7578 Fix/improve some aspects of ZIL writing.
[unleashed.git] / usr / src / uts / common / fs / zfs / zio.c
blob94d9aca2b80ea702b612e3cfab40cde733688933
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
28 #include <sys/sysmacros.h>
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/txg.h>
33 #include <sys/spa_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/zio_impl.h>
36 #include <sys/zio_compress.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/ddt.h>
41 #include <sys/blkptr.h>
42 #include <sys/zfeature.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/abd.h>
47 * ==========================================================================
48 * I/O type descriptions
49 * ==========================================================================
51 const char *zio_type_name[ZIO_TYPES] = {
52 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
53 "zio_ioctl"
56 boolean_t zio_dva_throttle_enabled = B_TRUE;
59 * ==========================================================================
60 * I/O kmem caches
61 * ==========================================================================
63 kmem_cache_t *zio_cache;
64 kmem_cache_t *zio_link_cache;
65 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
66 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
68 #ifdef _KERNEL
69 extern vmem_t *zio_alloc_arena;
70 #endif
72 #define ZIO_PIPELINE_CONTINUE 0x100
73 #define ZIO_PIPELINE_STOP 0x101
75 #define BP_SPANB(indblkshift, level) \
76 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
77 #define COMPARE_META_LEVEL 0x80000000ul
79 * The following actions directly effect the spa's sync-to-convergence logic.
80 * The values below define the sync pass when we start performing the action.
81 * Care should be taken when changing these values as they directly impact
82 * spa_sync() performance. Tuning these values may introduce subtle performance
83 * pathologies and should only be done in the context of performance analysis.
84 * These tunables will eventually be removed and replaced with #defines once
85 * enough analysis has been done to determine optimal values.
87 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
88 * regular blocks are not deferred.
90 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
91 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
92 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
95 * An allocating zio is one that either currently has the DVA allocate
96 * stage set or will have it later in its lifetime.
98 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
100 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE;
102 #ifdef ZFS_DEBUG
103 int zio_buf_debug_limit = 16384;
104 #else
105 int zio_buf_debug_limit = 0;
106 #endif
108 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
110 void
111 zio_init(void)
113 size_t c;
114 vmem_t *data_alloc_arena = NULL;
116 #ifdef _KERNEL
117 data_alloc_arena = zio_alloc_arena;
118 #endif
119 zio_cache = kmem_cache_create("zio_cache",
120 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
121 zio_link_cache = kmem_cache_create("zio_link_cache",
122 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
125 * For small buffers, we want a cache for each multiple of
126 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
127 * for each quarter-power of 2.
129 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
130 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
131 size_t p2 = size;
132 size_t align = 0;
133 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
135 while (!ISP2(p2))
136 p2 &= p2 - 1;
138 #ifndef _KERNEL
140 * If we are using watchpoints, put each buffer on its own page,
141 * to eliminate the performance overhead of trapping to the
142 * kernel when modifying a non-watched buffer that shares the
143 * page with a watched buffer.
145 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
146 continue;
147 #endif
148 if (size <= 4 * SPA_MINBLOCKSIZE) {
149 align = SPA_MINBLOCKSIZE;
150 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
151 align = MIN(p2 >> 2, PAGESIZE);
154 if (align != 0) {
155 char name[36];
156 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
157 zio_buf_cache[c] = kmem_cache_create(name, size,
158 align, NULL, NULL, NULL, NULL, NULL, cflags);
161 * Since zio_data bufs do not appear in crash dumps, we
162 * pass KMC_NOTOUCH so that no allocator metadata is
163 * stored with the buffers.
165 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
166 zio_data_buf_cache[c] = kmem_cache_create(name, size,
167 align, NULL, NULL, NULL, NULL, data_alloc_arena,
168 cflags | KMC_NOTOUCH);
172 while (--c != 0) {
173 ASSERT(zio_buf_cache[c] != NULL);
174 if (zio_buf_cache[c - 1] == NULL)
175 zio_buf_cache[c - 1] = zio_buf_cache[c];
177 ASSERT(zio_data_buf_cache[c] != NULL);
178 if (zio_data_buf_cache[c - 1] == NULL)
179 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
182 zio_inject_init();
185 void
186 zio_fini(void)
188 size_t c;
189 kmem_cache_t *last_cache = NULL;
190 kmem_cache_t *last_data_cache = NULL;
192 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
193 if (zio_buf_cache[c] != last_cache) {
194 last_cache = zio_buf_cache[c];
195 kmem_cache_destroy(zio_buf_cache[c]);
197 zio_buf_cache[c] = NULL;
199 if (zio_data_buf_cache[c] != last_data_cache) {
200 last_data_cache = zio_data_buf_cache[c];
201 kmem_cache_destroy(zio_data_buf_cache[c]);
203 zio_data_buf_cache[c] = NULL;
206 kmem_cache_destroy(zio_link_cache);
207 kmem_cache_destroy(zio_cache);
209 zio_inject_fini();
213 * ==========================================================================
214 * Allocate and free I/O buffers
215 * ==========================================================================
219 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
220 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
221 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
222 * excess / transient data in-core during a crashdump.
224 void *
225 zio_buf_alloc(size_t size)
227 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
229 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
231 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
235 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
236 * crashdump if the kernel panics. This exists so that we will limit the amount
237 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
238 * of kernel heap dumped to disk when the kernel panics)
240 void *
241 zio_data_buf_alloc(size_t size)
243 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
245 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
247 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
250 void
251 zio_buf_free(void *buf, size_t size)
253 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
255 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
257 kmem_cache_free(zio_buf_cache[c], buf);
260 void
261 zio_data_buf_free(void *buf, size_t size)
263 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
265 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
267 kmem_cache_free(zio_data_buf_cache[c], buf);
271 * ==========================================================================
272 * Push and pop I/O transform buffers
273 * ==========================================================================
275 void
276 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
277 zio_transform_func_t *transform)
279 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
282 * Ensure that anyone expecting this zio to contain a linear ABD isn't
283 * going to get a nasty surprise when they try to access the data.
285 IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
287 zt->zt_orig_abd = zio->io_abd;
288 zt->zt_orig_size = zio->io_size;
289 zt->zt_bufsize = bufsize;
290 zt->zt_transform = transform;
292 zt->zt_next = zio->io_transform_stack;
293 zio->io_transform_stack = zt;
295 zio->io_abd = data;
296 zio->io_size = size;
299 void
300 zio_pop_transforms(zio_t *zio)
302 zio_transform_t *zt;
304 while ((zt = zio->io_transform_stack) != NULL) {
305 if (zt->zt_transform != NULL)
306 zt->zt_transform(zio,
307 zt->zt_orig_abd, zt->zt_orig_size);
309 if (zt->zt_bufsize != 0)
310 abd_free(zio->io_abd);
312 zio->io_abd = zt->zt_orig_abd;
313 zio->io_size = zt->zt_orig_size;
314 zio->io_transform_stack = zt->zt_next;
316 kmem_free(zt, sizeof (zio_transform_t));
321 * ==========================================================================
322 * I/O transform callbacks for subblocks and decompression
323 * ==========================================================================
325 static void
326 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
328 ASSERT(zio->io_size > size);
330 if (zio->io_type == ZIO_TYPE_READ)
331 abd_copy(data, zio->io_abd, size);
334 static void
335 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
337 if (zio->io_error == 0) {
338 void *tmp = abd_borrow_buf(data, size);
339 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
340 zio->io_abd, tmp, zio->io_size, size);
341 abd_return_buf_copy(data, tmp, size);
343 if (ret != 0)
344 zio->io_error = SET_ERROR(EIO);
349 * ==========================================================================
350 * I/O parent/child relationships and pipeline interlocks
351 * ==========================================================================
353 zio_t *
354 zio_walk_parents(zio_t *cio, zio_link_t **zl)
356 list_t *pl = &cio->io_parent_list;
358 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
359 if (*zl == NULL)
360 return (NULL);
362 ASSERT((*zl)->zl_child == cio);
363 return ((*zl)->zl_parent);
366 zio_t *
367 zio_walk_children(zio_t *pio, zio_link_t **zl)
369 list_t *cl = &pio->io_child_list;
371 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
372 if (*zl == NULL)
373 return (NULL);
375 ASSERT((*zl)->zl_parent == pio);
376 return ((*zl)->zl_child);
379 zio_t *
380 zio_unique_parent(zio_t *cio)
382 zio_link_t *zl = NULL;
383 zio_t *pio = zio_walk_parents(cio, &zl);
385 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
386 return (pio);
389 void
390 zio_add_child(zio_t *pio, zio_t *cio)
392 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
395 * Logical I/Os can have logical, gang, or vdev children.
396 * Gang I/Os can have gang or vdev children.
397 * Vdev I/Os can only have vdev children.
398 * The following ASSERT captures all of these constraints.
400 ASSERT(cio->io_child_type <= pio->io_child_type);
402 zl->zl_parent = pio;
403 zl->zl_child = cio;
405 mutex_enter(&cio->io_lock);
406 mutex_enter(&pio->io_lock);
408 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
410 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
411 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
413 list_insert_head(&pio->io_child_list, zl);
414 list_insert_head(&cio->io_parent_list, zl);
416 pio->io_child_count++;
417 cio->io_parent_count++;
419 mutex_exit(&pio->io_lock);
420 mutex_exit(&cio->io_lock);
423 static void
424 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
426 ASSERT(zl->zl_parent == pio);
427 ASSERT(zl->zl_child == cio);
429 mutex_enter(&cio->io_lock);
430 mutex_enter(&pio->io_lock);
432 list_remove(&pio->io_child_list, zl);
433 list_remove(&cio->io_parent_list, zl);
435 pio->io_child_count--;
436 cio->io_parent_count--;
438 mutex_exit(&pio->io_lock);
439 mutex_exit(&cio->io_lock);
441 kmem_cache_free(zio_link_cache, zl);
444 static boolean_t
445 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
447 uint64_t *countp = &zio->io_children[child][wait];
448 boolean_t waiting = B_FALSE;
450 mutex_enter(&zio->io_lock);
451 ASSERT(zio->io_stall == NULL);
452 if (*countp != 0) {
453 zio->io_stage >>= 1;
454 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
455 zio->io_stall = countp;
456 waiting = B_TRUE;
458 mutex_exit(&zio->io_lock);
460 return (waiting);
463 static void
464 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
466 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
467 int *errorp = &pio->io_child_error[zio->io_child_type];
469 mutex_enter(&pio->io_lock);
470 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
471 *errorp = zio_worst_error(*errorp, zio->io_error);
472 pio->io_reexecute |= zio->io_reexecute;
473 ASSERT3U(*countp, >, 0);
475 (*countp)--;
477 if (*countp == 0 && pio->io_stall == countp) {
478 zio_taskq_type_t type =
479 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
480 ZIO_TASKQ_INTERRUPT;
481 pio->io_stall = NULL;
482 mutex_exit(&pio->io_lock);
484 * Dispatch the parent zio in its own taskq so that
485 * the child can continue to make progress. This also
486 * prevents overflowing the stack when we have deeply nested
487 * parent-child relationships.
489 zio_taskq_dispatch(pio, type, B_FALSE);
490 } else {
491 mutex_exit(&pio->io_lock);
495 static void
496 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
498 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
499 zio->io_error = zio->io_child_error[c];
503 zio_bookmark_compare(const void *x1, const void *x2)
505 const zio_t *z1 = x1;
506 const zio_t *z2 = x2;
508 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
509 return (-1);
510 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
511 return (1);
513 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
514 return (-1);
515 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
516 return (1);
518 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
519 return (-1);
520 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
521 return (1);
523 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
524 return (-1);
525 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
526 return (1);
528 if (z1 < z2)
529 return (-1);
530 if (z1 > z2)
531 return (1);
533 return (0);
537 * ==========================================================================
538 * Create the various types of I/O (read, write, free, etc)
539 * ==========================================================================
541 static zio_t *
542 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
543 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
544 void *private, zio_type_t type, zio_priority_t priority,
545 enum zio_flag flags, vdev_t *vd, uint64_t offset,
546 const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline)
548 zio_t *zio;
550 ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE);
551 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
552 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
554 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
555 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
556 ASSERT(vd || stage == ZIO_STAGE_OPEN);
558 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW) != 0);
560 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
561 bzero(zio, sizeof (zio_t));
563 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
564 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
566 list_create(&zio->io_parent_list, sizeof (zio_link_t),
567 offsetof(zio_link_t, zl_parent_node));
568 list_create(&zio->io_child_list, sizeof (zio_link_t),
569 offsetof(zio_link_t, zl_child_node));
570 metaslab_trace_init(&zio->io_alloc_list);
572 if (vd != NULL)
573 zio->io_child_type = ZIO_CHILD_VDEV;
574 else if (flags & ZIO_FLAG_GANG_CHILD)
575 zio->io_child_type = ZIO_CHILD_GANG;
576 else if (flags & ZIO_FLAG_DDT_CHILD)
577 zio->io_child_type = ZIO_CHILD_DDT;
578 else
579 zio->io_child_type = ZIO_CHILD_LOGICAL;
581 if (bp != NULL) {
582 zio->io_bp = (blkptr_t *)bp;
583 zio->io_bp_copy = *bp;
584 zio->io_bp_orig = *bp;
585 if (type != ZIO_TYPE_WRITE ||
586 zio->io_child_type == ZIO_CHILD_DDT)
587 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
588 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
589 zio->io_logical = zio;
590 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
591 pipeline |= ZIO_GANG_STAGES;
594 zio->io_spa = spa;
595 zio->io_txg = txg;
596 zio->io_done = done;
597 zio->io_private = private;
598 zio->io_type = type;
599 zio->io_priority = priority;
600 zio->io_vd = vd;
601 zio->io_offset = offset;
602 zio->io_orig_abd = zio->io_abd = data;
603 zio->io_orig_size = zio->io_size = psize;
604 zio->io_lsize = lsize;
605 zio->io_orig_flags = zio->io_flags = flags;
606 zio->io_orig_stage = zio->io_stage = stage;
607 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
608 zio->io_pipeline_trace = ZIO_STAGE_OPEN;
610 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
611 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
613 if (zb != NULL)
614 zio->io_bookmark = *zb;
616 if (pio != NULL) {
617 if (zio->io_logical == NULL)
618 zio->io_logical = pio->io_logical;
619 if (zio->io_child_type == ZIO_CHILD_GANG)
620 zio->io_gang_leader = pio->io_gang_leader;
621 zio_add_child(pio, zio);
624 return (zio);
627 static void
628 zio_destroy(zio_t *zio)
630 metaslab_trace_fini(&zio->io_alloc_list);
631 list_destroy(&zio->io_parent_list);
632 list_destroy(&zio->io_child_list);
633 mutex_destroy(&zio->io_lock);
634 cv_destroy(&zio->io_cv);
635 kmem_cache_free(zio_cache, zio);
638 zio_t *
639 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
640 void *private, enum zio_flag flags)
642 zio_t *zio;
644 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
645 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
646 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
648 return (zio);
651 zio_t *
652 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
654 return (zio_null(NULL, spa, NULL, done, private, flags));
657 void
658 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
660 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
661 zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
662 bp, (longlong_t)BP_GET_TYPE(bp));
664 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
665 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
666 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
667 bp, (longlong_t)BP_GET_CHECKSUM(bp));
669 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
670 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
671 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
672 bp, (longlong_t)BP_GET_COMPRESS(bp));
674 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
675 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
676 bp, (longlong_t)BP_GET_LSIZE(bp));
678 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
679 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
680 bp, (longlong_t)BP_GET_PSIZE(bp));
683 if (BP_IS_EMBEDDED(bp)) {
684 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
685 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
686 bp, (longlong_t)BPE_GET_ETYPE(bp));
691 * Pool-specific checks.
693 * Note: it would be nice to verify that the blk_birth and
694 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
695 * allows the birth time of log blocks (and dmu_sync()-ed blocks
696 * that are in the log) to be arbitrarily large.
698 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
699 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
700 if (vdevid >= spa->spa_root_vdev->vdev_children) {
701 zfs_panic_recover("blkptr at %p DVA %u has invalid "
702 "VDEV %llu",
703 bp, i, (longlong_t)vdevid);
704 continue;
706 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
707 if (vd == NULL) {
708 zfs_panic_recover("blkptr at %p DVA %u has invalid "
709 "VDEV %llu",
710 bp, i, (longlong_t)vdevid);
711 continue;
713 if (vd->vdev_ops == &vdev_hole_ops) {
714 zfs_panic_recover("blkptr at %p DVA %u has hole "
715 "VDEV %llu",
716 bp, i, (longlong_t)vdevid);
717 continue;
719 if (vd->vdev_ops == &vdev_missing_ops) {
721 * "missing" vdevs are valid during import, but we
722 * don't have their detailed info (e.g. asize), so
723 * we can't perform any more checks on them.
725 continue;
727 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
728 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
729 if (BP_IS_GANG(bp))
730 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
731 if (offset + asize > vd->vdev_asize) {
732 zfs_panic_recover("blkptr at %p DVA %u has invalid "
733 "OFFSET %llu",
734 bp, i, (longlong_t)offset);
739 zio_t *
740 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
741 abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
742 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
744 zio_t *zio;
746 zfs_blkptr_verify(spa, bp);
748 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
749 data, size, size, done, private,
750 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
751 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
752 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
754 return (zio);
757 zio_t *
758 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
759 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
760 zio_done_func_t *ready, zio_done_func_t *children_ready,
761 zio_done_func_t *physdone, zio_done_func_t *done,
762 void *private, zio_priority_t priority, enum zio_flag flags,
763 const zbookmark_phys_t *zb)
765 zio_t *zio;
767 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
768 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
769 zp->zp_compress >= ZIO_COMPRESS_OFF &&
770 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
771 DMU_OT_IS_VALID(zp->zp_type) &&
772 zp->zp_level < 32 &&
773 zp->zp_copies > 0 &&
774 zp->zp_copies <= spa_max_replication(spa));
776 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
777 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
778 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
779 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
781 zio->io_ready = ready;
782 zio->io_children_ready = children_ready;
783 zio->io_physdone = physdone;
784 zio->io_prop = *zp;
787 * Data can be NULL if we are going to call zio_write_override() to
788 * provide the already-allocated BP. But we may need the data to
789 * verify a dedup hit (if requested). In this case, don't try to
790 * dedup (just take the already-allocated BP verbatim).
792 if (data == NULL && zio->io_prop.zp_dedup_verify) {
793 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
796 return (zio);
799 zio_t *
800 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
801 uint64_t size, zio_done_func_t *done, void *private,
802 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
804 zio_t *zio;
806 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
807 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
808 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
810 return (zio);
813 void
814 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
816 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
817 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
818 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
819 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
822 * We must reset the io_prop to match the values that existed
823 * when the bp was first written by dmu_sync() keeping in mind
824 * that nopwrite and dedup are mutually exclusive.
826 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
827 zio->io_prop.zp_nopwrite = nopwrite;
828 zio->io_prop.zp_copies = copies;
829 zio->io_bp_override = bp;
832 void
833 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
837 * The check for EMBEDDED is a performance optimization. We
838 * process the free here (by ignoring it) rather than
839 * putting it on the list and then processing it in zio_free_sync().
841 if (BP_IS_EMBEDDED(bp))
842 return;
843 metaslab_check_free(spa, bp);
846 * Frees that are for the currently-syncing txg, are not going to be
847 * deferred, and which will not need to do a read (i.e. not GANG or
848 * DEDUP), can be processed immediately. Otherwise, put them on the
849 * in-memory list for later processing.
851 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
852 txg != spa->spa_syncing_txg ||
853 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
854 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
855 } else {
856 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
860 zio_t *
861 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
862 enum zio_flag flags)
864 zio_t *zio;
865 enum zio_stage stage = ZIO_FREE_PIPELINE;
867 ASSERT(!BP_IS_HOLE(bp));
868 ASSERT(spa_syncing_txg(spa) == txg);
869 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
871 if (BP_IS_EMBEDDED(bp))
872 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
874 metaslab_check_free(spa, bp);
875 arc_freed(spa, bp);
878 * GANG and DEDUP blocks can induce a read (for the gang block header,
879 * or the DDT), so issue them asynchronously so that this thread is
880 * not tied up.
882 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
883 stage |= ZIO_STAGE_ISSUE_ASYNC;
885 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
886 BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
887 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
889 return (zio);
892 zio_t *
893 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
894 zio_done_func_t *done, void *private, enum zio_flag flags)
896 zio_t *zio;
898 dprintf_bp(bp, "claiming in txg %llu", txg);
900 if (BP_IS_EMBEDDED(bp))
901 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
904 * A claim is an allocation of a specific block. Claims are needed
905 * to support immediate writes in the intent log. The issue is that
906 * immediate writes contain committed data, but in a txg that was
907 * *not* committed. Upon opening the pool after an unclean shutdown,
908 * the intent log claims all blocks that contain immediate write data
909 * so that the SPA knows they're in use.
911 * All claims *must* be resolved in the first txg -- before the SPA
912 * starts allocating blocks -- so that nothing is allocated twice.
913 * If txg == 0 we just verify that the block is claimable.
915 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
916 ASSERT(txg == spa_first_txg(spa) || txg == 0);
917 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */
919 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
920 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
921 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
922 ASSERT0(zio->io_queued_timestamp);
924 return (zio);
927 zio_t *
928 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
929 zio_done_func_t *done, void *private, enum zio_flag flags)
931 zio_t *zio;
932 int c;
934 if (vd->vdev_children == 0) {
935 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
936 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
937 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
939 zio->io_cmd = cmd;
940 } else {
941 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
943 for (c = 0; c < vd->vdev_children; c++)
944 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
945 done, private, flags));
948 return (zio);
951 zio_t *
952 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
953 abd_t *data, int checksum, zio_done_func_t *done, void *private,
954 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
956 zio_t *zio;
958 ASSERT(vd->vdev_children == 0);
959 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
960 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
961 ASSERT3U(offset + size, <=, vd->vdev_psize);
963 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
964 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
965 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
967 zio->io_prop.zp_checksum = checksum;
969 return (zio);
972 zio_t *
973 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
974 abd_t *data, int checksum, zio_done_func_t *done, void *private,
975 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
977 zio_t *zio;
979 ASSERT(vd->vdev_children == 0);
980 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
981 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
982 ASSERT3U(offset + size, <=, vd->vdev_psize);
984 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
985 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
986 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
988 zio->io_prop.zp_checksum = checksum;
990 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
992 * zec checksums are necessarily destructive -- they modify
993 * the end of the write buffer to hold the verifier/checksum.
994 * Therefore, we must make a local copy in case the data is
995 * being written to multiple places in parallel.
997 abd_t *wbuf = abd_alloc_sametype(data, size);
998 abd_copy(wbuf, data, size);
1000 zio_push_transform(zio, wbuf, size, size, NULL);
1003 return (zio);
1007 * Create a child I/O to do some work for us.
1009 zio_t *
1010 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1011 abd_t *data, uint64_t size, int type, zio_priority_t priority,
1012 enum zio_flag flags, zio_done_func_t *done, void *private)
1014 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1015 zio_t *zio;
1017 ASSERT(vd->vdev_parent ==
1018 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
1020 if (type == ZIO_TYPE_READ && bp != NULL) {
1022 * If we have the bp, then the child should perform the
1023 * checksum and the parent need not. This pushes error
1024 * detection as close to the leaves as possible and
1025 * eliminates redundant checksums in the interior nodes.
1027 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1028 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1031 if (vd->vdev_children == 0)
1032 offset += VDEV_LABEL_START_SIZE;
1034 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
1037 * If we've decided to do a repair, the write is not speculative --
1038 * even if the original read was.
1040 if (flags & ZIO_FLAG_IO_REPAIR)
1041 flags &= ~ZIO_FLAG_SPECULATIVE;
1044 * If we're creating a child I/O that is not associated with a
1045 * top-level vdev, then the child zio is not an allocating I/O.
1046 * If this is a retried I/O then we ignore it since we will
1047 * have already processed the original allocating I/O.
1049 if (flags & ZIO_FLAG_IO_ALLOCATING &&
1050 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1051 metaslab_class_t *mc = spa_normal_class(pio->io_spa);
1053 ASSERT(mc->mc_alloc_throttle_enabled);
1054 ASSERT(type == ZIO_TYPE_WRITE);
1055 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1056 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1057 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1058 pio->io_child_type == ZIO_CHILD_GANG);
1060 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1063 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1064 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1065 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1066 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1068 zio->io_physdone = pio->io_physdone;
1069 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1070 zio->io_logical->io_phys_children++;
1072 return (zio);
1075 zio_t *
1076 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1077 int type, zio_priority_t priority, enum zio_flag flags,
1078 zio_done_func_t *done, void *private)
1080 zio_t *zio;
1082 ASSERT(vd->vdev_ops->vdev_op_leaf);
1084 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1085 data, size, size, done, private, type, priority,
1086 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1087 vd, offset, NULL,
1088 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1090 return (zio);
1093 void
1094 zio_flush(zio_t *zio, vdev_t *vd)
1096 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1097 NULL, NULL,
1098 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1101 void
1102 zio_shrink(zio_t *zio, uint64_t size)
1104 ASSERT(zio->io_executor == NULL);
1105 ASSERT(zio->io_orig_size == zio->io_size);
1106 ASSERT(size <= zio->io_size);
1109 * We don't shrink for raidz because of problems with the
1110 * reconstruction when reading back less than the block size.
1111 * Note, BP_IS_RAIDZ() assumes no compression.
1113 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1114 if (!BP_IS_RAIDZ(zio->io_bp)) {
1115 /* we are not doing a raw write */
1116 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1117 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1122 * ==========================================================================
1123 * Prepare to read and write logical blocks
1124 * ==========================================================================
1127 static int
1128 zio_read_bp_init(zio_t *zio)
1130 blkptr_t *bp = zio->io_bp;
1132 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1133 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1134 !(zio->io_flags & ZIO_FLAG_RAW)) {
1135 uint64_t psize =
1136 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1137 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1138 psize, psize, zio_decompress);
1141 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1142 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1144 int psize = BPE_GET_PSIZE(bp);
1145 void *data = abd_borrow_buf(zio->io_abd, psize);
1146 decode_embedded_bp_compressed(bp, data);
1147 abd_return_buf_copy(zio->io_abd, data, psize);
1148 } else {
1149 ASSERT(!BP_IS_EMBEDDED(bp));
1152 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1153 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1155 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1156 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1158 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1159 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1161 return (ZIO_PIPELINE_CONTINUE);
1164 static int
1165 zio_write_bp_init(zio_t *zio)
1167 if (!IO_IS_ALLOCATING(zio))
1168 return (ZIO_PIPELINE_CONTINUE);
1170 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1172 if (zio->io_bp_override) {
1173 blkptr_t *bp = zio->io_bp;
1174 zio_prop_t *zp = &zio->io_prop;
1176 ASSERT(bp->blk_birth != zio->io_txg);
1177 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1179 *bp = *zio->io_bp_override;
1180 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1182 if (BP_IS_EMBEDDED(bp))
1183 return (ZIO_PIPELINE_CONTINUE);
1186 * If we've been overridden and nopwrite is set then
1187 * set the flag accordingly to indicate that a nopwrite
1188 * has already occurred.
1190 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1191 ASSERT(!zp->zp_dedup);
1192 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1193 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1194 return (ZIO_PIPELINE_CONTINUE);
1197 ASSERT(!zp->zp_nopwrite);
1199 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1200 return (ZIO_PIPELINE_CONTINUE);
1202 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1203 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1205 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1206 BP_SET_DEDUP(bp, 1);
1207 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1208 return (ZIO_PIPELINE_CONTINUE);
1212 * We were unable to handle this as an override bp, treat
1213 * it as a regular write I/O.
1215 zio->io_bp_override = NULL;
1216 *bp = zio->io_bp_orig;
1217 zio->io_pipeline = zio->io_orig_pipeline;
1220 return (ZIO_PIPELINE_CONTINUE);
1223 static int
1224 zio_write_compress(zio_t *zio)
1226 spa_t *spa = zio->io_spa;
1227 zio_prop_t *zp = &zio->io_prop;
1228 enum zio_compress compress = zp->zp_compress;
1229 blkptr_t *bp = zio->io_bp;
1230 uint64_t lsize = zio->io_lsize;
1231 uint64_t psize = zio->io_size;
1232 int pass = 1;
1234 EQUIV(lsize != psize, (zio->io_flags & ZIO_FLAG_RAW) != 0);
1237 * If our children haven't all reached the ready stage,
1238 * wait for them and then repeat this pipeline stage.
1240 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1241 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1242 return (ZIO_PIPELINE_STOP);
1244 if (!IO_IS_ALLOCATING(zio))
1245 return (ZIO_PIPELINE_CONTINUE);
1247 if (zio->io_children_ready != NULL) {
1249 * Now that all our children are ready, run the callback
1250 * associated with this zio in case it wants to modify the
1251 * data to be written.
1253 ASSERT3U(zp->zp_level, >, 0);
1254 zio->io_children_ready(zio);
1257 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1258 ASSERT(zio->io_bp_override == NULL);
1260 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1262 * We're rewriting an existing block, which means we're
1263 * working on behalf of spa_sync(). For spa_sync() to
1264 * converge, it must eventually be the case that we don't
1265 * have to allocate new blocks. But compression changes
1266 * the blocksize, which forces a reallocate, and makes
1267 * convergence take longer. Therefore, after the first
1268 * few passes, stop compressing to ensure convergence.
1270 pass = spa_sync_pass(spa);
1272 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1273 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1274 ASSERT(!BP_GET_DEDUP(bp));
1276 if (pass >= zfs_sync_pass_dont_compress)
1277 compress = ZIO_COMPRESS_OFF;
1279 /* Make sure someone doesn't change their mind on overwrites */
1280 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1281 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1284 /* If it's a compressed write that is not raw, compress the buffer. */
1285 if (compress != ZIO_COMPRESS_OFF && psize == lsize) {
1286 void *cbuf = zio_buf_alloc(lsize);
1287 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1288 if (psize == 0 || psize == lsize) {
1289 compress = ZIO_COMPRESS_OFF;
1290 zio_buf_free(cbuf, lsize);
1291 } else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1292 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1293 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1294 encode_embedded_bp_compressed(bp,
1295 cbuf, compress, lsize, psize);
1296 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1297 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1298 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1299 zio_buf_free(cbuf, lsize);
1300 bp->blk_birth = zio->io_txg;
1301 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1302 ASSERT(spa_feature_is_active(spa,
1303 SPA_FEATURE_EMBEDDED_DATA));
1304 return (ZIO_PIPELINE_CONTINUE);
1305 } else {
1307 * Round up compressed size up to the ashift
1308 * of the smallest-ashift device, and zero the tail.
1309 * This ensures that the compressed size of the BP
1310 * (and thus compressratio property) are correct,
1311 * in that we charge for the padding used to fill out
1312 * the last sector.
1314 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1315 size_t rounded = (size_t)P2ROUNDUP(psize,
1316 1ULL << spa->spa_min_ashift);
1317 if (rounded >= lsize) {
1318 compress = ZIO_COMPRESS_OFF;
1319 zio_buf_free(cbuf, lsize);
1320 psize = lsize;
1321 } else {
1322 abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1323 abd_take_ownership_of_buf(cdata, B_TRUE);
1324 abd_zero_off(cdata, psize, rounded - psize);
1325 psize = rounded;
1326 zio_push_transform(zio, cdata,
1327 psize, lsize, NULL);
1332 * We were unable to handle this as an override bp, treat
1333 * it as a regular write I/O.
1335 zio->io_bp_override = NULL;
1336 *bp = zio->io_bp_orig;
1337 zio->io_pipeline = zio->io_orig_pipeline;
1338 } else {
1339 ASSERT3U(psize, !=, 0);
1343 * The final pass of spa_sync() must be all rewrites, but the first
1344 * few passes offer a trade-off: allocating blocks defers convergence,
1345 * but newly allocated blocks are sequential, so they can be written
1346 * to disk faster. Therefore, we allow the first few passes of
1347 * spa_sync() to allocate new blocks, but force rewrites after that.
1348 * There should only be a handful of blocks after pass 1 in any case.
1350 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1351 BP_GET_PSIZE(bp) == psize &&
1352 pass >= zfs_sync_pass_rewrite) {
1353 ASSERT(psize != 0);
1354 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1355 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1356 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1357 } else {
1358 BP_ZERO(bp);
1359 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1362 if (psize == 0) {
1363 if (zio->io_bp_orig.blk_birth != 0 &&
1364 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1365 BP_SET_LSIZE(bp, lsize);
1366 BP_SET_TYPE(bp, zp->zp_type);
1367 BP_SET_LEVEL(bp, zp->zp_level);
1368 BP_SET_BIRTH(bp, zio->io_txg, 0);
1370 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1371 } else {
1372 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1373 BP_SET_LSIZE(bp, lsize);
1374 BP_SET_TYPE(bp, zp->zp_type);
1375 BP_SET_LEVEL(bp, zp->zp_level);
1376 BP_SET_PSIZE(bp, psize);
1377 BP_SET_COMPRESS(bp, compress);
1378 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1379 BP_SET_DEDUP(bp, zp->zp_dedup);
1380 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1381 if (zp->zp_dedup) {
1382 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1383 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1384 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1386 if (zp->zp_nopwrite) {
1387 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1388 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1389 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1392 return (ZIO_PIPELINE_CONTINUE);
1395 static int
1396 zio_free_bp_init(zio_t *zio)
1398 blkptr_t *bp = zio->io_bp;
1400 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1401 if (BP_GET_DEDUP(bp))
1402 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1405 return (ZIO_PIPELINE_CONTINUE);
1409 * ==========================================================================
1410 * Execute the I/O pipeline
1411 * ==========================================================================
1414 static void
1415 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1417 spa_t *spa = zio->io_spa;
1418 zio_type_t t = zio->io_type;
1419 int flags = (cutinline ? TQ_FRONT : 0);
1422 * If we're a config writer or a probe, the normal issue and
1423 * interrupt threads may all be blocked waiting for the config lock.
1424 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1426 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1427 t = ZIO_TYPE_NULL;
1430 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1432 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1433 t = ZIO_TYPE_NULL;
1436 * If this is a high priority I/O, then use the high priority taskq if
1437 * available.
1439 if (zio->io_priority == ZIO_PRIORITY_NOW &&
1440 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1441 q++;
1443 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1446 * NB: We are assuming that the zio can only be dispatched
1447 * to a single taskq at a time. It would be a grievous error
1448 * to dispatch the zio to another taskq at the same time.
1450 ASSERT(zio->io_tqent.tqent_next == NULL);
1451 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1452 flags, &zio->io_tqent);
1455 static boolean_t
1456 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1458 kthread_t *executor = zio->io_executor;
1459 spa_t *spa = zio->io_spa;
1461 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1462 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1463 uint_t i;
1464 for (i = 0; i < tqs->stqs_count; i++) {
1465 if (taskq_member(tqs->stqs_taskq[i], executor))
1466 return (B_TRUE);
1470 return (B_FALSE);
1473 static int
1474 zio_issue_async(zio_t *zio)
1476 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1478 return (ZIO_PIPELINE_STOP);
1481 void
1482 zio_interrupt(zio_t *zio)
1484 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1487 void
1488 zio_delay_interrupt(zio_t *zio)
1491 * The timeout_generic() function isn't defined in userspace, so
1492 * rather than trying to implement the function, the zio delay
1493 * functionality has been disabled for userspace builds.
1496 #ifdef _KERNEL
1498 * If io_target_timestamp is zero, then no delay has been registered
1499 * for this IO, thus jump to the end of this function and "skip" the
1500 * delay; issuing it directly to the zio layer.
1502 if (zio->io_target_timestamp != 0) {
1503 hrtime_t now = gethrtime();
1505 if (now >= zio->io_target_timestamp) {
1507 * This IO has already taken longer than the target
1508 * delay to complete, so we don't want to delay it
1509 * any longer; we "miss" the delay and issue it
1510 * directly to the zio layer. This is likely due to
1511 * the target latency being set to a value less than
1512 * the underlying hardware can satisfy (e.g. delay
1513 * set to 1ms, but the disks take 10ms to complete an
1514 * IO request).
1517 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1518 hrtime_t, now);
1520 zio_interrupt(zio);
1521 } else {
1522 hrtime_t diff = zio->io_target_timestamp - now;
1524 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1525 hrtime_t, now, hrtime_t, diff);
1527 (void) timeout_generic(CALLOUT_NORMAL,
1528 (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1531 return;
1533 #endif
1535 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1536 zio_interrupt(zio);
1540 * Execute the I/O pipeline until one of the following occurs:
1542 * (1) the I/O completes
1543 * (2) the pipeline stalls waiting for dependent child I/Os
1544 * (3) the I/O issues, so we're waiting for an I/O completion interrupt
1545 * (4) the I/O is delegated by vdev-level caching or aggregation
1546 * (5) the I/O is deferred due to vdev-level queueing
1547 * (6) the I/O is handed off to another thread.
1549 * In all cases, the pipeline stops whenever there's no CPU work; it never
1550 * burns a thread in cv_wait().
1552 * There's no locking on io_stage because there's no legitimate way
1553 * for multiple threads to be attempting to process the same I/O.
1555 static zio_pipe_stage_t *zio_pipeline[];
1557 void
1558 zio_execute(zio_t *zio)
1560 zio->io_executor = curthread;
1562 ASSERT3U(zio->io_queued_timestamp, >, 0);
1564 while (zio->io_stage < ZIO_STAGE_DONE) {
1565 enum zio_stage pipeline = zio->io_pipeline;
1566 enum zio_stage stage = zio->io_stage;
1567 int rv;
1569 ASSERT(!MUTEX_HELD(&zio->io_lock));
1570 ASSERT(ISP2(stage));
1571 ASSERT(zio->io_stall == NULL);
1573 do {
1574 stage <<= 1;
1575 } while ((stage & pipeline) == 0);
1577 ASSERT(stage <= ZIO_STAGE_DONE);
1580 * If we are in interrupt context and this pipeline stage
1581 * will grab a config lock that is held across I/O,
1582 * or may wait for an I/O that needs an interrupt thread
1583 * to complete, issue async to avoid deadlock.
1585 * For VDEV_IO_START, we cut in line so that the io will
1586 * be sent to disk promptly.
1588 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1589 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1590 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1591 zio_requeue_io_start_cut_in_line : B_FALSE;
1592 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1593 return;
1596 zio->io_stage = stage;
1597 zio->io_pipeline_trace |= zio->io_stage;
1598 rv = zio_pipeline[highbit64(stage) - 1](zio);
1600 if (rv == ZIO_PIPELINE_STOP)
1601 return;
1603 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1608 * ==========================================================================
1609 * Initiate I/O, either sync or async
1610 * ==========================================================================
1613 zio_wait(zio_t *zio)
1615 int error;
1617 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1618 ASSERT(zio->io_executor == NULL);
1620 zio->io_waiter = curthread;
1621 ASSERT0(zio->io_queued_timestamp);
1622 zio->io_queued_timestamp = gethrtime();
1624 zio_execute(zio);
1626 mutex_enter(&zio->io_lock);
1627 while (zio->io_executor != NULL)
1628 cv_wait(&zio->io_cv, &zio->io_lock);
1629 mutex_exit(&zio->io_lock);
1631 error = zio->io_error;
1632 zio_destroy(zio);
1634 return (error);
1637 void
1638 zio_nowait(zio_t *zio)
1640 ASSERT(zio->io_executor == NULL);
1642 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1643 zio_unique_parent(zio) == NULL) {
1645 * This is a logical async I/O with no parent to wait for it.
1646 * We add it to the spa_async_root_zio "Godfather" I/O which
1647 * will ensure they complete prior to unloading the pool.
1649 spa_t *spa = zio->io_spa;
1651 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1654 ASSERT0(zio->io_queued_timestamp);
1655 zio->io_queued_timestamp = gethrtime();
1656 zio_execute(zio);
1660 * ==========================================================================
1661 * Reexecute or suspend/resume failed I/O
1662 * ==========================================================================
1665 static void
1666 zio_reexecute(zio_t *pio)
1668 zio_t *cio, *cio_next;
1670 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1671 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1672 ASSERT(pio->io_gang_leader == NULL);
1673 ASSERT(pio->io_gang_tree == NULL);
1675 pio->io_flags = pio->io_orig_flags;
1676 pio->io_stage = pio->io_orig_stage;
1677 pio->io_pipeline = pio->io_orig_pipeline;
1678 pio->io_reexecute = 0;
1679 pio->io_flags |= ZIO_FLAG_REEXECUTED;
1680 pio->io_pipeline_trace = 0;
1681 pio->io_error = 0;
1682 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1683 pio->io_state[w] = 0;
1684 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1685 pio->io_child_error[c] = 0;
1687 if (IO_IS_ALLOCATING(pio))
1688 BP_ZERO(pio->io_bp);
1691 * As we reexecute pio's children, new children could be created.
1692 * New children go to the head of pio's io_child_list, however,
1693 * so we will (correctly) not reexecute them. The key is that
1694 * the remainder of pio's io_child_list, from 'cio_next' onward,
1695 * cannot be affected by any side effects of reexecuting 'cio'.
1697 zio_link_t *zl = NULL;
1698 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1699 cio_next = zio_walk_children(pio, &zl);
1700 mutex_enter(&pio->io_lock);
1701 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1702 pio->io_children[cio->io_child_type][w]++;
1703 mutex_exit(&pio->io_lock);
1704 zio_reexecute(cio);
1708 * Now that all children have been reexecuted, execute the parent.
1709 * We don't reexecute "The Godfather" I/O here as it's the
1710 * responsibility of the caller to wait on it.
1712 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
1713 pio->io_queued_timestamp = gethrtime();
1714 zio_execute(pio);
1718 void
1719 zio_suspend(spa_t *spa, zio_t *zio)
1721 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1722 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1723 "failure and the failure mode property for this pool "
1724 "is set to panic.", spa_name(spa));
1726 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1728 mutex_enter(&spa->spa_suspend_lock);
1730 if (spa->spa_suspend_zio_root == NULL)
1731 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1732 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1733 ZIO_FLAG_GODFATHER);
1735 spa->spa_suspended = B_TRUE;
1737 if (zio != NULL) {
1738 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1739 ASSERT(zio != spa->spa_suspend_zio_root);
1740 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1741 ASSERT(zio_unique_parent(zio) == NULL);
1742 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1743 zio_add_child(spa->spa_suspend_zio_root, zio);
1746 mutex_exit(&spa->spa_suspend_lock);
1750 zio_resume(spa_t *spa)
1752 zio_t *pio;
1755 * Reexecute all previously suspended i/o.
1757 mutex_enter(&spa->spa_suspend_lock);
1758 spa->spa_suspended = B_FALSE;
1759 cv_broadcast(&spa->spa_suspend_cv);
1760 pio = spa->spa_suspend_zio_root;
1761 spa->spa_suspend_zio_root = NULL;
1762 mutex_exit(&spa->spa_suspend_lock);
1764 if (pio == NULL)
1765 return (0);
1767 zio_reexecute(pio);
1768 return (zio_wait(pio));
1771 void
1772 zio_resume_wait(spa_t *spa)
1774 mutex_enter(&spa->spa_suspend_lock);
1775 while (spa_suspended(spa))
1776 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1777 mutex_exit(&spa->spa_suspend_lock);
1781 * ==========================================================================
1782 * Gang blocks.
1784 * A gang block is a collection of small blocks that looks to the DMU
1785 * like one large block. When zio_dva_allocate() cannot find a block
1786 * of the requested size, due to either severe fragmentation or the pool
1787 * being nearly full, it calls zio_write_gang_block() to construct the
1788 * block from smaller fragments.
1790 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1791 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
1792 * an indirect block: it's an array of block pointers. It consumes
1793 * only one sector and hence is allocatable regardless of fragmentation.
1794 * The gang header's bps point to its gang members, which hold the data.
1796 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1797 * as the verifier to ensure uniqueness of the SHA256 checksum.
1798 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1799 * not the gang header. This ensures that data block signatures (needed for
1800 * deduplication) are independent of how the block is physically stored.
1802 * Gang blocks can be nested: a gang member may itself be a gang block.
1803 * Thus every gang block is a tree in which root and all interior nodes are
1804 * gang headers, and the leaves are normal blocks that contain user data.
1805 * The root of the gang tree is called the gang leader.
1807 * To perform any operation (read, rewrite, free, claim) on a gang block,
1808 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1809 * in the io_gang_tree field of the original logical i/o by recursively
1810 * reading the gang leader and all gang headers below it. This yields
1811 * an in-core tree containing the contents of every gang header and the
1812 * bps for every constituent of the gang block.
1814 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1815 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
1816 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1817 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1818 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1819 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
1820 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1821 * of the gang header plus zio_checksum_compute() of the data to update the
1822 * gang header's blk_cksum as described above.
1824 * The two-phase assemble/issue model solves the problem of partial failure --
1825 * what if you'd freed part of a gang block but then couldn't read the
1826 * gang header for another part? Assembling the entire gang tree first
1827 * ensures that all the necessary gang header I/O has succeeded before
1828 * starting the actual work of free, claim, or write. Once the gang tree
1829 * is assembled, free and claim are in-memory operations that cannot fail.
1831 * In the event that a gang write fails, zio_dva_unallocate() walks the
1832 * gang tree to immediately free (i.e. insert back into the space map)
1833 * everything we've allocated. This ensures that we don't get ENOSPC
1834 * errors during repeated suspend/resume cycles due to a flaky device.
1836 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
1837 * the gang tree, we won't modify the block, so we can safely defer the free
1838 * (knowing that the block is still intact). If we *can* assemble the gang
1839 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1840 * each constituent bp and we can allocate a new block on the next sync pass.
1842 * In all cases, the gang tree allows complete recovery from partial failure.
1843 * ==========================================================================
1846 static void
1847 zio_gang_issue_func_done(zio_t *zio)
1849 abd_put(zio->io_abd);
1852 static zio_t *
1853 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1854 uint64_t offset)
1856 if (gn != NULL)
1857 return (pio);
1859 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
1860 BP_GET_PSIZE(bp), zio_gang_issue_func_done,
1861 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1862 &pio->io_bookmark));
1865 static zio_t *
1866 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1867 uint64_t offset)
1869 zio_t *zio;
1871 if (gn != NULL) {
1872 abd_t *gbh_abd =
1873 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1874 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1875 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
1876 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1877 &pio->io_bookmark);
1879 * As we rewrite each gang header, the pipeline will compute
1880 * a new gang block header checksum for it; but no one will
1881 * compute a new data checksum, so we do that here. The one
1882 * exception is the gang leader: the pipeline already computed
1883 * its data checksum because that stage precedes gang assembly.
1884 * (Presently, nothing actually uses interior data checksums;
1885 * this is just good hygiene.)
1887 if (gn != pio->io_gang_leader->io_gang_tree) {
1888 abd_t *buf = abd_get_offset(data, offset);
1890 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1891 buf, BP_GET_PSIZE(bp));
1893 abd_put(buf);
1896 * If we are here to damage data for testing purposes,
1897 * leave the GBH alone so that we can detect the damage.
1899 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1900 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1901 } else {
1902 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1903 abd_get_offset(data, offset), BP_GET_PSIZE(bp),
1904 zio_gang_issue_func_done, NULL, pio->io_priority,
1905 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1908 return (zio);
1911 /* ARGSUSED */
1912 static zio_t *
1913 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1914 uint64_t offset)
1916 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1917 ZIO_GANG_CHILD_FLAGS(pio)));
1920 /* ARGSUSED */
1921 static zio_t *
1922 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1923 uint64_t offset)
1925 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1926 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1929 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1930 NULL,
1931 zio_read_gang,
1932 zio_rewrite_gang,
1933 zio_free_gang,
1934 zio_claim_gang,
1935 NULL
1938 static void zio_gang_tree_assemble_done(zio_t *zio);
1940 static zio_gang_node_t *
1941 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1943 zio_gang_node_t *gn;
1945 ASSERT(*gnpp == NULL);
1947 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1948 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1949 *gnpp = gn;
1951 return (gn);
1954 static void
1955 zio_gang_node_free(zio_gang_node_t **gnpp)
1957 zio_gang_node_t *gn = *gnpp;
1959 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1960 ASSERT(gn->gn_child[g] == NULL);
1962 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1963 kmem_free(gn, sizeof (*gn));
1964 *gnpp = NULL;
1967 static void
1968 zio_gang_tree_free(zio_gang_node_t **gnpp)
1970 zio_gang_node_t *gn = *gnpp;
1972 if (gn == NULL)
1973 return;
1975 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1976 zio_gang_tree_free(&gn->gn_child[g]);
1978 zio_gang_node_free(gnpp);
1981 static void
1982 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1984 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1985 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1987 ASSERT(gio->io_gang_leader == gio);
1988 ASSERT(BP_IS_GANG(bp));
1990 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
1991 zio_gang_tree_assemble_done, gn, gio->io_priority,
1992 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1995 static void
1996 zio_gang_tree_assemble_done(zio_t *zio)
1998 zio_t *gio = zio->io_gang_leader;
1999 zio_gang_node_t *gn = zio->io_private;
2000 blkptr_t *bp = zio->io_bp;
2002 ASSERT(gio == zio_unique_parent(zio));
2003 ASSERT(zio->io_child_count == 0);
2005 if (zio->io_error)
2006 return;
2008 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2009 if (BP_SHOULD_BYTESWAP(bp))
2010 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2012 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2013 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2014 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2016 abd_put(zio->io_abd);
2018 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2019 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2020 if (!BP_IS_GANG(gbp))
2021 continue;
2022 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2026 static void
2027 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2028 uint64_t offset)
2030 zio_t *gio = pio->io_gang_leader;
2031 zio_t *zio;
2033 ASSERT(BP_IS_GANG(bp) == !!gn);
2034 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2035 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2038 * If you're a gang header, your data is in gn->gn_gbh.
2039 * If you're a gang member, your data is in 'data' and gn == NULL.
2041 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2043 if (gn != NULL) {
2044 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2046 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2047 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2048 if (BP_IS_HOLE(gbp))
2049 continue;
2050 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2051 offset);
2052 offset += BP_GET_PSIZE(gbp);
2056 if (gn == gio->io_gang_tree)
2057 ASSERT3U(gio->io_size, ==, offset);
2059 if (zio != pio)
2060 zio_nowait(zio);
2063 static int
2064 zio_gang_assemble(zio_t *zio)
2066 blkptr_t *bp = zio->io_bp;
2068 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2069 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2071 zio->io_gang_leader = zio;
2073 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2075 return (ZIO_PIPELINE_CONTINUE);
2078 static int
2079 zio_gang_issue(zio_t *zio)
2081 blkptr_t *bp = zio->io_bp;
2083 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
2084 return (ZIO_PIPELINE_STOP);
2086 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2087 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2089 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2090 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2092 else
2093 zio_gang_tree_free(&zio->io_gang_tree);
2095 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2097 return (ZIO_PIPELINE_CONTINUE);
2100 static void
2101 zio_write_gang_member_ready(zio_t *zio)
2103 zio_t *pio = zio_unique_parent(zio);
2104 zio_t *gio = zio->io_gang_leader;
2105 dva_t *cdva = zio->io_bp->blk_dva;
2106 dva_t *pdva = pio->io_bp->blk_dva;
2107 uint64_t asize;
2109 if (BP_IS_HOLE(zio->io_bp))
2110 return;
2112 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2114 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2115 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2116 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2117 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2118 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2120 mutex_enter(&pio->io_lock);
2121 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2122 ASSERT(DVA_GET_GANG(&pdva[d]));
2123 asize = DVA_GET_ASIZE(&pdva[d]);
2124 asize += DVA_GET_ASIZE(&cdva[d]);
2125 DVA_SET_ASIZE(&pdva[d], asize);
2127 mutex_exit(&pio->io_lock);
2130 static void
2131 zio_write_gang_done(zio_t *zio)
2133 abd_put(zio->io_abd);
2136 static int
2137 zio_write_gang_block(zio_t *pio)
2139 spa_t *spa = pio->io_spa;
2140 metaslab_class_t *mc = spa_normal_class(spa);
2141 blkptr_t *bp = pio->io_bp;
2142 zio_t *gio = pio->io_gang_leader;
2143 zio_t *zio;
2144 zio_gang_node_t *gn, **gnpp;
2145 zio_gbh_phys_t *gbh;
2146 abd_t *gbh_abd;
2147 uint64_t txg = pio->io_txg;
2148 uint64_t resid = pio->io_size;
2149 uint64_t lsize;
2150 int copies = gio->io_prop.zp_copies;
2151 int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2152 zio_prop_t zp;
2153 int error;
2155 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2156 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2157 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2158 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2160 flags |= METASLAB_ASYNC_ALLOC;
2161 VERIFY(refcount_held(&mc->mc_alloc_slots, pio));
2164 * The logical zio has already placed a reservation for
2165 * 'copies' allocation slots but gang blocks may require
2166 * additional copies. These additional copies
2167 * (i.e. gbh_copies - copies) are guaranteed to succeed
2168 * since metaslab_class_throttle_reserve() always allows
2169 * additional reservations for gang blocks.
2171 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2172 pio, flags));
2175 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2176 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2177 &pio->io_alloc_list, pio);
2178 if (error) {
2179 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2180 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2181 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2184 * If we failed to allocate the gang block header then
2185 * we remove any additional allocation reservations that
2186 * we placed here. The original reservation will
2187 * be removed when the logical I/O goes to the ready
2188 * stage.
2190 metaslab_class_throttle_unreserve(mc,
2191 gbh_copies - copies, pio);
2193 pio->io_error = error;
2194 return (ZIO_PIPELINE_CONTINUE);
2197 if (pio == gio) {
2198 gnpp = &gio->io_gang_tree;
2199 } else {
2200 gnpp = pio->io_private;
2201 ASSERT(pio->io_ready == zio_write_gang_member_ready);
2204 gn = zio_gang_node_alloc(gnpp);
2205 gbh = gn->gn_gbh;
2206 bzero(gbh, SPA_GANGBLOCKSIZE);
2207 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2210 * Create the gang header.
2212 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2213 zio_write_gang_done, NULL, pio->io_priority,
2214 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2217 * Create and nowait the gang children.
2219 for (int g = 0; resid != 0; resid -= lsize, g++) {
2220 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2221 SPA_MINBLOCKSIZE);
2222 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2224 zp.zp_checksum = gio->io_prop.zp_checksum;
2225 zp.zp_compress = ZIO_COMPRESS_OFF;
2226 zp.zp_type = DMU_OT_NONE;
2227 zp.zp_level = 0;
2228 zp.zp_copies = gio->io_prop.zp_copies;
2229 zp.zp_dedup = B_FALSE;
2230 zp.zp_dedup_verify = B_FALSE;
2231 zp.zp_nopwrite = B_FALSE;
2233 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2234 abd_get_offset(pio->io_abd, pio->io_size - resid), lsize,
2235 lsize, &zp, zio_write_gang_member_ready, NULL, NULL,
2236 zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2237 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2239 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2240 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2241 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2244 * Gang children won't throttle but we should
2245 * account for their work, so reserve an allocation
2246 * slot for them here.
2248 VERIFY(metaslab_class_throttle_reserve(mc,
2249 zp.zp_copies, cio, flags));
2251 zio_nowait(cio);
2255 * Set pio's pipeline to just wait for zio to finish.
2257 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2259 zio_nowait(zio);
2261 return (ZIO_PIPELINE_CONTINUE);
2265 * The zio_nop_write stage in the pipeline determines if allocating a
2266 * new bp is necessary. The nopwrite feature can handle writes in
2267 * either syncing or open context (i.e. zil writes) and as a result is
2268 * mutually exclusive with dedup.
2270 * By leveraging a cryptographically secure checksum, such as SHA256, we
2271 * can compare the checksums of the new data and the old to determine if
2272 * allocating a new block is required. Note that our requirements for
2273 * cryptographic strength are fairly weak: there can't be any accidental
2274 * hash collisions, but we don't need to be secure against intentional
2275 * (malicious) collisions. To trigger a nopwrite, you have to be able
2276 * to write the file to begin with, and triggering an incorrect (hash
2277 * collision) nopwrite is no worse than simply writing to the file.
2278 * That said, there are no known attacks against the checksum algorithms
2279 * used for nopwrite, assuming that the salt and the checksums
2280 * themselves remain secret.
2282 static int
2283 zio_nop_write(zio_t *zio)
2285 blkptr_t *bp = zio->io_bp;
2286 blkptr_t *bp_orig = &zio->io_bp_orig;
2287 zio_prop_t *zp = &zio->io_prop;
2289 ASSERT(BP_GET_LEVEL(bp) == 0);
2290 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2291 ASSERT(zp->zp_nopwrite);
2292 ASSERT(!zp->zp_dedup);
2293 ASSERT(zio->io_bp_override == NULL);
2294 ASSERT(IO_IS_ALLOCATING(zio));
2297 * Check to see if the original bp and the new bp have matching
2298 * characteristics (i.e. same checksum, compression algorithms, etc).
2299 * If they don't then just continue with the pipeline which will
2300 * allocate a new bp.
2302 if (BP_IS_HOLE(bp_orig) ||
2303 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2304 ZCHECKSUM_FLAG_NOPWRITE) ||
2305 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2306 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2307 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2308 zp->zp_copies != BP_GET_NDVAS(bp_orig))
2309 return (ZIO_PIPELINE_CONTINUE);
2312 * If the checksums match then reset the pipeline so that we
2313 * avoid allocating a new bp and issuing any I/O.
2315 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2316 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2317 ZCHECKSUM_FLAG_NOPWRITE);
2318 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2319 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2320 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2321 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2322 sizeof (uint64_t)) == 0);
2324 *bp = *bp_orig;
2325 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2326 zio->io_flags |= ZIO_FLAG_NOPWRITE;
2329 return (ZIO_PIPELINE_CONTINUE);
2333 * ==========================================================================
2334 * Dedup
2335 * ==========================================================================
2337 static void
2338 zio_ddt_child_read_done(zio_t *zio)
2340 blkptr_t *bp = zio->io_bp;
2341 ddt_entry_t *dde = zio->io_private;
2342 ddt_phys_t *ddp;
2343 zio_t *pio = zio_unique_parent(zio);
2345 mutex_enter(&pio->io_lock);
2346 ddp = ddt_phys_select(dde, bp);
2347 if (zio->io_error == 0)
2348 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
2350 if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2351 dde->dde_repair_abd = zio->io_abd;
2352 else
2353 abd_free(zio->io_abd);
2354 mutex_exit(&pio->io_lock);
2357 static int
2358 zio_ddt_read_start(zio_t *zio)
2360 blkptr_t *bp = zio->io_bp;
2362 ASSERT(BP_GET_DEDUP(bp));
2363 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2364 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2366 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2367 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2368 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2369 ddt_phys_t *ddp = dde->dde_phys;
2370 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2371 blkptr_t blk;
2373 ASSERT(zio->io_vsd == NULL);
2374 zio->io_vsd = dde;
2376 if (ddp_self == NULL)
2377 return (ZIO_PIPELINE_CONTINUE);
2379 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2380 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2381 continue;
2382 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2383 &blk);
2384 zio_nowait(zio_read(zio, zio->io_spa, &blk,
2385 abd_alloc_for_io(zio->io_size, B_TRUE),
2386 zio->io_size, zio_ddt_child_read_done, dde,
2387 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2388 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2390 return (ZIO_PIPELINE_CONTINUE);
2393 zio_nowait(zio_read(zio, zio->io_spa, bp,
2394 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2395 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2397 return (ZIO_PIPELINE_CONTINUE);
2400 static int
2401 zio_ddt_read_done(zio_t *zio)
2403 blkptr_t *bp = zio->io_bp;
2405 if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2406 return (ZIO_PIPELINE_STOP);
2408 ASSERT(BP_GET_DEDUP(bp));
2409 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2410 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2412 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2413 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2414 ddt_entry_t *dde = zio->io_vsd;
2415 if (ddt == NULL) {
2416 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2417 return (ZIO_PIPELINE_CONTINUE);
2419 if (dde == NULL) {
2420 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2421 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2422 return (ZIO_PIPELINE_STOP);
2424 if (dde->dde_repair_abd != NULL) {
2425 abd_copy(zio->io_abd, dde->dde_repair_abd,
2426 zio->io_size);
2427 zio->io_child_error[ZIO_CHILD_DDT] = 0;
2429 ddt_repair_done(ddt, dde);
2430 zio->io_vsd = NULL;
2433 ASSERT(zio->io_vsd == NULL);
2435 return (ZIO_PIPELINE_CONTINUE);
2438 static boolean_t
2439 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2441 spa_t *spa = zio->io_spa;
2442 boolean_t do_raw = (zio->io_flags & ZIO_FLAG_RAW);
2444 /* We should never get a raw, override zio */
2445 ASSERT(!(zio->io_bp_override && do_raw));
2448 * Note: we compare the original data, not the transformed data,
2449 * because when zio->io_bp is an override bp, we will not have
2450 * pushed the I/O transforms. That's an important optimization
2451 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2453 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2454 zio_t *lio = dde->dde_lead_zio[p];
2456 if (lio != NULL) {
2457 return (lio->io_orig_size != zio->io_orig_size ||
2458 abd_cmp(zio->io_orig_abd, lio->io_orig_abd,
2459 zio->io_orig_size) != 0);
2463 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2464 ddt_phys_t *ddp = &dde->dde_phys[p];
2466 if (ddp->ddp_phys_birth != 0) {
2467 arc_buf_t *abuf = NULL;
2468 arc_flags_t aflags = ARC_FLAG_WAIT;
2469 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2470 blkptr_t blk = *zio->io_bp;
2471 int error;
2473 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2475 ddt_exit(ddt);
2478 * Intuitively, it would make more sense to compare
2479 * io_abd than io_orig_abd in the raw case since you
2480 * don't want to look at any transformations that have
2481 * happened to the data. However, for raw I/Os the
2482 * data will actually be the same in io_abd and
2483 * io_orig_abd, so all we have to do is issue this as
2484 * a raw ARC read.
2486 if (do_raw) {
2487 zio_flags |= ZIO_FLAG_RAW;
2488 ASSERT3U(zio->io_size, ==, zio->io_orig_size);
2489 ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd,
2490 zio->io_size));
2491 ASSERT3P(zio->io_transform_stack, ==, NULL);
2494 error = arc_read(NULL, spa, &blk,
2495 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2496 zio_flags, &aflags, &zio->io_bookmark);
2498 if (error == 0) {
2499 if (arc_buf_size(abuf) != zio->io_orig_size ||
2500 abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
2501 zio->io_orig_size) != 0)
2502 error = SET_ERROR(EEXIST);
2503 arc_buf_destroy(abuf, &abuf);
2506 ddt_enter(ddt);
2507 return (error != 0);
2511 return (B_FALSE);
2514 static void
2515 zio_ddt_child_write_ready(zio_t *zio)
2517 int p = zio->io_prop.zp_copies;
2518 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2519 ddt_entry_t *dde = zio->io_private;
2520 ddt_phys_t *ddp = &dde->dde_phys[p];
2521 zio_t *pio;
2523 if (zio->io_error)
2524 return;
2526 ddt_enter(ddt);
2528 ASSERT(dde->dde_lead_zio[p] == zio);
2530 ddt_phys_fill(ddp, zio->io_bp);
2532 zio_link_t *zl = NULL;
2533 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2534 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2536 ddt_exit(ddt);
2539 static void
2540 zio_ddt_child_write_done(zio_t *zio)
2542 int p = zio->io_prop.zp_copies;
2543 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2544 ddt_entry_t *dde = zio->io_private;
2545 ddt_phys_t *ddp = &dde->dde_phys[p];
2547 ddt_enter(ddt);
2549 ASSERT(ddp->ddp_refcnt == 0);
2550 ASSERT(dde->dde_lead_zio[p] == zio);
2551 dde->dde_lead_zio[p] = NULL;
2553 if (zio->io_error == 0) {
2554 zio_link_t *zl = NULL;
2555 while (zio_walk_parents(zio, &zl) != NULL)
2556 ddt_phys_addref(ddp);
2557 } else {
2558 ddt_phys_clear(ddp);
2561 ddt_exit(ddt);
2564 static void
2565 zio_ddt_ditto_write_done(zio_t *zio)
2567 int p = DDT_PHYS_DITTO;
2568 zio_prop_t *zp = &zio->io_prop;
2569 blkptr_t *bp = zio->io_bp;
2570 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2571 ddt_entry_t *dde = zio->io_private;
2572 ddt_phys_t *ddp = &dde->dde_phys[p];
2573 ddt_key_t *ddk = &dde->dde_key;
2575 ddt_enter(ddt);
2577 ASSERT(ddp->ddp_refcnt == 0);
2578 ASSERT(dde->dde_lead_zio[p] == zio);
2579 dde->dde_lead_zio[p] = NULL;
2581 if (zio->io_error == 0) {
2582 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2583 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2584 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2585 if (ddp->ddp_phys_birth != 0)
2586 ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2587 ddt_phys_fill(ddp, bp);
2590 ddt_exit(ddt);
2593 static int
2594 zio_ddt_write(zio_t *zio)
2596 spa_t *spa = zio->io_spa;
2597 blkptr_t *bp = zio->io_bp;
2598 uint64_t txg = zio->io_txg;
2599 zio_prop_t *zp = &zio->io_prop;
2600 int p = zp->zp_copies;
2601 int ditto_copies;
2602 zio_t *cio = NULL;
2603 zio_t *dio = NULL;
2604 ddt_t *ddt = ddt_select(spa, bp);
2605 ddt_entry_t *dde;
2606 ddt_phys_t *ddp;
2608 ASSERT(BP_GET_DEDUP(bp));
2609 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2610 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2611 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
2613 ddt_enter(ddt);
2614 dde = ddt_lookup(ddt, bp, B_TRUE);
2615 ddp = &dde->dde_phys[p];
2617 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2619 * If we're using a weak checksum, upgrade to a strong checksum
2620 * and try again. If we're already using a strong checksum,
2621 * we can't resolve it, so just convert to an ordinary write.
2622 * (And automatically e-mail a paper to Nature?)
2624 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2625 ZCHECKSUM_FLAG_DEDUP)) {
2626 zp->zp_checksum = spa_dedup_checksum(spa);
2627 zio_pop_transforms(zio);
2628 zio->io_stage = ZIO_STAGE_OPEN;
2629 BP_ZERO(bp);
2630 } else {
2631 zp->zp_dedup = B_FALSE;
2632 BP_SET_DEDUP(bp, B_FALSE);
2634 ASSERT(!BP_GET_DEDUP(bp));
2635 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2636 ddt_exit(ddt);
2637 return (ZIO_PIPELINE_CONTINUE);
2640 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2641 ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2643 if (ditto_copies > ddt_ditto_copies_present(dde) &&
2644 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2645 zio_prop_t czp = *zp;
2647 czp.zp_copies = ditto_copies;
2650 * If we arrived here with an override bp, we won't have run
2651 * the transform stack, so we won't have the data we need to
2652 * generate a child i/o. So, toss the override bp and restart.
2653 * This is safe, because using the override bp is just an
2654 * optimization; and it's rare, so the cost doesn't matter.
2656 if (zio->io_bp_override) {
2657 zio_pop_transforms(zio);
2658 zio->io_stage = ZIO_STAGE_OPEN;
2659 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2660 zio->io_bp_override = NULL;
2661 BP_ZERO(bp);
2662 ddt_exit(ddt);
2663 return (ZIO_PIPELINE_CONTINUE);
2666 dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2667 zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
2668 NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
2669 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2671 zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
2672 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2675 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2676 if (ddp->ddp_phys_birth != 0)
2677 ddt_bp_fill(ddp, bp, txg);
2678 if (dde->dde_lead_zio[p] != NULL)
2679 zio_add_child(zio, dde->dde_lead_zio[p]);
2680 else
2681 ddt_phys_addref(ddp);
2682 } else if (zio->io_bp_override) {
2683 ASSERT(bp->blk_birth == txg);
2684 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2685 ddt_phys_fill(ddp, bp);
2686 ddt_phys_addref(ddp);
2687 } else {
2688 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2689 zio->io_orig_size, zio->io_orig_size, zp,
2690 zio_ddt_child_write_ready, NULL, NULL,
2691 zio_ddt_child_write_done, dde, zio->io_priority,
2692 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2694 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
2695 dde->dde_lead_zio[p] = cio;
2698 ddt_exit(ddt);
2700 if (cio)
2701 zio_nowait(cio);
2702 if (dio)
2703 zio_nowait(dio);
2705 return (ZIO_PIPELINE_CONTINUE);
2708 ddt_entry_t *freedde; /* for debugging */
2710 static int
2711 zio_ddt_free(zio_t *zio)
2713 spa_t *spa = zio->io_spa;
2714 blkptr_t *bp = zio->io_bp;
2715 ddt_t *ddt = ddt_select(spa, bp);
2716 ddt_entry_t *dde;
2717 ddt_phys_t *ddp;
2719 ASSERT(BP_GET_DEDUP(bp));
2720 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2722 ddt_enter(ddt);
2723 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2724 ddp = ddt_phys_select(dde, bp);
2725 ddt_phys_decref(ddp);
2726 ddt_exit(ddt);
2728 return (ZIO_PIPELINE_CONTINUE);
2732 * ==========================================================================
2733 * Allocate and free blocks
2734 * ==========================================================================
2737 static zio_t *
2738 zio_io_to_allocate(spa_t *spa)
2740 zio_t *zio;
2742 ASSERT(MUTEX_HELD(&spa->spa_alloc_lock));
2744 zio = avl_first(&spa->spa_alloc_tree);
2745 if (zio == NULL)
2746 return (NULL);
2748 ASSERT(IO_IS_ALLOCATING(zio));
2751 * Try to place a reservation for this zio. If we're unable to
2752 * reserve then we throttle.
2754 if (!metaslab_class_throttle_reserve(spa_normal_class(spa),
2755 zio->io_prop.zp_copies, zio, 0)) {
2756 return (NULL);
2759 avl_remove(&spa->spa_alloc_tree, zio);
2760 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
2762 return (zio);
2765 static int
2766 zio_dva_throttle(zio_t *zio)
2768 spa_t *spa = zio->io_spa;
2769 zio_t *nio;
2771 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
2772 !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled ||
2773 zio->io_child_type == ZIO_CHILD_GANG ||
2774 zio->io_flags & ZIO_FLAG_NODATA) {
2775 return (ZIO_PIPELINE_CONTINUE);
2778 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2780 ASSERT3U(zio->io_queued_timestamp, >, 0);
2781 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2783 mutex_enter(&spa->spa_alloc_lock);
2785 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2786 avl_add(&spa->spa_alloc_tree, zio);
2788 nio = zio_io_to_allocate(zio->io_spa);
2789 mutex_exit(&spa->spa_alloc_lock);
2791 if (nio == zio)
2792 return (ZIO_PIPELINE_CONTINUE);
2794 if (nio != NULL) {
2795 ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2797 * We are passing control to a new zio so make sure that
2798 * it is processed by a different thread. We do this to
2799 * avoid stack overflows that can occur when parents are
2800 * throttled and children are making progress. We allow
2801 * it to go to the head of the taskq since it's already
2802 * been waiting.
2804 zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
2806 return (ZIO_PIPELINE_STOP);
2809 void
2810 zio_allocate_dispatch(spa_t *spa)
2812 zio_t *zio;
2814 mutex_enter(&spa->spa_alloc_lock);
2815 zio = zio_io_to_allocate(spa);
2816 mutex_exit(&spa->spa_alloc_lock);
2817 if (zio == NULL)
2818 return;
2820 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
2821 ASSERT0(zio->io_error);
2822 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
2825 static int
2826 zio_dva_allocate(zio_t *zio)
2828 spa_t *spa = zio->io_spa;
2829 metaslab_class_t *mc = spa_normal_class(spa);
2830 blkptr_t *bp = zio->io_bp;
2831 int error;
2832 int flags = 0;
2834 if (zio->io_gang_leader == NULL) {
2835 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2836 zio->io_gang_leader = zio;
2839 ASSERT(BP_IS_HOLE(bp));
2840 ASSERT0(BP_GET_NDVAS(bp));
2841 ASSERT3U(zio->io_prop.zp_copies, >, 0);
2842 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2843 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2845 if (zio->io_flags & ZIO_FLAG_NODATA) {
2846 flags |= METASLAB_DONT_THROTTLE;
2848 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) {
2849 flags |= METASLAB_GANG_CHILD;
2851 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) {
2852 flags |= METASLAB_ASYNC_ALLOC;
2855 error = metaslab_alloc(spa, mc, zio->io_size, bp,
2856 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
2857 &zio->io_alloc_list, zio);
2859 if (error != 0) {
2860 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2861 "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2862 error);
2863 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2864 return (zio_write_gang_block(zio));
2865 zio->io_error = error;
2868 return (ZIO_PIPELINE_CONTINUE);
2871 static int
2872 zio_dva_free(zio_t *zio)
2874 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2876 return (ZIO_PIPELINE_CONTINUE);
2879 static int
2880 zio_dva_claim(zio_t *zio)
2882 int error;
2884 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2885 if (error)
2886 zio->io_error = error;
2888 return (ZIO_PIPELINE_CONTINUE);
2892 * Undo an allocation. This is used by zio_done() when an I/O fails
2893 * and we want to give back the block we just allocated.
2894 * This handles both normal blocks and gang blocks.
2896 static void
2897 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2899 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2900 ASSERT(zio->io_bp_override == NULL);
2902 if (!BP_IS_HOLE(bp))
2903 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2905 if (gn != NULL) {
2906 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2907 zio_dva_unallocate(zio, gn->gn_child[g],
2908 &gn->gn_gbh->zg_blkptr[g]);
2914 * Try to allocate an intent log block. Return 0 on success, errno on failure.
2917 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2918 uint64_t size, boolean_t *slog)
2920 int error = 1;
2921 zio_alloc_list_t io_alloc_list;
2923 ASSERT(txg > spa_syncing_txg(spa));
2925 metaslab_trace_init(&io_alloc_list);
2926 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
2927 txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL);
2928 if (error == 0) {
2929 *slog = TRUE;
2930 } else {
2931 error = metaslab_alloc(spa, spa_normal_class(spa), size,
2932 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID,
2933 &io_alloc_list, NULL);
2934 if (error == 0)
2935 *slog = FALSE;
2937 metaslab_trace_fini(&io_alloc_list);
2939 if (error == 0) {
2940 BP_SET_LSIZE(new_bp, size);
2941 BP_SET_PSIZE(new_bp, size);
2942 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2943 BP_SET_CHECKSUM(new_bp,
2944 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2945 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2946 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2947 BP_SET_LEVEL(new_bp, 0);
2948 BP_SET_DEDUP(new_bp, 0);
2949 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2952 return (error);
2956 * Free an intent log block.
2958 void
2959 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2961 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2962 ASSERT(!BP_IS_GANG(bp));
2964 zio_free(spa, txg, bp);
2968 * ==========================================================================
2969 * Read and write to physical devices
2970 * ==========================================================================
2975 * Issue an I/O to the underlying vdev. Typically the issue pipeline
2976 * stops after this stage and will resume upon I/O completion.
2977 * However, there are instances where the vdev layer may need to
2978 * continue the pipeline when an I/O was not issued. Since the I/O
2979 * that was sent to the vdev layer might be different than the one
2980 * currently active in the pipeline (see vdev_queue_io()), we explicitly
2981 * force the underlying vdev layers to call either zio_execute() or
2982 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
2984 static int
2985 zio_vdev_io_start(zio_t *zio)
2987 vdev_t *vd = zio->io_vd;
2988 uint64_t align;
2989 spa_t *spa = zio->io_spa;
2991 ASSERT(zio->io_error == 0);
2992 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2994 if (vd == NULL) {
2995 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2996 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2999 * The mirror_ops handle multiple DVAs in a single BP.
3001 vdev_mirror_ops.vdev_op_io_start(zio);
3002 return (ZIO_PIPELINE_STOP);
3005 ASSERT3P(zio->io_logical, !=, zio);
3008 * We keep track of time-sensitive I/Os so that the scan thread
3009 * can quickly react to certain workloads. In particular, we care
3010 * about non-scrubbing, top-level reads and writes with the following
3011 * characteristics:
3012 * - synchronous writes of user data to non-slog devices
3013 * - any reads of user data
3014 * When these conditions are met, adjust the timestamp of spa_last_io
3015 * which allows the scan thread to adjust its workload accordingly.
3017 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
3018 vd == vd->vdev_top && !vd->vdev_islog &&
3019 zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
3020 zio->io_txg != spa_syncing_txg(spa)) {
3021 uint64_t old = spa->spa_last_io;
3022 uint64_t new = ddi_get_lbolt64();
3023 if (old != new)
3024 (void) atomic_cas_64(&spa->spa_last_io, old, new);
3027 align = 1ULL << vd->vdev_top->vdev_ashift;
3029 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3030 P2PHASE(zio->io_size, align) != 0) {
3031 /* Transform logical writes to be a full physical block size. */
3032 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3033 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3034 ASSERT(vd == vd->vdev_top);
3035 if (zio->io_type == ZIO_TYPE_WRITE) {
3036 abd_copy(abuf, zio->io_abd, zio->io_size);
3037 abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3039 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3043 * If this is not a physical io, make sure that it is properly aligned
3044 * before proceeding.
3046 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3047 ASSERT0(P2PHASE(zio->io_offset, align));
3048 ASSERT0(P2PHASE(zio->io_size, align));
3049 } else {
3051 * For physical writes, we allow 512b aligned writes and assume
3052 * the device will perform a read-modify-write as necessary.
3054 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3055 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3058 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3061 * If this is a repair I/O, and there's no self-healing involved --
3062 * that is, we're just resilvering what we expect to resilver --
3063 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3064 * This prevents spurious resilvering with nested replication.
3065 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
3066 * A is out of date, we'll read from C+D, then use the data to
3067 * resilver A+B -- but we don't actually want to resilver B, just A.
3068 * The top-level mirror has no way to know this, so instead we just
3069 * discard unnecessary repairs as we work our way down the vdev tree.
3070 * The same logic applies to any form of nested replication:
3071 * ditto + mirror, RAID-Z + replacing, etc. This covers them all.
3073 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3074 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3075 zio->io_txg != 0 && /* not a delegated i/o */
3076 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3077 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3078 zio_vdev_io_bypass(zio);
3079 return (ZIO_PIPELINE_CONTINUE);
3082 if (vd->vdev_ops->vdev_op_leaf &&
3083 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
3085 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3086 return (ZIO_PIPELINE_CONTINUE);
3088 if ((zio = vdev_queue_io(zio)) == NULL)
3089 return (ZIO_PIPELINE_STOP);
3091 if (!vdev_accessible(vd, zio)) {
3092 zio->io_error = SET_ERROR(ENXIO);
3093 zio_interrupt(zio);
3094 return (ZIO_PIPELINE_STOP);
3098 vd->vdev_ops->vdev_op_io_start(zio);
3099 return (ZIO_PIPELINE_STOP);
3102 static int
3103 zio_vdev_io_done(zio_t *zio)
3105 vdev_t *vd = zio->io_vd;
3106 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3107 boolean_t unexpected_error = B_FALSE;
3109 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
3110 return (ZIO_PIPELINE_STOP);
3112 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
3114 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3116 vdev_queue_io_done(zio);
3118 if (zio->io_type == ZIO_TYPE_WRITE)
3119 vdev_cache_write(zio);
3121 if (zio_injection_enabled && zio->io_error == 0)
3122 zio->io_error = zio_handle_device_injection(vd,
3123 zio, EIO);
3125 if (zio_injection_enabled && zio->io_error == 0)
3126 zio->io_error = zio_handle_label_injection(zio, EIO);
3128 if (zio->io_error) {
3129 if (!vdev_accessible(vd, zio)) {
3130 zio->io_error = SET_ERROR(ENXIO);
3131 } else {
3132 unexpected_error = B_TRUE;
3137 ops->vdev_op_io_done(zio);
3139 if (unexpected_error)
3140 VERIFY(vdev_probe(vd, zio) == NULL);
3142 return (ZIO_PIPELINE_CONTINUE);
3146 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3147 * disk, and use that to finish the checksum ereport later.
3149 static void
3150 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3151 const void *good_buf)
3153 /* no processing needed */
3154 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3157 /*ARGSUSED*/
3158 void
3159 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3161 void *buf = zio_buf_alloc(zio->io_size);
3163 abd_copy_to_buf(buf, zio->io_abd, zio->io_size);
3165 zcr->zcr_cbinfo = zio->io_size;
3166 zcr->zcr_cbdata = buf;
3167 zcr->zcr_finish = zio_vsd_default_cksum_finish;
3168 zcr->zcr_free = zio_buf_free;
3171 static int
3172 zio_vdev_io_assess(zio_t *zio)
3174 vdev_t *vd = zio->io_vd;
3176 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
3177 return (ZIO_PIPELINE_STOP);
3179 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3180 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3182 if (zio->io_vsd != NULL) {
3183 zio->io_vsd_ops->vsd_free(zio);
3184 zio->io_vsd = NULL;
3187 if (zio_injection_enabled && zio->io_error == 0)
3188 zio->io_error = zio_handle_fault_injection(zio, EIO);
3191 * If the I/O failed, determine whether we should attempt to retry it.
3193 * On retry, we cut in line in the issue queue, since we don't want
3194 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3196 if (zio->io_error && vd == NULL &&
3197 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3198 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
3199 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
3200 zio->io_error = 0;
3201 zio->io_flags |= ZIO_FLAG_IO_RETRY |
3202 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3203 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3204 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3205 zio_requeue_io_start_cut_in_line);
3206 return (ZIO_PIPELINE_STOP);
3210 * If we got an error on a leaf device, convert it to ENXIO
3211 * if the device is not accessible at all.
3213 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3214 !vdev_accessible(vd, zio))
3215 zio->io_error = SET_ERROR(ENXIO);
3218 * If we can't write to an interior vdev (mirror or RAID-Z),
3219 * set vdev_cant_write so that we stop trying to allocate from it.
3221 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3222 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3223 vd->vdev_cant_write = B_TRUE;
3227 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3228 * attempts will ever succeed. In this case we set a persistent bit so
3229 * that we don't bother with it in the future.
3231 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3232 zio->io_type == ZIO_TYPE_IOCTL &&
3233 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3234 vd->vdev_nowritecache = B_TRUE;
3236 if (zio->io_error)
3237 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3239 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3240 zio->io_physdone != NULL) {
3241 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3242 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3243 zio->io_physdone(zio->io_logical);
3246 return (ZIO_PIPELINE_CONTINUE);
3249 void
3250 zio_vdev_io_reissue(zio_t *zio)
3252 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3253 ASSERT(zio->io_error == 0);
3255 zio->io_stage >>= 1;
3258 void
3259 zio_vdev_io_redone(zio_t *zio)
3261 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3263 zio->io_stage >>= 1;
3266 void
3267 zio_vdev_io_bypass(zio_t *zio)
3269 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3270 ASSERT(zio->io_error == 0);
3272 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3273 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3277 * ==========================================================================
3278 * Generate and verify checksums
3279 * ==========================================================================
3281 static int
3282 zio_checksum_generate(zio_t *zio)
3284 blkptr_t *bp = zio->io_bp;
3285 enum zio_checksum checksum;
3287 if (bp == NULL) {
3289 * This is zio_write_phys().
3290 * We're either generating a label checksum, or none at all.
3292 checksum = zio->io_prop.zp_checksum;
3294 if (checksum == ZIO_CHECKSUM_OFF)
3295 return (ZIO_PIPELINE_CONTINUE);
3297 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3298 } else {
3299 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3300 ASSERT(!IO_IS_ALLOCATING(zio));
3301 checksum = ZIO_CHECKSUM_GANG_HEADER;
3302 } else {
3303 checksum = BP_GET_CHECKSUM(bp);
3307 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
3309 return (ZIO_PIPELINE_CONTINUE);
3312 static int
3313 zio_checksum_verify(zio_t *zio)
3315 zio_bad_cksum_t info;
3316 blkptr_t *bp = zio->io_bp;
3317 int error;
3319 ASSERT(zio->io_vd != NULL);
3321 if (bp == NULL) {
3323 * This is zio_read_phys().
3324 * We're either verifying a label checksum, or nothing at all.
3326 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3327 return (ZIO_PIPELINE_CONTINUE);
3329 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3332 if ((error = zio_checksum_error(zio, &info)) != 0) {
3333 zio->io_error = error;
3334 if (error == ECKSUM &&
3335 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3336 zfs_ereport_start_checksum(zio->io_spa,
3337 zio->io_vd, zio, zio->io_offset,
3338 zio->io_size, NULL, &info);
3342 return (ZIO_PIPELINE_CONTINUE);
3346 * Called by RAID-Z to ensure we don't compute the checksum twice.
3348 void
3349 zio_checksum_verified(zio_t *zio)
3351 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3355 * ==========================================================================
3356 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3357 * An error of 0 indicates success. ENXIO indicates whole-device failure,
3358 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO
3359 * indicate errors that are specific to one I/O, and most likely permanent.
3360 * Any other error is presumed to be worse because we weren't expecting it.
3361 * ==========================================================================
3364 zio_worst_error(int e1, int e2)
3366 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3367 int r1, r2;
3369 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3370 if (e1 == zio_error_rank[r1])
3371 break;
3373 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3374 if (e2 == zio_error_rank[r2])
3375 break;
3377 return (r1 > r2 ? e1 : e2);
3381 * ==========================================================================
3382 * I/O completion
3383 * ==========================================================================
3385 static int
3386 zio_ready(zio_t *zio)
3388 blkptr_t *bp = zio->io_bp;
3389 zio_t *pio, *pio_next;
3390 zio_link_t *zl = NULL;
3392 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
3393 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
3394 return (ZIO_PIPELINE_STOP);
3396 if (zio->io_ready) {
3397 ASSERT(IO_IS_ALLOCATING(zio));
3398 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3399 (zio->io_flags & ZIO_FLAG_NOPWRITE));
3400 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3402 zio->io_ready(zio);
3405 if (bp != NULL && bp != &zio->io_bp_copy)
3406 zio->io_bp_copy = *bp;
3408 if (zio->io_error != 0) {
3409 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3411 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3412 ASSERT(IO_IS_ALLOCATING(zio));
3413 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3415 * We were unable to allocate anything, unreserve and
3416 * issue the next I/O to allocate.
3418 metaslab_class_throttle_unreserve(
3419 spa_normal_class(zio->io_spa),
3420 zio->io_prop.zp_copies, zio);
3421 zio_allocate_dispatch(zio->io_spa);
3425 mutex_enter(&zio->io_lock);
3426 zio->io_state[ZIO_WAIT_READY] = 1;
3427 pio = zio_walk_parents(zio, &zl);
3428 mutex_exit(&zio->io_lock);
3431 * As we notify zio's parents, new parents could be added.
3432 * New parents go to the head of zio's io_parent_list, however,
3433 * so we will (correctly) not notify them. The remainder of zio's
3434 * io_parent_list, from 'pio_next' onward, cannot change because
3435 * all parents must wait for us to be done before they can be done.
3437 for (; pio != NULL; pio = pio_next) {
3438 pio_next = zio_walk_parents(zio, &zl);
3439 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3442 if (zio->io_flags & ZIO_FLAG_NODATA) {
3443 if (BP_IS_GANG(bp)) {
3444 zio->io_flags &= ~ZIO_FLAG_NODATA;
3445 } else {
3446 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
3447 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3451 if (zio_injection_enabled &&
3452 zio->io_spa->spa_syncing_txg == zio->io_txg)
3453 zio_handle_ignored_writes(zio);
3455 return (ZIO_PIPELINE_CONTINUE);
3459 * Update the allocation throttle accounting.
3461 static void
3462 zio_dva_throttle_done(zio_t *zio)
3464 zio_t *lio = zio->io_logical;
3465 zio_t *pio = zio_unique_parent(zio);
3466 vdev_t *vd = zio->io_vd;
3467 int flags = METASLAB_ASYNC_ALLOC;
3469 ASSERT3P(zio->io_bp, !=, NULL);
3470 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
3471 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
3472 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
3473 ASSERT(vd != NULL);
3474 ASSERT3P(vd, ==, vd->vdev_top);
3475 ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY)));
3476 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
3477 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
3478 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
3481 * Parents of gang children can have two flavors -- ones that
3482 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
3483 * and ones that allocated the constituent blocks. The allocation
3484 * throttle needs to know the allocating parent zio so we must find
3485 * it here.
3487 if (pio->io_child_type == ZIO_CHILD_GANG) {
3489 * If our parent is a rewrite gang child then our grandparent
3490 * would have been the one that performed the allocation.
3492 if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
3493 pio = zio_unique_parent(pio);
3494 flags |= METASLAB_GANG_CHILD;
3497 ASSERT(IO_IS_ALLOCATING(pio));
3498 ASSERT3P(zio, !=, zio->io_logical);
3499 ASSERT(zio->io_logical != NULL);
3500 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
3501 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
3503 mutex_enter(&pio->io_lock);
3504 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags);
3505 mutex_exit(&pio->io_lock);
3507 metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa),
3508 1, pio);
3511 * Call into the pipeline to see if there is more work that
3512 * needs to be done. If there is work to be done it will be
3513 * dispatched to another taskq thread.
3515 zio_allocate_dispatch(zio->io_spa);
3518 static int
3519 zio_done(zio_t *zio)
3521 spa_t *spa = zio->io_spa;
3522 zio_t *lio = zio->io_logical;
3523 blkptr_t *bp = zio->io_bp;
3524 vdev_t *vd = zio->io_vd;
3525 uint64_t psize = zio->io_size;
3526 zio_t *pio, *pio_next;
3527 metaslab_class_t *mc = spa_normal_class(spa);
3528 zio_link_t *zl = NULL;
3531 * If our children haven't all completed,
3532 * wait for them and then repeat this pipeline stage.
3534 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
3535 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
3536 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
3537 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
3538 return (ZIO_PIPELINE_STOP);
3541 * If the allocation throttle is enabled, then update the accounting.
3542 * We only track child I/Os that are part of an allocating async
3543 * write. We must do this since the allocation is performed
3544 * by the logical I/O but the actual write is done by child I/Os.
3546 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
3547 zio->io_child_type == ZIO_CHILD_VDEV) {
3548 ASSERT(mc->mc_alloc_throttle_enabled);
3549 zio_dva_throttle_done(zio);
3553 * If the allocation throttle is enabled, verify that
3554 * we have decremented the refcounts for every I/O that was throttled.
3556 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3557 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3558 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3559 ASSERT(bp != NULL);
3560 metaslab_group_alloc_verify(spa, zio->io_bp, zio);
3561 VERIFY(refcount_not_held(&mc->mc_alloc_slots, zio));
3564 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3565 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3566 ASSERT(zio->io_children[c][w] == 0);
3568 if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3569 ASSERT(bp->blk_pad[0] == 0);
3570 ASSERT(bp->blk_pad[1] == 0);
3571 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3572 (bp == zio_unique_parent(zio)->io_bp));
3573 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3574 zio->io_bp_override == NULL &&
3575 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3576 ASSERT(!BP_SHOULD_BYTESWAP(bp));
3577 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3578 ASSERT(BP_COUNT_GANG(bp) == 0 ||
3579 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3581 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3582 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3586 * If there were child vdev/gang/ddt errors, they apply to us now.
3588 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3589 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3590 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3593 * If the I/O on the transformed data was successful, generate any
3594 * checksum reports now while we still have the transformed data.
3596 if (zio->io_error == 0) {
3597 while (zio->io_cksum_report != NULL) {
3598 zio_cksum_report_t *zcr = zio->io_cksum_report;
3599 uint64_t align = zcr->zcr_align;
3600 uint64_t asize = P2ROUNDUP(psize, align);
3601 char *abuf = NULL;
3602 abd_t *adata = zio->io_abd;
3604 if (asize != psize) {
3605 adata = abd_alloc_linear(asize, B_TRUE);
3606 abd_copy(adata, zio->io_abd, psize);
3607 abd_zero_off(adata, psize, asize - psize);
3610 if (adata != NULL)
3611 abuf = abd_borrow_buf_copy(adata, asize);
3613 zio->io_cksum_report = zcr->zcr_next;
3614 zcr->zcr_next = NULL;
3615 zcr->zcr_finish(zcr, abuf);
3616 zfs_ereport_free_checksum(zcr);
3618 if (adata != NULL)
3619 abd_return_buf(adata, abuf, asize);
3621 if (asize != psize)
3622 abd_free(adata);
3626 zio_pop_transforms(zio); /* note: may set zio->io_error */
3628 vdev_stat_update(zio, psize);
3630 if (zio->io_error) {
3632 * If this I/O is attached to a particular vdev,
3633 * generate an error message describing the I/O failure
3634 * at the block level. We ignore these errors if the
3635 * device is currently unavailable.
3637 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3638 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3640 if ((zio->io_error == EIO || !(zio->io_flags &
3641 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3642 zio == lio) {
3644 * For logical I/O requests, tell the SPA to log the
3645 * error and generate a logical data ereport.
3647 spa_log_error(spa, zio);
3648 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3649 0, 0);
3653 if (zio->io_error && zio == lio) {
3655 * Determine whether zio should be reexecuted. This will
3656 * propagate all the way to the root via zio_notify_parent().
3658 ASSERT(vd == NULL && bp != NULL);
3659 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3661 if (IO_IS_ALLOCATING(zio) &&
3662 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3663 if (zio->io_error != ENOSPC)
3664 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3665 else
3666 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3669 if ((zio->io_type == ZIO_TYPE_READ ||
3670 zio->io_type == ZIO_TYPE_FREE) &&
3671 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3672 zio->io_error == ENXIO &&
3673 spa_load_state(spa) == SPA_LOAD_NONE &&
3674 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3675 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3677 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3678 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3681 * Here is a possibly good place to attempt to do
3682 * either combinatorial reconstruction or error correction
3683 * based on checksums. It also might be a good place
3684 * to send out preliminary ereports before we suspend
3685 * processing.
3690 * If there were logical child errors, they apply to us now.
3691 * We defer this until now to avoid conflating logical child
3692 * errors with errors that happened to the zio itself when
3693 * updating vdev stats and reporting FMA events above.
3695 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3697 if ((zio->io_error || zio->io_reexecute) &&
3698 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3699 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3700 zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3702 zio_gang_tree_free(&zio->io_gang_tree);
3705 * Godfather I/Os should never suspend.
3707 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3708 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3709 zio->io_reexecute = 0;
3711 if (zio->io_reexecute) {
3713 * This is a logical I/O that wants to reexecute.
3715 * Reexecute is top-down. When an i/o fails, if it's not
3716 * the root, it simply notifies its parent and sticks around.
3717 * The parent, seeing that it still has children in zio_done(),
3718 * does the same. This percolates all the way up to the root.
3719 * The root i/o will reexecute or suspend the entire tree.
3721 * This approach ensures that zio_reexecute() honors
3722 * all the original i/o dependency relationships, e.g.
3723 * parents not executing until children are ready.
3725 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3727 zio->io_gang_leader = NULL;
3729 mutex_enter(&zio->io_lock);
3730 zio->io_state[ZIO_WAIT_DONE] = 1;
3731 mutex_exit(&zio->io_lock);
3734 * "The Godfather" I/O monitors its children but is
3735 * not a true parent to them. It will track them through
3736 * the pipeline but severs its ties whenever they get into
3737 * trouble (e.g. suspended). This allows "The Godfather"
3738 * I/O to return status without blocking.
3740 zl = NULL;
3741 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
3742 pio = pio_next) {
3743 zio_link_t *remove_zl = zl;
3744 pio_next = zio_walk_parents(zio, &zl);
3746 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3747 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3748 zio_remove_child(pio, zio, remove_zl);
3749 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3753 if ((pio = zio_unique_parent(zio)) != NULL) {
3755 * We're not a root i/o, so there's nothing to do
3756 * but notify our parent. Don't propagate errors
3757 * upward since we haven't permanently failed yet.
3759 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3760 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3761 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3762 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3764 * We'd fail again if we reexecuted now, so suspend
3765 * until conditions improve (e.g. device comes online).
3767 zio_suspend(spa, zio);
3768 } else {
3770 * Reexecution is potentially a huge amount of work.
3771 * Hand it off to the otherwise-unused claim taskq.
3773 ASSERT(zio->io_tqent.tqent_next == NULL);
3774 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3775 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3776 0, &zio->io_tqent);
3778 return (ZIO_PIPELINE_STOP);
3781 ASSERT(zio->io_child_count == 0);
3782 ASSERT(zio->io_reexecute == 0);
3783 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3786 * Report any checksum errors, since the I/O is complete.
3788 while (zio->io_cksum_report != NULL) {
3789 zio_cksum_report_t *zcr = zio->io_cksum_report;
3790 zio->io_cksum_report = zcr->zcr_next;
3791 zcr->zcr_next = NULL;
3792 zcr->zcr_finish(zcr, NULL);
3793 zfs_ereport_free_checksum(zcr);
3797 * It is the responsibility of the done callback to ensure that this
3798 * particular zio is no longer discoverable for adoption, and as
3799 * such, cannot acquire any new parents.
3801 if (zio->io_done)
3802 zio->io_done(zio);
3804 mutex_enter(&zio->io_lock);
3805 zio->io_state[ZIO_WAIT_DONE] = 1;
3806 mutex_exit(&zio->io_lock);
3808 zl = NULL;
3809 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
3810 zio_link_t *remove_zl = zl;
3811 pio_next = zio_walk_parents(zio, &zl);
3812 zio_remove_child(pio, zio, remove_zl);
3813 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3816 if (zio->io_waiter != NULL) {
3817 mutex_enter(&zio->io_lock);
3818 zio->io_executor = NULL;
3819 cv_broadcast(&zio->io_cv);
3820 mutex_exit(&zio->io_lock);
3821 } else {
3822 zio_destroy(zio);
3825 return (ZIO_PIPELINE_STOP);
3829 * ==========================================================================
3830 * I/O pipeline definition
3831 * ==========================================================================
3833 static zio_pipe_stage_t *zio_pipeline[] = {
3834 NULL,
3835 zio_read_bp_init,
3836 zio_write_bp_init,
3837 zio_free_bp_init,
3838 zio_issue_async,
3839 zio_write_compress,
3840 zio_checksum_generate,
3841 zio_nop_write,
3842 zio_ddt_read_start,
3843 zio_ddt_read_done,
3844 zio_ddt_write,
3845 zio_ddt_free,
3846 zio_gang_assemble,
3847 zio_gang_issue,
3848 zio_dva_throttle,
3849 zio_dva_allocate,
3850 zio_dva_free,
3851 zio_dva_claim,
3852 zio_ready,
3853 zio_vdev_io_start,
3854 zio_vdev_io_done,
3855 zio_vdev_io_assess,
3856 zio_checksum_verify,
3857 zio_done
3864 * Compare two zbookmark_phys_t's to see which we would reach first in a
3865 * pre-order traversal of the object tree.
3867 * This is simple in every case aside from the meta-dnode object. For all other
3868 * objects, we traverse them in order (object 1 before object 2, and so on).
3869 * However, all of these objects are traversed while traversing object 0, since
3870 * the data it points to is the list of objects. Thus, we need to convert to a
3871 * canonical representation so we can compare meta-dnode bookmarks to
3872 * non-meta-dnode bookmarks.
3874 * We do this by calculating "equivalents" for each field of the zbookmark.
3875 * zbookmarks outside of the meta-dnode use their own object and level, and
3876 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
3877 * blocks this bookmark refers to) by multiplying their blkid by their span
3878 * (the number of L0 blocks contained within one block at their level).
3879 * zbookmarks inside the meta-dnode calculate their object equivalent
3880 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
3881 * level + 1<<31 (any value larger than a level could ever be) for their level.
3882 * This causes them to always compare before a bookmark in their object
3883 * equivalent, compare appropriately to bookmarks in other objects, and to
3884 * compare appropriately to other bookmarks in the meta-dnode.
3887 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
3888 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
3891 * These variables represent the "equivalent" values for the zbookmark,
3892 * after converting zbookmarks inside the meta dnode to their
3893 * normal-object equivalents.
3895 uint64_t zb1obj, zb2obj;
3896 uint64_t zb1L0, zb2L0;
3897 uint64_t zb1level, zb2level;
3899 if (zb1->zb_object == zb2->zb_object &&
3900 zb1->zb_level == zb2->zb_level &&
3901 zb1->zb_blkid == zb2->zb_blkid)
3902 return (0);
3905 * BP_SPANB calculates the span in blocks.
3907 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
3908 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
3910 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3911 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3912 zb1L0 = 0;
3913 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
3914 } else {
3915 zb1obj = zb1->zb_object;
3916 zb1level = zb1->zb_level;
3919 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
3920 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3921 zb2L0 = 0;
3922 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
3923 } else {
3924 zb2obj = zb2->zb_object;
3925 zb2level = zb2->zb_level;
3928 /* Now that we have a canonical representation, do the comparison. */
3929 if (zb1obj != zb2obj)
3930 return (zb1obj < zb2obj ? -1 : 1);
3931 else if (zb1L0 != zb2L0)
3932 return (zb1L0 < zb2L0 ? -1 : 1);
3933 else if (zb1level != zb2level)
3934 return (zb1level > zb2level ? -1 : 1);
3936 * This can (theoretically) happen if the bookmarks have the same object
3937 * and level, but different blkids, if the block sizes are not the same.
3938 * There is presently no way to change the indirect block sizes
3940 return (0);
3944 * This function checks the following: given that last_block is the place that
3945 * our traversal stopped last time, does that guarantee that we've visited
3946 * every node under subtree_root? Therefore, we can't just use the raw output
3947 * of zbookmark_compare. We have to pass in a modified version of
3948 * subtree_root; by incrementing the block id, and then checking whether
3949 * last_block is before or equal to that, we can tell whether or not having
3950 * visited last_block implies that all of subtree_root's children have been
3951 * visited.
3953 boolean_t
3954 zbookmark_subtree_completed(const dnode_phys_t *dnp,
3955 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
3957 zbookmark_phys_t mod_zb = *subtree_root;
3958 mod_zb.zb_blkid++;
3959 ASSERT(last_block->zb_level == 0);
3961 /* The objset_phys_t isn't before anything. */
3962 if (dnp == NULL)
3963 return (B_FALSE);
3966 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
3967 * data block size in sectors, because that variable is only used if
3968 * the bookmark refers to a block in the meta-dnode. Since we don't
3969 * know without examining it what object it refers to, and there's no
3970 * harm in passing in this value in other cases, we always pass it in.
3972 * We pass in 0 for the indirect block size shift because zb2 must be
3973 * level 0. The indirect block size is only used to calculate the span
3974 * of the bookmark, but since the bookmark must be level 0, the span is
3975 * always 1, so the math works out.
3977 * If you make changes to how the zbookmark_compare code works, be sure
3978 * to make sure that this code still works afterwards.
3980 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
3981 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
3982 last_block) <= 0);