8567 Inconsistent return value in zpool_read_label
[unleashed.git] / usr / src / lib / libzfs / common / libzfs_import.c
blob7fbd9faf0b2927abe193fe168f8f49b080c7bacc
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
25 * Copyright 2015 RackTop Systems.
26 * Copyright 2017 Nexenta Systems, Inc.
30 * Pool import support functions.
32 * To import a pool, we rely on reading the configuration information from the
33 * ZFS label of each device. If we successfully read the label, then we
34 * organize the configuration information in the following hierarchy:
36 * pool guid -> toplevel vdev guid -> label txg
38 * Duplicate entries matching this same tuple will be discarded. Once we have
39 * examined every device, we pick the best label txg config for each toplevel
40 * vdev. We then arrange these toplevel vdevs into a complete pool config, and
41 * update any paths that have changed. Finally, we attempt to import the pool
42 * using our derived config, and record the results.
45 #include <ctype.h>
46 #include <devid.h>
47 #include <dirent.h>
48 #include <errno.h>
49 #include <libintl.h>
50 #include <stddef.h>
51 #include <stdlib.h>
52 #include <string.h>
53 #include <sys/stat.h>
54 #include <unistd.h>
55 #include <fcntl.h>
56 #include <sys/vtoc.h>
57 #include <sys/dktp/fdisk.h>
58 #include <sys/efi_partition.h>
59 #include <thread_pool.h>
61 #include <sys/vdev_impl.h>
63 #include "libzfs.h"
64 #include "libzfs_impl.h"
67 * Intermediate structures used to gather configuration information.
69 typedef struct config_entry {
70 uint64_t ce_txg;
71 nvlist_t *ce_config;
72 struct config_entry *ce_next;
73 } config_entry_t;
75 typedef struct vdev_entry {
76 uint64_t ve_guid;
77 config_entry_t *ve_configs;
78 struct vdev_entry *ve_next;
79 } vdev_entry_t;
81 typedef struct pool_entry {
82 uint64_t pe_guid;
83 vdev_entry_t *pe_vdevs;
84 struct pool_entry *pe_next;
85 } pool_entry_t;
87 typedef struct name_entry {
88 char *ne_name;
89 uint64_t ne_guid;
90 struct name_entry *ne_next;
91 } name_entry_t;
93 typedef struct pool_list {
94 pool_entry_t *pools;
95 name_entry_t *names;
96 } pool_list_t;
99 * Go through and fix up any path and/or devid information for the given vdev
100 * configuration.
102 static int
103 fix_paths(nvlist_t *nv, name_entry_t *names)
105 nvlist_t **child;
106 uint_t c, children;
107 uint64_t guid;
108 name_entry_t *ne, *best;
109 char *path, *devid;
110 int matched;
112 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
113 &child, &children) == 0) {
114 for (c = 0; c < children; c++)
115 if (fix_paths(child[c], names) != 0)
116 return (-1);
117 return (0);
121 * This is a leaf (file or disk) vdev. In either case, go through
122 * the name list and see if we find a matching guid. If so, replace
123 * the path and see if we can calculate a new devid.
125 * There may be multiple names associated with a particular guid, in
126 * which case we have overlapping slices or multiple paths to the same
127 * disk. If this is the case, then we want to pick the path that is
128 * the most similar to the original, where "most similar" is the number
129 * of matching characters starting from the end of the path. This will
130 * preserve slice numbers even if the disks have been reorganized, and
131 * will also catch preferred disk names if multiple paths exist.
133 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
134 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
135 path = NULL;
137 matched = 0;
138 best = NULL;
139 for (ne = names; ne != NULL; ne = ne->ne_next) {
140 if (ne->ne_guid == guid) {
141 const char *src, *dst;
142 int count;
144 if (path == NULL) {
145 best = ne;
146 break;
149 src = ne->ne_name + strlen(ne->ne_name) - 1;
150 dst = path + strlen(path) - 1;
151 for (count = 0; src >= ne->ne_name && dst >= path;
152 src--, dst--, count++)
153 if (*src != *dst)
154 break;
157 * At this point, 'count' is the number of characters
158 * matched from the end.
160 if (count > matched || best == NULL) {
161 best = ne;
162 matched = count;
167 if (best == NULL)
168 return (0);
170 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
171 return (-1);
173 if ((devid = devid_str_from_path(best->ne_name)) == NULL) {
174 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
175 } else {
176 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) {
177 devid_str_free(devid);
178 return (-1);
180 devid_str_free(devid);
183 return (0);
187 * Add the given configuration to the list of known devices.
189 static int
190 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
191 nvlist_t *config)
193 uint64_t pool_guid, vdev_guid, top_guid, txg, state;
194 pool_entry_t *pe;
195 vdev_entry_t *ve;
196 config_entry_t *ce;
197 name_entry_t *ne;
200 * If this is a hot spare not currently in use or level 2 cache
201 * device, add it to the list of names to translate, but don't do
202 * anything else.
204 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
205 &state) == 0 &&
206 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
207 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
208 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
209 return (-1);
211 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
212 free(ne);
213 return (-1);
216 ne->ne_guid = vdev_guid;
217 ne->ne_next = pl->names;
218 pl->names = ne;
220 nvlist_free(config);
221 return (0);
225 * If we have a valid config but cannot read any of these fields, then
226 * it means we have a half-initialized label. In vdev_label_init()
227 * we write a label with txg == 0 so that we can identify the device
228 * in case the user refers to the same disk later on. If we fail to
229 * create the pool, we'll be left with a label in this state
230 * which should not be considered part of a valid pool.
232 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
233 &pool_guid) != 0 ||
234 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
235 &vdev_guid) != 0 ||
236 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
237 &top_guid) != 0 ||
238 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
239 &txg) != 0 || txg == 0) {
240 nvlist_free(config);
241 return (0);
245 * First, see if we know about this pool. If not, then add it to the
246 * list of known pools.
248 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
249 if (pe->pe_guid == pool_guid)
250 break;
253 if (pe == NULL) {
254 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
255 nvlist_free(config);
256 return (-1);
258 pe->pe_guid = pool_guid;
259 pe->pe_next = pl->pools;
260 pl->pools = pe;
264 * Second, see if we know about this toplevel vdev. Add it if its
265 * missing.
267 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
268 if (ve->ve_guid == top_guid)
269 break;
272 if (ve == NULL) {
273 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
274 nvlist_free(config);
275 return (-1);
277 ve->ve_guid = top_guid;
278 ve->ve_next = pe->pe_vdevs;
279 pe->pe_vdevs = ve;
283 * Third, see if we have a config with a matching transaction group. If
284 * so, then we do nothing. Otherwise, add it to the list of known
285 * configs.
287 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
288 if (ce->ce_txg == txg)
289 break;
292 if (ce == NULL) {
293 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
294 nvlist_free(config);
295 return (-1);
297 ce->ce_txg = txg;
298 ce->ce_config = config;
299 ce->ce_next = ve->ve_configs;
300 ve->ve_configs = ce;
301 } else {
302 nvlist_free(config);
306 * At this point we've successfully added our config to the list of
307 * known configs. The last thing to do is add the vdev guid -> path
308 * mappings so that we can fix up the configuration as necessary before
309 * doing the import.
311 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
312 return (-1);
314 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
315 free(ne);
316 return (-1);
319 ne->ne_guid = vdev_guid;
320 ne->ne_next = pl->names;
321 pl->names = ne;
323 return (0);
327 * Returns true if the named pool matches the given GUID.
329 static int
330 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
331 boolean_t *isactive)
333 zpool_handle_t *zhp;
334 uint64_t theguid;
336 if (zpool_open_silent(hdl, name, &zhp) != 0)
337 return (-1);
339 if (zhp == NULL) {
340 *isactive = B_FALSE;
341 return (0);
344 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
345 &theguid) == 0);
347 zpool_close(zhp);
349 *isactive = (theguid == guid);
350 return (0);
353 static nvlist_t *
354 refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
356 nvlist_t *nvl;
357 zfs_cmd_t zc = { 0 };
358 int err, dstbuf_size;
360 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
361 return (NULL);
363 dstbuf_size = MAX(CONFIG_BUF_MINSIZE, zc.zc_nvlist_conf_size * 4);
365 if (zcmd_alloc_dst_nvlist(hdl, &zc, dstbuf_size) != 0) {
366 zcmd_free_nvlists(&zc);
367 return (NULL);
370 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
371 &zc)) != 0 && errno == ENOMEM) {
372 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
373 zcmd_free_nvlists(&zc);
374 return (NULL);
378 if (err) {
379 zcmd_free_nvlists(&zc);
380 return (NULL);
383 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
384 zcmd_free_nvlists(&zc);
385 return (NULL);
388 zcmd_free_nvlists(&zc);
389 return (nvl);
393 * Determine if the vdev id is a hole in the namespace.
395 boolean_t
396 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
398 for (int c = 0; c < holes; c++) {
400 /* Top-level is a hole */
401 if (hole_array[c] == id)
402 return (B_TRUE);
404 return (B_FALSE);
408 * Convert our list of pools into the definitive set of configurations. We
409 * start by picking the best config for each toplevel vdev. Once that's done,
410 * we assemble the toplevel vdevs into a full config for the pool. We make a
411 * pass to fix up any incorrect paths, and then add it to the main list to
412 * return to the user.
414 static nvlist_t *
415 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
417 pool_entry_t *pe;
418 vdev_entry_t *ve;
419 config_entry_t *ce;
420 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot;
421 nvlist_t **spares, **l2cache;
422 uint_t i, nspares, nl2cache;
423 boolean_t config_seen;
424 uint64_t best_txg;
425 char *name, *hostname = NULL;
426 uint64_t guid;
427 uint_t children = 0;
428 nvlist_t **child = NULL;
429 uint_t holes;
430 uint64_t *hole_array, max_id;
431 uint_t c;
432 boolean_t isactive;
433 uint64_t hostid;
434 nvlist_t *nvl;
435 boolean_t found_one = B_FALSE;
436 boolean_t valid_top_config = B_FALSE;
438 if (nvlist_alloc(&ret, 0, 0) != 0)
439 goto nomem;
441 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
442 uint64_t id, max_txg = 0;
444 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
445 goto nomem;
446 config_seen = B_FALSE;
449 * Iterate over all toplevel vdevs. Grab the pool configuration
450 * from the first one we find, and then go through the rest and
451 * add them as necessary to the 'vdevs' member of the config.
453 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
456 * Determine the best configuration for this vdev by
457 * selecting the config with the latest transaction
458 * group.
460 best_txg = 0;
461 for (ce = ve->ve_configs; ce != NULL;
462 ce = ce->ce_next) {
464 if (ce->ce_txg > best_txg) {
465 tmp = ce->ce_config;
466 best_txg = ce->ce_txg;
471 * We rely on the fact that the max txg for the
472 * pool will contain the most up-to-date information
473 * about the valid top-levels in the vdev namespace.
475 if (best_txg > max_txg) {
476 (void) nvlist_remove(config,
477 ZPOOL_CONFIG_VDEV_CHILDREN,
478 DATA_TYPE_UINT64);
479 (void) nvlist_remove(config,
480 ZPOOL_CONFIG_HOLE_ARRAY,
481 DATA_TYPE_UINT64_ARRAY);
483 max_txg = best_txg;
484 hole_array = NULL;
485 holes = 0;
486 max_id = 0;
487 valid_top_config = B_FALSE;
489 if (nvlist_lookup_uint64(tmp,
490 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
491 verify(nvlist_add_uint64(config,
492 ZPOOL_CONFIG_VDEV_CHILDREN,
493 max_id) == 0);
494 valid_top_config = B_TRUE;
497 if (nvlist_lookup_uint64_array(tmp,
498 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
499 &holes) == 0) {
500 verify(nvlist_add_uint64_array(config,
501 ZPOOL_CONFIG_HOLE_ARRAY,
502 hole_array, holes) == 0);
506 if (!config_seen) {
508 * Copy the relevant pieces of data to the pool
509 * configuration:
511 * version
512 * pool guid
513 * name
514 * comment (if available)
515 * pool state
516 * hostid (if available)
517 * hostname (if available)
519 uint64_t state, version;
520 char *comment = NULL;
522 version = fnvlist_lookup_uint64(tmp,
523 ZPOOL_CONFIG_VERSION);
524 fnvlist_add_uint64(config,
525 ZPOOL_CONFIG_VERSION, version);
526 guid = fnvlist_lookup_uint64(tmp,
527 ZPOOL_CONFIG_POOL_GUID);
528 fnvlist_add_uint64(config,
529 ZPOOL_CONFIG_POOL_GUID, guid);
530 name = fnvlist_lookup_string(tmp,
531 ZPOOL_CONFIG_POOL_NAME);
532 fnvlist_add_string(config,
533 ZPOOL_CONFIG_POOL_NAME, name);
535 if (nvlist_lookup_string(tmp,
536 ZPOOL_CONFIG_COMMENT, &comment) == 0)
537 fnvlist_add_string(config,
538 ZPOOL_CONFIG_COMMENT, comment);
540 state = fnvlist_lookup_uint64(tmp,
541 ZPOOL_CONFIG_POOL_STATE);
542 fnvlist_add_uint64(config,
543 ZPOOL_CONFIG_POOL_STATE, state);
545 hostid = 0;
546 if (nvlist_lookup_uint64(tmp,
547 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
548 fnvlist_add_uint64(config,
549 ZPOOL_CONFIG_HOSTID, hostid);
550 hostname = fnvlist_lookup_string(tmp,
551 ZPOOL_CONFIG_HOSTNAME);
552 fnvlist_add_string(config,
553 ZPOOL_CONFIG_HOSTNAME, hostname);
556 config_seen = B_TRUE;
560 * Add this top-level vdev to the child array.
562 verify(nvlist_lookup_nvlist(tmp,
563 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
564 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
565 &id) == 0);
567 if (id >= children) {
568 nvlist_t **newchild;
570 newchild = zfs_alloc(hdl, (id + 1) *
571 sizeof (nvlist_t *));
572 if (newchild == NULL)
573 goto nomem;
575 for (c = 0; c < children; c++)
576 newchild[c] = child[c];
578 free(child);
579 child = newchild;
580 children = id + 1;
582 if (nvlist_dup(nvtop, &child[id], 0) != 0)
583 goto nomem;
588 * If we have information about all the top-levels then
589 * clean up the nvlist which we've constructed. This
590 * means removing any extraneous devices that are
591 * beyond the valid range or adding devices to the end
592 * of our array which appear to be missing.
594 if (valid_top_config) {
595 if (max_id < children) {
596 for (c = max_id; c < children; c++)
597 nvlist_free(child[c]);
598 children = max_id;
599 } else if (max_id > children) {
600 nvlist_t **newchild;
602 newchild = zfs_alloc(hdl, (max_id) *
603 sizeof (nvlist_t *));
604 if (newchild == NULL)
605 goto nomem;
607 for (c = 0; c < children; c++)
608 newchild[c] = child[c];
610 free(child);
611 child = newchild;
612 children = max_id;
616 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
617 &guid) == 0);
620 * The vdev namespace may contain holes as a result of
621 * device removal. We must add them back into the vdev
622 * tree before we process any missing devices.
624 if (holes > 0) {
625 ASSERT(valid_top_config);
627 for (c = 0; c < children; c++) {
628 nvlist_t *holey;
630 if (child[c] != NULL ||
631 !vdev_is_hole(hole_array, holes, c))
632 continue;
634 if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
635 0) != 0)
636 goto nomem;
639 * Holes in the namespace are treated as
640 * "hole" top-level vdevs and have a
641 * special flag set on them.
643 if (nvlist_add_string(holey,
644 ZPOOL_CONFIG_TYPE,
645 VDEV_TYPE_HOLE) != 0 ||
646 nvlist_add_uint64(holey,
647 ZPOOL_CONFIG_ID, c) != 0 ||
648 nvlist_add_uint64(holey,
649 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
650 nvlist_free(holey);
651 goto nomem;
653 child[c] = holey;
658 * Look for any missing top-level vdevs. If this is the case,
659 * create a faked up 'missing' vdev as a placeholder. We cannot
660 * simply compress the child array, because the kernel performs
661 * certain checks to make sure the vdev IDs match their location
662 * in the configuration.
664 for (c = 0; c < children; c++) {
665 if (child[c] == NULL) {
666 nvlist_t *missing;
667 if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
668 0) != 0)
669 goto nomem;
670 if (nvlist_add_string(missing,
671 ZPOOL_CONFIG_TYPE,
672 VDEV_TYPE_MISSING) != 0 ||
673 nvlist_add_uint64(missing,
674 ZPOOL_CONFIG_ID, c) != 0 ||
675 nvlist_add_uint64(missing,
676 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
677 nvlist_free(missing);
678 goto nomem;
680 child[c] = missing;
685 * Put all of this pool's top-level vdevs into a root vdev.
687 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
688 goto nomem;
689 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
690 VDEV_TYPE_ROOT) != 0 ||
691 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
692 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
693 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
694 child, children) != 0) {
695 nvlist_free(nvroot);
696 goto nomem;
699 for (c = 0; c < children; c++)
700 nvlist_free(child[c]);
701 free(child);
702 children = 0;
703 child = NULL;
706 * Go through and fix up any paths and/or devids based on our
707 * known list of vdev GUID -> path mappings.
709 if (fix_paths(nvroot, pl->names) != 0) {
710 nvlist_free(nvroot);
711 goto nomem;
715 * Add the root vdev to this pool's configuration.
717 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
718 nvroot) != 0) {
719 nvlist_free(nvroot);
720 goto nomem;
722 nvlist_free(nvroot);
725 * zdb uses this path to report on active pools that were
726 * imported or created using -R.
728 if (active_ok)
729 goto add_pool;
732 * Determine if this pool is currently active, in which case we
733 * can't actually import it.
735 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
736 &name) == 0);
737 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
738 &guid) == 0);
740 if (pool_active(hdl, name, guid, &isactive) != 0)
741 goto error;
743 if (isactive) {
744 nvlist_free(config);
745 config = NULL;
746 continue;
749 if ((nvl = refresh_config(hdl, config)) == NULL) {
750 nvlist_free(config);
751 config = NULL;
752 continue;
755 nvlist_free(config);
756 config = nvl;
759 * Go through and update the paths for spares, now that we have
760 * them.
762 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
763 &nvroot) == 0);
764 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
765 &spares, &nspares) == 0) {
766 for (i = 0; i < nspares; i++) {
767 if (fix_paths(spares[i], pl->names) != 0)
768 goto nomem;
773 * Update the paths for l2cache devices.
775 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
776 &l2cache, &nl2cache) == 0) {
777 for (i = 0; i < nl2cache; i++) {
778 if (fix_paths(l2cache[i], pl->names) != 0)
779 goto nomem;
784 * Restore the original information read from the actual label.
786 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
787 DATA_TYPE_UINT64);
788 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
789 DATA_TYPE_STRING);
790 if (hostid != 0) {
791 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
792 hostid) == 0);
793 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
794 hostname) == 0);
797 add_pool:
799 * Add this pool to the list of configs.
801 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
802 &name) == 0);
803 if (nvlist_add_nvlist(ret, name, config) != 0)
804 goto nomem;
806 found_one = B_TRUE;
807 nvlist_free(config);
808 config = NULL;
811 if (!found_one) {
812 nvlist_free(ret);
813 ret = NULL;
816 return (ret);
818 nomem:
819 (void) no_memory(hdl);
820 error:
821 nvlist_free(config);
822 nvlist_free(ret);
823 for (c = 0; c < children; c++)
824 nvlist_free(child[c]);
825 free(child);
827 return (NULL);
831 * Return the offset of the given label.
833 static uint64_t
834 label_offset(uint64_t size, int l)
836 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
837 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
838 0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
842 * Given a file descriptor, read the label information and return an nvlist
843 * describing the configuration, if there is one.
844 * Return 0 on success, or -1 on failure
847 zpool_read_label(int fd, nvlist_t **config)
849 struct stat64 statbuf;
850 int l;
851 vdev_label_t *label;
852 uint64_t state, txg, size;
854 *config = NULL;
856 if (fstat64(fd, &statbuf) == -1)
857 return (-1);
858 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
860 if ((label = malloc(sizeof (vdev_label_t))) == NULL)
861 return (-1);
863 for (l = 0; l < VDEV_LABELS; l++) {
864 if (pread64(fd, label, sizeof (vdev_label_t),
865 label_offset(size, l)) != sizeof (vdev_label_t))
866 continue;
868 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
869 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
870 continue;
872 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
873 &state) != 0 || state > POOL_STATE_L2CACHE) {
874 nvlist_free(*config);
875 continue;
878 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
879 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
880 &txg) != 0 || txg == 0)) {
881 nvlist_free(*config);
882 continue;
885 free(label);
886 return (0);
889 free(label);
890 *config = NULL;
891 return (-1);
894 typedef struct rdsk_node {
895 char *rn_name;
896 int rn_dfd;
897 libzfs_handle_t *rn_hdl;
898 nvlist_t *rn_config;
899 avl_tree_t *rn_avl;
900 avl_node_t rn_node;
901 boolean_t rn_nozpool;
902 } rdsk_node_t;
904 static int
905 slice_cache_compare(const void *arg1, const void *arg2)
907 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name;
908 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name;
909 char *nm1slice, *nm2slice;
910 int rv;
913 * slices zero and two are the most likely to provide results,
914 * so put those first
916 nm1slice = strstr(nm1, "s0");
917 nm2slice = strstr(nm2, "s0");
918 if (nm1slice && !nm2slice) {
919 return (-1);
921 if (!nm1slice && nm2slice) {
922 return (1);
924 nm1slice = strstr(nm1, "s2");
925 nm2slice = strstr(nm2, "s2");
926 if (nm1slice && !nm2slice) {
927 return (-1);
929 if (!nm1slice && nm2slice) {
930 return (1);
933 rv = strcmp(nm1, nm2);
934 if (rv == 0)
935 return (0);
936 return (rv > 0 ? 1 : -1);
939 static void
940 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
941 diskaddr_t size, uint_t blksz)
943 rdsk_node_t tmpnode;
944 rdsk_node_t *node;
945 char sname[MAXNAMELEN];
947 tmpnode.rn_name = &sname[0];
948 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
949 diskname, partno);
951 * protect against division by zero for disk labels that
952 * contain a bogus sector size
954 if (blksz == 0)
955 blksz = DEV_BSIZE;
956 /* too small to contain a zpool? */
957 if ((size < (SPA_MINDEVSIZE / blksz)) &&
958 (node = avl_find(r, &tmpnode, NULL)))
959 node->rn_nozpool = B_TRUE;
962 static void
963 nozpool_all_slices(avl_tree_t *r, const char *sname)
965 char diskname[MAXNAMELEN];
966 char *ptr;
967 int i;
969 (void) strncpy(diskname, sname, MAXNAMELEN);
970 if (((ptr = strrchr(diskname, 's')) == NULL) &&
971 ((ptr = strrchr(diskname, 'p')) == NULL))
972 return;
973 ptr[0] = 's';
974 ptr[1] = '\0';
975 for (i = 0; i < NDKMAP; i++)
976 check_one_slice(r, diskname, i, 0, 1);
977 ptr[0] = 'p';
978 for (i = 0; i <= FD_NUMPART; i++)
979 check_one_slice(r, diskname, i, 0, 1);
982 static void
983 check_slices(avl_tree_t *r, int fd, const char *sname)
985 struct extvtoc vtoc;
986 struct dk_gpt *gpt;
987 char diskname[MAXNAMELEN];
988 char *ptr;
989 int i;
991 (void) strncpy(diskname, sname, MAXNAMELEN);
992 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
993 return;
994 ptr[1] = '\0';
996 if (read_extvtoc(fd, &vtoc) >= 0) {
997 for (i = 0; i < NDKMAP; i++)
998 check_one_slice(r, diskname, i,
999 vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1000 } else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1002 * on x86 we'll still have leftover links that point
1003 * to slices s[9-15], so use NDKMAP instead
1005 for (i = 0; i < NDKMAP; i++)
1006 check_one_slice(r, diskname, i,
1007 gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1008 /* nodes p[1-4] are never used with EFI labels */
1009 ptr[0] = 'p';
1010 for (i = 1; i <= FD_NUMPART; i++)
1011 check_one_slice(r, diskname, i, 0, 1);
1012 efi_free(gpt);
1016 static void
1017 zpool_open_func(void *arg)
1019 rdsk_node_t *rn = arg;
1020 struct stat64 statbuf;
1021 nvlist_t *config;
1022 int fd;
1024 if (rn->rn_nozpool)
1025 return;
1026 if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1027 /* symlink to a device that's no longer there */
1028 if (errno == ENOENT)
1029 nozpool_all_slices(rn->rn_avl, rn->rn_name);
1030 return;
1033 * Ignore failed stats. We only want regular
1034 * files, character devs and block devs.
1036 if (fstat64(fd, &statbuf) != 0 ||
1037 (!S_ISREG(statbuf.st_mode) &&
1038 !S_ISCHR(statbuf.st_mode) &&
1039 !S_ISBLK(statbuf.st_mode))) {
1040 (void) close(fd);
1041 return;
1043 /* this file is too small to hold a zpool */
1044 if (S_ISREG(statbuf.st_mode) &&
1045 statbuf.st_size < SPA_MINDEVSIZE) {
1046 (void) close(fd);
1047 return;
1048 } else if (!S_ISREG(statbuf.st_mode)) {
1050 * Try to read the disk label first so we don't have to
1051 * open a bunch of minor nodes that can't have a zpool.
1053 check_slices(rn->rn_avl, fd, rn->rn_name);
1056 if ((zpool_read_label(fd, &config)) != 0 && errno == ENOMEM) {
1057 (void) close(fd);
1058 (void) no_memory(rn->rn_hdl);
1059 return;
1061 (void) close(fd);
1063 rn->rn_config = config;
1067 * Given a file descriptor, clear (zero) the label information.
1070 zpool_clear_label(int fd)
1072 struct stat64 statbuf;
1073 int l;
1074 vdev_label_t *label;
1075 uint64_t size;
1077 if (fstat64(fd, &statbuf) == -1)
1078 return (0);
1079 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1081 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1082 return (-1);
1084 for (l = 0; l < VDEV_LABELS; l++) {
1085 if (pwrite64(fd, label, sizeof (vdev_label_t),
1086 label_offset(size, l)) != sizeof (vdev_label_t)) {
1087 free(label);
1088 return (-1);
1092 free(label);
1093 return (0);
1097 * Given a list of directories to search, find all pools stored on disk. This
1098 * includes partial pools which are not available to import. If no args are
1099 * given (argc is 0), then the default directory (/dev/dsk) is searched.
1100 * poolname or guid (but not both) are provided by the caller when trying
1101 * to import a specific pool.
1103 static nvlist_t *
1104 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1106 int i, dirs = iarg->paths;
1107 struct dirent64 *dp;
1108 char path[MAXPATHLEN];
1109 char *end, **dir = iarg->path;
1110 size_t pathleft;
1111 nvlist_t *ret = NULL;
1112 static char *default_dir = ZFS_DISK_ROOT;
1113 pool_list_t pools = { 0 };
1114 pool_entry_t *pe, *penext;
1115 vdev_entry_t *ve, *venext;
1116 config_entry_t *ce, *cenext;
1117 name_entry_t *ne, *nenext;
1118 avl_tree_t slice_cache;
1119 rdsk_node_t *slice;
1120 void *cookie;
1122 if (dirs == 0) {
1123 dirs = 1;
1124 dir = &default_dir;
1128 * Go through and read the label configuration information from every
1129 * possible device, organizing the information according to pool GUID
1130 * and toplevel GUID.
1132 for (i = 0; i < dirs; i++) {
1133 tpool_t *t;
1134 char rdsk[MAXPATHLEN];
1135 int dfd;
1136 boolean_t config_failed = B_FALSE;
1137 DIR *dirp;
1139 /* use realpath to normalize the path */
1140 if (realpath(dir[i], path) == 0) {
1141 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1142 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1143 goto error;
1145 end = &path[strlen(path)];
1146 *end++ = '/';
1147 *end = 0;
1148 pathleft = &path[sizeof (path)] - end;
1151 * Using raw devices instead of block devices when we're
1152 * reading the labels skips a bunch of slow operations during
1153 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1155 if (strcmp(path, ZFS_DISK_ROOTD) == 0)
1156 (void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk));
1157 else
1158 (void) strlcpy(rdsk, path, sizeof (rdsk));
1160 if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1161 (dirp = fdopendir(dfd)) == NULL) {
1162 if (dfd >= 0)
1163 (void) close(dfd);
1164 zfs_error_aux(hdl, strerror(errno));
1165 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1166 dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1167 rdsk);
1168 goto error;
1171 avl_create(&slice_cache, slice_cache_compare,
1172 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1174 * This is not MT-safe, but we have no MT consumers of libzfs
1176 while ((dp = readdir64(dirp)) != NULL) {
1177 const char *name = dp->d_name;
1178 if (name[0] == '.' &&
1179 (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1180 continue;
1182 slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1183 slice->rn_name = zfs_strdup(hdl, name);
1184 slice->rn_avl = &slice_cache;
1185 slice->rn_dfd = dfd;
1186 slice->rn_hdl = hdl;
1187 slice->rn_nozpool = B_FALSE;
1188 avl_add(&slice_cache, slice);
1191 * create a thread pool to do all of this in parallel;
1192 * rn_nozpool is not protected, so this is racy in that
1193 * multiple tasks could decide that the same slice can
1194 * not hold a zpool, which is benign. Also choose
1195 * double the number of processors; we hold a lot of
1196 * locks in the kernel, so going beyond this doesn't
1197 * buy us much.
1199 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1200 0, NULL);
1201 for (slice = avl_first(&slice_cache); slice;
1202 (slice = avl_walk(&slice_cache, slice,
1203 AVL_AFTER)))
1204 (void) tpool_dispatch(t, zpool_open_func, slice);
1205 tpool_wait(t);
1206 tpool_destroy(t);
1208 cookie = NULL;
1209 while ((slice = avl_destroy_nodes(&slice_cache,
1210 &cookie)) != NULL) {
1211 if (slice->rn_config != NULL && !config_failed) {
1212 nvlist_t *config = slice->rn_config;
1213 boolean_t matched = B_TRUE;
1215 if (iarg->poolname != NULL) {
1216 char *pname;
1218 matched = nvlist_lookup_string(config,
1219 ZPOOL_CONFIG_POOL_NAME,
1220 &pname) == 0 &&
1221 strcmp(iarg->poolname, pname) == 0;
1222 } else if (iarg->guid != 0) {
1223 uint64_t this_guid;
1225 matched = nvlist_lookup_uint64(config,
1226 ZPOOL_CONFIG_POOL_GUID,
1227 &this_guid) == 0 &&
1228 iarg->guid == this_guid;
1230 if (!matched) {
1231 nvlist_free(config);
1232 } else {
1234 * use the non-raw path for the config
1236 (void) strlcpy(end, slice->rn_name,
1237 pathleft);
1238 if (add_config(hdl, &pools, path,
1239 config) != 0)
1240 config_failed = B_TRUE;
1243 free(slice->rn_name);
1244 free(slice);
1246 avl_destroy(&slice_cache);
1248 (void) closedir(dirp);
1250 if (config_failed)
1251 goto error;
1254 ret = get_configs(hdl, &pools, iarg->can_be_active);
1256 error:
1257 for (pe = pools.pools; pe != NULL; pe = penext) {
1258 penext = pe->pe_next;
1259 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1260 venext = ve->ve_next;
1261 for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1262 cenext = ce->ce_next;
1263 nvlist_free(ce->ce_config);
1264 free(ce);
1266 free(ve);
1268 free(pe);
1271 for (ne = pools.names; ne != NULL; ne = nenext) {
1272 nenext = ne->ne_next;
1273 free(ne->ne_name);
1274 free(ne);
1277 return (ret);
1280 nvlist_t *
1281 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1283 importargs_t iarg = { 0 };
1285 iarg.paths = argc;
1286 iarg.path = argv;
1288 return (zpool_find_import_impl(hdl, &iarg));
1292 * Given a cache file, return the contents as a list of importable pools.
1293 * poolname or guid (but not both) are provided by the caller when trying
1294 * to import a specific pool.
1296 nvlist_t *
1297 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1298 char *poolname, uint64_t guid)
1300 char *buf;
1301 int fd;
1302 struct stat64 statbuf;
1303 nvlist_t *raw, *src, *dst;
1304 nvlist_t *pools;
1305 nvpair_t *elem;
1306 char *name;
1307 uint64_t this_guid;
1308 boolean_t active;
1310 verify(poolname == NULL || guid == 0);
1312 if ((fd = open(cachefile, O_RDONLY)) < 0) {
1313 zfs_error_aux(hdl, "%s", strerror(errno));
1314 (void) zfs_error(hdl, EZFS_BADCACHE,
1315 dgettext(TEXT_DOMAIN, "failed to open cache file"));
1316 return (NULL);
1319 if (fstat64(fd, &statbuf) != 0) {
1320 zfs_error_aux(hdl, "%s", strerror(errno));
1321 (void) close(fd);
1322 (void) zfs_error(hdl, EZFS_BADCACHE,
1323 dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1324 return (NULL);
1327 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1328 (void) close(fd);
1329 return (NULL);
1332 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1333 (void) close(fd);
1334 free(buf);
1335 (void) zfs_error(hdl, EZFS_BADCACHE,
1336 dgettext(TEXT_DOMAIN,
1337 "failed to read cache file contents"));
1338 return (NULL);
1341 (void) close(fd);
1343 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1344 free(buf);
1345 (void) zfs_error(hdl, EZFS_BADCACHE,
1346 dgettext(TEXT_DOMAIN,
1347 "invalid or corrupt cache file contents"));
1348 return (NULL);
1351 free(buf);
1354 * Go through and get the current state of the pools and refresh their
1355 * state.
1357 if (nvlist_alloc(&pools, 0, 0) != 0) {
1358 (void) no_memory(hdl);
1359 nvlist_free(raw);
1360 return (NULL);
1363 elem = NULL;
1364 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1365 src = fnvpair_value_nvlist(elem);
1367 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
1368 if (poolname != NULL && strcmp(poolname, name) != 0)
1369 continue;
1371 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
1372 if (guid != 0 && guid != this_guid)
1373 continue;
1375 if (pool_active(hdl, name, this_guid, &active) != 0) {
1376 nvlist_free(raw);
1377 nvlist_free(pools);
1378 return (NULL);
1381 if (active)
1382 continue;
1384 if ((dst = refresh_config(hdl, src)) == NULL) {
1385 nvlist_free(raw);
1386 nvlist_free(pools);
1387 return (NULL);
1390 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1391 (void) no_memory(hdl);
1392 nvlist_free(dst);
1393 nvlist_free(raw);
1394 nvlist_free(pools);
1395 return (NULL);
1397 nvlist_free(dst);
1400 nvlist_free(raw);
1401 return (pools);
1404 static int
1405 name_or_guid_exists(zpool_handle_t *zhp, void *data)
1407 importargs_t *import = data;
1408 int found = 0;
1410 if (import->poolname != NULL) {
1411 char *pool_name;
1413 verify(nvlist_lookup_string(zhp->zpool_config,
1414 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1415 if (strcmp(pool_name, import->poolname) == 0)
1416 found = 1;
1417 } else {
1418 uint64_t pool_guid;
1420 verify(nvlist_lookup_uint64(zhp->zpool_config,
1421 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1422 if (pool_guid == import->guid)
1423 found = 1;
1426 zpool_close(zhp);
1427 return (found);
1430 nvlist_t *
1431 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1433 verify(import->poolname == NULL || import->guid == 0);
1435 if (import->unique)
1436 import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1438 if (import->cachefile != NULL)
1439 return (zpool_find_import_cached(hdl, import->cachefile,
1440 import->poolname, import->guid));
1442 return (zpool_find_import_impl(hdl, import));
1445 boolean_t
1446 find_guid(nvlist_t *nv, uint64_t guid)
1448 uint64_t tmp;
1449 nvlist_t **child;
1450 uint_t c, children;
1452 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1453 if (tmp == guid)
1454 return (B_TRUE);
1456 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1457 &child, &children) == 0) {
1458 for (c = 0; c < children; c++)
1459 if (find_guid(child[c], guid))
1460 return (B_TRUE);
1463 return (B_FALSE);
1466 typedef struct aux_cbdata {
1467 const char *cb_type;
1468 uint64_t cb_guid;
1469 zpool_handle_t *cb_zhp;
1470 } aux_cbdata_t;
1472 static int
1473 find_aux(zpool_handle_t *zhp, void *data)
1475 aux_cbdata_t *cbp = data;
1476 nvlist_t **list;
1477 uint_t i, count;
1478 uint64_t guid;
1479 nvlist_t *nvroot;
1481 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1482 &nvroot) == 0);
1484 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1485 &list, &count) == 0) {
1486 for (i = 0; i < count; i++) {
1487 verify(nvlist_lookup_uint64(list[i],
1488 ZPOOL_CONFIG_GUID, &guid) == 0);
1489 if (guid == cbp->cb_guid) {
1490 cbp->cb_zhp = zhp;
1491 return (1);
1496 zpool_close(zhp);
1497 return (0);
1501 * Determines if the pool is in use. If so, it returns true and the state of
1502 * the pool as well as the name of the pool. Both strings are allocated and
1503 * must be freed by the caller.
1506 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1507 boolean_t *inuse)
1509 nvlist_t *config;
1510 char *name;
1511 boolean_t ret;
1512 uint64_t guid, vdev_guid;
1513 zpool_handle_t *zhp;
1514 nvlist_t *pool_config;
1515 uint64_t stateval, isspare;
1516 aux_cbdata_t cb = { 0 };
1517 boolean_t isactive;
1519 *inuse = B_FALSE;
1521 if (zpool_read_label(fd, &config) != 0 && errno == ENOMEM) {
1522 (void) no_memory(hdl);
1523 return (-1);
1526 if (config == NULL)
1527 return (0);
1529 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1530 &stateval) == 0);
1531 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1532 &vdev_guid) == 0);
1534 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1535 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1536 &name) == 0);
1537 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1538 &guid) == 0);
1541 switch (stateval) {
1542 case POOL_STATE_EXPORTED:
1544 * A pool with an exported state may in fact be imported
1545 * read-only, so check the in-core state to see if it's
1546 * active and imported read-only. If it is, set
1547 * its state to active.
1549 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1550 (zhp = zpool_open_canfail(hdl, name)) != NULL) {
1551 if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1552 stateval = POOL_STATE_ACTIVE;
1555 * All we needed the zpool handle for is the
1556 * readonly prop check.
1558 zpool_close(zhp);
1561 ret = B_TRUE;
1562 break;
1564 case POOL_STATE_ACTIVE:
1566 * For an active pool, we have to determine if it's really part
1567 * of a currently active pool (in which case the pool will exist
1568 * and the guid will be the same), or whether it's part of an
1569 * active pool that was disconnected without being explicitly
1570 * exported.
1572 if (pool_active(hdl, name, guid, &isactive) != 0) {
1573 nvlist_free(config);
1574 return (-1);
1577 if (isactive) {
1579 * Because the device may have been removed while
1580 * offlined, we only report it as active if the vdev is
1581 * still present in the config. Otherwise, pretend like
1582 * it's not in use.
1584 if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1585 (pool_config = zpool_get_config(zhp, NULL))
1586 != NULL) {
1587 nvlist_t *nvroot;
1589 verify(nvlist_lookup_nvlist(pool_config,
1590 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1591 ret = find_guid(nvroot, vdev_guid);
1592 } else {
1593 ret = B_FALSE;
1597 * If this is an active spare within another pool, we
1598 * treat it like an unused hot spare. This allows the
1599 * user to create a pool with a hot spare that currently
1600 * in use within another pool. Since we return B_TRUE,
1601 * libdiskmgt will continue to prevent generic consumers
1602 * from using the device.
1604 if (ret && nvlist_lookup_uint64(config,
1605 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1606 stateval = POOL_STATE_SPARE;
1608 if (zhp != NULL)
1609 zpool_close(zhp);
1610 } else {
1611 stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1612 ret = B_TRUE;
1614 break;
1616 case POOL_STATE_SPARE:
1618 * For a hot spare, it can be either definitively in use, or
1619 * potentially active. To determine if it's in use, we iterate
1620 * over all pools in the system and search for one with a spare
1621 * with a matching guid.
1623 * Due to the shared nature of spares, we don't actually report
1624 * the potentially active case as in use. This means the user
1625 * can freely create pools on the hot spares of exported pools,
1626 * but to do otherwise makes the resulting code complicated, and
1627 * we end up having to deal with this case anyway.
1629 cb.cb_zhp = NULL;
1630 cb.cb_guid = vdev_guid;
1631 cb.cb_type = ZPOOL_CONFIG_SPARES;
1632 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1633 name = (char *)zpool_get_name(cb.cb_zhp);
1634 ret = B_TRUE;
1635 } else {
1636 ret = B_FALSE;
1638 break;
1640 case POOL_STATE_L2CACHE:
1643 * Check if any pool is currently using this l2cache device.
1645 cb.cb_zhp = NULL;
1646 cb.cb_guid = vdev_guid;
1647 cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1648 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1649 name = (char *)zpool_get_name(cb.cb_zhp);
1650 ret = B_TRUE;
1651 } else {
1652 ret = B_FALSE;
1654 break;
1656 default:
1657 ret = B_FALSE;
1661 if (ret) {
1662 if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1663 if (cb.cb_zhp)
1664 zpool_close(cb.cb_zhp);
1665 nvlist_free(config);
1666 return (-1);
1668 *state = (pool_state_t)stateval;
1671 if (cb.cb_zhp)
1672 zpool_close(cb.cb_zhp);
1674 nvlist_free(config);
1675 *inuse = ret;
1676 return (0);