4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2014 Integros [integros.com]
30 #include <sys/zfs_context.h>
31 #include <sys/spa_impl.h>
32 #include <sys/spa_boot.h>
34 #include <sys/zio_checksum.h>
35 #include <sys/zio_compress.h>
37 #include <sys/dmu_tx.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/metaslab.h>
42 #include <sys/uberblock_impl.h>
45 #include <sys/unique.h>
46 #include <sys/dsl_pool.h>
47 #include <sys/dsl_dir.h>
48 #include <sys/dsl_prop.h>
49 #include <sys/dsl_scan.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/metaslab_impl.h>
55 #include <sys/zfeature.h>
60 * There are four basic locks for managing spa_t structures:
62 * spa_namespace_lock (global mutex)
64 * This lock must be acquired to do any of the following:
66 * - Lookup a spa_t by name
67 * - Add or remove a spa_t from the namespace
68 * - Increase spa_refcount from non-zero
69 * - Check if spa_refcount is zero
71 * - add/remove/attach/detach devices
72 * - Held for the duration of create/destroy/import/export
74 * It does not need to handle recursion. A create or destroy may
75 * reference objects (files or zvols) in other pools, but by
76 * definition they must have an existing reference, and will never need
77 * to lookup a spa_t by name.
79 * spa_refcount (per-spa refcount_t protected by mutex)
81 * This reference count keep track of any active users of the spa_t. The
82 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
83 * the refcount is never really 'zero' - opening a pool implicitly keeps
84 * some references in the DMU. Internally we check against spa_minref, but
85 * present the image of a zero/non-zero value to consumers.
87 * spa_config_lock[] (per-spa array of rwlocks)
89 * This protects the spa_t from config changes, and must be held in
90 * the following circumstances:
92 * - RW_READER to perform I/O to the spa
93 * - RW_WRITER to change the vdev config
95 * The locking order is fairly straightforward:
97 * spa_namespace_lock -> spa_refcount
99 * The namespace lock must be acquired to increase the refcount from 0
100 * or to check if it is zero.
102 * spa_refcount -> spa_config_lock[]
104 * There must be at least one valid reference on the spa_t to acquire
107 * spa_namespace_lock -> spa_config_lock[]
109 * The namespace lock must always be taken before the config lock.
112 * The spa_namespace_lock can be acquired directly and is globally visible.
114 * The namespace is manipulated using the following functions, all of which
115 * require the spa_namespace_lock to be held.
117 * spa_lookup() Lookup a spa_t by name.
119 * spa_add() Create a new spa_t in the namespace.
121 * spa_remove() Remove a spa_t from the namespace. This also
122 * frees up any memory associated with the spa_t.
124 * spa_next() Returns the next spa_t in the system, or the
125 * first if NULL is passed.
127 * spa_evict_all() Shutdown and remove all spa_t structures in
130 * spa_guid_exists() Determine whether a pool/device guid exists.
132 * The spa_refcount is manipulated using the following functions:
134 * spa_open_ref() Adds a reference to the given spa_t. Must be
135 * called with spa_namespace_lock held if the
136 * refcount is currently zero.
138 * spa_close() Remove a reference from the spa_t. This will
139 * not free the spa_t or remove it from the
140 * namespace. No locking is required.
142 * spa_refcount_zero() Returns true if the refcount is currently
143 * zero. Must be called with spa_namespace_lock
146 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
147 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
148 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
150 * To read the configuration, it suffices to hold one of these locks as reader.
151 * To modify the configuration, you must hold all locks as writer. To modify
152 * vdev state without altering the vdev tree's topology (e.g. online/offline),
153 * you must hold SCL_STATE and SCL_ZIO as writer.
155 * We use these distinct config locks to avoid recursive lock entry.
156 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
157 * block allocations (SCL_ALLOC), which may require reading space maps
158 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
160 * The spa config locks cannot be normal rwlocks because we need the
161 * ability to hand off ownership. For example, SCL_ZIO is acquired
162 * by the issuing thread and later released by an interrupt thread.
163 * They do, however, obey the usual write-wanted semantics to prevent
164 * writer (i.e. system administrator) starvation.
166 * The lock acquisition rules are as follows:
169 * Protects changes to the vdev tree topology, such as vdev
170 * add/remove/attach/detach. Protects the dirty config list
171 * (spa_config_dirty_list) and the set of spares and l2arc devices.
174 * Protects changes to pool state and vdev state, such as vdev
175 * online/offline/fault/degrade/clear. Protects the dirty state list
176 * (spa_state_dirty_list) and global pool state (spa_state).
179 * Protects changes to metaslab groups and classes.
180 * Held as reader by metaslab_alloc() and metaslab_claim().
183 * Held by bp-level zios (those which have no io_vd upon entry)
184 * to prevent changes to the vdev tree. The bp-level zio implicitly
185 * protects all of its vdev child zios, which do not hold SCL_ZIO.
188 * Protects changes to metaslab groups and classes.
189 * Held as reader by metaslab_free(). SCL_FREE is distinct from
190 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
191 * blocks in zio_done() while another i/o that holds either
192 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
195 * Held as reader to prevent changes to the vdev tree during trivial
196 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
197 * other locks, and lower than all of them, to ensure that it's safe
198 * to acquire regardless of caller context.
200 * In addition, the following rules apply:
202 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
203 * The lock ordering is SCL_CONFIG > spa_props_lock.
205 * (b) I/O operations on leaf vdevs. For any zio operation that takes
206 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
207 * or zio_write_phys() -- the caller must ensure that the config cannot
208 * cannot change in the interim, and that the vdev cannot be reopened.
209 * SCL_STATE as reader suffices for both.
211 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
213 * spa_vdev_enter() Acquire the namespace lock and the config lock
216 * spa_vdev_exit() Release the config lock, wait for all I/O
217 * to complete, sync the updated configs to the
218 * cache, and release the namespace lock.
220 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
221 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
222 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
224 * spa_rename() is also implemented within this file since it requires
225 * manipulation of the namespace.
228 static avl_tree_t spa_namespace_avl
;
229 kmutex_t spa_namespace_lock
;
230 static kcondvar_t spa_namespace_cv
;
231 static int spa_active_count
;
232 int spa_max_replication_override
= SPA_DVAS_PER_BP
;
234 static kmutex_t spa_spare_lock
;
235 static avl_tree_t spa_spare_avl
;
236 static kmutex_t spa_l2cache_lock
;
237 static avl_tree_t spa_l2cache_avl
;
239 kmem_cache_t
*spa_buffer_pool
;
243 /* Everything except dprintf and spa is on by default in debug builds */
244 int zfs_flags
= ~(ZFS_DEBUG_DPRINTF
| ZFS_DEBUG_SPA
);
250 * zfs_recover can be set to nonzero to attempt to recover from
251 * otherwise-fatal errors, typically caused by on-disk corruption. When
252 * set, calls to zfs_panic_recover() will turn into warning messages.
253 * This should only be used as a last resort, as it typically results
254 * in leaked space, or worse.
256 boolean_t zfs_recover
= B_FALSE
;
259 * If destroy encounters an EIO while reading metadata (e.g. indirect
260 * blocks), space referenced by the missing metadata can not be freed.
261 * Normally this causes the background destroy to become "stalled", as
262 * it is unable to make forward progress. While in this stalled state,
263 * all remaining space to free from the error-encountering filesystem is
264 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
265 * permanently leak the space from indirect blocks that can not be read,
266 * and continue to free everything else that it can.
268 * The default, "stalling" behavior is useful if the storage partially
269 * fails (i.e. some but not all i/os fail), and then later recovers. In
270 * this case, we will be able to continue pool operations while it is
271 * partially failed, and when it recovers, we can continue to free the
272 * space, with no leaks. However, note that this case is actually
275 * Typically pools either (a) fail completely (but perhaps temporarily,
276 * e.g. a top-level vdev going offline), or (b) have localized,
277 * permanent errors (e.g. disk returns the wrong data due to bit flip or
278 * firmware bug). In case (a), this setting does not matter because the
279 * pool will be suspended and the sync thread will not be able to make
280 * forward progress regardless. In case (b), because the error is
281 * permanent, the best we can do is leak the minimum amount of space,
282 * which is what setting this flag will do. Therefore, it is reasonable
283 * for this flag to normally be set, but we chose the more conservative
284 * approach of not setting it, so that there is no possibility of
285 * leaking space in the "partial temporary" failure case.
287 boolean_t zfs_free_leak_on_eio
= B_FALSE
;
290 * Expiration time in milliseconds. This value has two meanings. First it is
291 * used to determine when the spa_deadman() logic should fire. By default the
292 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
293 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
294 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
297 uint64_t zfs_deadman_synctime_ms
= 1000000ULL;
300 * Check time in milliseconds. This defines the frequency at which we check
303 uint64_t zfs_deadman_checktime_ms
= 5000ULL;
306 * Override the zfs deadman behavior via /etc/system. By default the
307 * deadman is enabled except on VMware and sparc deployments.
309 int zfs_deadman_enabled
= -1;
312 * The worst case is single-sector max-parity RAID-Z blocks, in which
313 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
314 * times the size; so just assume that. Add to this the fact that
315 * we can have up to 3 DVAs per bp, and one more factor of 2 because
316 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
318 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
320 int spa_asize_inflation
= 24;
323 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
324 * the pool to be consumed. This ensures that we don't run the pool
325 * completely out of space, due to unaccounted changes (e.g. to the MOS).
326 * It also limits the worst-case time to allocate space. If we have
327 * less than this amount of free space, most ZPL operations (e.g. write,
328 * create) will return ENOSPC.
330 * Certain operations (e.g. file removal, most administrative actions) can
331 * use half the slop space. They will only return ENOSPC if less than half
332 * the slop space is free. Typically, once the pool has less than the slop
333 * space free, the user will use these operations to free up space in the pool.
334 * These are the operations that call dsl_pool_adjustedsize() with the netfree
335 * argument set to TRUE.
337 * A very restricted set of operations are always permitted, regardless of
338 * the amount of free space. These are the operations that call
339 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy". If these
340 * operations result in a net increase in the amount of space used,
341 * it is possible to run the pool completely out of space, causing it to
342 * be permanently read-only.
344 * See also the comments in zfs_space_check_t.
346 int spa_slop_shift
= 5;
349 * ==========================================================================
351 * ==========================================================================
354 spa_config_lock_init(spa_t
*spa
)
356 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
357 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
358 mutex_init(&scl
->scl_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
359 cv_init(&scl
->scl_cv
, NULL
, CV_DEFAULT
, NULL
);
360 refcount_create_untracked(&scl
->scl_count
);
361 scl
->scl_writer
= NULL
;
362 scl
->scl_write_wanted
= 0;
367 spa_config_lock_destroy(spa_t
*spa
)
369 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
370 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
371 mutex_destroy(&scl
->scl_lock
);
372 cv_destroy(&scl
->scl_cv
);
373 refcount_destroy(&scl
->scl_count
);
374 ASSERT(scl
->scl_writer
== NULL
);
375 ASSERT(scl
->scl_write_wanted
== 0);
380 spa_config_tryenter(spa_t
*spa
, int locks
, void *tag
, krw_t rw
)
382 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
383 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
384 if (!(locks
& (1 << i
)))
386 mutex_enter(&scl
->scl_lock
);
387 if (rw
== RW_READER
) {
388 if (scl
->scl_writer
|| scl
->scl_write_wanted
) {
389 mutex_exit(&scl
->scl_lock
);
390 spa_config_exit(spa
, locks
& ((1 << i
) - 1),
395 ASSERT(scl
->scl_writer
!= curthread
);
396 if (!refcount_is_zero(&scl
->scl_count
)) {
397 mutex_exit(&scl
->scl_lock
);
398 spa_config_exit(spa
, locks
& ((1 << i
) - 1),
402 scl
->scl_writer
= curthread
;
404 (void) refcount_add(&scl
->scl_count
, tag
);
405 mutex_exit(&scl
->scl_lock
);
411 spa_config_enter(spa_t
*spa
, int locks
, void *tag
, krw_t rw
)
415 ASSERT3U(SCL_LOCKS
, <, sizeof (wlocks_held
) * NBBY
);
417 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
418 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
419 if (scl
->scl_writer
== curthread
)
420 wlocks_held
|= (1 << i
);
421 if (!(locks
& (1 << i
)))
423 mutex_enter(&scl
->scl_lock
);
424 if (rw
== RW_READER
) {
425 while (scl
->scl_writer
|| scl
->scl_write_wanted
) {
426 cv_wait(&scl
->scl_cv
, &scl
->scl_lock
);
429 ASSERT(scl
->scl_writer
!= curthread
);
430 while (!refcount_is_zero(&scl
->scl_count
)) {
431 scl
->scl_write_wanted
++;
432 cv_wait(&scl
->scl_cv
, &scl
->scl_lock
);
433 scl
->scl_write_wanted
--;
435 scl
->scl_writer
= curthread
;
437 (void) refcount_add(&scl
->scl_count
, tag
);
438 mutex_exit(&scl
->scl_lock
);
440 ASSERT(wlocks_held
<= locks
);
444 spa_config_exit(spa_t
*spa
, int locks
, void *tag
)
446 for (int i
= SCL_LOCKS
- 1; i
>= 0; i
--) {
447 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
448 if (!(locks
& (1 << i
)))
450 mutex_enter(&scl
->scl_lock
);
451 ASSERT(!refcount_is_zero(&scl
->scl_count
));
452 if (refcount_remove(&scl
->scl_count
, tag
) == 0) {
453 ASSERT(scl
->scl_writer
== NULL
||
454 scl
->scl_writer
== curthread
);
455 scl
->scl_writer
= NULL
; /* OK in either case */
456 cv_broadcast(&scl
->scl_cv
);
458 mutex_exit(&scl
->scl_lock
);
463 spa_config_held(spa_t
*spa
, int locks
, krw_t rw
)
467 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
468 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
469 if (!(locks
& (1 << i
)))
471 if ((rw
== RW_READER
&& !refcount_is_zero(&scl
->scl_count
)) ||
472 (rw
== RW_WRITER
&& scl
->scl_writer
== curthread
))
473 locks_held
|= 1 << i
;
480 * ==========================================================================
481 * SPA namespace functions
482 * ==========================================================================
486 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
487 * Returns NULL if no matching spa_t is found.
490 spa_lookup(const char *name
)
492 static spa_t search
; /* spa_t is large; don't allocate on stack */
497 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
499 (void) strlcpy(search
.spa_name
, name
, sizeof (search
.spa_name
));
502 * If it's a full dataset name, figure out the pool name and
505 cp
= strpbrk(search
.spa_name
, "/@#");
509 spa
= avl_find(&spa_namespace_avl
, &search
, &where
);
515 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
516 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
517 * looking for potentially hung I/Os.
520 spa_deadman(void *arg
)
525 * Disable the deadman timer if the pool is suspended.
527 if (spa_suspended(spa
)) {
528 VERIFY(cyclic_reprogram(spa
->spa_deadman_cycid
, CY_INFINITY
));
532 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
533 (gethrtime() - spa
->spa_sync_starttime
) / NANOSEC
,
534 ++spa
->spa_deadman_calls
);
535 if (zfs_deadman_enabled
)
536 vdev_deadman(spa
->spa_root_vdev
);
540 * Create an uninitialized spa_t with the given name. Requires
541 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
542 * exist by calling spa_lookup() first.
545 spa_add(const char *name
, nvlist_t
*config
, const char *altroot
)
548 spa_config_dirent_t
*dp
;
552 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
554 spa
= kmem_zalloc(sizeof (spa_t
), KM_SLEEP
);
556 mutex_init(&spa
->spa_async_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
557 mutex_init(&spa
->spa_errlist_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
558 mutex_init(&spa
->spa_errlog_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
559 mutex_init(&spa
->spa_evicting_os_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
560 mutex_init(&spa
->spa_history_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
561 mutex_init(&spa
->spa_proc_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
562 mutex_init(&spa
->spa_props_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
563 mutex_init(&spa
->spa_cksum_tmpls_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
564 mutex_init(&spa
->spa_scrub_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
565 mutex_init(&spa
->spa_suspend_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
566 mutex_init(&spa
->spa_vdev_top_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
567 mutex_init(&spa
->spa_iokstat_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
569 cv_init(&spa
->spa_async_cv
, NULL
, CV_DEFAULT
, NULL
);
570 cv_init(&spa
->spa_evicting_os_cv
, NULL
, CV_DEFAULT
, NULL
);
571 cv_init(&spa
->spa_proc_cv
, NULL
, CV_DEFAULT
, NULL
);
572 cv_init(&spa
->spa_scrub_io_cv
, NULL
, CV_DEFAULT
, NULL
);
573 cv_init(&spa
->spa_suspend_cv
, NULL
, CV_DEFAULT
, NULL
);
575 for (int t
= 0; t
< TXG_SIZE
; t
++)
576 bplist_create(&spa
->spa_free_bplist
[t
]);
578 (void) strlcpy(spa
->spa_name
, name
, sizeof (spa
->spa_name
));
579 spa
->spa_state
= POOL_STATE_UNINITIALIZED
;
580 spa
->spa_freeze_txg
= UINT64_MAX
;
581 spa
->spa_final_txg
= UINT64_MAX
;
582 spa
->spa_load_max_txg
= UINT64_MAX
;
584 spa
->spa_proc_state
= SPA_PROC_NONE
;
586 hdlr
.cyh_func
= spa_deadman
;
588 hdlr
.cyh_level
= CY_LOW_LEVEL
;
590 spa
->spa_deadman_synctime
= MSEC2NSEC(zfs_deadman_synctime_ms
);
593 * This determines how often we need to check for hung I/Os after
594 * the cyclic has already fired. Since checking for hung I/Os is
595 * an expensive operation we don't want to check too frequently.
596 * Instead wait for 5 seconds before checking again.
598 when
.cyt_interval
= MSEC2NSEC(zfs_deadman_checktime_ms
);
599 when
.cyt_when
= CY_INFINITY
;
600 mutex_enter(&cpu_lock
);
601 spa
->spa_deadman_cycid
= cyclic_add(&hdlr
, &when
);
602 mutex_exit(&cpu_lock
);
604 refcount_create(&spa
->spa_refcount
);
605 spa_config_lock_init(spa
);
607 avl_add(&spa_namespace_avl
, spa
);
610 * Set the alternate root, if there is one.
613 spa
->spa_root
= spa_strdup(altroot
);
618 * Every pool starts with the default cachefile
620 list_create(&spa
->spa_config_list
, sizeof (spa_config_dirent_t
),
621 offsetof(spa_config_dirent_t
, scd_link
));
623 dp
= kmem_zalloc(sizeof (spa_config_dirent_t
), KM_SLEEP
);
624 dp
->scd_path
= altroot
? NULL
: spa_strdup(spa_config_path
);
625 list_insert_head(&spa
->spa_config_list
, dp
);
627 VERIFY(nvlist_alloc(&spa
->spa_load_info
, NV_UNIQUE_NAME
,
630 if (config
!= NULL
) {
633 if (nvlist_lookup_nvlist(config
, ZPOOL_CONFIG_FEATURES_FOR_READ
,
635 VERIFY(nvlist_dup(features
, &spa
->spa_label_features
,
639 VERIFY(nvlist_dup(config
, &spa
->spa_config
, 0) == 0);
642 if (spa
->spa_label_features
== NULL
) {
643 VERIFY(nvlist_alloc(&spa
->spa_label_features
, NV_UNIQUE_NAME
,
647 spa
->spa_iokstat
= kstat_create("zfs", 0, name
,
648 "disk", KSTAT_TYPE_IO
, 1, 0);
649 if (spa
->spa_iokstat
) {
650 spa
->spa_iokstat
->ks_lock
= &spa
->spa_iokstat_lock
;
651 kstat_install(spa
->spa_iokstat
);
654 spa
->spa_debug
= ((zfs_flags
& ZFS_DEBUG_SPA
) != 0);
656 spa
->spa_min_ashift
= INT_MAX
;
657 spa
->spa_max_ashift
= 0;
660 * As a pool is being created, treat all features as disabled by
661 * setting SPA_FEATURE_DISABLED for all entries in the feature
664 for (int i
= 0; i
< SPA_FEATURES
; i
++) {
665 spa
->spa_feat_refcount_cache
[i
] = SPA_FEATURE_DISABLED
;
672 * Removes a spa_t from the namespace, freeing up any memory used. Requires
673 * spa_namespace_lock. This is called only after the spa_t has been closed and
677 spa_remove(spa_t
*spa
)
679 spa_config_dirent_t
*dp
;
681 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
682 ASSERT(spa
->spa_state
== POOL_STATE_UNINITIALIZED
);
683 ASSERT3U(refcount_count(&spa
->spa_refcount
), ==, 0);
685 nvlist_free(spa
->spa_config_splitting
);
687 avl_remove(&spa_namespace_avl
, spa
);
688 cv_broadcast(&spa_namespace_cv
);
691 spa_strfree(spa
->spa_root
);
695 while ((dp
= list_head(&spa
->spa_config_list
)) != NULL
) {
696 list_remove(&spa
->spa_config_list
, dp
);
697 if (dp
->scd_path
!= NULL
)
698 spa_strfree(dp
->scd_path
);
699 kmem_free(dp
, sizeof (spa_config_dirent_t
));
702 list_destroy(&spa
->spa_config_list
);
704 nvlist_free(spa
->spa_label_features
);
705 nvlist_free(spa
->spa_load_info
);
706 spa_config_set(spa
, NULL
);
708 mutex_enter(&cpu_lock
);
709 if (spa
->spa_deadman_cycid
!= CYCLIC_NONE
)
710 cyclic_remove(spa
->spa_deadman_cycid
);
711 mutex_exit(&cpu_lock
);
712 spa
->spa_deadman_cycid
= CYCLIC_NONE
;
714 refcount_destroy(&spa
->spa_refcount
);
716 spa_config_lock_destroy(spa
);
718 kstat_delete(spa
->spa_iokstat
);
719 spa
->spa_iokstat
= NULL
;
721 for (int t
= 0; t
< TXG_SIZE
; t
++)
722 bplist_destroy(&spa
->spa_free_bplist
[t
]);
724 zio_checksum_templates_free(spa
);
726 cv_destroy(&spa
->spa_async_cv
);
727 cv_destroy(&spa
->spa_evicting_os_cv
);
728 cv_destroy(&spa
->spa_proc_cv
);
729 cv_destroy(&spa
->spa_scrub_io_cv
);
730 cv_destroy(&spa
->spa_suspend_cv
);
732 mutex_destroy(&spa
->spa_async_lock
);
733 mutex_destroy(&spa
->spa_errlist_lock
);
734 mutex_destroy(&spa
->spa_errlog_lock
);
735 mutex_destroy(&spa
->spa_evicting_os_lock
);
736 mutex_destroy(&spa
->spa_history_lock
);
737 mutex_destroy(&spa
->spa_proc_lock
);
738 mutex_destroy(&spa
->spa_props_lock
);
739 mutex_destroy(&spa
->spa_cksum_tmpls_lock
);
740 mutex_destroy(&spa
->spa_scrub_lock
);
741 mutex_destroy(&spa
->spa_suspend_lock
);
742 mutex_destroy(&spa
->spa_vdev_top_lock
);
743 mutex_destroy(&spa
->spa_iokstat_lock
);
745 kmem_free(spa
, sizeof (spa_t
));
749 * Given a pool, return the next pool in the namespace, or NULL if there is
750 * none. If 'prev' is NULL, return the first pool.
753 spa_next(spa_t
*prev
)
755 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
758 return (AVL_NEXT(&spa_namespace_avl
, prev
));
760 return (avl_first(&spa_namespace_avl
));
764 * ==========================================================================
765 * SPA refcount functions
766 * ==========================================================================
770 * Add a reference to the given spa_t. Must have at least one reference, or
771 * have the namespace lock held.
774 spa_open_ref(spa_t
*spa
, void *tag
)
776 ASSERT(refcount_count(&spa
->spa_refcount
) >= spa
->spa_minref
||
777 MUTEX_HELD(&spa_namespace_lock
));
778 (void) refcount_add(&spa
->spa_refcount
, tag
);
782 * Remove a reference to the given spa_t. Must have at least one reference, or
783 * have the namespace lock held.
786 spa_close(spa_t
*spa
, void *tag
)
788 ASSERT(refcount_count(&spa
->spa_refcount
) > spa
->spa_minref
||
789 MUTEX_HELD(&spa_namespace_lock
));
790 (void) refcount_remove(&spa
->spa_refcount
, tag
);
794 * Remove a reference to the given spa_t held by a dsl dir that is
795 * being asynchronously released. Async releases occur from a taskq
796 * performing eviction of dsl datasets and dirs. The namespace lock
797 * isn't held and the hold by the object being evicted may contribute to
798 * spa_minref (e.g. dataset or directory released during pool export),
799 * so the asserts in spa_close() do not apply.
802 spa_async_close(spa_t
*spa
, void *tag
)
804 (void) refcount_remove(&spa
->spa_refcount
, tag
);
808 * Check to see if the spa refcount is zero. Must be called with
809 * spa_namespace_lock held. We really compare against spa_minref, which is the
810 * number of references acquired when opening a pool
813 spa_refcount_zero(spa_t
*spa
)
815 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
817 return (refcount_count(&spa
->spa_refcount
) == spa
->spa_minref
);
821 * ==========================================================================
822 * SPA spare and l2cache tracking
823 * ==========================================================================
827 * Hot spares and cache devices are tracked using the same code below,
828 * for 'auxiliary' devices.
831 typedef struct spa_aux
{
839 spa_aux_compare(const void *a
, const void *b
)
841 const spa_aux_t
*sa
= a
;
842 const spa_aux_t
*sb
= b
;
844 if (sa
->aux_guid
< sb
->aux_guid
)
846 else if (sa
->aux_guid
> sb
->aux_guid
)
853 spa_aux_add(vdev_t
*vd
, avl_tree_t
*avl
)
859 search
.aux_guid
= vd
->vdev_guid
;
860 if ((aux
= avl_find(avl
, &search
, &where
)) != NULL
) {
863 aux
= kmem_zalloc(sizeof (spa_aux_t
), KM_SLEEP
);
864 aux
->aux_guid
= vd
->vdev_guid
;
866 avl_insert(avl
, aux
, where
);
871 spa_aux_remove(vdev_t
*vd
, avl_tree_t
*avl
)
877 search
.aux_guid
= vd
->vdev_guid
;
878 aux
= avl_find(avl
, &search
, &where
);
882 if (--aux
->aux_count
== 0) {
883 avl_remove(avl
, aux
);
884 kmem_free(aux
, sizeof (spa_aux_t
));
885 } else if (aux
->aux_pool
== spa_guid(vd
->vdev_spa
)) {
886 aux
->aux_pool
= 0ULL;
891 spa_aux_exists(uint64_t guid
, uint64_t *pool
, int *refcnt
, avl_tree_t
*avl
)
893 spa_aux_t search
, *found
;
895 search
.aux_guid
= guid
;
896 found
= avl_find(avl
, &search
, NULL
);
900 *pool
= found
->aux_pool
;
907 *refcnt
= found
->aux_count
;
912 return (found
!= NULL
);
916 spa_aux_activate(vdev_t
*vd
, avl_tree_t
*avl
)
918 spa_aux_t search
, *found
;
921 search
.aux_guid
= vd
->vdev_guid
;
922 found
= avl_find(avl
, &search
, &where
);
923 ASSERT(found
!= NULL
);
924 ASSERT(found
->aux_pool
== 0ULL);
926 found
->aux_pool
= spa_guid(vd
->vdev_spa
);
930 * Spares are tracked globally due to the following constraints:
932 * - A spare may be part of multiple pools.
933 * - A spare may be added to a pool even if it's actively in use within
935 * - A spare in use in any pool can only be the source of a replacement if
936 * the target is a spare in the same pool.
938 * We keep track of all spares on the system through the use of a reference
939 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
940 * spare, then we bump the reference count in the AVL tree. In addition, we set
941 * the 'vdev_isspare' member to indicate that the device is a spare (active or
942 * inactive). When a spare is made active (used to replace a device in the
943 * pool), we also keep track of which pool its been made a part of.
945 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
946 * called under the spa_namespace lock as part of vdev reconfiguration. The
947 * separate spare lock exists for the status query path, which does not need to
948 * be completely consistent with respect to other vdev configuration changes.
952 spa_spare_compare(const void *a
, const void *b
)
954 return (spa_aux_compare(a
, b
));
958 spa_spare_add(vdev_t
*vd
)
960 mutex_enter(&spa_spare_lock
);
961 ASSERT(!vd
->vdev_isspare
);
962 spa_aux_add(vd
, &spa_spare_avl
);
963 vd
->vdev_isspare
= B_TRUE
;
964 mutex_exit(&spa_spare_lock
);
968 spa_spare_remove(vdev_t
*vd
)
970 mutex_enter(&spa_spare_lock
);
971 ASSERT(vd
->vdev_isspare
);
972 spa_aux_remove(vd
, &spa_spare_avl
);
973 vd
->vdev_isspare
= B_FALSE
;
974 mutex_exit(&spa_spare_lock
);
978 spa_spare_exists(uint64_t guid
, uint64_t *pool
, int *refcnt
)
982 mutex_enter(&spa_spare_lock
);
983 found
= spa_aux_exists(guid
, pool
, refcnt
, &spa_spare_avl
);
984 mutex_exit(&spa_spare_lock
);
990 spa_spare_activate(vdev_t
*vd
)
992 mutex_enter(&spa_spare_lock
);
993 ASSERT(vd
->vdev_isspare
);
994 spa_aux_activate(vd
, &spa_spare_avl
);
995 mutex_exit(&spa_spare_lock
);
999 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1000 * Cache devices currently only support one pool per cache device, and so
1001 * for these devices the aux reference count is currently unused beyond 1.
1005 spa_l2cache_compare(const void *a
, const void *b
)
1007 return (spa_aux_compare(a
, b
));
1011 spa_l2cache_add(vdev_t
*vd
)
1013 mutex_enter(&spa_l2cache_lock
);
1014 ASSERT(!vd
->vdev_isl2cache
);
1015 spa_aux_add(vd
, &spa_l2cache_avl
);
1016 vd
->vdev_isl2cache
= B_TRUE
;
1017 mutex_exit(&spa_l2cache_lock
);
1021 spa_l2cache_remove(vdev_t
*vd
)
1023 mutex_enter(&spa_l2cache_lock
);
1024 ASSERT(vd
->vdev_isl2cache
);
1025 spa_aux_remove(vd
, &spa_l2cache_avl
);
1026 vd
->vdev_isl2cache
= B_FALSE
;
1027 mutex_exit(&spa_l2cache_lock
);
1031 spa_l2cache_exists(uint64_t guid
, uint64_t *pool
)
1035 mutex_enter(&spa_l2cache_lock
);
1036 found
= spa_aux_exists(guid
, pool
, NULL
, &spa_l2cache_avl
);
1037 mutex_exit(&spa_l2cache_lock
);
1043 spa_l2cache_activate(vdev_t
*vd
)
1045 mutex_enter(&spa_l2cache_lock
);
1046 ASSERT(vd
->vdev_isl2cache
);
1047 spa_aux_activate(vd
, &spa_l2cache_avl
);
1048 mutex_exit(&spa_l2cache_lock
);
1052 * ==========================================================================
1054 * ==========================================================================
1058 * Lock the given spa_t for the purpose of adding or removing a vdev.
1059 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1060 * It returns the next transaction group for the spa_t.
1063 spa_vdev_enter(spa_t
*spa
)
1065 mutex_enter(&spa
->spa_vdev_top_lock
);
1066 mutex_enter(&spa_namespace_lock
);
1067 return (spa_vdev_config_enter(spa
));
1071 * Internal implementation for spa_vdev_enter(). Used when a vdev
1072 * operation requires multiple syncs (i.e. removing a device) while
1073 * keeping the spa_namespace_lock held.
1076 spa_vdev_config_enter(spa_t
*spa
)
1078 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
1080 spa_config_enter(spa
, SCL_ALL
, spa
, RW_WRITER
);
1082 return (spa_last_synced_txg(spa
) + 1);
1086 * Used in combination with spa_vdev_config_enter() to allow the syncing
1087 * of multiple transactions without releasing the spa_namespace_lock.
1090 spa_vdev_config_exit(spa_t
*spa
, vdev_t
*vd
, uint64_t txg
, int error
, char *tag
)
1092 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
1094 int config_changed
= B_FALSE
;
1096 ASSERT(txg
> spa_last_synced_txg(spa
));
1098 spa
->spa_pending_vdev
= NULL
;
1101 * Reassess the DTLs.
1103 vdev_dtl_reassess(spa
->spa_root_vdev
, 0, 0, B_FALSE
);
1105 if (error
== 0 && !list_is_empty(&spa
->spa_config_dirty_list
)) {
1106 config_changed
= B_TRUE
;
1107 spa
->spa_config_generation
++;
1111 * Verify the metaslab classes.
1113 ASSERT(metaslab_class_validate(spa_normal_class(spa
)) == 0);
1114 ASSERT(metaslab_class_validate(spa_log_class(spa
)) == 0);
1116 spa_config_exit(spa
, SCL_ALL
, spa
);
1119 * Panic the system if the specified tag requires it. This
1120 * is useful for ensuring that configurations are updated
1123 if (zio_injection_enabled
)
1124 zio_handle_panic_injection(spa
, tag
, 0);
1127 * Note: this txg_wait_synced() is important because it ensures
1128 * that there won't be more than one config change per txg.
1129 * This allows us to use the txg as the generation number.
1132 txg_wait_synced(spa
->spa_dsl_pool
, txg
);
1135 ASSERT(!vd
->vdev_detached
|| vd
->vdev_dtl_sm
== NULL
);
1136 spa_config_enter(spa
, SCL_ALL
, spa
, RW_WRITER
);
1138 spa_config_exit(spa
, SCL_ALL
, spa
);
1142 * If the config changed, update the config cache.
1145 spa_config_sync(spa
, B_FALSE
, B_TRUE
);
1149 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1150 * locking of spa_vdev_enter(), we also want make sure the transactions have
1151 * synced to disk, and then update the global configuration cache with the new
1155 spa_vdev_exit(spa_t
*spa
, vdev_t
*vd
, uint64_t txg
, int error
)
1157 spa_vdev_config_exit(spa
, vd
, txg
, error
, FTAG
);
1158 mutex_exit(&spa_namespace_lock
);
1159 mutex_exit(&spa
->spa_vdev_top_lock
);
1165 * Lock the given spa_t for the purpose of changing vdev state.
1168 spa_vdev_state_enter(spa_t
*spa
, int oplocks
)
1170 int locks
= SCL_STATE_ALL
| oplocks
;
1173 * Root pools may need to read of the underlying devfs filesystem
1174 * when opening up a vdev. Unfortunately if we're holding the
1175 * SCL_ZIO lock it will result in a deadlock when we try to issue
1176 * the read from the root filesystem. Instead we "prefetch"
1177 * the associated vnodes that we need prior to opening the
1178 * underlying devices and cache them so that we can prevent
1179 * any I/O when we are doing the actual open.
1181 if (spa_is_root(spa
)) {
1182 int low
= locks
& ~(SCL_ZIO
- 1);
1183 int high
= locks
& ~low
;
1185 spa_config_enter(spa
, high
, spa
, RW_WRITER
);
1186 vdev_hold(spa
->spa_root_vdev
);
1187 spa_config_enter(spa
, low
, spa
, RW_WRITER
);
1189 spa_config_enter(spa
, locks
, spa
, RW_WRITER
);
1191 spa
->spa_vdev_locks
= locks
;
1195 spa_vdev_state_exit(spa_t
*spa
, vdev_t
*vd
, int error
)
1197 boolean_t config_changed
= B_FALSE
;
1199 if (vd
!= NULL
|| error
== 0)
1200 vdev_dtl_reassess(vd
? vd
->vdev_top
: spa
->spa_root_vdev
,
1204 vdev_state_dirty(vd
->vdev_top
);
1205 config_changed
= B_TRUE
;
1206 spa
->spa_config_generation
++;
1209 if (spa_is_root(spa
))
1210 vdev_rele(spa
->spa_root_vdev
);
1212 ASSERT3U(spa
->spa_vdev_locks
, >=, SCL_STATE_ALL
);
1213 spa_config_exit(spa
, spa
->spa_vdev_locks
, spa
);
1216 * If anything changed, wait for it to sync. This ensures that,
1217 * from the system administrator's perspective, zpool(1M) commands
1218 * are synchronous. This is important for things like zpool offline:
1219 * when the command completes, you expect no further I/O from ZFS.
1222 txg_wait_synced(spa
->spa_dsl_pool
, 0);
1225 * If the config changed, update the config cache.
1227 if (config_changed
) {
1228 mutex_enter(&spa_namespace_lock
);
1229 spa_config_sync(spa
, B_FALSE
, B_TRUE
);
1230 mutex_exit(&spa_namespace_lock
);
1237 * ==========================================================================
1238 * Miscellaneous functions
1239 * ==========================================================================
1243 spa_activate_mos_feature(spa_t
*spa
, const char *feature
, dmu_tx_t
*tx
)
1245 if (!nvlist_exists(spa
->spa_label_features
, feature
)) {
1246 fnvlist_add_boolean(spa
->spa_label_features
, feature
);
1248 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1249 * dirty the vdev config because lock SCL_CONFIG is not held.
1250 * Thankfully, in this case we don't need to dirty the config
1251 * because it will be written out anyway when we finish
1252 * creating the pool.
1254 if (tx
->tx_txg
!= TXG_INITIAL
)
1255 vdev_config_dirty(spa
->spa_root_vdev
);
1260 spa_deactivate_mos_feature(spa_t
*spa
, const char *feature
)
1262 if (nvlist_remove_all(spa
->spa_label_features
, feature
) == 0)
1263 vdev_config_dirty(spa
->spa_root_vdev
);
1270 spa_rename(const char *name
, const char *newname
)
1276 * Lookup the spa_t and grab the config lock for writing. We need to
1277 * actually open the pool so that we can sync out the necessary labels.
1278 * It's OK to call spa_open() with the namespace lock held because we
1279 * allow recursive calls for other reasons.
1281 mutex_enter(&spa_namespace_lock
);
1282 if ((err
= spa_open(name
, &spa
, FTAG
)) != 0) {
1283 mutex_exit(&spa_namespace_lock
);
1287 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_WRITER
);
1289 avl_remove(&spa_namespace_avl
, spa
);
1290 (void) strlcpy(spa
->spa_name
, newname
, sizeof (spa
->spa_name
));
1291 avl_add(&spa_namespace_avl
, spa
);
1294 * Sync all labels to disk with the new names by marking the root vdev
1295 * dirty and waiting for it to sync. It will pick up the new pool name
1298 vdev_config_dirty(spa
->spa_root_vdev
);
1300 spa_config_exit(spa
, SCL_ALL
, FTAG
);
1302 txg_wait_synced(spa
->spa_dsl_pool
, 0);
1305 * Sync the updated config cache.
1307 spa_config_sync(spa
, B_FALSE
, B_TRUE
);
1309 spa_close(spa
, FTAG
);
1311 mutex_exit(&spa_namespace_lock
);
1317 * Return the spa_t associated with given pool_guid, if it exists. If
1318 * device_guid is non-zero, determine whether the pool exists *and* contains
1319 * a device with the specified device_guid.
1322 spa_by_guid(uint64_t pool_guid
, uint64_t device_guid
)
1325 avl_tree_t
*t
= &spa_namespace_avl
;
1327 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
1329 for (spa
= avl_first(t
); spa
!= NULL
; spa
= AVL_NEXT(t
, spa
)) {
1330 if (spa
->spa_state
== POOL_STATE_UNINITIALIZED
)
1332 if (spa
->spa_root_vdev
== NULL
)
1334 if (spa_guid(spa
) == pool_guid
) {
1335 if (device_guid
== 0)
1338 if (vdev_lookup_by_guid(spa
->spa_root_vdev
,
1339 device_guid
) != NULL
)
1343 * Check any devices we may be in the process of adding.
1345 if (spa
->spa_pending_vdev
) {
1346 if (vdev_lookup_by_guid(spa
->spa_pending_vdev
,
1347 device_guid
) != NULL
)
1357 * Determine whether a pool with the given pool_guid exists.
1360 spa_guid_exists(uint64_t pool_guid
, uint64_t device_guid
)
1362 return (spa_by_guid(pool_guid
, device_guid
) != NULL
);
1366 spa_strdup(const char *s
)
1372 new = kmem_alloc(len
+ 1, KM_SLEEP
);
1380 spa_strfree(char *s
)
1382 kmem_free(s
, strlen(s
) + 1);
1386 spa_get_random(uint64_t range
)
1392 (void) random_get_pseudo_bytes((void *)&r
, sizeof (uint64_t));
1398 spa_generate_guid(spa_t
*spa
)
1400 uint64_t guid
= spa_get_random(-1ULL);
1403 while (guid
== 0 || spa_guid_exists(spa_guid(spa
), guid
))
1404 guid
= spa_get_random(-1ULL);
1406 while (guid
== 0 || spa_guid_exists(guid
, 0))
1407 guid
= spa_get_random(-1ULL);
1414 snprintf_blkptr(char *buf
, size_t buflen
, const blkptr_t
*bp
)
1417 char *checksum
= NULL
;
1418 char *compress
= NULL
;
1421 if (BP_GET_TYPE(bp
) & DMU_OT_NEWTYPE
) {
1422 dmu_object_byteswap_t bswap
=
1423 DMU_OT_BYTESWAP(BP_GET_TYPE(bp
));
1424 (void) snprintf(type
, sizeof (type
), "bswap %s %s",
1425 DMU_OT_IS_METADATA(BP_GET_TYPE(bp
)) ?
1426 "metadata" : "data",
1427 dmu_ot_byteswap
[bswap
].ob_name
);
1429 (void) strlcpy(type
, dmu_ot
[BP_GET_TYPE(bp
)].ot_name
,
1432 if (!BP_IS_EMBEDDED(bp
)) {
1434 zio_checksum_table
[BP_GET_CHECKSUM(bp
)].ci_name
;
1436 compress
= zio_compress_table
[BP_GET_COMPRESS(bp
)].ci_name
;
1439 SNPRINTF_BLKPTR(snprintf
, ' ', buf
, buflen
, bp
, type
, checksum
,
1444 spa_freeze(spa_t
*spa
)
1446 uint64_t freeze_txg
= 0;
1448 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_WRITER
);
1449 if (spa
->spa_freeze_txg
== UINT64_MAX
) {
1450 freeze_txg
= spa_last_synced_txg(spa
) + TXG_SIZE
;
1451 spa
->spa_freeze_txg
= freeze_txg
;
1453 spa_config_exit(spa
, SCL_ALL
, FTAG
);
1454 if (freeze_txg
!= 0)
1455 txg_wait_synced(spa_get_dsl(spa
), freeze_txg
);
1459 zfs_panic_recover(const char *fmt
, ...)
1464 vcmn_err(zfs_recover
? CE_WARN
: CE_PANIC
, fmt
, adx
);
1469 * This is a stripped-down version of strtoull, suitable only for converting
1470 * lowercase hexadecimal numbers that don't overflow.
1473 strtonum(const char *str
, char **nptr
)
1479 while ((c
= *str
) != '\0') {
1480 if (c
>= '0' && c
<= '9')
1482 else if (c
>= 'a' && c
<= 'f')
1483 digit
= 10 + c
- 'a';
1494 *nptr
= (char *)str
;
1500 * ==========================================================================
1501 * Accessor functions
1502 * ==========================================================================
1506 spa_shutting_down(spa_t
*spa
)
1508 return (spa
->spa_async_suspended
);
1512 spa_get_dsl(spa_t
*spa
)
1514 return (spa
->spa_dsl_pool
);
1518 spa_is_initializing(spa_t
*spa
)
1520 return (spa
->spa_is_initializing
);
1524 spa_get_rootblkptr(spa_t
*spa
)
1526 return (&spa
->spa_ubsync
.ub_rootbp
);
1530 spa_set_rootblkptr(spa_t
*spa
, const blkptr_t
*bp
)
1532 spa
->spa_uberblock
.ub_rootbp
= *bp
;
1536 spa_altroot(spa_t
*spa
, char *buf
, size_t buflen
)
1538 if (spa
->spa_root
== NULL
)
1541 (void) strncpy(buf
, spa
->spa_root
, buflen
);
1545 spa_sync_pass(spa_t
*spa
)
1547 return (spa
->spa_sync_pass
);
1551 spa_name(spa_t
*spa
)
1553 return (spa
->spa_name
);
1557 spa_guid(spa_t
*spa
)
1559 dsl_pool_t
*dp
= spa_get_dsl(spa
);
1563 * If we fail to parse the config during spa_load(), we can go through
1564 * the error path (which posts an ereport) and end up here with no root
1565 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1568 if (spa
->spa_root_vdev
== NULL
)
1569 return (spa
->spa_config_guid
);
1571 guid
= spa
->spa_last_synced_guid
!= 0 ?
1572 spa
->spa_last_synced_guid
: spa
->spa_root_vdev
->vdev_guid
;
1575 * Return the most recently synced out guid unless we're
1576 * in syncing context.
1578 if (dp
&& dsl_pool_sync_context(dp
))
1579 return (spa
->spa_root_vdev
->vdev_guid
);
1585 spa_load_guid(spa_t
*spa
)
1588 * This is a GUID that exists solely as a reference for the
1589 * purposes of the arc. It is generated at load time, and
1590 * is never written to persistent storage.
1592 return (spa
->spa_load_guid
);
1596 spa_last_synced_txg(spa_t
*spa
)
1598 return (spa
->spa_ubsync
.ub_txg
);
1602 spa_first_txg(spa_t
*spa
)
1604 return (spa
->spa_first_txg
);
1608 spa_syncing_txg(spa_t
*spa
)
1610 return (spa
->spa_syncing_txg
);
1614 spa_state(spa_t
*spa
)
1616 return (spa
->spa_state
);
1620 spa_load_state(spa_t
*spa
)
1622 return (spa
->spa_load_state
);
1626 spa_freeze_txg(spa_t
*spa
)
1628 return (spa
->spa_freeze_txg
);
1633 spa_get_asize(spa_t
*spa
, uint64_t lsize
)
1635 return (lsize
* spa_asize_inflation
);
1639 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%),
1642 * See the comment above spa_slop_shift for details.
1645 spa_get_slop_space(spa_t
*spa
) {
1646 uint64_t space
= spa_get_dspace(spa
);
1647 return (MAX(space
>> spa_slop_shift
, SPA_MINDEVSIZE
>> 1));
1651 spa_get_dspace(spa_t
*spa
)
1653 return (spa
->spa_dspace
);
1657 spa_update_dspace(spa_t
*spa
)
1659 spa
->spa_dspace
= metaslab_class_get_dspace(spa_normal_class(spa
)) +
1660 ddt_get_dedup_dspace(spa
);
1664 * Return the failure mode that has been set to this pool. The default
1665 * behavior will be to block all I/Os when a complete failure occurs.
1668 spa_get_failmode(spa_t
*spa
)
1670 return (spa
->spa_failmode
);
1674 spa_suspended(spa_t
*spa
)
1676 return (spa
->spa_suspended
);
1680 spa_version(spa_t
*spa
)
1682 return (spa
->spa_ubsync
.ub_version
);
1686 spa_deflate(spa_t
*spa
)
1688 return (spa
->spa_deflate
);
1692 spa_normal_class(spa_t
*spa
)
1694 return (spa
->spa_normal_class
);
1698 spa_log_class(spa_t
*spa
)
1700 return (spa
->spa_log_class
);
1704 spa_evicting_os_register(spa_t
*spa
, objset_t
*os
)
1706 mutex_enter(&spa
->spa_evicting_os_lock
);
1707 list_insert_head(&spa
->spa_evicting_os_list
, os
);
1708 mutex_exit(&spa
->spa_evicting_os_lock
);
1712 spa_evicting_os_deregister(spa_t
*spa
, objset_t
*os
)
1714 mutex_enter(&spa
->spa_evicting_os_lock
);
1715 list_remove(&spa
->spa_evicting_os_list
, os
);
1716 cv_broadcast(&spa
->spa_evicting_os_cv
);
1717 mutex_exit(&spa
->spa_evicting_os_lock
);
1721 spa_evicting_os_wait(spa_t
*spa
)
1723 mutex_enter(&spa
->spa_evicting_os_lock
);
1724 while (!list_is_empty(&spa
->spa_evicting_os_list
))
1725 cv_wait(&spa
->spa_evicting_os_cv
, &spa
->spa_evicting_os_lock
);
1726 mutex_exit(&spa
->spa_evicting_os_lock
);
1728 dmu_buf_user_evict_wait();
1732 spa_max_replication(spa_t
*spa
)
1735 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1736 * handle BPs with more than one DVA allocated. Set our max
1737 * replication level accordingly.
1739 if (spa_version(spa
) < SPA_VERSION_DITTO_BLOCKS
)
1741 return (MIN(SPA_DVAS_PER_BP
, spa_max_replication_override
));
1745 spa_prev_software_version(spa_t
*spa
)
1747 return (spa
->spa_prev_software_version
);
1751 spa_deadman_synctime(spa_t
*spa
)
1753 return (spa
->spa_deadman_synctime
);
1757 dva_get_dsize_sync(spa_t
*spa
, const dva_t
*dva
)
1759 uint64_t asize
= DVA_GET_ASIZE(dva
);
1760 uint64_t dsize
= asize
;
1762 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_READER
) != 0);
1764 if (asize
!= 0 && spa
->spa_deflate
) {
1765 vdev_t
*vd
= vdev_lookup_top(spa
, DVA_GET_VDEV(dva
));
1766 dsize
= (asize
>> SPA_MINBLOCKSHIFT
) * vd
->vdev_deflate_ratio
;
1773 bp_get_dsize_sync(spa_t
*spa
, const blkptr_t
*bp
)
1777 for (int d
= 0; d
< BP_GET_NDVAS(bp
); d
++)
1778 dsize
+= dva_get_dsize_sync(spa
, &bp
->blk_dva
[d
]);
1784 bp_get_dsize(spa_t
*spa
, const blkptr_t
*bp
)
1788 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
1790 for (int d
= 0; d
< BP_GET_NDVAS(bp
); d
++)
1791 dsize
+= dva_get_dsize_sync(spa
, &bp
->blk_dva
[d
]);
1793 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
1799 * ==========================================================================
1800 * Initialization and Termination
1801 * ==========================================================================
1805 spa_name_compare(const void *a1
, const void *a2
)
1807 const spa_t
*s1
= a1
;
1808 const spa_t
*s2
= a2
;
1811 s
= strcmp(s1
->spa_name
, s2
->spa_name
);
1822 return (spa_active_count
);
1834 mutex_init(&spa_namespace_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1835 mutex_init(&spa_spare_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1836 mutex_init(&spa_l2cache_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1837 cv_init(&spa_namespace_cv
, NULL
, CV_DEFAULT
, NULL
);
1839 avl_create(&spa_namespace_avl
, spa_name_compare
, sizeof (spa_t
),
1840 offsetof(spa_t
, spa_avl
));
1842 avl_create(&spa_spare_avl
, spa_spare_compare
, sizeof (spa_aux_t
),
1843 offsetof(spa_aux_t
, aux_avl
));
1845 avl_create(&spa_l2cache_avl
, spa_l2cache_compare
, sizeof (spa_aux_t
),
1846 offsetof(spa_aux_t
, aux_avl
));
1848 spa_mode_global
= mode
;
1853 if (spa_mode_global
!= FREAD
&& dprintf_find_string("watch")) {
1854 arc_procfd
= open("/proc/self/ctl", O_WRONLY
);
1855 if (arc_procfd
== -1) {
1856 perror("could not enable watchpoints: "
1857 "opening /proc/self/ctl failed: ");
1870 vdev_cache_stat_init();
1873 zpool_feature_init();
1885 vdev_cache_stat_fini();
1893 avl_destroy(&spa_namespace_avl
);
1894 avl_destroy(&spa_spare_avl
);
1895 avl_destroy(&spa_l2cache_avl
);
1897 cv_destroy(&spa_namespace_cv
);
1898 mutex_destroy(&spa_namespace_lock
);
1899 mutex_destroy(&spa_spare_lock
);
1900 mutex_destroy(&spa_l2cache_lock
);
1904 * Return whether this pool has slogs. No locking needed.
1905 * It's not a problem if the wrong answer is returned as it's only for
1906 * performance and not correctness
1909 spa_has_slogs(spa_t
*spa
)
1911 return (spa
->spa_log_class
->mc_rotor
!= NULL
);
1915 spa_get_log_state(spa_t
*spa
)
1917 return (spa
->spa_log_state
);
1921 spa_set_log_state(spa_t
*spa
, spa_log_state_t state
)
1923 spa
->spa_log_state
= state
;
1927 spa_is_root(spa_t
*spa
)
1929 return (spa
->spa_is_root
);
1933 spa_writeable(spa_t
*spa
)
1935 return (!!(spa
->spa_mode
& FWRITE
));
1939 * Returns true if there is a pending sync task in any of the current
1940 * syncing txg, the current quiescing txg, or the current open txg.
1943 spa_has_pending_synctask(spa_t
*spa
)
1945 return (!txg_all_lists_empty(&spa
->spa_dsl_pool
->dp_sync_tasks
));
1949 spa_mode(spa_t
*spa
)
1951 return (spa
->spa_mode
);
1955 spa_bootfs(spa_t
*spa
)
1957 return (spa
->spa_bootfs
);
1961 spa_delegation(spa_t
*spa
)
1963 return (spa
->spa_delegation
);
1967 spa_meta_objset(spa_t
*spa
)
1969 return (spa
->spa_meta_objset
);
1973 spa_dedup_checksum(spa_t
*spa
)
1975 return (spa
->spa_dedup_checksum
);
1979 * Reset pool scan stat per scan pass (or reboot).
1982 spa_scan_stat_init(spa_t
*spa
)
1984 /* data not stored on disk */
1985 spa
->spa_scan_pass_start
= gethrestime_sec();
1986 spa
->spa_scan_pass_exam
= 0;
1987 vdev_scan_stat_init(spa
->spa_root_vdev
);
1991 * Get scan stats for zpool status reports
1994 spa_scan_get_stats(spa_t
*spa
, pool_scan_stat_t
*ps
)
1996 dsl_scan_t
*scn
= spa
->spa_dsl_pool
? spa
->spa_dsl_pool
->dp_scan
: NULL
;
1998 if (scn
== NULL
|| scn
->scn_phys
.scn_func
== POOL_SCAN_NONE
)
1999 return (SET_ERROR(ENOENT
));
2000 bzero(ps
, sizeof (pool_scan_stat_t
));
2002 /* data stored on disk */
2003 ps
->pss_func
= scn
->scn_phys
.scn_func
;
2004 ps
->pss_start_time
= scn
->scn_phys
.scn_start_time
;
2005 ps
->pss_end_time
= scn
->scn_phys
.scn_end_time
;
2006 ps
->pss_to_examine
= scn
->scn_phys
.scn_to_examine
;
2007 ps
->pss_examined
= scn
->scn_phys
.scn_examined
;
2008 ps
->pss_to_process
= scn
->scn_phys
.scn_to_process
;
2009 ps
->pss_processed
= scn
->scn_phys
.scn_processed
;
2010 ps
->pss_errors
= scn
->scn_phys
.scn_errors
;
2011 ps
->pss_state
= scn
->scn_phys
.scn_state
;
2013 /* data not stored on disk */
2014 ps
->pss_pass_start
= spa
->spa_scan_pass_start
;
2015 ps
->pss_pass_exam
= spa
->spa_scan_pass_exam
;
2021 spa_debug_enabled(spa_t
*spa
)
2023 return (spa
->spa_debug
);
2027 spa_maxblocksize(spa_t
*spa
)
2029 if (spa_feature_is_enabled(spa
, SPA_FEATURE_LARGE_BLOCKS
))
2030 return (SPA_MAXBLOCKSIZE
);
2032 return (SPA_OLD_MAXBLOCKSIZE
);