5027 zfs large block support (add copyright)
[unleashed.git] / usr / src / uts / common / fs / zfs / zfs_vfsops.c
blobebacf850ec163fa7e955f7501f82b5a50d4e7a5b
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
27 /* Portions Copyright 2010 Robert Milkowski */
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/sysmacros.h>
33 #include <sys/kmem.h>
34 #include <sys/pathname.h>
35 #include <sys/vnode.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/mntent.h>
39 #include <sys/mount.h>
40 #include <sys/cmn_err.h>
41 #include "fs/fs_subr.h"
42 #include <sys/zfs_znode.h>
43 #include <sys/zfs_dir.h>
44 #include <sys/zil.h>
45 #include <sys/fs/zfs.h>
46 #include <sys/dmu.h>
47 #include <sys/dsl_prop.h>
48 #include <sys/dsl_dataset.h>
49 #include <sys/dsl_deleg.h>
50 #include <sys/spa.h>
51 #include <sys/zap.h>
52 #include <sys/sa.h>
53 #include <sys/sa_impl.h>
54 #include <sys/varargs.h>
55 #include <sys/policy.h>
56 #include <sys/atomic.h>
57 #include <sys/mkdev.h>
58 #include <sys/modctl.h>
59 #include <sys/refstr.h>
60 #include <sys/zfs_ioctl.h>
61 #include <sys/zfs_ctldir.h>
62 #include <sys/zfs_fuid.h>
63 #include <sys/bootconf.h>
64 #include <sys/sunddi.h>
65 #include <sys/dnlc.h>
66 #include <sys/dmu_objset.h>
67 #include <sys/spa_boot.h>
68 #include "zfs_comutil.h"
70 int zfsfstype;
71 vfsops_t *zfs_vfsops = NULL;
72 static major_t zfs_major;
73 static minor_t zfs_minor;
74 static kmutex_t zfs_dev_mtx;
76 extern int sys_shutdown;
78 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
79 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
80 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
81 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
82 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
83 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
84 static void zfs_freevfs(vfs_t *vfsp);
86 static const fs_operation_def_t zfs_vfsops_template[] = {
87 VFSNAME_MOUNT, { .vfs_mount = zfs_mount },
88 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot },
89 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount },
90 VFSNAME_ROOT, { .vfs_root = zfs_root },
91 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs },
92 VFSNAME_SYNC, { .vfs_sync = zfs_sync },
93 VFSNAME_VGET, { .vfs_vget = zfs_vget },
94 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs },
95 NULL, NULL
98 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
99 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs },
100 NULL, NULL
104 * We need to keep a count of active fs's.
105 * This is necessary to prevent our module
106 * from being unloaded after a umount -f
108 static uint32_t zfs_active_fs_count = 0;
110 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
111 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
112 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
113 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
116 * MO_DEFAULT is not used since the default value is determined
117 * by the equivalent property.
119 static mntopt_t mntopts[] = {
120 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
121 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
122 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
123 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
126 static mntopts_t zfs_mntopts = {
127 sizeof (mntopts) / sizeof (mntopt_t),
128 mntopts
131 /*ARGSUSED*/
133 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
136 * Data integrity is job one. We don't want a compromised kernel
137 * writing to the storage pool, so we never sync during panic.
139 if (panicstr)
140 return (0);
143 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
144 * to sync metadata, which they would otherwise cache indefinitely.
145 * Semantically, the only requirement is that the sync be initiated.
146 * The DMU syncs out txgs frequently, so there's nothing to do.
148 if (flag & SYNC_ATTR)
149 return (0);
151 if (vfsp != NULL) {
153 * Sync a specific filesystem.
155 zfsvfs_t *zfsvfs = vfsp->vfs_data;
156 dsl_pool_t *dp;
158 ZFS_ENTER(zfsvfs);
159 dp = dmu_objset_pool(zfsvfs->z_os);
162 * If the system is shutting down, then skip any
163 * filesystems which may exist on a suspended pool.
165 if (sys_shutdown && spa_suspended(dp->dp_spa)) {
166 ZFS_EXIT(zfsvfs);
167 return (0);
170 if (zfsvfs->z_log != NULL)
171 zil_commit(zfsvfs->z_log, 0);
173 ZFS_EXIT(zfsvfs);
174 } else {
176 * Sync all ZFS filesystems. This is what happens when you
177 * run sync(1M). Unlike other filesystems, ZFS honors the
178 * request by waiting for all pools to commit all dirty data.
180 spa_sync_allpools();
183 return (0);
186 static int
187 zfs_create_unique_device(dev_t *dev)
189 major_t new_major;
191 do {
192 ASSERT3U(zfs_minor, <=, MAXMIN32);
193 minor_t start = zfs_minor;
194 do {
195 mutex_enter(&zfs_dev_mtx);
196 if (zfs_minor >= MAXMIN32) {
198 * If we're still using the real major
199 * keep out of /dev/zfs and /dev/zvol minor
200 * number space. If we're using a getudev()'ed
201 * major number, we can use all of its minors.
203 if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
204 zfs_minor = ZFS_MIN_MINOR;
205 else
206 zfs_minor = 0;
207 } else {
208 zfs_minor++;
210 *dev = makedevice(zfs_major, zfs_minor);
211 mutex_exit(&zfs_dev_mtx);
212 } while (vfs_devismounted(*dev) && zfs_minor != start);
213 if (zfs_minor == start) {
215 * We are using all ~262,000 minor numbers for the
216 * current major number. Create a new major number.
218 if ((new_major = getudev()) == (major_t)-1) {
219 cmn_err(CE_WARN,
220 "zfs_mount: Can't get unique major "
221 "device number.");
222 return (-1);
224 mutex_enter(&zfs_dev_mtx);
225 zfs_major = new_major;
226 zfs_minor = 0;
228 mutex_exit(&zfs_dev_mtx);
229 } else {
230 break;
232 /* CONSTANTCONDITION */
233 } while (1);
235 return (0);
238 static void
239 atime_changed_cb(void *arg, uint64_t newval)
241 zfsvfs_t *zfsvfs = arg;
243 if (newval == TRUE) {
244 zfsvfs->z_atime = TRUE;
245 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
246 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
247 } else {
248 zfsvfs->z_atime = FALSE;
249 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
250 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
254 static void
255 xattr_changed_cb(void *arg, uint64_t newval)
257 zfsvfs_t *zfsvfs = arg;
259 if (newval == TRUE) {
260 /* XXX locking on vfs_flag? */
261 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
262 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
263 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
264 } else {
265 /* XXX locking on vfs_flag? */
266 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
267 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
268 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
272 static void
273 blksz_changed_cb(void *arg, uint64_t newval)
275 zfsvfs_t *zfsvfs = arg;
276 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
277 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
278 ASSERT(ISP2(newval));
280 zfsvfs->z_max_blksz = newval;
281 zfsvfs->z_vfs->vfs_bsize = newval;
284 static void
285 readonly_changed_cb(void *arg, uint64_t newval)
287 zfsvfs_t *zfsvfs = arg;
289 if (newval) {
290 /* XXX locking on vfs_flag? */
291 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
292 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
293 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
294 } else {
295 /* XXX locking on vfs_flag? */
296 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
297 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
298 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
302 static void
303 devices_changed_cb(void *arg, uint64_t newval)
305 zfsvfs_t *zfsvfs = arg;
307 if (newval == FALSE) {
308 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
311 } else {
312 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
313 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
314 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
318 static void
319 setuid_changed_cb(void *arg, uint64_t newval)
321 zfsvfs_t *zfsvfs = arg;
323 if (newval == FALSE) {
324 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
327 } else {
328 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
329 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
330 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
334 static void
335 exec_changed_cb(void *arg, uint64_t newval)
337 zfsvfs_t *zfsvfs = arg;
339 if (newval == FALSE) {
340 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
341 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
342 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
343 } else {
344 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
345 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
346 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
351 * The nbmand mount option can be changed at mount time.
352 * We can't allow it to be toggled on live file systems or incorrect
353 * behavior may be seen from cifs clients
355 * This property isn't registered via dsl_prop_register(), but this callback
356 * will be called when a file system is first mounted
358 static void
359 nbmand_changed_cb(void *arg, uint64_t newval)
361 zfsvfs_t *zfsvfs = arg;
362 if (newval == FALSE) {
363 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
364 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
365 } else {
366 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
367 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
371 static void
372 snapdir_changed_cb(void *arg, uint64_t newval)
374 zfsvfs_t *zfsvfs = arg;
376 zfsvfs->z_show_ctldir = newval;
379 static void
380 vscan_changed_cb(void *arg, uint64_t newval)
382 zfsvfs_t *zfsvfs = arg;
384 zfsvfs->z_vscan = newval;
387 static void
388 acl_mode_changed_cb(void *arg, uint64_t newval)
390 zfsvfs_t *zfsvfs = arg;
392 zfsvfs->z_acl_mode = newval;
395 static void
396 acl_inherit_changed_cb(void *arg, uint64_t newval)
398 zfsvfs_t *zfsvfs = arg;
400 zfsvfs->z_acl_inherit = newval;
403 static int
404 zfs_register_callbacks(vfs_t *vfsp)
406 struct dsl_dataset *ds = NULL;
407 objset_t *os = NULL;
408 zfsvfs_t *zfsvfs = NULL;
409 uint64_t nbmand;
410 boolean_t readonly = B_FALSE;
411 boolean_t do_readonly = B_FALSE;
412 boolean_t setuid = B_FALSE;
413 boolean_t do_setuid = B_FALSE;
414 boolean_t exec = B_FALSE;
415 boolean_t do_exec = B_FALSE;
416 boolean_t devices = B_FALSE;
417 boolean_t do_devices = B_FALSE;
418 boolean_t xattr = B_FALSE;
419 boolean_t do_xattr = B_FALSE;
420 boolean_t atime = B_FALSE;
421 boolean_t do_atime = B_FALSE;
422 int error = 0;
424 ASSERT(vfsp);
425 zfsvfs = vfsp->vfs_data;
426 ASSERT(zfsvfs);
427 os = zfsvfs->z_os;
430 * The act of registering our callbacks will destroy any mount
431 * options we may have. In order to enable temporary overrides
432 * of mount options, we stash away the current values and
433 * restore them after we register the callbacks.
435 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
436 !spa_writeable(dmu_objset_spa(os))) {
437 readonly = B_TRUE;
438 do_readonly = B_TRUE;
439 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
440 readonly = B_FALSE;
441 do_readonly = B_TRUE;
443 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
444 devices = B_FALSE;
445 setuid = B_FALSE;
446 do_devices = B_TRUE;
447 do_setuid = B_TRUE;
448 } else {
449 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
450 devices = B_FALSE;
451 do_devices = B_TRUE;
452 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
453 devices = B_TRUE;
454 do_devices = B_TRUE;
457 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
458 setuid = B_FALSE;
459 do_setuid = B_TRUE;
460 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
461 setuid = B_TRUE;
462 do_setuid = B_TRUE;
465 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
466 exec = B_FALSE;
467 do_exec = B_TRUE;
468 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
469 exec = B_TRUE;
470 do_exec = B_TRUE;
472 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
473 xattr = B_FALSE;
474 do_xattr = B_TRUE;
475 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
476 xattr = B_TRUE;
477 do_xattr = B_TRUE;
479 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
480 atime = B_FALSE;
481 do_atime = B_TRUE;
482 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
483 atime = B_TRUE;
484 do_atime = B_TRUE;
488 * nbmand is a special property. It can only be changed at
489 * mount time.
491 * This is weird, but it is documented to only be changeable
492 * at mount time.
494 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
495 nbmand = B_FALSE;
496 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
497 nbmand = B_TRUE;
498 } else {
499 char osname[MAXNAMELEN];
501 dmu_objset_name(os, osname);
502 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
503 NULL)) {
504 return (error);
509 * Register property callbacks.
511 * It would probably be fine to just check for i/o error from
512 * the first prop_register(), but I guess I like to go
513 * overboard...
515 ds = dmu_objset_ds(os);
516 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
517 error = dsl_prop_register(ds,
518 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
519 error = error ? error : dsl_prop_register(ds,
520 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
521 error = error ? error : dsl_prop_register(ds,
522 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
523 error = error ? error : dsl_prop_register(ds,
524 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
525 error = error ? error : dsl_prop_register(ds,
526 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
527 error = error ? error : dsl_prop_register(ds,
528 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
529 error = error ? error : dsl_prop_register(ds,
530 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
531 error = error ? error : dsl_prop_register(ds,
532 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
533 error = error ? error : dsl_prop_register(ds,
534 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
535 error = error ? error : dsl_prop_register(ds,
536 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
537 zfsvfs);
538 error = error ? error : dsl_prop_register(ds,
539 zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
540 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
541 if (error)
542 goto unregister;
545 * Invoke our callbacks to restore temporary mount options.
547 if (do_readonly)
548 readonly_changed_cb(zfsvfs, readonly);
549 if (do_setuid)
550 setuid_changed_cb(zfsvfs, setuid);
551 if (do_exec)
552 exec_changed_cb(zfsvfs, exec);
553 if (do_devices)
554 devices_changed_cb(zfsvfs, devices);
555 if (do_xattr)
556 xattr_changed_cb(zfsvfs, xattr);
557 if (do_atime)
558 atime_changed_cb(zfsvfs, atime);
560 nbmand_changed_cb(zfsvfs, nbmand);
562 return (0);
564 unregister:
565 dsl_prop_unregister_all(ds, zfsvfs);
566 return (error);
569 static int
570 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
571 uint64_t *userp, uint64_t *groupp)
574 * Is it a valid type of object to track?
576 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
577 return (SET_ERROR(ENOENT));
580 * If we have a NULL data pointer
581 * then assume the id's aren't changing and
582 * return EEXIST to the dmu to let it know to
583 * use the same ids
585 if (data == NULL)
586 return (SET_ERROR(EEXIST));
588 if (bonustype == DMU_OT_ZNODE) {
589 znode_phys_t *znp = data;
590 *userp = znp->zp_uid;
591 *groupp = znp->zp_gid;
592 } else {
593 int hdrsize;
594 sa_hdr_phys_t *sap = data;
595 sa_hdr_phys_t sa = *sap;
596 boolean_t swap = B_FALSE;
598 ASSERT(bonustype == DMU_OT_SA);
600 if (sa.sa_magic == 0) {
602 * This should only happen for newly created
603 * files that haven't had the znode data filled
604 * in yet.
606 *userp = 0;
607 *groupp = 0;
608 return (0);
610 if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
611 sa.sa_magic = SA_MAGIC;
612 sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
613 swap = B_TRUE;
614 } else {
615 VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
618 hdrsize = sa_hdrsize(&sa);
619 VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
620 *userp = *((uint64_t *)((uintptr_t)data + hdrsize +
621 SA_UID_OFFSET));
622 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
623 SA_GID_OFFSET));
624 if (swap) {
625 *userp = BSWAP_64(*userp);
626 *groupp = BSWAP_64(*groupp);
629 return (0);
632 static void
633 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
634 char *domainbuf, int buflen, uid_t *ridp)
636 uint64_t fuid;
637 const char *domain;
639 fuid = strtonum(fuidstr, NULL);
641 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
642 if (domain)
643 (void) strlcpy(domainbuf, domain, buflen);
644 else
645 domainbuf[0] = '\0';
646 *ridp = FUID_RID(fuid);
649 static uint64_t
650 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
652 switch (type) {
653 case ZFS_PROP_USERUSED:
654 return (DMU_USERUSED_OBJECT);
655 case ZFS_PROP_GROUPUSED:
656 return (DMU_GROUPUSED_OBJECT);
657 case ZFS_PROP_USERQUOTA:
658 return (zfsvfs->z_userquota_obj);
659 case ZFS_PROP_GROUPQUOTA:
660 return (zfsvfs->z_groupquota_obj);
662 return (0);
666 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
667 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
669 int error;
670 zap_cursor_t zc;
671 zap_attribute_t za;
672 zfs_useracct_t *buf = vbuf;
673 uint64_t obj;
675 if (!dmu_objset_userspace_present(zfsvfs->z_os))
676 return (SET_ERROR(ENOTSUP));
678 obj = zfs_userquota_prop_to_obj(zfsvfs, type);
679 if (obj == 0) {
680 *bufsizep = 0;
681 return (0);
684 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
685 (error = zap_cursor_retrieve(&zc, &za)) == 0;
686 zap_cursor_advance(&zc)) {
687 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
688 *bufsizep)
689 break;
691 fuidstr_to_sid(zfsvfs, za.za_name,
692 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
694 buf->zu_space = za.za_first_integer;
695 buf++;
697 if (error == ENOENT)
698 error = 0;
700 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
701 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
702 *cookiep = zap_cursor_serialize(&zc);
703 zap_cursor_fini(&zc);
704 return (error);
708 * buf must be big enough (eg, 32 bytes)
710 static int
711 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
712 char *buf, boolean_t addok)
714 uint64_t fuid;
715 int domainid = 0;
717 if (domain && domain[0]) {
718 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
719 if (domainid == -1)
720 return (SET_ERROR(ENOENT));
722 fuid = FUID_ENCODE(domainid, rid);
723 (void) sprintf(buf, "%llx", (longlong_t)fuid);
724 return (0);
728 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
729 const char *domain, uint64_t rid, uint64_t *valp)
731 char buf[32];
732 int err;
733 uint64_t obj;
735 *valp = 0;
737 if (!dmu_objset_userspace_present(zfsvfs->z_os))
738 return (SET_ERROR(ENOTSUP));
740 obj = zfs_userquota_prop_to_obj(zfsvfs, type);
741 if (obj == 0)
742 return (0);
744 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
745 if (err)
746 return (err);
748 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
749 if (err == ENOENT)
750 err = 0;
751 return (err);
755 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
756 const char *domain, uint64_t rid, uint64_t quota)
758 char buf[32];
759 int err;
760 dmu_tx_t *tx;
761 uint64_t *objp;
762 boolean_t fuid_dirtied;
764 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
765 return (SET_ERROR(EINVAL));
767 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
768 return (SET_ERROR(ENOTSUP));
770 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
771 &zfsvfs->z_groupquota_obj;
773 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
774 if (err)
775 return (err);
776 fuid_dirtied = zfsvfs->z_fuid_dirty;
778 tx = dmu_tx_create(zfsvfs->z_os);
779 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
780 if (*objp == 0) {
781 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
782 zfs_userquota_prop_prefixes[type]);
784 if (fuid_dirtied)
785 zfs_fuid_txhold(zfsvfs, tx);
786 err = dmu_tx_assign(tx, TXG_WAIT);
787 if (err) {
788 dmu_tx_abort(tx);
789 return (err);
792 mutex_enter(&zfsvfs->z_lock);
793 if (*objp == 0) {
794 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
795 DMU_OT_NONE, 0, tx);
796 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
797 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
799 mutex_exit(&zfsvfs->z_lock);
801 if (quota == 0) {
802 err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
803 if (err == ENOENT)
804 err = 0;
805 } else {
806 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
808 ASSERT(err == 0);
809 if (fuid_dirtied)
810 zfs_fuid_sync(zfsvfs, tx);
811 dmu_tx_commit(tx);
812 return (err);
815 boolean_t
816 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
818 char buf[32];
819 uint64_t used, quota, usedobj, quotaobj;
820 int err;
822 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
823 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
825 if (quotaobj == 0 || zfsvfs->z_replay)
826 return (B_FALSE);
828 (void) sprintf(buf, "%llx", (longlong_t)fuid);
829 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
830 if (err != 0)
831 return (B_FALSE);
833 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
834 if (err != 0)
835 return (B_FALSE);
836 return (used >= quota);
839 boolean_t
840 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
842 uint64_t fuid;
843 uint64_t quotaobj;
845 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
847 fuid = isgroup ? zp->z_gid : zp->z_uid;
849 if (quotaobj == 0 || zfsvfs->z_replay)
850 return (B_FALSE);
852 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
856 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
858 objset_t *os;
859 zfsvfs_t *zfsvfs;
860 uint64_t zval;
861 int i, error;
862 uint64_t sa_obj;
864 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
867 * We claim to always be readonly so we can open snapshots;
868 * other ZPL code will prevent us from writing to snapshots.
870 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
871 if (error) {
872 kmem_free(zfsvfs, sizeof (zfsvfs_t));
873 return (error);
877 * Initialize the zfs-specific filesystem structure.
878 * Should probably make this a kmem cache, shuffle fields,
879 * and just bzero up to z_hold_mtx[].
881 zfsvfs->z_vfs = NULL;
882 zfsvfs->z_parent = zfsvfs;
883 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
884 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
885 zfsvfs->z_os = os;
887 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
888 if (error) {
889 goto out;
890 } else if (zfsvfs->z_version >
891 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
892 (void) printf("Can't mount a version %lld file system "
893 "on a version %lld pool\n. Pool must be upgraded to mount "
894 "this file system.", (u_longlong_t)zfsvfs->z_version,
895 (u_longlong_t)spa_version(dmu_objset_spa(os)));
896 error = SET_ERROR(ENOTSUP);
897 goto out;
899 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
900 goto out;
901 zfsvfs->z_norm = (int)zval;
903 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
904 goto out;
905 zfsvfs->z_utf8 = (zval != 0);
907 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
908 goto out;
909 zfsvfs->z_case = (uint_t)zval;
912 * Fold case on file systems that are always or sometimes case
913 * insensitive.
915 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
916 zfsvfs->z_case == ZFS_CASE_MIXED)
917 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
919 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
920 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
922 if (zfsvfs->z_use_sa) {
923 /* should either have both of these objects or none */
924 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
925 &sa_obj);
926 if (error)
927 goto out;
928 } else {
930 * Pre SA versions file systems should never touch
931 * either the attribute registration or layout objects.
933 sa_obj = 0;
936 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
937 &zfsvfs->z_attr_table);
938 if (error)
939 goto out;
941 if (zfsvfs->z_version >= ZPL_VERSION_SA)
942 sa_register_update_callback(os, zfs_sa_upgrade);
944 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
945 &zfsvfs->z_root);
946 if (error)
947 goto out;
948 ASSERT(zfsvfs->z_root != 0);
950 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
951 &zfsvfs->z_unlinkedobj);
952 if (error)
953 goto out;
955 error = zap_lookup(os, MASTER_NODE_OBJ,
956 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
957 8, 1, &zfsvfs->z_userquota_obj);
958 if (error && error != ENOENT)
959 goto out;
961 error = zap_lookup(os, MASTER_NODE_OBJ,
962 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
963 8, 1, &zfsvfs->z_groupquota_obj);
964 if (error && error != ENOENT)
965 goto out;
967 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
968 &zfsvfs->z_fuid_obj);
969 if (error && error != ENOENT)
970 goto out;
972 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
973 &zfsvfs->z_shares_dir);
974 if (error && error != ENOENT)
975 goto out;
977 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
978 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
979 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
980 offsetof(znode_t, z_link_node));
981 rrm_init(&zfsvfs->z_teardown_lock, B_FALSE);
982 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
983 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
984 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
985 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
987 *zfvp = zfsvfs;
988 return (0);
990 out:
991 dmu_objset_disown(os, zfsvfs);
992 *zfvp = NULL;
993 kmem_free(zfsvfs, sizeof (zfsvfs_t));
994 return (error);
997 static int
998 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1000 int error;
1002 error = zfs_register_callbacks(zfsvfs->z_vfs);
1003 if (error)
1004 return (error);
1007 * Set the objset user_ptr to track its zfsvfs.
1009 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1010 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1011 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1013 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1016 * If we are not mounting (ie: online recv), then we don't
1017 * have to worry about replaying the log as we blocked all
1018 * operations out since we closed the ZIL.
1020 if (mounting) {
1021 boolean_t readonly;
1024 * During replay we remove the read only flag to
1025 * allow replays to succeed.
1027 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1028 if (readonly != 0)
1029 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1030 else
1031 zfs_unlinked_drain(zfsvfs);
1034 * Parse and replay the intent log.
1036 * Because of ziltest, this must be done after
1037 * zfs_unlinked_drain(). (Further note: ziltest
1038 * doesn't use readonly mounts, where
1039 * zfs_unlinked_drain() isn't called.) This is because
1040 * ziltest causes spa_sync() to think it's committed,
1041 * but actually it is not, so the intent log contains
1042 * many txg's worth of changes.
1044 * In particular, if object N is in the unlinked set in
1045 * the last txg to actually sync, then it could be
1046 * actually freed in a later txg and then reallocated
1047 * in a yet later txg. This would write a "create
1048 * object N" record to the intent log. Normally, this
1049 * would be fine because the spa_sync() would have
1050 * written out the fact that object N is free, before
1051 * we could write the "create object N" intent log
1052 * record.
1054 * But when we are in ziltest mode, we advance the "open
1055 * txg" without actually spa_sync()-ing the changes to
1056 * disk. So we would see that object N is still
1057 * allocated and in the unlinked set, and there is an
1058 * intent log record saying to allocate it.
1060 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1061 if (zil_replay_disable) {
1062 zil_destroy(zfsvfs->z_log, B_FALSE);
1063 } else {
1064 zfsvfs->z_replay = B_TRUE;
1065 zil_replay(zfsvfs->z_os, zfsvfs,
1066 zfs_replay_vector);
1067 zfsvfs->z_replay = B_FALSE;
1070 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1073 return (0);
1076 void
1077 zfsvfs_free(zfsvfs_t *zfsvfs)
1079 int i;
1080 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1083 * This is a barrier to prevent the filesystem from going away in
1084 * zfs_znode_move() until we can safely ensure that the filesystem is
1085 * not unmounted. We consider the filesystem valid before the barrier
1086 * and invalid after the barrier.
1088 rw_enter(&zfsvfs_lock, RW_READER);
1089 rw_exit(&zfsvfs_lock);
1091 zfs_fuid_destroy(zfsvfs);
1093 mutex_destroy(&zfsvfs->z_znodes_lock);
1094 mutex_destroy(&zfsvfs->z_lock);
1095 list_destroy(&zfsvfs->z_all_znodes);
1096 rrm_destroy(&zfsvfs->z_teardown_lock);
1097 rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1098 rw_destroy(&zfsvfs->z_fuid_lock);
1099 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1100 mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1101 kmem_free(zfsvfs, sizeof (zfsvfs_t));
1104 static void
1105 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1107 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1108 if (zfsvfs->z_vfs) {
1109 if (zfsvfs->z_use_fuids) {
1110 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1111 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1112 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1113 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1114 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1115 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1116 } else {
1117 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1118 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1119 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1120 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1121 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1122 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1125 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1128 static int
1129 zfs_domount(vfs_t *vfsp, char *osname)
1131 dev_t mount_dev;
1132 uint64_t recordsize, fsid_guid;
1133 int error = 0;
1134 zfsvfs_t *zfsvfs;
1136 ASSERT(vfsp);
1137 ASSERT(osname);
1139 error = zfsvfs_create(osname, &zfsvfs);
1140 if (error)
1141 return (error);
1142 zfsvfs->z_vfs = vfsp;
1144 /* Initialize the generic filesystem structure. */
1145 vfsp->vfs_bcount = 0;
1146 vfsp->vfs_data = NULL;
1148 if (zfs_create_unique_device(&mount_dev) == -1) {
1149 error = SET_ERROR(ENODEV);
1150 goto out;
1152 ASSERT(vfs_devismounted(mount_dev) == 0);
1154 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1155 NULL))
1156 goto out;
1158 vfsp->vfs_dev = mount_dev;
1159 vfsp->vfs_fstype = zfsfstype;
1160 vfsp->vfs_bsize = recordsize;
1161 vfsp->vfs_flag |= VFS_NOTRUNC;
1162 vfsp->vfs_data = zfsvfs;
1165 * The fsid is 64 bits, composed of an 8-bit fs type, which
1166 * separates our fsid from any other filesystem types, and a
1167 * 56-bit objset unique ID. The objset unique ID is unique to
1168 * all objsets open on this system, provided by unique_create().
1169 * The 8-bit fs type must be put in the low bits of fsid[1]
1170 * because that's where other Solaris filesystems put it.
1172 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1173 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1174 vfsp->vfs_fsid.val[0] = fsid_guid;
1175 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1176 zfsfstype & 0xFF;
1179 * Set features for file system.
1181 zfs_set_fuid_feature(zfsvfs);
1182 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1183 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1184 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1185 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1186 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1187 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1188 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1190 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1192 if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1193 uint64_t pval;
1195 atime_changed_cb(zfsvfs, B_FALSE);
1196 readonly_changed_cb(zfsvfs, B_TRUE);
1197 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1198 goto out;
1199 xattr_changed_cb(zfsvfs, pval);
1200 zfsvfs->z_issnap = B_TRUE;
1201 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1203 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1204 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1205 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1206 } else {
1207 error = zfsvfs_setup(zfsvfs, B_TRUE);
1210 if (!zfsvfs->z_issnap)
1211 zfsctl_create(zfsvfs);
1212 out:
1213 if (error) {
1214 dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1215 zfsvfs_free(zfsvfs);
1216 } else {
1217 atomic_inc_32(&zfs_active_fs_count);
1220 return (error);
1223 void
1224 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1226 objset_t *os = zfsvfs->z_os;
1228 if (!dmu_objset_is_snapshot(os))
1229 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
1233 * Convert a decimal digit string to a uint64_t integer.
1235 static int
1236 str_to_uint64(char *str, uint64_t *objnum)
1238 uint64_t num = 0;
1240 while (*str) {
1241 if (*str < '0' || *str > '9')
1242 return (SET_ERROR(EINVAL));
1244 num = num*10 + *str++ - '0';
1247 *objnum = num;
1248 return (0);
1252 * The boot path passed from the boot loader is in the form of
1253 * "rootpool-name/root-filesystem-object-number'. Convert this
1254 * string to a dataset name: "rootpool-name/root-filesystem-name".
1256 static int
1257 zfs_parse_bootfs(char *bpath, char *outpath)
1259 char *slashp;
1260 uint64_t objnum;
1261 int error;
1263 if (*bpath == 0 || *bpath == '/')
1264 return (SET_ERROR(EINVAL));
1266 (void) strcpy(outpath, bpath);
1268 slashp = strchr(bpath, '/');
1270 /* if no '/', just return the pool name */
1271 if (slashp == NULL) {
1272 return (0);
1275 /* if not a number, just return the root dataset name */
1276 if (str_to_uint64(slashp+1, &objnum)) {
1277 return (0);
1280 *slashp = '\0';
1281 error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1282 *slashp = '/';
1284 return (error);
1288 * Check that the hex label string is appropriate for the dataset being
1289 * mounted into the global_zone proper.
1291 * Return an error if the hex label string is not default or
1292 * admin_low/admin_high. For admin_low labels, the corresponding
1293 * dataset must be readonly.
1296 zfs_check_global_label(const char *dsname, const char *hexsl)
1298 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1299 return (0);
1300 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1301 return (0);
1302 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1303 /* must be readonly */
1304 uint64_t rdonly;
1306 if (dsl_prop_get_integer(dsname,
1307 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1308 return (SET_ERROR(EACCES));
1309 return (rdonly ? 0 : EACCES);
1311 return (SET_ERROR(EACCES));
1315 * Determine whether the mount is allowed according to MAC check.
1316 * by comparing (where appropriate) label of the dataset against
1317 * the label of the zone being mounted into. If the dataset has
1318 * no label, create one.
1320 * Returns 0 if access allowed, error otherwise (e.g. EACCES)
1322 static int
1323 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1325 int error, retv;
1326 zone_t *mntzone = NULL;
1327 ts_label_t *mnt_tsl;
1328 bslabel_t *mnt_sl;
1329 bslabel_t ds_sl;
1330 char ds_hexsl[MAXNAMELEN];
1332 retv = EACCES; /* assume the worst */
1335 * Start by getting the dataset label if it exists.
1337 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1338 1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1339 if (error)
1340 return (SET_ERROR(EACCES));
1343 * If labeling is NOT enabled, then disallow the mount of datasets
1344 * which have a non-default label already. No other label checks
1345 * are needed.
1347 if (!is_system_labeled()) {
1348 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1349 return (0);
1350 return (SET_ERROR(EACCES));
1354 * Get the label of the mountpoint. If mounting into the global
1355 * zone (i.e. mountpoint is not within an active zone and the
1356 * zoned property is off), the label must be default or
1357 * admin_low/admin_high only; no other checks are needed.
1359 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1360 if (mntzone->zone_id == GLOBAL_ZONEID) {
1361 uint64_t zoned;
1363 zone_rele(mntzone);
1365 if (dsl_prop_get_integer(osname,
1366 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1367 return (SET_ERROR(EACCES));
1368 if (!zoned)
1369 return (zfs_check_global_label(osname, ds_hexsl));
1370 else
1372 * This is the case of a zone dataset being mounted
1373 * initially, before the zone has been fully created;
1374 * allow this mount into global zone.
1376 return (0);
1379 mnt_tsl = mntzone->zone_slabel;
1380 ASSERT(mnt_tsl != NULL);
1381 label_hold(mnt_tsl);
1382 mnt_sl = label2bslabel(mnt_tsl);
1384 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1386 * The dataset doesn't have a real label, so fabricate one.
1388 char *str = NULL;
1390 if (l_to_str_internal(mnt_sl, &str) == 0 &&
1391 dsl_prop_set_string(osname,
1392 zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1393 ZPROP_SRC_LOCAL, str) == 0)
1394 retv = 0;
1395 if (str != NULL)
1396 kmem_free(str, strlen(str) + 1);
1397 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1399 * Now compare labels to complete the MAC check. If the
1400 * labels are equal then allow access. If the mountpoint
1401 * label dominates the dataset label, allow readonly access.
1402 * Otherwise, access is denied.
1404 if (blequal(mnt_sl, &ds_sl))
1405 retv = 0;
1406 else if (bldominates(mnt_sl, &ds_sl)) {
1407 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1408 retv = 0;
1412 label_rele(mnt_tsl);
1413 zone_rele(mntzone);
1414 return (retv);
1417 static int
1418 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1420 int error = 0;
1421 static int zfsrootdone = 0;
1422 zfsvfs_t *zfsvfs = NULL;
1423 znode_t *zp = NULL;
1424 vnode_t *vp = NULL;
1425 char *zfs_bootfs;
1426 char *zfs_devid;
1428 ASSERT(vfsp);
1431 * The filesystem that we mount as root is defined in the
1432 * boot property "zfs-bootfs" with a format of
1433 * "poolname/root-dataset-objnum".
1435 if (why == ROOT_INIT) {
1436 if (zfsrootdone++)
1437 return (SET_ERROR(EBUSY));
1439 * the process of doing a spa_load will require the
1440 * clock to be set before we could (for example) do
1441 * something better by looking at the timestamp on
1442 * an uberblock, so just set it to -1.
1444 clkset(-1);
1446 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1447 cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1448 "bootfs name");
1449 return (SET_ERROR(EINVAL));
1451 zfs_devid = spa_get_bootprop("diskdevid");
1452 error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1453 if (zfs_devid)
1454 spa_free_bootprop(zfs_devid);
1455 if (error) {
1456 spa_free_bootprop(zfs_bootfs);
1457 cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1458 error);
1459 return (error);
1461 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1462 spa_free_bootprop(zfs_bootfs);
1463 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1464 error);
1465 return (error);
1468 spa_free_bootprop(zfs_bootfs);
1470 if (error = vfs_lock(vfsp))
1471 return (error);
1473 if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1474 cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1475 goto out;
1478 zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1479 ASSERT(zfsvfs);
1480 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1481 cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1482 goto out;
1485 vp = ZTOV(zp);
1486 mutex_enter(&vp->v_lock);
1487 vp->v_flag |= VROOT;
1488 mutex_exit(&vp->v_lock);
1489 rootvp = vp;
1492 * Leave rootvp held. The root file system is never unmounted.
1495 vfs_add((struct vnode *)0, vfsp,
1496 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1497 out:
1498 vfs_unlock(vfsp);
1499 return (error);
1500 } else if (why == ROOT_REMOUNT) {
1501 readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1502 vfsp->vfs_flag |= VFS_REMOUNT;
1504 /* refresh mount options */
1505 zfs_unregister_callbacks(vfsp->vfs_data);
1506 return (zfs_register_callbacks(vfsp));
1508 } else if (why == ROOT_UNMOUNT) {
1509 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1510 (void) zfs_sync(vfsp, 0, 0);
1511 return (0);
1515 * if "why" is equal to anything else other than ROOT_INIT,
1516 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1518 return (SET_ERROR(ENOTSUP));
1521 /*ARGSUSED*/
1522 static int
1523 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1525 char *osname;
1526 pathname_t spn;
1527 int error = 0;
1528 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ?
1529 UIO_SYSSPACE : UIO_USERSPACE;
1530 int canwrite;
1532 if (mvp->v_type != VDIR)
1533 return (SET_ERROR(ENOTDIR));
1535 mutex_enter(&mvp->v_lock);
1536 if ((uap->flags & MS_REMOUNT) == 0 &&
1537 (uap->flags & MS_OVERLAY) == 0 &&
1538 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1539 mutex_exit(&mvp->v_lock);
1540 return (SET_ERROR(EBUSY));
1542 mutex_exit(&mvp->v_lock);
1545 * ZFS does not support passing unparsed data in via MS_DATA.
1546 * Users should use the MS_OPTIONSTR interface; this means
1547 * that all option parsing is already done and the options struct
1548 * can be interrogated.
1550 if ((uap->flags & MS_DATA) && uap->datalen > 0)
1551 return (SET_ERROR(EINVAL));
1554 * Get the objset name (the "special" mount argument).
1556 if (error = pn_get(uap->spec, fromspace, &spn))
1557 return (error);
1559 osname = spn.pn_path;
1562 * Check for mount privilege?
1564 * If we don't have privilege then see if
1565 * we have local permission to allow it
1567 error = secpolicy_fs_mount(cr, mvp, vfsp);
1568 if (error) {
1569 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
1570 vattr_t vattr;
1573 * Make sure user is the owner of the mount point
1574 * or has sufficient privileges.
1577 vattr.va_mask = AT_UID;
1579 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1580 goto out;
1583 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1584 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1585 goto out;
1587 secpolicy_fs_mount_clearopts(cr, vfsp);
1588 } else {
1589 goto out;
1594 * Refuse to mount a filesystem if we are in a local zone and the
1595 * dataset is not visible.
1597 if (!INGLOBALZONE(curproc) &&
1598 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1599 error = SET_ERROR(EPERM);
1600 goto out;
1603 error = zfs_mount_label_policy(vfsp, osname);
1604 if (error)
1605 goto out;
1608 * When doing a remount, we simply refresh our temporary properties
1609 * according to those options set in the current VFS options.
1611 if (uap->flags & MS_REMOUNT) {
1612 /* refresh mount options */
1613 zfs_unregister_callbacks(vfsp->vfs_data);
1614 error = zfs_register_callbacks(vfsp);
1615 goto out;
1618 error = zfs_domount(vfsp, osname);
1621 * Add an extra VFS_HOLD on our parent vfs so that it can't
1622 * disappear due to a forced unmount.
1624 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1625 VFS_HOLD(mvp->v_vfsp);
1627 out:
1628 pn_free(&spn);
1629 return (error);
1632 static int
1633 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1635 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1636 dev32_t d32;
1637 uint64_t refdbytes, availbytes, usedobjs, availobjs;
1639 ZFS_ENTER(zfsvfs);
1641 dmu_objset_space(zfsvfs->z_os,
1642 &refdbytes, &availbytes, &usedobjs, &availobjs);
1645 * The underlying storage pool actually uses multiple block sizes.
1646 * We report the fragsize as the smallest block size we support,
1647 * and we report our blocksize as the filesystem's maximum blocksize.
1649 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1650 statp->f_bsize = zfsvfs->z_max_blksz;
1653 * The following report "total" blocks of various kinds in the
1654 * file system, but reported in terms of f_frsize - the
1655 * "fragment" size.
1658 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1659 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1660 statp->f_bavail = statp->f_bfree; /* no root reservation */
1663 * statvfs() should really be called statufs(), because it assumes
1664 * static metadata. ZFS doesn't preallocate files, so the best
1665 * we can do is report the max that could possibly fit in f_files,
1666 * and that minus the number actually used in f_ffree.
1667 * For f_ffree, report the smaller of the number of object available
1668 * and the number of blocks (each object will take at least a block).
1670 statp->f_ffree = MIN(availobjs, statp->f_bfree);
1671 statp->f_favail = statp->f_ffree; /* no "root reservation" */
1672 statp->f_files = statp->f_ffree + usedobjs;
1674 (void) cmpldev(&d32, vfsp->vfs_dev);
1675 statp->f_fsid = d32;
1678 * We're a zfs filesystem.
1680 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1682 statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1684 statp->f_namemax = ZFS_MAXNAMELEN;
1687 * We have all of 32 characters to stuff a string here.
1688 * Is there anything useful we could/should provide?
1690 bzero(statp->f_fstr, sizeof (statp->f_fstr));
1692 ZFS_EXIT(zfsvfs);
1693 return (0);
1696 static int
1697 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1699 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1700 znode_t *rootzp;
1701 int error;
1703 ZFS_ENTER(zfsvfs);
1705 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1706 if (error == 0)
1707 *vpp = ZTOV(rootzp);
1709 ZFS_EXIT(zfsvfs);
1710 return (error);
1714 * Teardown the zfsvfs::z_os.
1716 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1717 * and 'z_teardown_inactive_lock' held.
1719 static int
1720 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1722 znode_t *zp;
1724 rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1726 if (!unmounting) {
1728 * We purge the parent filesystem's vfsp as the parent
1729 * filesystem and all of its snapshots have their vnode's
1730 * v_vfsp set to the parent's filesystem's vfsp. Note,
1731 * 'z_parent' is self referential for non-snapshots.
1733 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1737 * Close the zil. NB: Can't close the zil while zfs_inactive
1738 * threads are blocked as zil_close can call zfs_inactive.
1740 if (zfsvfs->z_log) {
1741 zil_close(zfsvfs->z_log);
1742 zfsvfs->z_log = NULL;
1745 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1748 * If we are not unmounting (ie: online recv) and someone already
1749 * unmounted this file system while we were doing the switcheroo,
1750 * or a reopen of z_os failed then just bail out now.
1752 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1753 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1754 rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1755 return (SET_ERROR(EIO));
1759 * At this point there are no vops active, and any new vops will
1760 * fail with EIO since we have z_teardown_lock for writer (only
1761 * relavent for forced unmount).
1763 * Release all holds on dbufs.
1765 mutex_enter(&zfsvfs->z_znodes_lock);
1766 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1767 zp = list_next(&zfsvfs->z_all_znodes, zp))
1768 if (zp->z_sa_hdl) {
1769 ASSERT(ZTOV(zp)->v_count > 0);
1770 zfs_znode_dmu_fini(zp);
1772 mutex_exit(&zfsvfs->z_znodes_lock);
1775 * If we are unmounting, set the unmounted flag and let new vops
1776 * unblock. zfs_inactive will have the unmounted behavior, and all
1777 * other vops will fail with EIO.
1779 if (unmounting) {
1780 zfsvfs->z_unmounted = B_TRUE;
1781 rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1782 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1786 * z_os will be NULL if there was an error in attempting to reopen
1787 * zfsvfs, so just return as the properties had already been
1788 * unregistered and cached data had been evicted before.
1790 if (zfsvfs->z_os == NULL)
1791 return (0);
1794 * Unregister properties.
1796 zfs_unregister_callbacks(zfsvfs);
1799 * Evict cached data
1801 if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) &&
1802 !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1803 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1804 dmu_objset_evict_dbufs(zfsvfs->z_os);
1806 return (0);
1809 /*ARGSUSED*/
1810 static int
1811 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1813 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1814 objset_t *os;
1815 int ret;
1817 ret = secpolicy_fs_unmount(cr, vfsp);
1818 if (ret) {
1819 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1820 ZFS_DELEG_PERM_MOUNT, cr))
1821 return (ret);
1825 * We purge the parent filesystem's vfsp as the parent filesystem
1826 * and all of its snapshots have their vnode's v_vfsp set to the
1827 * parent's filesystem's vfsp. Note, 'z_parent' is self
1828 * referential for non-snapshots.
1830 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1833 * Unmount any snapshots mounted under .zfs before unmounting the
1834 * dataset itself.
1836 if (zfsvfs->z_ctldir != NULL &&
1837 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1838 return (ret);
1841 if (!(fflag & MS_FORCE)) {
1843 * Check the number of active vnodes in the file system.
1844 * Our count is maintained in the vfs structure, but the
1845 * number is off by 1 to indicate a hold on the vfs
1846 * structure itself.
1848 * The '.zfs' directory maintains a reference of its
1849 * own, and any active references underneath are
1850 * reflected in the vnode count.
1852 if (zfsvfs->z_ctldir == NULL) {
1853 if (vfsp->vfs_count > 1)
1854 return (SET_ERROR(EBUSY));
1855 } else {
1856 if (vfsp->vfs_count > 2 ||
1857 zfsvfs->z_ctldir->v_count > 1)
1858 return (SET_ERROR(EBUSY));
1862 vfsp->vfs_flag |= VFS_UNMOUNTED;
1864 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1865 os = zfsvfs->z_os;
1868 * z_os will be NULL if there was an error in
1869 * attempting to reopen zfsvfs.
1871 if (os != NULL) {
1873 * Unset the objset user_ptr.
1875 mutex_enter(&os->os_user_ptr_lock);
1876 dmu_objset_set_user(os, NULL);
1877 mutex_exit(&os->os_user_ptr_lock);
1880 * Finally release the objset
1882 dmu_objset_disown(os, zfsvfs);
1886 * We can now safely destroy the '.zfs' directory node.
1888 if (zfsvfs->z_ctldir != NULL)
1889 zfsctl_destroy(zfsvfs);
1891 return (0);
1894 static int
1895 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1897 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1898 znode_t *zp;
1899 uint64_t object = 0;
1900 uint64_t fid_gen = 0;
1901 uint64_t gen_mask;
1902 uint64_t zp_gen;
1903 int i, err;
1905 *vpp = NULL;
1907 ZFS_ENTER(zfsvfs);
1909 if (fidp->fid_len == LONG_FID_LEN) {
1910 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1911 uint64_t objsetid = 0;
1912 uint64_t setgen = 0;
1914 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1915 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1917 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1918 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1920 ZFS_EXIT(zfsvfs);
1922 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1923 if (err)
1924 return (SET_ERROR(EINVAL));
1925 ZFS_ENTER(zfsvfs);
1928 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1929 zfid_short_t *zfid = (zfid_short_t *)fidp;
1931 for (i = 0; i < sizeof (zfid->zf_object); i++)
1932 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1934 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1935 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1936 } else {
1937 ZFS_EXIT(zfsvfs);
1938 return (SET_ERROR(EINVAL));
1941 /* A zero fid_gen means we are in the .zfs control directories */
1942 if (fid_gen == 0 &&
1943 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1944 *vpp = zfsvfs->z_ctldir;
1945 ASSERT(*vpp != NULL);
1946 if (object == ZFSCTL_INO_SNAPDIR) {
1947 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1948 0, NULL, NULL, NULL, NULL, NULL) == 0);
1949 } else {
1950 VN_HOLD(*vpp);
1952 ZFS_EXIT(zfsvfs);
1953 return (0);
1956 gen_mask = -1ULL >> (64 - 8 * i);
1958 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1959 if (err = zfs_zget(zfsvfs, object, &zp)) {
1960 ZFS_EXIT(zfsvfs);
1961 return (err);
1963 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1964 sizeof (uint64_t));
1965 zp_gen = zp_gen & gen_mask;
1966 if (zp_gen == 0)
1967 zp_gen = 1;
1968 if (zp->z_unlinked || zp_gen != fid_gen) {
1969 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1970 VN_RELE(ZTOV(zp));
1971 ZFS_EXIT(zfsvfs);
1972 return (SET_ERROR(EINVAL));
1975 *vpp = ZTOV(zp);
1976 ZFS_EXIT(zfsvfs);
1977 return (0);
1981 * Block out VOPs and close zfsvfs_t::z_os
1983 * Note, if successful, then we return with the 'z_teardown_lock' and
1984 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying
1985 * dataset and objset intact so that they can be atomically handed off during
1986 * a subsequent rollback or recv operation and the resume thereafter.
1989 zfs_suspend_fs(zfsvfs_t *zfsvfs)
1991 int error;
1993 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1994 return (error);
1996 return (0);
2000 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset
2001 * is an invariant across any of the operations that can be performed while the
2002 * filesystem was suspended. Whether it succeeded or failed, the preconditions
2003 * are the same: the relevant objset and associated dataset are owned by
2004 * zfsvfs, held, and long held on entry.
2007 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2009 int err;
2010 znode_t *zp;
2011 uint64_t sa_obj = 0;
2013 ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock));
2014 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2017 * We already own this, so just hold and rele it to update the
2018 * objset_t, as the one we had before may have been evicted.
2020 VERIFY0(dmu_objset_hold(osname, zfsvfs, &zfsvfs->z_os));
2021 VERIFY3P(zfsvfs->z_os->os_dsl_dataset->ds_owner, ==, zfsvfs);
2022 VERIFY(dsl_dataset_long_held(zfsvfs->z_os->os_dsl_dataset));
2023 dmu_objset_rele(zfsvfs->z_os, zfsvfs);
2026 * Make sure version hasn't changed
2029 err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2030 &zfsvfs->z_version);
2032 if (err)
2033 goto bail;
2035 err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2036 ZFS_SA_ATTRS, 8, 1, &sa_obj);
2038 if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2039 goto bail;
2041 if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2042 zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table)) != 0)
2043 goto bail;
2045 if (zfsvfs->z_version >= ZPL_VERSION_SA)
2046 sa_register_update_callback(zfsvfs->z_os,
2047 zfs_sa_upgrade);
2049 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2051 zfs_set_fuid_feature(zfsvfs);
2054 * Attempt to re-establish all the active znodes with
2055 * their dbufs. If a zfs_rezget() fails, then we'll let
2056 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2057 * when they try to use their znode.
2059 mutex_enter(&zfsvfs->z_znodes_lock);
2060 for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2061 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2062 (void) zfs_rezget(zp);
2064 mutex_exit(&zfsvfs->z_znodes_lock);
2066 bail:
2067 /* release the VOPs */
2068 rw_exit(&zfsvfs->z_teardown_inactive_lock);
2069 rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
2071 if (err) {
2073 * Since we couldn't setup the sa framework, try to force
2074 * unmount this file system.
2076 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2077 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2079 return (err);
2082 static void
2083 zfs_freevfs(vfs_t *vfsp)
2085 zfsvfs_t *zfsvfs = vfsp->vfs_data;
2088 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2089 * from zfs_mount(). Release it here. If we came through
2090 * zfs_mountroot() instead, we didn't grab an extra hold, so
2091 * skip the VFS_RELE for rootvfs.
2093 if (zfsvfs->z_issnap && (vfsp != rootvfs))
2094 VFS_RELE(zfsvfs->z_parent->z_vfs);
2096 zfsvfs_free(zfsvfs);
2098 atomic_dec_32(&zfs_active_fs_count);
2102 * VFS_INIT() initialization. Note that there is no VFS_FINI(),
2103 * so we can't safely do any non-idempotent initialization here.
2104 * Leave that to zfs_init() and zfs_fini(), which are called
2105 * from the module's _init() and _fini() entry points.
2107 /*ARGSUSED*/
2108 static int
2109 zfs_vfsinit(int fstype, char *name)
2111 int error;
2113 zfsfstype = fstype;
2116 * Setup vfsops and vnodeops tables.
2118 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2119 if (error != 0) {
2120 cmn_err(CE_WARN, "zfs: bad vfs ops template");
2123 error = zfs_create_op_tables();
2124 if (error) {
2125 zfs_remove_op_tables();
2126 cmn_err(CE_WARN, "zfs: bad vnode ops template");
2127 (void) vfs_freevfsops_by_type(zfsfstype);
2128 return (error);
2131 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2134 * Unique major number for all zfs mounts.
2135 * If we run out of 32-bit minors, we'll getudev() another major.
2137 zfs_major = ddi_name_to_major(ZFS_DRIVER);
2138 zfs_minor = ZFS_MIN_MINOR;
2140 return (0);
2143 void
2144 zfs_init(void)
2147 * Initialize .zfs directory structures
2149 zfsctl_init();
2152 * Initialize znode cache, vnode ops, etc...
2154 zfs_znode_init();
2156 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2159 void
2160 zfs_fini(void)
2162 zfsctl_fini();
2163 zfs_znode_fini();
2167 zfs_busy(void)
2169 return (zfs_active_fs_count != 0);
2173 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2175 int error;
2176 objset_t *os = zfsvfs->z_os;
2177 dmu_tx_t *tx;
2179 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2180 return (SET_ERROR(EINVAL));
2182 if (newvers < zfsvfs->z_version)
2183 return (SET_ERROR(EINVAL));
2185 if (zfs_spa_version_map(newvers) >
2186 spa_version(dmu_objset_spa(zfsvfs->z_os)))
2187 return (SET_ERROR(ENOTSUP));
2189 tx = dmu_tx_create(os);
2190 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2191 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2192 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2193 ZFS_SA_ATTRS);
2194 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2196 error = dmu_tx_assign(tx, TXG_WAIT);
2197 if (error) {
2198 dmu_tx_abort(tx);
2199 return (error);
2202 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2203 8, 1, &newvers, tx);
2205 if (error) {
2206 dmu_tx_commit(tx);
2207 return (error);
2210 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2211 uint64_t sa_obj;
2213 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2214 SPA_VERSION_SA);
2215 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2216 DMU_OT_NONE, 0, tx);
2218 error = zap_add(os, MASTER_NODE_OBJ,
2219 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2220 ASSERT0(error);
2222 VERIFY(0 == sa_set_sa_object(os, sa_obj));
2223 sa_register_update_callback(os, zfs_sa_upgrade);
2226 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2227 "from %llu to %llu", zfsvfs->z_version, newvers);
2229 dmu_tx_commit(tx);
2231 zfsvfs->z_version = newvers;
2233 zfs_set_fuid_feature(zfsvfs);
2235 return (0);
2239 * Read a property stored within the master node.
2242 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2244 const char *pname;
2245 int error = ENOENT;
2248 * Look up the file system's value for the property. For the
2249 * version property, we look up a slightly different string.
2251 if (prop == ZFS_PROP_VERSION)
2252 pname = ZPL_VERSION_STR;
2253 else
2254 pname = zfs_prop_to_name(prop);
2256 if (os != NULL)
2257 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2259 if (error == ENOENT) {
2260 /* No value set, use the default value */
2261 switch (prop) {
2262 case ZFS_PROP_VERSION:
2263 *value = ZPL_VERSION;
2264 break;
2265 case ZFS_PROP_NORMALIZE:
2266 case ZFS_PROP_UTF8ONLY:
2267 *value = 0;
2268 break;
2269 case ZFS_PROP_CASE:
2270 *value = ZFS_CASE_SENSITIVE;
2271 break;
2272 default:
2273 return (error);
2275 error = 0;
2277 return (error);
2280 static vfsdef_t vfw = {
2281 VFSDEF_VERSION,
2282 MNTTYPE_ZFS,
2283 zfs_vfsinit,
2284 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2285 VSW_XID|VSW_ZMOUNT,
2286 &zfs_mntopts
2289 struct modlfs zfs_modlfs = {
2290 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw