tsproc_t
*tspp
= (tsproc_t
*)(t
->t_cldata
);
1983 ASSERT(THREAD_LOCK_HELD(t
));
1985 t
->t_stime
= ddi_get_lbolt(); /* time stamp for the swapper */
1987 if (tspp
->ts_flags
& TSKPRI
) {
1988 tspp
->ts_flags
&= ~TSBACKQ
;
1989 if (tspp
->ts_flags
& TSIASET
)
1993 } else if (t
->t_kpri_req
) {
1995 * Give thread a priority boost if we were asked.
1997 tspp
->ts_flags
|= TSKPRI
;
1998 THREAD_CHANGE_PRI(t
, ts_kmdpris
[0]);
2000 t
->t_trapret
= 1; /* so that ts_trapret will run */
2003 if (tspp
->ts_dispwait
> ts_dptbl
[tspp
->ts_umdpri
].ts_maxwait
) {
2004 tspp
->ts_cpupri
= ts_dptbl
[tspp
->ts_cpupri
].ts_slpret
;
2007 ts_dptbl
[tspp
->ts_cpupri
].ts_quantum
;
2008 tspp
->ts_dispwait
= 0;
2009 THREAD_CHANGE_PRI(t
,
2010 ts_dptbl
[tspp
->ts_umdpri
].ts_globpri
);
2011 ASSERT(t
->t_pri
>= 0 && t
->t_pri
<= ts_maxglobpri
);
2014 tspp
->ts_flags
&= ~TSBACKQ
;
2016 if (tspp
->ts_flags
& TSIA
) {
2017 if (tspp
->ts_flags
& TSIASET
)
2022 if (t
->t_disp_time
!= ddi_get_lbolt())
2032 * When a thread yields, put it on the back of the run queue.
2035 ts_yield(kthread_t
*t
)
2037 tsproc_t
*tspp
= (tsproc_t
*)(t
->t_cldata
);
2039 ASSERT(t
== curthread
);
2040 ASSERT(THREAD_LOCK_HELD(t
));
2043 * Collect CPU usage spent before yielding
2045 (void) CPUCAPS_CHARGE(t
, &tspp
->ts_caps
, CPUCAPS_CHARGE_ENFORCE
);
2048 * Clear the preemption control "yield" bit since the user is
2052 schedctl_set_yield(t
, 0);
2054 * If ts_preempt() artifically increased the thread's priority
2055 * to avoid preemption, restore the original priority now.
2057 if (tspp
->ts_flags
& TSRESTORE
) {
2058 THREAD_CHANGE_PRI(t
, tspp
->ts_scpri
);
2059 tspp
->ts_flags
&= ~TSRESTORE
;
2061 if (tspp
->ts_timeleft
<= 0) {
2063 * Time slice was artificially extended to avoid
2064 * preemption, so pretend we're preempting it now.
2066 DTRACE_SCHED1(schedctl__yield
, int, -tspp
->ts_timeleft
);
2067 tspp
->ts_cpupri
= ts_dptbl
[tspp
->ts_cpupri
].ts_tqexp
;
2069 tspp
->ts_timeleft
= ts_dptbl
[tspp
->ts_cpupri
].ts_quantum
;
2070 tspp
->ts_dispwait
= 0;
2071 THREAD_CHANGE_PRI(t
, ts_dptbl
[tspp
->ts_umdpri
].ts_globpri
);
2072 ASSERT(t
->t_pri
>= 0 && t
->t_pri
<= ts_maxglobpri
);
2074 tspp
->ts_flags
&= ~TSBACKQ
;
2080 * Increment the nice value of the specified thread by incr and
2081 * return the new value in *retvalp.
2084 ts_donice(kthread_t
*t
, cred_t
*cr
, int incr
, int *retvalp
)
2087 tsproc_t
*tspp
= (tsproc_t
*)(t
->t_cldata
);
2090 ASSERT(MUTEX_HELD(&(ttoproc(t
))->p_lock
));
2092 /* If there's no change to priority, just return current setting */
2095 *retvalp
= tspp
->ts_nice
- NZERO
;
2100 if ((incr
< 0 || incr
> 2 * NZERO
) &&
2101 secpolicy_raisepriority(cr
) != 0)
2105 * Specifying a nice increment greater than the upper limit of
2106 * 2 * NZERO - 1 will result in the thread's nice value being
2107 * set to the upper limit. We check for this before computing
2108 * the new value because otherwise we could get overflow
2109 * if a privileged process specified some ridiculous increment.
2111 if (incr
> 2 * NZERO
- 1)
2112 incr
= 2 * NZERO
- 1;
2114 newnice
= tspp
->ts_nice
+ incr
;
2115 if (newnice
>= 2 * NZERO
)
2116 newnice
= 2 * NZERO
- 1;
2117 else if (newnice
< 0)
2120 tsparms
.ts_uprilim
= tsparms
.ts_upri
=
2121 -((newnice
- NZERO
) * ts_maxupri
) / NZERO
;
2123 * Reset the uprilim and upri values of the thread.
2124 * Call ts_parmsset even if thread is interactive since we're
2125 * not changing mode.
2127 (void) ts_parmsset(t
, (void *)&tsparms
, (id_t
)0, (cred_t
*)NULL
);
2130 * Although ts_parmsset already reset ts_nice it may
2131 * not have been set to precisely the value calculated above
2132 * because ts_parmsset determines the nice value from the
2133 * user priority and we may have truncated during the integer
2134 * conversion from nice value to user priority and back.
2135 * We reset ts_nice to the value we calculated above.
2137 tspp
->ts_nice
= (char)newnice
;
2140 *retvalp
= newnice
- NZERO
;
2145 * Increment the priority of the specified thread by incr and
2146 * return the new value in *retvalp.
2149 ts_doprio(kthread_t
*t
, cred_t
*cr
, int incr
, int *retvalp
)
2152 tsproc_t
*tspp
= (tsproc_t
*)(t
->t_cldata
);
2155 ASSERT(MUTEX_HELD(&(ttoproc(t
))->p_lock
));
2157 /* If there's no change to the priority, just return current setting */
2159 *retvalp
= tspp
->ts_upri
;
2163 newpri
= tspp
->ts_upri
+ incr
;
2164 if (newpri
> ts_maxupri
|| newpri
< -ts_maxupri
)
2168 tsparms
.ts_uprilim
= tsparms
.ts_upri
= newpri
;
2170 * Reset the uprilim and upri values of the thread.
2171 * Call ts_parmsset even if thread is interactive since we're
2172 * not changing mode.
2174 return (ts_parmsset(t
, &tsparms
, 0, cr
));
2178 * ia_set_process_group marks foreground processes as interactive
2179 * and background processes as non-interactive iff the session
2180 * leader is interactive. This routine is called from two places:
2181 * strioctl:SPGRP when a new process group gets
2182 * control of the tty.
2183 * ia_parmsset-when the process in question is a session leader.
2184 * ia_set_process_group assumes that pidlock is held by the caller,
2185 * either strioctl or priocntlsys. If the caller is priocntlsys
2186 * (via ia_parmsset) then the p_lock of the session leader is held
2187 * and the code needs to be careful about acquiring other p_locks.
2190 ia_set_process_group(pid_t sid
, pid_t bg_pgid
, pid_t fg_pgid
)
2192 proc_t
*leader
, *fg
, *bg
;
2197 ASSERT(MUTEX_HELD(&pidlock
));
2200 * see if the session leader is interactive AND
2201 * if it is currently "on" AND controlling a tty
2202 * iff it is then make the processes in the foreground
2203 * group interactive and the processes in the background
2204 * group non-interactive.
2206 if ((leader
= (proc_t
*)prfind(sid
)) == NULL
) {
2209 if (leader
->p_stat
== SIDL
) {
2212 if ((tx
= proctot(leader
)) == NULL
) {
2216 * XXX do all the threads in the leader
2218 if (tx
->t_cid
!= ia_cid
) {
2221 tspp
= tx
->t_cldata
;
2223 * session leaders that are not interactive need not have
2224 * any processing done for them. They are typically shells
2225 * that do not have focus and are changing the process group
2226 * attatched to the tty, e.g. a process that is exiting
2228 mutex_enter(&leader
->p_sessp
->s_lock
);
2229 if (!(tspp
->ts_flags
& TSIASET
) ||
2230 (leader
->p_sessp
->s_vp
== NULL
) ||
2231 (leader
->p_sessp
->s_vp
->v_stream
== NULL
)) {
2232 mutex_exit(&leader
->p_sessp
->s_lock
);
2235 mutex_exit(&leader
->p_sessp
->s_lock
);
2238 * If we're already holding the leader's p_lock, we should use
2239 * mutex_tryenter instead of mutex_enter to avoid deadlocks from
2240 * lock ordering violations.
2242 if (mutex_owned(&leader
->p_lock
))
2248 * now look for all processes in the foreground group and
2249 * make them interactive
2251 for (fg
= (proc_t
*)pgfind(fg_pgid
); fg
!= NULL
; fg
= fg
->p_pglink
) {
2253 * if the process is SIDL it's begin forked, ignore it
2255 if (fg
->p_stat
== SIDL
) {
2259 * sesssion leaders must be turned on/off explicitly
2260 * not implicitly as happens to other members of
2261 * the process group.
2263 if (fg
->p_pid
== fg
->p_sessp
->s_sid
) {
2267 TRACE_1(TR_FAC_IA
, TR_GROUP_ON
,
2268 "group on:proc %p", fg
);
2271 if (mutex_tryenter(&fg
->p_lock
) == 0)
2274 mutex_enter(&fg
->p_lock
);
2277 if ((tx
= proctot(fg
)) == NULL
) {
2278 mutex_exit(&fg
->p_lock
);
2284 * if this thread is not interactive continue
2286 if (tx
->t_cid
!= ia_cid
) {
2290 tspp
= tx
->t_cldata
;
2291 tspp
->ts_flags
|= TSIASET
;
2292 tspp
->ts_boost
= ia_boost
;
2294 if ((tspp
->ts_flags
& TSKPRI
) != 0) {
2298 tspp
->ts_dispwait
= 0;
2299 ts_change_priority(tx
, tspp
);
2301 } while ((tx
= tx
->t_forw
) != fg
->p_tlist
);
2302 mutex_exit(&fg
->p_lock
);
2307 for (bg
= (proc_t
*)pgfind(bg_pgid
); bg
!= NULL
; bg
= bg
->p_pglink
) {
2308 if (bg
->p_stat
== SIDL
) {
2312 * sesssion leaders must be turned off explicitly
2313 * not implicitly as happens to other members of
2314 * the process group.
2316 if (bg
->p_pid
== bg
->p_sessp
->s_sid
) {
2320 TRACE_1(TR_FAC_IA
, TR_GROUP_OFF
,
2321 "group off:proc %p", bg
);
2324 if (mutex_tryenter(&bg
->p_lock
) == 0)
2327 mutex_enter(&bg
->p_lock
);
2330 if ((tx
= proctot(bg
)) == NULL
) {
2331 mutex_exit(&bg
->p_lock
);
2337 * if this thread is not interactive continue
2339 if (tx
->t_cid
!= ia_cid
) {
2343 tspp
= tx
->t_cldata
;
2344 tspp
->ts_flags
&= ~TSIASET
;
2345 tspp
->ts_boost
= -ia_boost
;
2347 if ((tspp
->ts_flags
& TSKPRI
) != 0) {
2352 tspp
->ts_dispwait
= 0;
2353 ts_change_priority(tx
, tspp
);
2355 } while ((tx
= tx
->t_forw
) != bg
->p_tlist
);
2356 mutex_exit(&bg
->p_lock
);
2362 ts_change_priority(kthread_t
*t
, tsproc_t
*tspp
)
2366 ASSERT(THREAD_LOCK_HELD(t
));
2367 new_pri
= ts_dptbl
[tspp
->ts_umdpri
].ts_globpri
;
2368 ASSERT(new_pri
>= 0 && new_pri
<= ts_maxglobpri
);
2369 tspp
->ts_flags
&= ~TSRESTORE
;
2370 t
->t_cpri
= tspp
->ts_upri
;
2371 if (t
== curthread
|| t
->t_state
== TS_ONPROC
) {
2372 /* curthread is always onproc */
2373 cpu_t
*cp
= t
->t_disp_queue
->disp_cpu
;
2374 THREAD_CHANGE_PRI(t
, new_pri
);
2375 if (t
== cp
->cpu_dispthread
)
2376 cp
->cpu_dispatch_pri
= DISP_PRIO(t
);
2377 if (DISP_MUST_SURRENDER(t
)) {
2378 tspp
->ts_flags
|= TSBACKQ
;
2382 ts_dptbl
[tspp
->ts_cpupri
].ts_quantum
;
2387 frontq
= (tspp
->ts_flags
& TSIASET
) != 0;
2389 * When the priority of a thread is changed,
2390 * it may be necessary to adjust its position
2391 * on a sleep queue or dispatch queue.
2392 * The function thread_change_pri accomplishes
2395 if (thread_change_pri(t
, new_pri
, frontq
)) {
2397 * The thread was on a run queue. Reset
2398 * its CPU timeleft from the quantum
2399 * associated with the new priority.
2402 ts_dptbl
[tspp
->ts_cpupri
].ts_quantum
;
2404 tspp
->ts_flags
|= TSBACKQ
;
2410 ts_alloc(void **p
, int flag
)
2413 bufp
= kmem_alloc(sizeof (tsproc_t
), flag
);
2426 kmem_free(bufp
, sizeof (tsproc_t
));