4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
31 #include <sys/zfs_context.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/spa_impl.h>
36 #include <sys/dsl_pool.h>
42 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The
43 * I/O scheduler determines when and in what order those operations are
44 * issued. The I/O scheduler divides operations into five I/O classes
45 * prioritized in the following order: sync read, sync write, async read,
46 * async write, and scrub/resilver. Each queue defines the minimum and
47 * maximum number of concurrent operations that may be issued to the device.
48 * In addition, the device has an aggregate maximum. Note that the sum of the
49 * per-queue minimums must not exceed the aggregate maximum, and if the
50 * aggregate maximum is equal to or greater than the sum of the per-queue
51 * maximums, the per-queue minimum has no effect.
53 * For many physical devices, throughput increases with the number of
54 * concurrent operations, but latency typically suffers. Further, physical
55 * devices typically have a limit at which more concurrent operations have no
56 * effect on throughput or can actually cause it to decrease.
58 * The scheduler selects the next operation to issue by first looking for an
59 * I/O class whose minimum has not been satisfied. Once all are satisfied and
60 * the aggregate maximum has not been hit, the scheduler looks for classes
61 * whose maximum has not been satisfied. Iteration through the I/O classes is
62 * done in the order specified above. No further operations are issued if the
63 * aggregate maximum number of concurrent operations has been hit or if there
64 * are no operations queued for an I/O class that has not hit its maximum.
65 * Every time an i/o is queued or an operation completes, the I/O scheduler
66 * looks for new operations to issue.
68 * All I/O classes have a fixed maximum number of outstanding operations
69 * except for the async write class. Asynchronous writes represent the data
70 * that is committed to stable storage during the syncing stage for
71 * transaction groups (see txg.c). Transaction groups enter the syncing state
72 * periodically so the number of queued async writes will quickly burst up and
73 * then bleed down to zero. Rather than servicing them as quickly as possible,
74 * the I/O scheduler changes the maximum number of active async write i/os
75 * according to the amount of dirty data in the pool (see dsl_pool.c). Since
76 * both throughput and latency typically increase with the number of
77 * concurrent operations issued to physical devices, reducing the burstiness
78 * in the number of concurrent operations also stabilizes the response time of
79 * operations from other -- and in particular synchronous -- queues. In broad
80 * strokes, the I/O scheduler will issue more concurrent operations from the
81 * async write queue as there's more dirty data in the pool.
85 * The number of concurrent operations issued for the async write I/O class
86 * follows a piece-wise linear function defined by a few adjustable points.
88 * | o---------| <-- zfs_vdev_async_write_max_active
95 * |------------o | | <-- zfs_vdev_async_write_min_active
96 * 0|____________^______|_________|
97 * 0% | | 100% of zfs_dirty_data_max
99 * | `-- zfs_vdev_async_write_active_max_dirty_percent
100 * `--------- zfs_vdev_async_write_active_min_dirty_percent
102 * Until the amount of dirty data exceeds a minimum percentage of the dirty
103 * data allowed in the pool, the I/O scheduler will limit the number of
104 * concurrent operations to the minimum. As that threshold is crossed, the
105 * number of concurrent operations issued increases linearly to the maximum at
106 * the specified maximum percentage of the dirty data allowed in the pool.
108 * Ideally, the amount of dirty data on a busy pool will stay in the sloped
109 * part of the function between zfs_vdev_async_write_active_min_dirty_percent
110 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
111 * maximum percentage, this indicates that the rate of incoming data is
112 * greater than the rate that the backend storage can handle. In this case, we
113 * must further throttle incoming writes (see dmu_tx_delay() for details).
117 * The maximum number of i/os active to each device. Ideally, this will be >=
118 * the sum of each queue's max_active. It must be at least the sum of each
119 * queue's min_active.
121 uint32_t zfs_vdev_max_active
= 1000;
124 * Per-queue limits on the number of i/os active to each device. If the
125 * sum of the queue's max_active is < zfs_vdev_max_active, then the
126 * min_active comes into play. We will send min_active from each queue,
127 * and then select from queues in the order defined by zio_priority_t.
129 * In general, smaller max_active's will lead to lower latency of synchronous
130 * operations. Larger max_active's may lead to higher overall throughput,
131 * depending on underlying storage.
133 * The ratio of the queues' max_actives determines the balance of performance
134 * between reads, writes, and scrubs. E.g., increasing
135 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
136 * more quickly, but reads and writes to have higher latency and lower
139 uint32_t zfs_vdev_sync_read_min_active
= 10;
140 uint32_t zfs_vdev_sync_read_max_active
= 10;
141 uint32_t zfs_vdev_sync_write_min_active
= 10;
142 uint32_t zfs_vdev_sync_write_max_active
= 10;
143 uint32_t zfs_vdev_async_read_min_active
= 1;
144 uint32_t zfs_vdev_async_read_max_active
= 3;
145 uint32_t zfs_vdev_async_write_min_active
= 1;
146 uint32_t zfs_vdev_async_write_max_active
= 10;
147 uint32_t zfs_vdev_scrub_min_active
= 1;
148 uint32_t zfs_vdev_scrub_max_active
= 2;
151 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
152 * dirty data, use zfs_vdev_async_write_min_active. When it has more than
153 * zfs_vdev_async_write_active_max_dirty_percent, use
154 * zfs_vdev_async_write_max_active. The value is linearly interpolated
155 * between min and max.
157 int zfs_vdev_async_write_active_min_dirty_percent
= 30;
158 int zfs_vdev_async_write_active_max_dirty_percent
= 60;
161 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
162 * For read I/Os, we also aggregate across small adjacency gaps; for writes
163 * we include spans of optional I/Os to aid aggregation at the disk even when
164 * they aren't able to help us aggregate at this level.
166 int zfs_vdev_aggregation_limit
= SPA_OLD_MAXBLOCKSIZE
;
167 int zfs_vdev_read_gap_limit
= 32 << 10;
168 int zfs_vdev_write_gap_limit
= 4 << 10;
171 vdev_queue_offset_compare(const void *x1
, const void *x2
)
173 const zio_t
*z1
= x1
;
174 const zio_t
*z2
= x2
;
176 if (z1
->io_offset
< z2
->io_offset
)
178 if (z1
->io_offset
> z2
->io_offset
)
189 static inline avl_tree_t
*
190 vdev_queue_class_tree(vdev_queue_t
*vq
, zio_priority_t p
)
192 return (&vq
->vq_class
[p
].vqc_queued_tree
);
195 static inline avl_tree_t
*
196 vdev_queue_type_tree(vdev_queue_t
*vq
, zio_type_t t
)
198 ASSERT(t
== ZIO_TYPE_READ
|| t
== ZIO_TYPE_WRITE
);
199 if (t
== ZIO_TYPE_READ
)
200 return (&vq
->vq_read_offset_tree
);
202 return (&vq
->vq_write_offset_tree
);
206 vdev_queue_timestamp_compare(const void *x1
, const void *x2
)
208 const zio_t
*z1
= x1
;
209 const zio_t
*z2
= x2
;
211 if (z1
->io_timestamp
< z2
->io_timestamp
)
213 if (z1
->io_timestamp
> z2
->io_timestamp
)
225 vdev_queue_init(vdev_t
*vd
)
227 vdev_queue_t
*vq
= &vd
->vdev_queue
;
229 mutex_init(&vq
->vq_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
232 avl_create(&vq
->vq_active_tree
, vdev_queue_offset_compare
,
233 sizeof (zio_t
), offsetof(struct zio
, io_queue_node
));
234 avl_create(vdev_queue_type_tree(vq
, ZIO_TYPE_READ
),
235 vdev_queue_offset_compare
, sizeof (zio_t
),
236 offsetof(struct zio
, io_offset_node
));
237 avl_create(vdev_queue_type_tree(vq
, ZIO_TYPE_WRITE
),
238 vdev_queue_offset_compare
, sizeof (zio_t
),
239 offsetof(struct zio
, io_offset_node
));
241 for (zio_priority_t p
= 0; p
< ZIO_PRIORITY_NUM_QUEUEABLE
; p
++) {
242 int (*compfn
) (const void *, const void *);
245 * The synchronous i/o queues are dispatched in FIFO rather
246 * than LBA order. This provides more consistent latency for
249 if (p
== ZIO_PRIORITY_SYNC_READ
|| p
== ZIO_PRIORITY_SYNC_WRITE
)
250 compfn
= vdev_queue_timestamp_compare
;
252 compfn
= vdev_queue_offset_compare
;
254 avl_create(vdev_queue_class_tree(vq
, p
), compfn
,
255 sizeof (zio_t
), offsetof(struct zio
, io_queue_node
));
260 vdev_queue_fini(vdev_t
*vd
)
262 vdev_queue_t
*vq
= &vd
->vdev_queue
;
264 for (zio_priority_t p
= 0; p
< ZIO_PRIORITY_NUM_QUEUEABLE
; p
++)
265 avl_destroy(vdev_queue_class_tree(vq
, p
));
266 avl_destroy(&vq
->vq_active_tree
);
267 avl_destroy(vdev_queue_type_tree(vq
, ZIO_TYPE_READ
));
268 avl_destroy(vdev_queue_type_tree(vq
, ZIO_TYPE_WRITE
));
270 mutex_destroy(&vq
->vq_lock
);
274 vdev_queue_io_add(vdev_queue_t
*vq
, zio_t
*zio
)
276 spa_t
*spa
= zio
->io_spa
;
277 ASSERT3U(zio
->io_priority
, <, ZIO_PRIORITY_NUM_QUEUEABLE
);
278 avl_add(vdev_queue_class_tree(vq
, zio
->io_priority
), zio
);
279 avl_add(vdev_queue_type_tree(vq
, zio
->io_type
), zio
);
281 mutex_enter(&spa
->spa_iokstat_lock
);
282 spa
->spa_queue_stats
[zio
->io_priority
].spa_queued
++;
283 if (spa
->spa_iokstat
!= NULL
)
284 kstat_waitq_enter(spa
->spa_iokstat
->ks_data
);
285 mutex_exit(&spa
->spa_iokstat_lock
);
289 vdev_queue_io_remove(vdev_queue_t
*vq
, zio_t
*zio
)
291 spa_t
*spa
= zio
->io_spa
;
292 ASSERT3U(zio
->io_priority
, <, ZIO_PRIORITY_NUM_QUEUEABLE
);
293 avl_remove(vdev_queue_class_tree(vq
, zio
->io_priority
), zio
);
294 avl_remove(vdev_queue_type_tree(vq
, zio
->io_type
), zio
);
296 mutex_enter(&spa
->spa_iokstat_lock
);
297 ASSERT3U(spa
->spa_queue_stats
[zio
->io_priority
].spa_queued
, >, 0);
298 spa
->spa_queue_stats
[zio
->io_priority
].spa_queued
--;
299 if (spa
->spa_iokstat
!= NULL
)
300 kstat_waitq_exit(spa
->spa_iokstat
->ks_data
);
301 mutex_exit(&spa
->spa_iokstat_lock
);
305 vdev_queue_pending_add(vdev_queue_t
*vq
, zio_t
*zio
)
307 spa_t
*spa
= zio
->io_spa
;
308 ASSERT(MUTEX_HELD(&vq
->vq_lock
));
309 ASSERT3U(zio
->io_priority
, <, ZIO_PRIORITY_NUM_QUEUEABLE
);
310 vq
->vq_class
[zio
->io_priority
].vqc_active
++;
311 avl_add(&vq
->vq_active_tree
, zio
);
313 mutex_enter(&spa
->spa_iokstat_lock
);
314 spa
->spa_queue_stats
[zio
->io_priority
].spa_active
++;
315 if (spa
->spa_iokstat
!= NULL
)
316 kstat_runq_enter(spa
->spa_iokstat
->ks_data
);
317 mutex_exit(&spa
->spa_iokstat_lock
);
321 vdev_queue_pending_remove(vdev_queue_t
*vq
, zio_t
*zio
)
323 spa_t
*spa
= zio
->io_spa
;
324 ASSERT(MUTEX_HELD(&vq
->vq_lock
));
325 ASSERT3U(zio
->io_priority
, <, ZIO_PRIORITY_NUM_QUEUEABLE
);
326 vq
->vq_class
[zio
->io_priority
].vqc_active
--;
327 avl_remove(&vq
->vq_active_tree
, zio
);
329 mutex_enter(&spa
->spa_iokstat_lock
);
330 ASSERT3U(spa
->spa_queue_stats
[zio
->io_priority
].spa_active
, >, 0);
331 spa
->spa_queue_stats
[zio
->io_priority
].spa_active
--;
332 if (spa
->spa_iokstat
!= NULL
) {
333 kstat_io_t
*ksio
= spa
->spa_iokstat
->ks_data
;
335 kstat_runq_exit(spa
->spa_iokstat
->ks_data
);
336 if (zio
->io_type
== ZIO_TYPE_READ
) {
338 ksio
->nread
+= zio
->io_size
;
339 } else if (zio
->io_type
== ZIO_TYPE_WRITE
) {
341 ksio
->nwritten
+= zio
->io_size
;
344 mutex_exit(&spa
->spa_iokstat_lock
);
348 vdev_queue_agg_io_done(zio_t
*aio
)
350 if (aio
->io_type
== ZIO_TYPE_READ
) {
352 while ((pio
= zio_walk_parents(aio
)) != NULL
) {
353 bcopy((char *)aio
->io_data
+ (pio
->io_offset
-
354 aio
->io_offset
), pio
->io_data
, pio
->io_size
);
358 zio_buf_free(aio
->io_data
, aio
->io_size
);
362 vdev_queue_class_min_active(zio_priority_t p
)
365 case ZIO_PRIORITY_SYNC_READ
:
366 return (zfs_vdev_sync_read_min_active
);
367 case ZIO_PRIORITY_SYNC_WRITE
:
368 return (zfs_vdev_sync_write_min_active
);
369 case ZIO_PRIORITY_ASYNC_READ
:
370 return (zfs_vdev_async_read_min_active
);
371 case ZIO_PRIORITY_ASYNC_WRITE
:
372 return (zfs_vdev_async_write_min_active
);
373 case ZIO_PRIORITY_SCRUB
:
374 return (zfs_vdev_scrub_min_active
);
376 panic("invalid priority %u", p
);
382 vdev_queue_max_async_writes(spa_t
*spa
)
385 uint64_t dirty
= spa
->spa_dsl_pool
->dp_dirty_total
;
386 uint64_t min_bytes
= zfs_dirty_data_max
*
387 zfs_vdev_async_write_active_min_dirty_percent
/ 100;
388 uint64_t max_bytes
= zfs_dirty_data_max
*
389 zfs_vdev_async_write_active_max_dirty_percent
/ 100;
392 * Sync tasks correspond to interactive user actions. To reduce the
393 * execution time of those actions we push data out as fast as possible.
395 if (spa_has_pending_synctask(spa
)) {
396 return (zfs_vdev_async_write_max_active
);
399 if (dirty
< min_bytes
)
400 return (zfs_vdev_async_write_min_active
);
401 if (dirty
> max_bytes
)
402 return (zfs_vdev_async_write_max_active
);
405 * linear interpolation:
406 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
407 * move right by min_bytes
408 * move up by min_writes
410 writes
= (dirty
- min_bytes
) *
411 (zfs_vdev_async_write_max_active
-
412 zfs_vdev_async_write_min_active
) /
413 (max_bytes
- min_bytes
) +
414 zfs_vdev_async_write_min_active
;
415 ASSERT3U(writes
, >=, zfs_vdev_async_write_min_active
);
416 ASSERT3U(writes
, <=, zfs_vdev_async_write_max_active
);
421 vdev_queue_class_max_active(spa_t
*spa
, zio_priority_t p
)
424 case ZIO_PRIORITY_SYNC_READ
:
425 return (zfs_vdev_sync_read_max_active
);
426 case ZIO_PRIORITY_SYNC_WRITE
:
427 return (zfs_vdev_sync_write_max_active
);
428 case ZIO_PRIORITY_ASYNC_READ
:
429 return (zfs_vdev_async_read_max_active
);
430 case ZIO_PRIORITY_ASYNC_WRITE
:
431 return (vdev_queue_max_async_writes(spa
));
432 case ZIO_PRIORITY_SCRUB
:
433 return (zfs_vdev_scrub_max_active
);
435 panic("invalid priority %u", p
);
441 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
442 * there is no eligible class.
444 static zio_priority_t
445 vdev_queue_class_to_issue(vdev_queue_t
*vq
)
447 spa_t
*spa
= vq
->vq_vdev
->vdev_spa
;
450 if (avl_numnodes(&vq
->vq_active_tree
) >= zfs_vdev_max_active
)
451 return (ZIO_PRIORITY_NUM_QUEUEABLE
);
453 /* find a queue that has not reached its minimum # outstanding i/os */
454 for (p
= 0; p
< ZIO_PRIORITY_NUM_QUEUEABLE
; p
++) {
455 if (avl_numnodes(vdev_queue_class_tree(vq
, p
)) > 0 &&
456 vq
->vq_class
[p
].vqc_active
<
457 vdev_queue_class_min_active(p
))
462 * If we haven't found a queue, look for one that hasn't reached its
463 * maximum # outstanding i/os.
465 for (p
= 0; p
< ZIO_PRIORITY_NUM_QUEUEABLE
; p
++) {
466 if (avl_numnodes(vdev_queue_class_tree(vq
, p
)) > 0 &&
467 vq
->vq_class
[p
].vqc_active
<
468 vdev_queue_class_max_active(spa
, p
))
472 /* No eligible queued i/os */
473 return (ZIO_PRIORITY_NUM_QUEUEABLE
);
477 * Compute the range spanned by two i/os, which is the endpoint of the last
478 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
479 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
480 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
482 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
483 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
486 vdev_queue_aggregate(vdev_queue_t
*vq
, zio_t
*zio
)
488 zio_t
*first
, *last
, *aio
, *dio
, *mandatory
, *nio
;
491 boolean_t stretch
= B_FALSE
;
492 avl_tree_t
*t
= vdev_queue_type_tree(vq
, zio
->io_type
);
493 enum zio_flag flags
= zio
->io_flags
& ZIO_FLAG_AGG_INHERIT
;
495 if (zio
->io_flags
& ZIO_FLAG_DONT_AGGREGATE
)
500 if (zio
->io_type
== ZIO_TYPE_READ
)
501 maxgap
= zfs_vdev_read_gap_limit
;
504 * We can aggregate I/Os that are sufficiently adjacent and of
505 * the same flavor, as expressed by the AGG_INHERIT flags.
506 * The latter requirement is necessary so that certain
507 * attributes of the I/O, such as whether it's a normal I/O
508 * or a scrub/resilver, can be preserved in the aggregate.
509 * We can include optional I/Os, but don't allow them
510 * to begin a range as they add no benefit in that situation.
514 * We keep track of the last non-optional I/O.
516 mandatory
= (first
->io_flags
& ZIO_FLAG_OPTIONAL
) ? NULL
: first
;
519 * Walk backwards through sufficiently contiguous I/Os
520 * recording the last non-option I/O.
522 while ((dio
= AVL_PREV(t
, first
)) != NULL
&&
523 (dio
->io_flags
& ZIO_FLAG_AGG_INHERIT
) == flags
&&
524 IO_SPAN(dio
, last
) <= zfs_vdev_aggregation_limit
&&
525 IO_GAP(dio
, first
) <= maxgap
) {
527 if (mandatory
== NULL
&& !(first
->io_flags
& ZIO_FLAG_OPTIONAL
))
532 * Skip any initial optional I/Os.
534 while ((first
->io_flags
& ZIO_FLAG_OPTIONAL
) && first
!= last
) {
535 first
= AVL_NEXT(t
, first
);
536 ASSERT(first
!= NULL
);
540 * Walk forward through sufficiently contiguous I/Os.
542 while ((dio
= AVL_NEXT(t
, last
)) != NULL
&&
543 (dio
->io_flags
& ZIO_FLAG_AGG_INHERIT
) == flags
&&
544 IO_SPAN(first
, dio
) <= zfs_vdev_aggregation_limit
&&
545 IO_GAP(last
, dio
) <= maxgap
) {
547 if (!(last
->io_flags
& ZIO_FLAG_OPTIONAL
))
552 * Now that we've established the range of the I/O aggregation
553 * we must decide what to do with trailing optional I/Os.
554 * For reads, there's nothing to do. While we are unable to
555 * aggregate further, it's possible that a trailing optional
556 * I/O would allow the underlying device to aggregate with
557 * subsequent I/Os. We must therefore determine if the next
558 * non-optional I/O is close enough to make aggregation
561 if (zio
->io_type
== ZIO_TYPE_WRITE
&& mandatory
!= NULL
) {
563 while ((dio
= AVL_NEXT(t
, nio
)) != NULL
&&
564 IO_GAP(nio
, dio
) == 0 &&
565 IO_GAP(mandatory
, dio
) <= zfs_vdev_write_gap_limit
) {
567 if (!(nio
->io_flags
& ZIO_FLAG_OPTIONAL
)) {
575 /* This may be a no-op. */
576 dio
= AVL_NEXT(t
, last
);
577 dio
->io_flags
&= ~ZIO_FLAG_OPTIONAL
;
579 while (last
!= mandatory
&& last
!= first
) {
580 ASSERT(last
->io_flags
& ZIO_FLAG_OPTIONAL
);
581 last
= AVL_PREV(t
, last
);
582 ASSERT(last
!= NULL
);
589 size
= IO_SPAN(first
, last
);
590 ASSERT3U(size
, <=, zfs_vdev_aggregation_limit
);
592 aio
= zio_vdev_delegated_io(first
->io_vd
, first
->io_offset
,
593 zio_buf_alloc(size
), size
, first
->io_type
, zio
->io_priority
,
594 flags
| ZIO_FLAG_DONT_CACHE
| ZIO_FLAG_DONT_QUEUE
,
595 vdev_queue_agg_io_done
, NULL
);
596 aio
->io_timestamp
= first
->io_timestamp
;
601 nio
= AVL_NEXT(t
, dio
);
602 ASSERT3U(dio
->io_type
, ==, aio
->io_type
);
604 if (dio
->io_flags
& ZIO_FLAG_NODATA
) {
605 ASSERT3U(dio
->io_type
, ==, ZIO_TYPE_WRITE
);
606 bzero((char *)aio
->io_data
+ (dio
->io_offset
-
607 aio
->io_offset
), dio
->io_size
);
608 } else if (dio
->io_type
== ZIO_TYPE_WRITE
) {
609 bcopy(dio
->io_data
, (char *)aio
->io_data
+
610 (dio
->io_offset
- aio
->io_offset
),
614 zio_add_child(dio
, aio
);
615 vdev_queue_io_remove(vq
, dio
);
616 zio_vdev_io_bypass(dio
);
618 } while (dio
!= last
);
624 vdev_queue_io_to_issue(vdev_queue_t
*vq
)
633 ASSERT(MUTEX_HELD(&vq
->vq_lock
));
635 p
= vdev_queue_class_to_issue(vq
);
637 if (p
== ZIO_PRIORITY_NUM_QUEUEABLE
) {
638 /* No eligible queued i/os */
643 * For LBA-ordered queues (async / scrub), issue the i/o which follows
644 * the most recently issued i/o in LBA (offset) order.
646 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
648 tree
= vdev_queue_class_tree(vq
, p
);
649 search
.io_timestamp
= 0;
650 search
.io_offset
= vq
->vq_last_offset
+ 1;
651 VERIFY3P(avl_find(tree
, &search
, &idx
), ==, NULL
);
652 zio
= avl_nearest(tree
, idx
, AVL_AFTER
);
654 zio
= avl_first(tree
);
655 ASSERT3U(zio
->io_priority
, ==, p
);
657 aio
= vdev_queue_aggregate(vq
, zio
);
661 vdev_queue_io_remove(vq
, zio
);
664 * If the I/O is or was optional and therefore has no data, we need to
665 * simply discard it. We need to drop the vdev queue's lock to avoid a
666 * deadlock that we could encounter since this I/O will complete
669 if (zio
->io_flags
& ZIO_FLAG_NODATA
) {
670 mutex_exit(&vq
->vq_lock
);
671 zio_vdev_io_bypass(zio
);
673 mutex_enter(&vq
->vq_lock
);
677 vdev_queue_pending_add(vq
, zio
);
678 vq
->vq_last_offset
= zio
->io_offset
;
684 vdev_queue_io(zio_t
*zio
)
686 vdev_queue_t
*vq
= &zio
->io_vd
->vdev_queue
;
689 if (zio
->io_flags
& ZIO_FLAG_DONT_QUEUE
)
693 * Children i/os inherent their parent's priority, which might
694 * not match the child's i/o type. Fix it up here.
696 if (zio
->io_type
== ZIO_TYPE_READ
) {
697 if (zio
->io_priority
!= ZIO_PRIORITY_SYNC_READ
&&
698 zio
->io_priority
!= ZIO_PRIORITY_ASYNC_READ
&&
699 zio
->io_priority
!= ZIO_PRIORITY_SCRUB
)
700 zio
->io_priority
= ZIO_PRIORITY_ASYNC_READ
;
702 ASSERT(zio
->io_type
== ZIO_TYPE_WRITE
);
703 if (zio
->io_priority
!= ZIO_PRIORITY_SYNC_WRITE
&&
704 zio
->io_priority
!= ZIO_PRIORITY_ASYNC_WRITE
)
705 zio
->io_priority
= ZIO_PRIORITY_ASYNC_WRITE
;
708 zio
->io_flags
|= ZIO_FLAG_DONT_CACHE
| ZIO_FLAG_DONT_QUEUE
;
710 mutex_enter(&vq
->vq_lock
);
711 zio
->io_timestamp
= gethrtime();
712 vdev_queue_io_add(vq
, zio
);
713 nio
= vdev_queue_io_to_issue(vq
);
714 mutex_exit(&vq
->vq_lock
);
719 if (nio
->io_done
== vdev_queue_agg_io_done
) {
728 vdev_queue_io_done(zio_t
*zio
)
730 vdev_queue_t
*vq
= &zio
->io_vd
->vdev_queue
;
733 mutex_enter(&vq
->vq_lock
);
735 vdev_queue_pending_remove(vq
, zio
);
737 vq
->vq_io_complete_ts
= gethrtime();
739 while ((nio
= vdev_queue_io_to_issue(vq
)) != NULL
) {
740 mutex_exit(&vq
->vq_lock
);
741 if (nio
->io_done
== vdev_queue_agg_io_done
) {
744 zio_vdev_io_reissue(nio
);
747 mutex_enter(&vq
->vq_lock
);
750 mutex_exit(&vq
->vq_lock
);