4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
30 * The objective of this program is to provide a DMU/ZAP/SPA stress test
31 * that runs entirely in userland, is easy to use, and easy to extend.
33 * The overall design of the ztest program is as follows:
35 * (1) For each major functional area (e.g. adding vdevs to a pool,
36 * creating and destroying datasets, reading and writing objects, etc)
37 * we have a simple routine to test that functionality. These
38 * individual routines do not have to do anything "stressful".
40 * (2) We turn these simple functionality tests into a stress test by
41 * running them all in parallel, with as many threads as desired,
42 * and spread across as many datasets, objects, and vdevs as desired.
44 * (3) While all this is happening, we inject faults into the pool to
45 * verify that self-healing data really works.
47 * (4) Every time we open a dataset, we change its checksum and compression
48 * functions. Thus even individual objects vary from block to block
49 * in which checksum they use and whether they're compressed.
51 * (5) To verify that we never lose on-disk consistency after a crash,
52 * we run the entire test in a child of the main process.
53 * At random times, the child self-immolates with a SIGKILL.
54 * This is the software equivalent of pulling the power cord.
55 * The parent then runs the test again, using the existing
56 * storage pool, as many times as desired. If backwards compatibility
57 * testing is enabled ztest will sometimes run the "older" version
58 * of ztest after a SIGKILL.
60 * (6) To verify that we don't have future leaks or temporal incursions,
61 * many of the functional tests record the transaction group number
62 * as part of their data. When reading old data, they verify that
63 * the transaction group number is less than the current, open txg.
64 * If you add a new test, please do this if applicable.
66 * When run with no arguments, ztest runs for about five minutes and
67 * produces no output if successful. To get a little bit of information,
68 * specify -V. To get more information, specify -VV, and so on.
70 * To turn this into an overnight stress test, use -T to specify run time.
72 * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
73 * to increase the pool capacity, fanout, and overall stress level.
75 * Use the -k option to set the desired frequency of kills.
77 * When ztest invokes itself it passes all relevant information through a
78 * temporary file which is mmap-ed in the child process. This allows shared
79 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
80 * stored at offset 0 of this file and contains information on the size and
81 * number of shared structures in the file. The information stored in this file
82 * must remain backwards compatible with older versions of ztest so that
83 * ztest can invoke them during backwards compatibility testing (-B).
86 #include <sys/zfs_context.h>
92 #include <sys/dmu_objset.h>
98 #include <sys/resource.h>
101 #include <sys/zil_impl.h>
102 #include <sys/vdev_impl.h>
103 #include <sys/vdev_file.h>
104 #include <sys/spa_impl.h>
105 #include <sys/metaslab_impl.h>
106 #include <sys/dsl_prop.h>
107 #include <sys/dsl_dataset.h>
108 #include <sys/dsl_destroy.h>
109 #include <sys/dsl_scan.h>
110 #include <sys/zio_checksum.h>
111 #include <sys/refcount.h>
112 #include <sys/zfeature.h>
113 #include <sys/dsl_userhold.h>
115 #include <stdio_ext.h>
123 #include <sys/fs/zfs.h>
124 #include <libnvpair.h>
126 static int ztest_fd_data
= -1;
127 static int ztest_fd_rand
= -1;
129 typedef struct ztest_shared_hdr
{
130 uint64_t zh_hdr_size
;
131 uint64_t zh_opts_size
;
133 uint64_t zh_stats_size
;
134 uint64_t zh_stats_count
;
136 uint64_t zh_ds_count
;
137 } ztest_shared_hdr_t
;
139 static ztest_shared_hdr_t
*ztest_shared_hdr
;
141 typedef struct ztest_shared_opts
{
142 char zo_pool
[MAXNAMELEN
];
143 char zo_dir
[MAXNAMELEN
];
144 char zo_alt_ztest
[MAXNAMELEN
];
145 char zo_alt_libpath
[MAXNAMELEN
];
147 uint64_t zo_vdevtime
;
155 uint64_t zo_passtime
;
156 uint64_t zo_killrate
;
160 uint64_t zo_maxloops
;
161 uint64_t zo_metaslab_gang_bang
;
162 } ztest_shared_opts_t
;
164 static const ztest_shared_opts_t ztest_opts_defaults
= {
165 .zo_pool
= { 'z', 't', 'e', 's', 't', '\0' },
166 .zo_dir
= { '/', 't', 'm', 'p', '\0' },
167 .zo_alt_ztest
= { '\0' },
168 .zo_alt_libpath
= { '\0' },
170 .zo_ashift
= SPA_MINBLOCKSHIFT
,
173 .zo_raidz_parity
= 1,
174 .zo_vdev_size
= SPA_MINDEVSIZE
* 2,
177 .zo_passtime
= 60, /* 60 seconds */
178 .zo_killrate
= 70, /* 70% kill rate */
181 .zo_time
= 300, /* 5 minutes */
182 .zo_maxloops
= 50, /* max loops during spa_freeze() */
183 .zo_metaslab_gang_bang
= 32 << 10
186 extern uint64_t metaslab_gang_bang
;
187 extern uint64_t metaslab_df_alloc_threshold
;
188 extern uint64_t zfs_deadman_synctime_ms
;
189 extern int metaslab_preload_limit
;
191 static ztest_shared_opts_t
*ztest_shared_opts
;
192 static ztest_shared_opts_t ztest_opts
;
194 typedef struct ztest_shared_ds
{
198 static ztest_shared_ds_t
*ztest_shared_ds
;
199 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
201 #define BT_MAGIC 0x123456789abcdefULL
202 #define MAXFAULTS() \
203 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
207 ZTEST_IO_WRITE_PATTERN
,
208 ZTEST_IO_WRITE_ZEROES
,
215 typedef struct ztest_block_tag
{
225 typedef struct bufwad
{
232 * XXX -- fix zfs range locks to be generic so we can use them here.
254 #define ZTEST_RANGE_LOCKS 64
255 #define ZTEST_OBJECT_LOCKS 64
258 * Object descriptor. Used as a template for object lookup/create/remove.
260 typedef struct ztest_od
{
263 dmu_object_type_t od_type
;
264 dmu_object_type_t od_crtype
;
265 uint64_t od_blocksize
;
266 uint64_t od_crblocksize
;
269 char od_name
[MAXNAMELEN
];
275 typedef struct ztest_ds
{
276 ztest_shared_ds_t
*zd_shared
;
278 rwlock_t zd_zilog_lock
;
280 ztest_od_t
*zd_od
; /* debugging aid */
281 char zd_name
[MAXNAMELEN
];
282 mutex_t zd_dirobj_lock
;
283 rll_t zd_object_lock
[ZTEST_OBJECT_LOCKS
];
284 rll_t zd_range_lock
[ZTEST_RANGE_LOCKS
];
288 * Per-iteration state.
290 typedef void ztest_func_t(ztest_ds_t
*zd
, uint64_t id
);
292 typedef struct ztest_info
{
293 ztest_func_t
*zi_func
; /* test function */
294 uint64_t zi_iters
; /* iterations per execution */
295 uint64_t *zi_interval
; /* execute every <interval> seconds */
298 typedef struct ztest_shared_callstate
{
299 uint64_t zc_count
; /* per-pass count */
300 uint64_t zc_time
; /* per-pass time */
301 uint64_t zc_next
; /* next time to call this function */
302 } ztest_shared_callstate_t
;
304 static ztest_shared_callstate_t
*ztest_shared_callstate
;
305 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
308 * Note: these aren't static because we want dladdr() to work.
310 ztest_func_t ztest_dmu_read_write
;
311 ztest_func_t ztest_dmu_write_parallel
;
312 ztest_func_t ztest_dmu_object_alloc_free
;
313 ztest_func_t ztest_dmu_commit_callbacks
;
314 ztest_func_t ztest_zap
;
315 ztest_func_t ztest_zap_parallel
;
316 ztest_func_t ztest_zil_commit
;
317 ztest_func_t ztest_zil_remount
;
318 ztest_func_t ztest_dmu_read_write_zcopy
;
319 ztest_func_t ztest_dmu_objset_create_destroy
;
320 ztest_func_t ztest_dmu_prealloc
;
321 ztest_func_t ztest_fzap
;
322 ztest_func_t ztest_dmu_snapshot_create_destroy
;
323 ztest_func_t ztest_dsl_prop_get_set
;
324 ztest_func_t ztest_spa_prop_get_set
;
325 ztest_func_t ztest_spa_create_destroy
;
326 ztest_func_t ztest_fault_inject
;
327 ztest_func_t ztest_ddt_repair
;
328 ztest_func_t ztest_dmu_snapshot_hold
;
329 ztest_func_t ztest_spa_rename
;
330 ztest_func_t ztest_scrub
;
331 ztest_func_t ztest_dsl_dataset_promote_busy
;
332 ztest_func_t ztest_vdev_attach_detach
;
333 ztest_func_t ztest_vdev_LUN_growth
;
334 ztest_func_t ztest_vdev_add_remove
;
335 ztest_func_t ztest_vdev_aux_add_remove
;
336 ztest_func_t ztest_split_pool
;
337 ztest_func_t ztest_reguid
;
338 ztest_func_t ztest_spa_upgrade
;
340 uint64_t zopt_always
= 0ULL * NANOSEC
; /* all the time */
341 uint64_t zopt_incessant
= 1ULL * NANOSEC
/ 10; /* every 1/10 second */
342 uint64_t zopt_often
= 1ULL * NANOSEC
; /* every second */
343 uint64_t zopt_sometimes
= 10ULL * NANOSEC
; /* every 10 seconds */
344 uint64_t zopt_rarely
= 60ULL * NANOSEC
; /* every 60 seconds */
346 ztest_info_t ztest_info
[] = {
347 { ztest_dmu_read_write
, 1, &zopt_always
},
348 { ztest_dmu_write_parallel
, 10, &zopt_always
},
349 { ztest_dmu_object_alloc_free
, 1, &zopt_always
},
350 { ztest_dmu_commit_callbacks
, 1, &zopt_always
},
351 { ztest_zap
, 30, &zopt_always
},
352 { ztest_zap_parallel
, 100, &zopt_always
},
353 { ztest_split_pool
, 1, &zopt_always
},
354 { ztest_zil_commit
, 1, &zopt_incessant
},
355 { ztest_zil_remount
, 1, &zopt_sometimes
},
356 { ztest_dmu_read_write_zcopy
, 1, &zopt_often
},
357 { ztest_dmu_objset_create_destroy
, 1, &zopt_often
},
358 { ztest_dsl_prop_get_set
, 1, &zopt_often
},
359 { ztest_spa_prop_get_set
, 1, &zopt_sometimes
},
361 { ztest_dmu_prealloc
, 1, &zopt_sometimes
},
363 { ztest_fzap
, 1, &zopt_sometimes
},
364 { ztest_dmu_snapshot_create_destroy
, 1, &zopt_sometimes
},
365 { ztest_spa_create_destroy
, 1, &zopt_sometimes
},
366 { ztest_fault_inject
, 1, &zopt_sometimes
},
367 { ztest_ddt_repair
, 1, &zopt_sometimes
},
368 { ztest_dmu_snapshot_hold
, 1, &zopt_sometimes
},
369 { ztest_reguid
, 1, &zopt_rarely
},
370 { ztest_spa_rename
, 1, &zopt_rarely
},
371 { ztest_scrub
, 1, &zopt_rarely
},
372 { ztest_spa_upgrade
, 1, &zopt_rarely
},
373 { ztest_dsl_dataset_promote_busy
, 1, &zopt_rarely
},
374 { ztest_vdev_attach_detach
, 1, &zopt_sometimes
},
375 { ztest_vdev_LUN_growth
, 1, &zopt_rarely
},
376 { ztest_vdev_add_remove
, 1,
377 &ztest_opts
.zo_vdevtime
},
378 { ztest_vdev_aux_add_remove
, 1,
379 &ztest_opts
.zo_vdevtime
},
382 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
385 * The following struct is used to hold a list of uncalled commit callbacks.
386 * The callbacks are ordered by txg number.
388 typedef struct ztest_cb_list
{
389 mutex_t zcl_callbacks_lock
;
390 list_t zcl_callbacks
;
394 * Stuff we need to share writably between parent and child.
396 typedef struct ztest_shared
{
397 boolean_t zs_do_init
;
398 hrtime_t zs_proc_start
;
399 hrtime_t zs_proc_stop
;
400 hrtime_t zs_thread_start
;
401 hrtime_t zs_thread_stop
;
402 hrtime_t zs_thread_kill
;
403 uint64_t zs_enospc_count
;
404 uint64_t zs_vdev_next_leaf
;
405 uint64_t zs_vdev_aux
;
410 uint64_t zs_metaslab_sz
;
411 uint64_t zs_metaslab_df_alloc_threshold
;
415 #define ID_PARALLEL -1ULL
417 static char ztest_dev_template
[] = "%s/%s.%llua";
418 static char ztest_aux_template
[] = "%s/%s.%s.%llu";
419 ztest_shared_t
*ztest_shared
;
421 static spa_t
*ztest_spa
= NULL
;
422 static ztest_ds_t
*ztest_ds
;
424 static mutex_t ztest_vdev_lock
;
427 * The ztest_name_lock protects the pool and dataset namespace used by
428 * the individual tests. To modify the namespace, consumers must grab
429 * this lock as writer. Grabbing the lock as reader will ensure that the
430 * namespace does not change while the lock is held.
432 static rwlock_t ztest_name_lock
;
434 static boolean_t ztest_dump_core
= B_TRUE
;
435 static boolean_t ztest_exiting
;
437 /* Global commit callback list */
438 static ztest_cb_list_t zcl
;
441 ZTEST_META_DNODE
= 0,
446 static void usage(boolean_t
) __NORETURN
;
449 * These libumem hooks provide a reasonable set of defaults for the allocator's
450 * debugging facilities.
455 return ("default,verbose"); /* $UMEM_DEBUG setting */
459 _umem_logging_init(void)
461 return ("fail,contents"); /* $UMEM_LOGGING setting */
464 #define FATAL_MSG_SZ 1024
469 fatal(int do_perror
, char *message
, ...)
472 int save_errno
= errno
;
473 char buf
[FATAL_MSG_SZ
];
475 (void) fflush(stdout
);
477 va_start(args
, message
);
478 (void) sprintf(buf
, "ztest: ");
480 (void) vsprintf(buf
+ strlen(buf
), message
, args
);
483 (void) snprintf(buf
+ strlen(buf
), FATAL_MSG_SZ
- strlen(buf
),
484 ": %s", strerror(save_errno
));
486 (void) fprintf(stderr
, "%s\n", buf
);
487 fatal_msg
= buf
; /* to ease debugging */
494 str2shift(const char *buf
)
496 const char *ends
= "BKMGTPEZ";
501 for (i
= 0; i
< strlen(ends
); i
++) {
502 if (toupper(buf
[0]) == ends
[i
])
505 if (i
== strlen(ends
)) {
506 (void) fprintf(stderr
, "ztest: invalid bytes suffix: %s\n",
510 if (buf
[1] == '\0' || (toupper(buf
[1]) == 'B' && buf
[2] == '\0')) {
513 (void) fprintf(stderr
, "ztest: invalid bytes suffix: %s\n", buf
);
519 nicenumtoull(const char *buf
)
524 val
= strtoull(buf
, &end
, 0);
526 (void) fprintf(stderr
, "ztest: bad numeric value: %s\n", buf
);
528 } else if (end
[0] == '.') {
529 double fval
= strtod(buf
, &end
);
530 fval
*= pow(2, str2shift(end
));
531 if (fval
> UINT64_MAX
) {
532 (void) fprintf(stderr
, "ztest: value too large: %s\n",
536 val
= (uint64_t)fval
;
538 int shift
= str2shift(end
);
539 if (shift
>= 64 || (val
<< shift
) >> shift
!= val
) {
540 (void) fprintf(stderr
, "ztest: value too large: %s\n",
550 usage(boolean_t requested
)
552 const ztest_shared_opts_t
*zo
= &ztest_opts_defaults
;
554 char nice_vdev_size
[10];
555 char nice_gang_bang
[10];
556 FILE *fp
= requested
? stdout
: stderr
;
558 nicenum(zo
->zo_vdev_size
, nice_vdev_size
);
559 nicenum(zo
->zo_metaslab_gang_bang
, nice_gang_bang
);
561 (void) fprintf(fp
, "Usage: %s\n"
562 "\t[-v vdevs (default: %llu)]\n"
563 "\t[-s size_of_each_vdev (default: %s)]\n"
564 "\t[-a alignment_shift (default: %d)] use 0 for random\n"
565 "\t[-m mirror_copies (default: %d)]\n"
566 "\t[-r raidz_disks (default: %d)]\n"
567 "\t[-R raidz_parity (default: %d)]\n"
568 "\t[-d datasets (default: %d)]\n"
569 "\t[-t threads (default: %d)]\n"
570 "\t[-g gang_block_threshold (default: %s)]\n"
571 "\t[-i init_count (default: %d)] initialize pool i times\n"
572 "\t[-k kill_percentage (default: %llu%%)]\n"
573 "\t[-p pool_name (default: %s)]\n"
574 "\t[-f dir (default: %s)] file directory for vdev files\n"
575 "\t[-V] verbose (use multiple times for ever more blather)\n"
576 "\t[-E] use existing pool instead of creating new one\n"
577 "\t[-T time (default: %llu sec)] total run time\n"
578 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
579 "\t[-P passtime (default: %llu sec)] time per pass\n"
580 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
581 "\t[-h] (print help)\n"
584 (u_longlong_t
)zo
->zo_vdevs
, /* -v */
585 nice_vdev_size
, /* -s */
586 zo
->zo_ashift
, /* -a */
587 zo
->zo_mirrors
, /* -m */
588 zo
->zo_raidz
, /* -r */
589 zo
->zo_raidz_parity
, /* -R */
590 zo
->zo_datasets
, /* -d */
591 zo
->zo_threads
, /* -t */
592 nice_gang_bang
, /* -g */
593 zo
->zo_init
, /* -i */
594 (u_longlong_t
)zo
->zo_killrate
, /* -k */
595 zo
->zo_pool
, /* -p */
597 (u_longlong_t
)zo
->zo_time
, /* -T */
598 (u_longlong_t
)zo
->zo_maxloops
, /* -F */
599 (u_longlong_t
)zo
->zo_passtime
);
600 exit(requested
? 0 : 1);
604 process_options(int argc
, char **argv
)
607 ztest_shared_opts_t
*zo
= &ztest_opts
;
611 char altdir
[MAXNAMELEN
] = { 0 };
613 bcopy(&ztest_opts_defaults
, zo
, sizeof (*zo
));
615 while ((opt
= getopt(argc
, argv
,
616 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF
) {
633 value
= nicenumtoull(optarg
);
637 zo
->zo_vdevs
= value
;
640 zo
->zo_vdev_size
= MAX(SPA_MINDEVSIZE
, value
);
643 zo
->zo_ashift
= value
;
646 zo
->zo_mirrors
= value
;
649 zo
->zo_raidz
= MAX(1, value
);
652 zo
->zo_raidz_parity
= MIN(MAX(value
, 1), 3);
655 zo
->zo_datasets
= MAX(1, value
);
658 zo
->zo_threads
= MAX(1, value
);
661 zo
->zo_metaslab_gang_bang
= MAX(SPA_MINBLOCKSIZE
<< 1,
668 zo
->zo_killrate
= value
;
671 (void) strlcpy(zo
->zo_pool
, optarg
,
672 sizeof (zo
->zo_pool
));
675 path
= realpath(optarg
, NULL
);
677 (void) fprintf(stderr
, "error: %s: %s\n",
678 optarg
, strerror(errno
));
681 (void) strlcpy(zo
->zo_dir
, path
,
682 sizeof (zo
->zo_dir
));
695 zo
->zo_passtime
= MAX(1, value
);
698 zo
->zo_maxloops
= MAX(1, value
);
701 (void) strlcpy(altdir
, optarg
, sizeof (altdir
));
713 zo
->zo_raidz_parity
= MIN(zo
->zo_raidz_parity
, zo
->zo_raidz
- 1);
716 (zo
->zo_vdevs
> 0 ? zo
->zo_time
* NANOSEC
/ zo
->zo_vdevs
:
719 if (strlen(altdir
) > 0) {
727 cmd
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
728 realaltdir
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
730 VERIFY(NULL
!= realpath(getexecname(), cmd
));
731 if (0 != access(altdir
, F_OK
)) {
732 ztest_dump_core
= B_FALSE
;
733 fatal(B_TRUE
, "invalid alternate ztest path: %s",
736 VERIFY(NULL
!= realpath(altdir
, realaltdir
));
739 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
740 * We want to extract <isa> to determine if we should use
741 * 32 or 64 bit binaries.
743 bin
= strstr(cmd
, "/usr/bin/");
744 ztest
= strstr(bin
, "/ztest");
746 isalen
= ztest
- isa
;
747 (void) snprintf(zo
->zo_alt_ztest
, sizeof (zo
->zo_alt_ztest
),
748 "%s/usr/bin/%.*s/ztest", realaltdir
, isalen
, isa
);
749 (void) snprintf(zo
->zo_alt_libpath
, sizeof (zo
->zo_alt_libpath
),
750 "%s/usr/lib/%.*s", realaltdir
, isalen
, isa
);
752 if (0 != access(zo
->zo_alt_ztest
, X_OK
)) {
753 ztest_dump_core
= B_FALSE
;
754 fatal(B_TRUE
, "invalid alternate ztest: %s",
756 } else if (0 != access(zo
->zo_alt_libpath
, X_OK
)) {
757 ztest_dump_core
= B_FALSE
;
758 fatal(B_TRUE
, "invalid alternate lib directory %s",
762 umem_free(cmd
, MAXPATHLEN
);
763 umem_free(realaltdir
, MAXPATHLEN
);
768 ztest_kill(ztest_shared_t
*zs
)
770 zs
->zs_alloc
= metaslab_class_get_alloc(spa_normal_class(ztest_spa
));
771 zs
->zs_space
= metaslab_class_get_space(spa_normal_class(ztest_spa
));
774 * Before we kill off ztest, make sure that the config is updated.
775 * See comment above spa_config_sync().
777 mutex_enter(&spa_namespace_lock
);
778 spa_config_sync(ztest_spa
, B_FALSE
, B_FALSE
);
779 mutex_exit(&spa_namespace_lock
);
781 zfs_dbgmsg_print(FTAG
);
782 (void) kill(getpid(), SIGKILL
);
786 ztest_random(uint64_t range
)
790 ASSERT3S(ztest_fd_rand
, >=, 0);
795 if (read(ztest_fd_rand
, &r
, sizeof (r
)) != sizeof (r
))
796 fatal(1, "short read from /dev/urandom");
803 ztest_record_enospc(const char *s
)
805 ztest_shared
->zs_enospc_count
++;
809 ztest_get_ashift(void)
811 if (ztest_opts
.zo_ashift
== 0)
812 return (SPA_MINBLOCKSHIFT
+ ztest_random(5));
813 return (ztest_opts
.zo_ashift
);
817 make_vdev_file(char *path
, char *aux
, char *pool
, size_t size
, uint64_t ashift
)
819 char pathbuf
[MAXPATHLEN
];
824 ashift
= ztest_get_ashift();
830 vdev
= ztest_shared
->zs_vdev_aux
;
831 (void) snprintf(path
, sizeof (pathbuf
),
832 ztest_aux_template
, ztest_opts
.zo_dir
,
833 pool
== NULL
? ztest_opts
.zo_pool
: pool
,
836 vdev
= ztest_shared
->zs_vdev_next_leaf
++;
837 (void) snprintf(path
, sizeof (pathbuf
),
838 ztest_dev_template
, ztest_opts
.zo_dir
,
839 pool
== NULL
? ztest_opts
.zo_pool
: pool
, vdev
);
844 int fd
= open(path
, O_RDWR
| O_CREAT
| O_TRUNC
, 0666);
846 fatal(1, "can't open %s", path
);
847 if (ftruncate(fd
, size
) != 0)
848 fatal(1, "can't ftruncate %s", path
);
852 VERIFY(nvlist_alloc(&file
, NV_UNIQUE_NAME
, 0) == 0);
853 VERIFY(nvlist_add_string(file
, ZPOOL_CONFIG_TYPE
, VDEV_TYPE_FILE
) == 0);
854 VERIFY(nvlist_add_string(file
, ZPOOL_CONFIG_PATH
, path
) == 0);
855 VERIFY(nvlist_add_uint64(file
, ZPOOL_CONFIG_ASHIFT
, ashift
) == 0);
861 make_vdev_raidz(char *path
, char *aux
, char *pool
, size_t size
,
862 uint64_t ashift
, int r
)
864 nvlist_t
*raidz
, **child
;
868 return (make_vdev_file(path
, aux
, pool
, size
, ashift
));
869 child
= umem_alloc(r
* sizeof (nvlist_t
*), UMEM_NOFAIL
);
871 for (c
= 0; c
< r
; c
++)
872 child
[c
] = make_vdev_file(path
, aux
, pool
, size
, ashift
);
874 VERIFY(nvlist_alloc(&raidz
, NV_UNIQUE_NAME
, 0) == 0);
875 VERIFY(nvlist_add_string(raidz
, ZPOOL_CONFIG_TYPE
,
876 VDEV_TYPE_RAIDZ
) == 0);
877 VERIFY(nvlist_add_uint64(raidz
, ZPOOL_CONFIG_NPARITY
,
878 ztest_opts
.zo_raidz_parity
) == 0);
879 VERIFY(nvlist_add_nvlist_array(raidz
, ZPOOL_CONFIG_CHILDREN
,
882 for (c
= 0; c
< r
; c
++)
883 nvlist_free(child
[c
]);
885 umem_free(child
, r
* sizeof (nvlist_t
*));
891 make_vdev_mirror(char *path
, char *aux
, char *pool
, size_t size
,
892 uint64_t ashift
, int r
, int m
)
894 nvlist_t
*mirror
, **child
;
898 return (make_vdev_raidz(path
, aux
, pool
, size
, ashift
, r
));
900 child
= umem_alloc(m
* sizeof (nvlist_t
*), UMEM_NOFAIL
);
902 for (c
= 0; c
< m
; c
++)
903 child
[c
] = make_vdev_raidz(path
, aux
, pool
, size
, ashift
, r
);
905 VERIFY(nvlist_alloc(&mirror
, NV_UNIQUE_NAME
, 0) == 0);
906 VERIFY(nvlist_add_string(mirror
, ZPOOL_CONFIG_TYPE
,
907 VDEV_TYPE_MIRROR
) == 0);
908 VERIFY(nvlist_add_nvlist_array(mirror
, ZPOOL_CONFIG_CHILDREN
,
911 for (c
= 0; c
< m
; c
++)
912 nvlist_free(child
[c
]);
914 umem_free(child
, m
* sizeof (nvlist_t
*));
920 make_vdev_root(char *path
, char *aux
, char *pool
, size_t size
, uint64_t ashift
,
921 int log
, int r
, int m
, int t
)
923 nvlist_t
*root
, **child
;
928 child
= umem_alloc(t
* sizeof (nvlist_t
*), UMEM_NOFAIL
);
930 for (c
= 0; c
< t
; c
++) {
931 child
[c
] = make_vdev_mirror(path
, aux
, pool
, size
, ashift
,
933 VERIFY(nvlist_add_uint64(child
[c
], ZPOOL_CONFIG_IS_LOG
,
937 VERIFY(nvlist_alloc(&root
, NV_UNIQUE_NAME
, 0) == 0);
938 VERIFY(nvlist_add_string(root
, ZPOOL_CONFIG_TYPE
, VDEV_TYPE_ROOT
) == 0);
939 VERIFY(nvlist_add_nvlist_array(root
, aux
? aux
: ZPOOL_CONFIG_CHILDREN
,
942 for (c
= 0; c
< t
; c
++)
943 nvlist_free(child
[c
]);
945 umem_free(child
, t
* sizeof (nvlist_t
*));
951 * Find a random spa version. Returns back a random spa version in the
952 * range [initial_version, SPA_VERSION_FEATURES].
955 ztest_random_spa_version(uint64_t initial_version
)
957 uint64_t version
= initial_version
;
959 if (version
<= SPA_VERSION_BEFORE_FEATURES
) {
961 ztest_random(SPA_VERSION_BEFORE_FEATURES
- version
+ 1);
964 if (version
> SPA_VERSION_BEFORE_FEATURES
)
965 version
= SPA_VERSION_FEATURES
;
967 ASSERT(SPA_VERSION_IS_SUPPORTED(version
));
972 ztest_random_blocksize(void)
974 uint64_t block_shift
;
976 * Choose a block size >= the ashift.
977 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
979 int maxbs
= SPA_OLD_MAXBLOCKSHIFT
;
980 if (spa_maxblocksize(ztest_spa
) == SPA_MAXBLOCKSIZE
)
982 block_shift
= ztest_random(maxbs
- ztest_spa
->spa_max_ashift
+ 1);
983 return (1 << (SPA_MINBLOCKSHIFT
+ block_shift
));
987 ztest_random_ibshift(void)
989 return (DN_MIN_INDBLKSHIFT
+
990 ztest_random(DN_MAX_INDBLKSHIFT
- DN_MIN_INDBLKSHIFT
+ 1));
994 ztest_random_vdev_top(spa_t
*spa
, boolean_t log_ok
)
997 vdev_t
*rvd
= spa
->spa_root_vdev
;
1000 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_READER
) != 0);
1003 top
= ztest_random(rvd
->vdev_children
);
1004 tvd
= rvd
->vdev_child
[top
];
1005 } while (tvd
->vdev_ishole
|| (tvd
->vdev_islog
&& !log_ok
) ||
1006 tvd
->vdev_mg
== NULL
|| tvd
->vdev_mg
->mg_class
== NULL
);
1012 ztest_random_dsl_prop(zfs_prop_t prop
)
1017 value
= zfs_prop_random_value(prop
, ztest_random(-1ULL));
1018 } while (prop
== ZFS_PROP_CHECKSUM
&& value
== ZIO_CHECKSUM_OFF
);
1024 ztest_dsl_prop_set_uint64(char *osname
, zfs_prop_t prop
, uint64_t value
,
1027 const char *propname
= zfs_prop_to_name(prop
);
1028 const char *valname
;
1029 char setpoint
[MAXPATHLEN
];
1033 error
= dsl_prop_set_int(osname
, propname
,
1034 (inherit
? ZPROP_SRC_NONE
: ZPROP_SRC_LOCAL
), value
);
1036 if (error
== ENOSPC
) {
1037 ztest_record_enospc(FTAG
);
1042 VERIFY0(dsl_prop_get_integer(osname
, propname
, &curval
, setpoint
));
1044 if (ztest_opts
.zo_verbose
>= 6) {
1045 VERIFY(zfs_prop_index_to_string(prop
, curval
, &valname
) == 0);
1046 (void) printf("%s %s = %s at '%s'\n",
1047 osname
, propname
, valname
, setpoint
);
1054 ztest_spa_prop_set_uint64(zpool_prop_t prop
, uint64_t value
)
1056 spa_t
*spa
= ztest_spa
;
1057 nvlist_t
*props
= NULL
;
1060 VERIFY(nvlist_alloc(&props
, NV_UNIQUE_NAME
, 0) == 0);
1061 VERIFY(nvlist_add_uint64(props
, zpool_prop_to_name(prop
), value
) == 0);
1063 error
= spa_prop_set(spa
, props
);
1067 if (error
== ENOSPC
) {
1068 ztest_record_enospc(FTAG
);
1077 ztest_rll_init(rll_t
*rll
)
1079 rll
->rll_writer
= NULL
;
1080 rll
->rll_readers
= 0;
1081 VERIFY(_mutex_init(&rll
->rll_lock
, USYNC_THREAD
, NULL
) == 0);
1082 VERIFY(cond_init(&rll
->rll_cv
, USYNC_THREAD
, NULL
) == 0);
1086 ztest_rll_destroy(rll_t
*rll
)
1088 ASSERT(rll
->rll_writer
== NULL
);
1089 ASSERT(rll
->rll_readers
== 0);
1090 VERIFY(_mutex_destroy(&rll
->rll_lock
) == 0);
1091 VERIFY(cond_destroy(&rll
->rll_cv
) == 0);
1095 ztest_rll_lock(rll_t
*rll
, rl_type_t type
)
1097 VERIFY(mutex_lock(&rll
->rll_lock
) == 0);
1099 if (type
== RL_READER
) {
1100 while (rll
->rll_writer
!= NULL
)
1101 (void) cond_wait(&rll
->rll_cv
, &rll
->rll_lock
);
1104 while (rll
->rll_writer
!= NULL
|| rll
->rll_readers
)
1105 (void) cond_wait(&rll
->rll_cv
, &rll
->rll_lock
);
1106 rll
->rll_writer
= curthread
;
1109 VERIFY(mutex_unlock(&rll
->rll_lock
) == 0);
1113 ztest_rll_unlock(rll_t
*rll
)
1115 VERIFY(mutex_lock(&rll
->rll_lock
) == 0);
1117 if (rll
->rll_writer
) {
1118 ASSERT(rll
->rll_readers
== 0);
1119 rll
->rll_writer
= NULL
;
1121 ASSERT(rll
->rll_readers
!= 0);
1122 ASSERT(rll
->rll_writer
== NULL
);
1126 if (rll
->rll_writer
== NULL
&& rll
->rll_readers
== 0)
1127 VERIFY(cond_broadcast(&rll
->rll_cv
) == 0);
1129 VERIFY(mutex_unlock(&rll
->rll_lock
) == 0);
1133 ztest_object_lock(ztest_ds_t
*zd
, uint64_t object
, rl_type_t type
)
1135 rll_t
*rll
= &zd
->zd_object_lock
[object
& (ZTEST_OBJECT_LOCKS
- 1)];
1137 ztest_rll_lock(rll
, type
);
1141 ztest_object_unlock(ztest_ds_t
*zd
, uint64_t object
)
1143 rll_t
*rll
= &zd
->zd_object_lock
[object
& (ZTEST_OBJECT_LOCKS
- 1)];
1145 ztest_rll_unlock(rll
);
1149 ztest_range_lock(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
,
1150 uint64_t size
, rl_type_t type
)
1152 uint64_t hash
= object
^ (offset
% (ZTEST_RANGE_LOCKS
+ 1));
1153 rll_t
*rll
= &zd
->zd_range_lock
[hash
& (ZTEST_RANGE_LOCKS
- 1)];
1156 rl
= umem_alloc(sizeof (*rl
), UMEM_NOFAIL
);
1157 rl
->rl_object
= object
;
1158 rl
->rl_offset
= offset
;
1162 ztest_rll_lock(rll
, type
);
1168 ztest_range_unlock(rl_t
*rl
)
1170 rll_t
*rll
= rl
->rl_lock
;
1172 ztest_rll_unlock(rll
);
1174 umem_free(rl
, sizeof (*rl
));
1178 ztest_zd_init(ztest_ds_t
*zd
, ztest_shared_ds_t
*szd
, objset_t
*os
)
1181 zd
->zd_zilog
= dmu_objset_zil(os
);
1182 zd
->zd_shared
= szd
;
1183 dmu_objset_name(os
, zd
->zd_name
);
1185 if (zd
->zd_shared
!= NULL
)
1186 zd
->zd_shared
->zd_seq
= 0;
1188 VERIFY(rwlock_init(&zd
->zd_zilog_lock
, USYNC_THREAD
, NULL
) == 0);
1189 VERIFY(_mutex_init(&zd
->zd_dirobj_lock
, USYNC_THREAD
, NULL
) == 0);
1191 for (int l
= 0; l
< ZTEST_OBJECT_LOCKS
; l
++)
1192 ztest_rll_init(&zd
->zd_object_lock
[l
]);
1194 for (int l
= 0; l
< ZTEST_RANGE_LOCKS
; l
++)
1195 ztest_rll_init(&zd
->zd_range_lock
[l
]);
1199 ztest_zd_fini(ztest_ds_t
*zd
)
1201 VERIFY(_mutex_destroy(&zd
->zd_dirobj_lock
) == 0);
1203 for (int l
= 0; l
< ZTEST_OBJECT_LOCKS
; l
++)
1204 ztest_rll_destroy(&zd
->zd_object_lock
[l
]);
1206 for (int l
= 0; l
< ZTEST_RANGE_LOCKS
; l
++)
1207 ztest_rll_destroy(&zd
->zd_range_lock
[l
]);
1210 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1213 ztest_tx_assign(dmu_tx_t
*tx
, uint64_t txg_how
, const char *tag
)
1219 * Attempt to assign tx to some transaction group.
1221 error
= dmu_tx_assign(tx
, txg_how
);
1223 if (error
== ERESTART
) {
1224 ASSERT(txg_how
== TXG_NOWAIT
);
1227 ASSERT3U(error
, ==, ENOSPC
);
1228 ztest_record_enospc(tag
);
1233 txg
= dmu_tx_get_txg(tx
);
1239 ztest_pattern_set(void *buf
, uint64_t size
, uint64_t value
)
1242 uint64_t *ip_end
= (uint64_t *)((uintptr_t)buf
+ (uintptr_t)size
);
1249 ztest_pattern_match(void *buf
, uint64_t size
, uint64_t value
)
1252 uint64_t *ip_end
= (uint64_t *)((uintptr_t)buf
+ (uintptr_t)size
);
1256 diff
|= (value
- *ip
++);
1262 ztest_bt_generate(ztest_block_tag_t
*bt
, objset_t
*os
, uint64_t object
,
1263 uint64_t offset
, uint64_t gen
, uint64_t txg
, uint64_t crtxg
)
1265 bt
->bt_magic
= BT_MAGIC
;
1266 bt
->bt_objset
= dmu_objset_id(os
);
1267 bt
->bt_object
= object
;
1268 bt
->bt_offset
= offset
;
1271 bt
->bt_crtxg
= crtxg
;
1275 ztest_bt_verify(ztest_block_tag_t
*bt
, objset_t
*os
, uint64_t object
,
1276 uint64_t offset
, uint64_t gen
, uint64_t txg
, uint64_t crtxg
)
1278 ASSERT3U(bt
->bt_magic
, ==, BT_MAGIC
);
1279 ASSERT3U(bt
->bt_objset
, ==, dmu_objset_id(os
));
1280 ASSERT3U(bt
->bt_object
, ==, object
);
1281 ASSERT3U(bt
->bt_offset
, ==, offset
);
1282 ASSERT3U(bt
->bt_gen
, <=, gen
);
1283 ASSERT3U(bt
->bt_txg
, <=, txg
);
1284 ASSERT3U(bt
->bt_crtxg
, ==, crtxg
);
1287 static ztest_block_tag_t
*
1288 ztest_bt_bonus(dmu_buf_t
*db
)
1290 dmu_object_info_t doi
;
1291 ztest_block_tag_t
*bt
;
1293 dmu_object_info_from_db(db
, &doi
);
1294 ASSERT3U(doi
.doi_bonus_size
, <=, db
->db_size
);
1295 ASSERT3U(doi
.doi_bonus_size
, >=, sizeof (*bt
));
1296 bt
= (void *)((char *)db
->db_data
+ doi
.doi_bonus_size
- sizeof (*bt
));
1305 #define lrz_type lr_mode
1306 #define lrz_blocksize lr_uid
1307 #define lrz_ibshift lr_gid
1308 #define lrz_bonustype lr_rdev
1309 #define lrz_bonuslen lr_crtime[1]
1312 ztest_log_create(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_create_t
*lr
)
1314 char *name
= (void *)(lr
+ 1); /* name follows lr */
1315 size_t namesize
= strlen(name
) + 1;
1318 if (zil_replaying(zd
->zd_zilog
, tx
))
1321 itx
= zil_itx_create(TX_CREATE
, sizeof (*lr
) + namesize
);
1322 bcopy(&lr
->lr_common
+ 1, &itx
->itx_lr
+ 1,
1323 sizeof (*lr
) + namesize
- sizeof (lr_t
));
1325 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1329 ztest_log_remove(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_remove_t
*lr
, uint64_t object
)
1331 char *name
= (void *)(lr
+ 1); /* name follows lr */
1332 size_t namesize
= strlen(name
) + 1;
1335 if (zil_replaying(zd
->zd_zilog
, tx
))
1338 itx
= zil_itx_create(TX_REMOVE
, sizeof (*lr
) + namesize
);
1339 bcopy(&lr
->lr_common
+ 1, &itx
->itx_lr
+ 1,
1340 sizeof (*lr
) + namesize
- sizeof (lr_t
));
1342 itx
->itx_oid
= object
;
1343 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1347 ztest_log_write(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_write_t
*lr
)
1350 itx_wr_state_t write_state
= ztest_random(WR_NUM_STATES
);
1352 if (zil_replaying(zd
->zd_zilog
, tx
))
1355 if (lr
->lr_length
> ZIL_MAX_LOG_DATA
)
1356 write_state
= WR_INDIRECT
;
1358 itx
= zil_itx_create(TX_WRITE
,
1359 sizeof (*lr
) + (write_state
== WR_COPIED
? lr
->lr_length
: 0));
1361 if (write_state
== WR_COPIED
&&
1362 dmu_read(zd
->zd_os
, lr
->lr_foid
, lr
->lr_offset
, lr
->lr_length
,
1363 ((lr_write_t
*)&itx
->itx_lr
) + 1, DMU_READ_NO_PREFETCH
) != 0) {
1364 zil_itx_destroy(itx
);
1365 itx
= zil_itx_create(TX_WRITE
, sizeof (*lr
));
1366 write_state
= WR_NEED_COPY
;
1368 itx
->itx_private
= zd
;
1369 itx
->itx_wr_state
= write_state
;
1370 itx
->itx_sync
= (ztest_random(8) == 0);
1371 itx
->itx_sod
+= (write_state
== WR_NEED_COPY
? lr
->lr_length
: 0);
1373 bcopy(&lr
->lr_common
+ 1, &itx
->itx_lr
+ 1,
1374 sizeof (*lr
) - sizeof (lr_t
));
1376 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1380 ztest_log_truncate(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_truncate_t
*lr
)
1384 if (zil_replaying(zd
->zd_zilog
, tx
))
1387 itx
= zil_itx_create(TX_TRUNCATE
, sizeof (*lr
));
1388 bcopy(&lr
->lr_common
+ 1, &itx
->itx_lr
+ 1,
1389 sizeof (*lr
) - sizeof (lr_t
));
1391 itx
->itx_sync
= B_FALSE
;
1392 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1396 ztest_log_setattr(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_setattr_t
*lr
)
1400 if (zil_replaying(zd
->zd_zilog
, tx
))
1403 itx
= zil_itx_create(TX_SETATTR
, sizeof (*lr
));
1404 bcopy(&lr
->lr_common
+ 1, &itx
->itx_lr
+ 1,
1405 sizeof (*lr
) - sizeof (lr_t
));
1407 itx
->itx_sync
= B_FALSE
;
1408 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1415 ztest_replay_create(ztest_ds_t
*zd
, lr_create_t
*lr
, boolean_t byteswap
)
1417 char *name
= (void *)(lr
+ 1); /* name follows lr */
1418 objset_t
*os
= zd
->zd_os
;
1419 ztest_block_tag_t
*bbt
;
1426 byteswap_uint64_array(lr
, sizeof (*lr
));
1428 ASSERT(lr
->lr_doid
== ZTEST_DIROBJ
);
1429 ASSERT(name
[0] != '\0');
1431 tx
= dmu_tx_create(os
);
1433 dmu_tx_hold_zap(tx
, lr
->lr_doid
, B_TRUE
, name
);
1435 if (lr
->lrz_type
== DMU_OT_ZAP_OTHER
) {
1436 dmu_tx_hold_zap(tx
, DMU_NEW_OBJECT
, B_TRUE
, NULL
);
1438 dmu_tx_hold_bonus(tx
, DMU_NEW_OBJECT
);
1441 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
1445 ASSERT(dmu_objset_zil(os
)->zl_replay
== !!lr
->lr_foid
);
1447 if (lr
->lrz_type
== DMU_OT_ZAP_OTHER
) {
1448 if (lr
->lr_foid
== 0) {
1449 lr
->lr_foid
= zap_create(os
,
1450 lr
->lrz_type
, lr
->lrz_bonustype
,
1451 lr
->lrz_bonuslen
, tx
);
1453 error
= zap_create_claim(os
, lr
->lr_foid
,
1454 lr
->lrz_type
, lr
->lrz_bonustype
,
1455 lr
->lrz_bonuslen
, tx
);
1458 if (lr
->lr_foid
== 0) {
1459 lr
->lr_foid
= dmu_object_alloc(os
,
1460 lr
->lrz_type
, 0, lr
->lrz_bonustype
,
1461 lr
->lrz_bonuslen
, tx
);
1463 error
= dmu_object_claim(os
, lr
->lr_foid
,
1464 lr
->lrz_type
, 0, lr
->lrz_bonustype
,
1465 lr
->lrz_bonuslen
, tx
);
1470 ASSERT3U(error
, ==, EEXIST
);
1471 ASSERT(zd
->zd_zilog
->zl_replay
);
1476 ASSERT(lr
->lr_foid
!= 0);
1478 if (lr
->lrz_type
!= DMU_OT_ZAP_OTHER
)
1479 VERIFY3U(0, ==, dmu_object_set_blocksize(os
, lr
->lr_foid
,
1480 lr
->lrz_blocksize
, lr
->lrz_ibshift
, tx
));
1482 VERIFY3U(0, ==, dmu_bonus_hold(os
, lr
->lr_foid
, FTAG
, &db
));
1483 bbt
= ztest_bt_bonus(db
);
1484 dmu_buf_will_dirty(db
, tx
);
1485 ztest_bt_generate(bbt
, os
, lr
->lr_foid
, -1ULL, lr
->lr_gen
, txg
, txg
);
1486 dmu_buf_rele(db
, FTAG
);
1488 VERIFY3U(0, ==, zap_add(os
, lr
->lr_doid
, name
, sizeof (uint64_t), 1,
1491 (void) ztest_log_create(zd
, tx
, lr
);
1499 ztest_replay_remove(ztest_ds_t
*zd
, lr_remove_t
*lr
, boolean_t byteswap
)
1501 char *name
= (void *)(lr
+ 1); /* name follows lr */
1502 objset_t
*os
= zd
->zd_os
;
1503 dmu_object_info_t doi
;
1505 uint64_t object
, txg
;
1508 byteswap_uint64_array(lr
, sizeof (*lr
));
1510 ASSERT(lr
->lr_doid
== ZTEST_DIROBJ
);
1511 ASSERT(name
[0] != '\0');
1514 zap_lookup(os
, lr
->lr_doid
, name
, sizeof (object
), 1, &object
));
1515 ASSERT(object
!= 0);
1517 ztest_object_lock(zd
, object
, RL_WRITER
);
1519 VERIFY3U(0, ==, dmu_object_info(os
, object
, &doi
));
1521 tx
= dmu_tx_create(os
);
1523 dmu_tx_hold_zap(tx
, lr
->lr_doid
, B_FALSE
, name
);
1524 dmu_tx_hold_free(tx
, object
, 0, DMU_OBJECT_END
);
1526 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
1528 ztest_object_unlock(zd
, object
);
1532 if (doi
.doi_type
== DMU_OT_ZAP_OTHER
) {
1533 VERIFY3U(0, ==, zap_destroy(os
, object
, tx
));
1535 VERIFY3U(0, ==, dmu_object_free(os
, object
, tx
));
1538 VERIFY3U(0, ==, zap_remove(os
, lr
->lr_doid
, name
, tx
));
1540 (void) ztest_log_remove(zd
, tx
, lr
, object
);
1544 ztest_object_unlock(zd
, object
);
1550 ztest_replay_write(ztest_ds_t
*zd
, lr_write_t
*lr
, boolean_t byteswap
)
1552 objset_t
*os
= zd
->zd_os
;
1553 void *data
= lr
+ 1; /* data follows lr */
1554 uint64_t offset
, length
;
1555 ztest_block_tag_t
*bt
= data
;
1556 ztest_block_tag_t
*bbt
;
1557 uint64_t gen
, txg
, lrtxg
, crtxg
;
1558 dmu_object_info_t doi
;
1561 arc_buf_t
*abuf
= NULL
;
1565 byteswap_uint64_array(lr
, sizeof (*lr
));
1567 offset
= lr
->lr_offset
;
1568 length
= lr
->lr_length
;
1570 /* If it's a dmu_sync() block, write the whole block */
1571 if (lr
->lr_common
.lrc_reclen
== sizeof (lr_write_t
)) {
1572 uint64_t blocksize
= BP_GET_LSIZE(&lr
->lr_blkptr
);
1573 if (length
< blocksize
) {
1574 offset
-= offset
% blocksize
;
1579 if (bt
->bt_magic
== BSWAP_64(BT_MAGIC
))
1580 byteswap_uint64_array(bt
, sizeof (*bt
));
1582 if (bt
->bt_magic
!= BT_MAGIC
)
1585 ztest_object_lock(zd
, lr
->lr_foid
, RL_READER
);
1586 rl
= ztest_range_lock(zd
, lr
->lr_foid
, offset
, length
, RL_WRITER
);
1588 VERIFY3U(0, ==, dmu_bonus_hold(os
, lr
->lr_foid
, FTAG
, &db
));
1590 dmu_object_info_from_db(db
, &doi
);
1592 bbt
= ztest_bt_bonus(db
);
1593 ASSERT3U(bbt
->bt_magic
, ==, BT_MAGIC
);
1595 crtxg
= bbt
->bt_crtxg
;
1596 lrtxg
= lr
->lr_common
.lrc_txg
;
1598 tx
= dmu_tx_create(os
);
1600 dmu_tx_hold_write(tx
, lr
->lr_foid
, offset
, length
);
1602 if (ztest_random(8) == 0 && length
== doi
.doi_data_block_size
&&
1603 P2PHASE(offset
, length
) == 0)
1604 abuf
= dmu_request_arcbuf(db
, length
);
1606 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
1609 dmu_return_arcbuf(abuf
);
1610 dmu_buf_rele(db
, FTAG
);
1611 ztest_range_unlock(rl
);
1612 ztest_object_unlock(zd
, lr
->lr_foid
);
1618 * Usually, verify the old data before writing new data --
1619 * but not always, because we also want to verify correct
1620 * behavior when the data was not recently read into cache.
1622 ASSERT(offset
% doi
.doi_data_block_size
== 0);
1623 if (ztest_random(4) != 0) {
1624 int prefetch
= ztest_random(2) ?
1625 DMU_READ_PREFETCH
: DMU_READ_NO_PREFETCH
;
1626 ztest_block_tag_t rbt
;
1628 VERIFY(dmu_read(os
, lr
->lr_foid
, offset
,
1629 sizeof (rbt
), &rbt
, prefetch
) == 0);
1630 if (rbt
.bt_magic
== BT_MAGIC
) {
1631 ztest_bt_verify(&rbt
, os
, lr
->lr_foid
,
1632 offset
, gen
, txg
, crtxg
);
1637 * Writes can appear to be newer than the bonus buffer because
1638 * the ztest_get_data() callback does a dmu_read() of the
1639 * open-context data, which may be different than the data
1640 * as it was when the write was generated.
1642 if (zd
->zd_zilog
->zl_replay
) {
1643 ztest_bt_verify(bt
, os
, lr
->lr_foid
, offset
,
1644 MAX(gen
, bt
->bt_gen
), MAX(txg
, lrtxg
),
1649 * Set the bt's gen/txg to the bonus buffer's gen/txg
1650 * so that all of the usual ASSERTs will work.
1652 ztest_bt_generate(bt
, os
, lr
->lr_foid
, offset
, gen
, txg
, crtxg
);
1656 dmu_write(os
, lr
->lr_foid
, offset
, length
, data
, tx
);
1658 bcopy(data
, abuf
->b_data
, length
);
1659 dmu_assign_arcbuf(db
, offset
, abuf
, tx
);
1662 (void) ztest_log_write(zd
, tx
, lr
);
1664 dmu_buf_rele(db
, FTAG
);
1668 ztest_range_unlock(rl
);
1669 ztest_object_unlock(zd
, lr
->lr_foid
);
1675 ztest_replay_truncate(ztest_ds_t
*zd
, lr_truncate_t
*lr
, boolean_t byteswap
)
1677 objset_t
*os
= zd
->zd_os
;
1683 byteswap_uint64_array(lr
, sizeof (*lr
));
1685 ztest_object_lock(zd
, lr
->lr_foid
, RL_READER
);
1686 rl
= ztest_range_lock(zd
, lr
->lr_foid
, lr
->lr_offset
, lr
->lr_length
,
1689 tx
= dmu_tx_create(os
);
1691 dmu_tx_hold_free(tx
, lr
->lr_foid
, lr
->lr_offset
, lr
->lr_length
);
1693 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
1695 ztest_range_unlock(rl
);
1696 ztest_object_unlock(zd
, lr
->lr_foid
);
1700 VERIFY(dmu_free_range(os
, lr
->lr_foid
, lr
->lr_offset
,
1701 lr
->lr_length
, tx
) == 0);
1703 (void) ztest_log_truncate(zd
, tx
, lr
);
1707 ztest_range_unlock(rl
);
1708 ztest_object_unlock(zd
, lr
->lr_foid
);
1714 ztest_replay_setattr(ztest_ds_t
*zd
, lr_setattr_t
*lr
, boolean_t byteswap
)
1716 objset_t
*os
= zd
->zd_os
;
1719 ztest_block_tag_t
*bbt
;
1720 uint64_t txg
, lrtxg
, crtxg
;
1723 byteswap_uint64_array(lr
, sizeof (*lr
));
1725 ztest_object_lock(zd
, lr
->lr_foid
, RL_WRITER
);
1727 VERIFY3U(0, ==, dmu_bonus_hold(os
, lr
->lr_foid
, FTAG
, &db
));
1729 tx
= dmu_tx_create(os
);
1730 dmu_tx_hold_bonus(tx
, lr
->lr_foid
);
1732 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
1734 dmu_buf_rele(db
, FTAG
);
1735 ztest_object_unlock(zd
, lr
->lr_foid
);
1739 bbt
= ztest_bt_bonus(db
);
1740 ASSERT3U(bbt
->bt_magic
, ==, BT_MAGIC
);
1741 crtxg
= bbt
->bt_crtxg
;
1742 lrtxg
= lr
->lr_common
.lrc_txg
;
1744 if (zd
->zd_zilog
->zl_replay
) {
1745 ASSERT(lr
->lr_size
!= 0);
1746 ASSERT(lr
->lr_mode
!= 0);
1750 * Randomly change the size and increment the generation.
1752 lr
->lr_size
= (ztest_random(db
->db_size
/ sizeof (*bbt
)) + 1) *
1754 lr
->lr_mode
= bbt
->bt_gen
+ 1;
1759 * Verify that the current bonus buffer is not newer than our txg.
1761 ztest_bt_verify(bbt
, os
, lr
->lr_foid
, -1ULL, lr
->lr_mode
,
1762 MAX(txg
, lrtxg
), crtxg
);
1764 dmu_buf_will_dirty(db
, tx
);
1766 ASSERT3U(lr
->lr_size
, >=, sizeof (*bbt
));
1767 ASSERT3U(lr
->lr_size
, <=, db
->db_size
);
1768 VERIFY0(dmu_set_bonus(db
, lr
->lr_size
, tx
));
1769 bbt
= ztest_bt_bonus(db
);
1771 ztest_bt_generate(bbt
, os
, lr
->lr_foid
, -1ULL, lr
->lr_mode
, txg
, crtxg
);
1773 dmu_buf_rele(db
, FTAG
);
1775 (void) ztest_log_setattr(zd
, tx
, lr
);
1779 ztest_object_unlock(zd
, lr
->lr_foid
);
1784 zil_replay_func_t
*ztest_replay_vector
[TX_MAX_TYPE
] = {
1785 NULL
, /* 0 no such transaction type */
1786 ztest_replay_create
, /* TX_CREATE */
1787 NULL
, /* TX_MKDIR */
1788 NULL
, /* TX_MKXATTR */
1789 NULL
, /* TX_SYMLINK */
1790 ztest_replay_remove
, /* TX_REMOVE */
1791 NULL
, /* TX_RMDIR */
1793 NULL
, /* TX_RENAME */
1794 ztest_replay_write
, /* TX_WRITE */
1795 ztest_replay_truncate
, /* TX_TRUNCATE */
1796 ztest_replay_setattr
, /* TX_SETATTR */
1798 NULL
, /* TX_CREATE_ACL */
1799 NULL
, /* TX_CREATE_ATTR */
1800 NULL
, /* TX_CREATE_ACL_ATTR */
1801 NULL
, /* TX_MKDIR_ACL */
1802 NULL
, /* TX_MKDIR_ATTR */
1803 NULL
, /* TX_MKDIR_ACL_ATTR */
1804 NULL
, /* TX_WRITE2 */
1808 * ZIL get_data callbacks
1812 ztest_get_done(zgd_t
*zgd
, int error
)
1814 ztest_ds_t
*zd
= zgd
->zgd_private
;
1815 uint64_t object
= zgd
->zgd_rl
->rl_object
;
1818 dmu_buf_rele(zgd
->zgd_db
, zgd
);
1820 ztest_range_unlock(zgd
->zgd_rl
);
1821 ztest_object_unlock(zd
, object
);
1823 if (error
== 0 && zgd
->zgd_bp
)
1824 zil_add_block(zgd
->zgd_zilog
, zgd
->zgd_bp
);
1826 umem_free(zgd
, sizeof (*zgd
));
1830 ztest_get_data(void *arg
, lr_write_t
*lr
, char *buf
, zio_t
*zio
)
1832 ztest_ds_t
*zd
= arg
;
1833 objset_t
*os
= zd
->zd_os
;
1834 uint64_t object
= lr
->lr_foid
;
1835 uint64_t offset
= lr
->lr_offset
;
1836 uint64_t size
= lr
->lr_length
;
1837 blkptr_t
*bp
= &lr
->lr_blkptr
;
1838 uint64_t txg
= lr
->lr_common
.lrc_txg
;
1840 dmu_object_info_t doi
;
1845 ztest_object_lock(zd
, object
, RL_READER
);
1846 error
= dmu_bonus_hold(os
, object
, FTAG
, &db
);
1848 ztest_object_unlock(zd
, object
);
1852 crtxg
= ztest_bt_bonus(db
)->bt_crtxg
;
1854 if (crtxg
== 0 || crtxg
> txg
) {
1855 dmu_buf_rele(db
, FTAG
);
1856 ztest_object_unlock(zd
, object
);
1860 dmu_object_info_from_db(db
, &doi
);
1861 dmu_buf_rele(db
, FTAG
);
1864 zgd
= umem_zalloc(sizeof (*zgd
), UMEM_NOFAIL
);
1865 zgd
->zgd_zilog
= zd
->zd_zilog
;
1866 zgd
->zgd_private
= zd
;
1868 if (buf
!= NULL
) { /* immediate write */
1869 zgd
->zgd_rl
= ztest_range_lock(zd
, object
, offset
, size
,
1872 error
= dmu_read(os
, object
, offset
, size
, buf
,
1873 DMU_READ_NO_PREFETCH
);
1876 size
= doi
.doi_data_block_size
;
1878 offset
= P2ALIGN(offset
, size
);
1880 ASSERT(offset
< size
);
1884 zgd
->zgd_rl
= ztest_range_lock(zd
, object
, offset
, size
,
1887 error
= dmu_buf_hold(os
, object
, offset
, zgd
, &db
,
1888 DMU_READ_NO_PREFETCH
);
1891 blkptr_t
*obp
= dmu_buf_get_blkptr(db
);
1893 ASSERT(BP_IS_HOLE(bp
));
1900 ASSERT(db
->db_offset
== offset
);
1901 ASSERT(db
->db_size
== size
);
1903 error
= dmu_sync(zio
, lr
->lr_common
.lrc_txg
,
1904 ztest_get_done
, zgd
);
1911 ztest_get_done(zgd
, error
);
1917 ztest_lr_alloc(size_t lrsize
, char *name
)
1920 size_t namesize
= name
? strlen(name
) + 1 : 0;
1922 lr
= umem_zalloc(lrsize
+ namesize
, UMEM_NOFAIL
);
1925 bcopy(name
, lr
+ lrsize
, namesize
);
1931 ztest_lr_free(void *lr
, size_t lrsize
, char *name
)
1933 size_t namesize
= name
? strlen(name
) + 1 : 0;
1935 umem_free(lr
, lrsize
+ namesize
);
1939 * Lookup a bunch of objects. Returns the number of objects not found.
1942 ztest_lookup(ztest_ds_t
*zd
, ztest_od_t
*od
, int count
)
1947 ASSERT(_mutex_held(&zd
->zd_dirobj_lock
));
1949 for (int i
= 0; i
< count
; i
++, od
++) {
1951 error
= zap_lookup(zd
->zd_os
, od
->od_dir
, od
->od_name
,
1952 sizeof (uint64_t), 1, &od
->od_object
);
1954 ASSERT(error
== ENOENT
);
1955 ASSERT(od
->od_object
== 0);
1959 ztest_block_tag_t
*bbt
;
1960 dmu_object_info_t doi
;
1962 ASSERT(od
->od_object
!= 0);
1963 ASSERT(missing
== 0); /* there should be no gaps */
1965 ztest_object_lock(zd
, od
->od_object
, RL_READER
);
1966 VERIFY3U(0, ==, dmu_bonus_hold(zd
->zd_os
,
1967 od
->od_object
, FTAG
, &db
));
1968 dmu_object_info_from_db(db
, &doi
);
1969 bbt
= ztest_bt_bonus(db
);
1970 ASSERT3U(bbt
->bt_magic
, ==, BT_MAGIC
);
1971 od
->od_type
= doi
.doi_type
;
1972 od
->od_blocksize
= doi
.doi_data_block_size
;
1973 od
->od_gen
= bbt
->bt_gen
;
1974 dmu_buf_rele(db
, FTAG
);
1975 ztest_object_unlock(zd
, od
->od_object
);
1983 ztest_create(ztest_ds_t
*zd
, ztest_od_t
*od
, int count
)
1987 ASSERT(_mutex_held(&zd
->zd_dirobj_lock
));
1989 for (int i
= 0; i
< count
; i
++, od
++) {
1996 lr_create_t
*lr
= ztest_lr_alloc(sizeof (*lr
), od
->od_name
);
1998 lr
->lr_doid
= od
->od_dir
;
1999 lr
->lr_foid
= 0; /* 0 to allocate, > 0 to claim */
2000 lr
->lrz_type
= od
->od_crtype
;
2001 lr
->lrz_blocksize
= od
->od_crblocksize
;
2002 lr
->lrz_ibshift
= ztest_random_ibshift();
2003 lr
->lrz_bonustype
= DMU_OT_UINT64_OTHER
;
2004 lr
->lrz_bonuslen
= dmu_bonus_max();
2005 lr
->lr_gen
= od
->od_crgen
;
2006 lr
->lr_crtime
[0] = time(NULL
);
2008 if (ztest_replay_create(zd
, lr
, B_FALSE
) != 0) {
2009 ASSERT(missing
== 0);
2013 od
->od_object
= lr
->lr_foid
;
2014 od
->od_type
= od
->od_crtype
;
2015 od
->od_blocksize
= od
->od_crblocksize
;
2016 od
->od_gen
= od
->od_crgen
;
2017 ASSERT(od
->od_object
!= 0);
2020 ztest_lr_free(lr
, sizeof (*lr
), od
->od_name
);
2027 ztest_remove(ztest_ds_t
*zd
, ztest_od_t
*od
, int count
)
2032 ASSERT(_mutex_held(&zd
->zd_dirobj_lock
));
2036 for (int i
= count
- 1; i
>= 0; i
--, od
--) {
2043 * No object was found.
2045 if (od
->od_object
== 0)
2048 lr_remove_t
*lr
= ztest_lr_alloc(sizeof (*lr
), od
->od_name
);
2050 lr
->lr_doid
= od
->od_dir
;
2052 if ((error
= ztest_replay_remove(zd
, lr
, B_FALSE
)) != 0) {
2053 ASSERT3U(error
, ==, ENOSPC
);
2058 ztest_lr_free(lr
, sizeof (*lr
), od
->od_name
);
2065 ztest_write(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
, uint64_t size
,
2071 lr
= ztest_lr_alloc(sizeof (*lr
) + size
, NULL
);
2073 lr
->lr_foid
= object
;
2074 lr
->lr_offset
= offset
;
2075 lr
->lr_length
= size
;
2077 BP_ZERO(&lr
->lr_blkptr
);
2079 bcopy(data
, lr
+ 1, size
);
2081 error
= ztest_replay_write(zd
, lr
, B_FALSE
);
2083 ztest_lr_free(lr
, sizeof (*lr
) + size
, NULL
);
2089 ztest_truncate(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
, uint64_t size
)
2094 lr
= ztest_lr_alloc(sizeof (*lr
), NULL
);
2096 lr
->lr_foid
= object
;
2097 lr
->lr_offset
= offset
;
2098 lr
->lr_length
= size
;
2100 error
= ztest_replay_truncate(zd
, lr
, B_FALSE
);
2102 ztest_lr_free(lr
, sizeof (*lr
), NULL
);
2108 ztest_setattr(ztest_ds_t
*zd
, uint64_t object
)
2113 lr
= ztest_lr_alloc(sizeof (*lr
), NULL
);
2115 lr
->lr_foid
= object
;
2119 error
= ztest_replay_setattr(zd
, lr
, B_FALSE
);
2121 ztest_lr_free(lr
, sizeof (*lr
), NULL
);
2127 ztest_prealloc(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
, uint64_t size
)
2129 objset_t
*os
= zd
->zd_os
;
2134 txg_wait_synced(dmu_objset_pool(os
), 0);
2136 ztest_object_lock(zd
, object
, RL_READER
);
2137 rl
= ztest_range_lock(zd
, object
, offset
, size
, RL_WRITER
);
2139 tx
= dmu_tx_create(os
);
2141 dmu_tx_hold_write(tx
, object
, offset
, size
);
2143 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2146 dmu_prealloc(os
, object
, offset
, size
, tx
);
2148 txg_wait_synced(dmu_objset_pool(os
), txg
);
2150 (void) dmu_free_long_range(os
, object
, offset
, size
);
2153 ztest_range_unlock(rl
);
2154 ztest_object_unlock(zd
, object
);
2158 ztest_io(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
)
2161 ztest_block_tag_t wbt
;
2162 dmu_object_info_t doi
;
2163 enum ztest_io_type io_type
;
2167 VERIFY(dmu_object_info(zd
->zd_os
, object
, &doi
) == 0);
2168 blocksize
= doi
.doi_data_block_size
;
2169 data
= umem_alloc(blocksize
, UMEM_NOFAIL
);
2172 * Pick an i/o type at random, biased toward writing block tags.
2174 io_type
= ztest_random(ZTEST_IO_TYPES
);
2175 if (ztest_random(2) == 0)
2176 io_type
= ZTEST_IO_WRITE_TAG
;
2178 (void) rw_rdlock(&zd
->zd_zilog_lock
);
2182 case ZTEST_IO_WRITE_TAG
:
2183 ztest_bt_generate(&wbt
, zd
->zd_os
, object
, offset
, 0, 0, 0);
2184 (void) ztest_write(zd
, object
, offset
, sizeof (wbt
), &wbt
);
2187 case ZTEST_IO_WRITE_PATTERN
:
2188 (void) memset(data
, 'a' + (object
+ offset
) % 5, blocksize
);
2189 if (ztest_random(2) == 0) {
2191 * Induce fletcher2 collisions to ensure that
2192 * zio_ddt_collision() detects and resolves them
2193 * when using fletcher2-verify for deduplication.
2195 ((uint64_t *)data
)[0] ^= 1ULL << 63;
2196 ((uint64_t *)data
)[4] ^= 1ULL << 63;
2198 (void) ztest_write(zd
, object
, offset
, blocksize
, data
);
2201 case ZTEST_IO_WRITE_ZEROES
:
2202 bzero(data
, blocksize
);
2203 (void) ztest_write(zd
, object
, offset
, blocksize
, data
);
2206 case ZTEST_IO_TRUNCATE
:
2207 (void) ztest_truncate(zd
, object
, offset
, blocksize
);
2210 case ZTEST_IO_SETATTR
:
2211 (void) ztest_setattr(zd
, object
);
2214 case ZTEST_IO_REWRITE
:
2215 (void) rw_rdlock(&ztest_name_lock
);
2216 err
= ztest_dsl_prop_set_uint64(zd
->zd_name
,
2217 ZFS_PROP_CHECKSUM
, spa_dedup_checksum(ztest_spa
),
2219 VERIFY(err
== 0 || err
== ENOSPC
);
2220 err
= ztest_dsl_prop_set_uint64(zd
->zd_name
,
2221 ZFS_PROP_COMPRESSION
,
2222 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION
),
2224 VERIFY(err
== 0 || err
== ENOSPC
);
2225 (void) rw_unlock(&ztest_name_lock
);
2227 VERIFY0(dmu_read(zd
->zd_os
, object
, offset
, blocksize
, data
,
2228 DMU_READ_NO_PREFETCH
));
2230 (void) ztest_write(zd
, object
, offset
, blocksize
, data
);
2234 (void) rw_unlock(&zd
->zd_zilog_lock
);
2236 umem_free(data
, blocksize
);
2240 * Initialize an object description template.
2243 ztest_od_init(ztest_od_t
*od
, uint64_t id
, char *tag
, uint64_t index
,
2244 dmu_object_type_t type
, uint64_t blocksize
, uint64_t gen
)
2246 od
->od_dir
= ZTEST_DIROBJ
;
2249 od
->od_crtype
= type
;
2250 od
->od_crblocksize
= blocksize
? blocksize
: ztest_random_blocksize();
2253 od
->od_type
= DMU_OT_NONE
;
2254 od
->od_blocksize
= 0;
2257 (void) snprintf(od
->od_name
, sizeof (od
->od_name
), "%s(%lld)[%llu]",
2258 tag
, (int64_t)id
, index
);
2262 * Lookup or create the objects for a test using the od template.
2263 * If the objects do not all exist, or if 'remove' is specified,
2264 * remove any existing objects and create new ones. Otherwise,
2265 * use the existing objects.
2268 ztest_object_init(ztest_ds_t
*zd
, ztest_od_t
*od
, size_t size
, boolean_t remove
)
2270 int count
= size
/ sizeof (*od
);
2273 VERIFY(mutex_lock(&zd
->zd_dirobj_lock
) == 0);
2274 if ((ztest_lookup(zd
, od
, count
) != 0 || remove
) &&
2275 (ztest_remove(zd
, od
, count
) != 0 ||
2276 ztest_create(zd
, od
, count
) != 0))
2279 VERIFY(mutex_unlock(&zd
->zd_dirobj_lock
) == 0);
2286 ztest_zil_commit(ztest_ds_t
*zd
, uint64_t id
)
2288 zilog_t
*zilog
= zd
->zd_zilog
;
2290 (void) rw_rdlock(&zd
->zd_zilog_lock
);
2292 zil_commit(zilog
, ztest_random(ZTEST_OBJECTS
));
2295 * Remember the committed values in zd, which is in parent/child
2296 * shared memory. If we die, the next iteration of ztest_run()
2297 * will verify that the log really does contain this record.
2299 mutex_enter(&zilog
->zl_lock
);
2300 ASSERT(zd
->zd_shared
!= NULL
);
2301 ASSERT3U(zd
->zd_shared
->zd_seq
, <=, zilog
->zl_commit_lr_seq
);
2302 zd
->zd_shared
->zd_seq
= zilog
->zl_commit_lr_seq
;
2303 mutex_exit(&zilog
->zl_lock
);
2305 (void) rw_unlock(&zd
->zd_zilog_lock
);
2309 * This function is designed to simulate the operations that occur during a
2310 * mount/unmount operation. We hold the dataset across these operations in an
2311 * attempt to expose any implicit assumptions about ZIL management.
2315 ztest_zil_remount(ztest_ds_t
*zd
, uint64_t id
)
2317 objset_t
*os
= zd
->zd_os
;
2320 * We grab the zd_dirobj_lock to ensure that no other thread is
2321 * updating the zil (i.e. adding in-memory log records) and the
2322 * zd_zilog_lock to block any I/O.
2324 VERIFY0(mutex_lock(&zd
->zd_dirobj_lock
));
2325 (void) rw_wrlock(&zd
->zd_zilog_lock
);
2327 /* zfsvfs_teardown() */
2328 zil_close(zd
->zd_zilog
);
2330 /* zfsvfs_setup() */
2331 VERIFY(zil_open(os
, ztest_get_data
) == zd
->zd_zilog
);
2332 zil_replay(os
, zd
, ztest_replay_vector
);
2334 (void) rw_unlock(&zd
->zd_zilog_lock
);
2335 VERIFY(mutex_unlock(&zd
->zd_dirobj_lock
) == 0);
2339 * Verify that we can't destroy an active pool, create an existing pool,
2340 * or create a pool with a bad vdev spec.
2344 ztest_spa_create_destroy(ztest_ds_t
*zd
, uint64_t id
)
2346 ztest_shared_opts_t
*zo
= &ztest_opts
;
2351 * Attempt to create using a bad file.
2353 nvroot
= make_vdev_root("/dev/bogus", NULL
, NULL
, 0, 0, 0, 0, 0, 1);
2354 VERIFY3U(ENOENT
, ==,
2355 spa_create("ztest_bad_file", nvroot
, NULL
, NULL
));
2356 nvlist_free(nvroot
);
2359 * Attempt to create using a bad mirror.
2361 nvroot
= make_vdev_root("/dev/bogus", NULL
, NULL
, 0, 0, 0, 0, 2, 1);
2362 VERIFY3U(ENOENT
, ==,
2363 spa_create("ztest_bad_mirror", nvroot
, NULL
, NULL
));
2364 nvlist_free(nvroot
);
2367 * Attempt to create an existing pool. It shouldn't matter
2368 * what's in the nvroot; we should fail with EEXIST.
2370 (void) rw_rdlock(&ztest_name_lock
);
2371 nvroot
= make_vdev_root("/dev/bogus", NULL
, NULL
, 0, 0, 0, 0, 0, 1);
2372 VERIFY3U(EEXIST
, ==, spa_create(zo
->zo_pool
, nvroot
, NULL
, NULL
));
2373 nvlist_free(nvroot
);
2374 VERIFY3U(0, ==, spa_open(zo
->zo_pool
, &spa
, FTAG
));
2375 VERIFY3U(EBUSY
, ==, spa_destroy(zo
->zo_pool
));
2376 spa_close(spa
, FTAG
);
2378 (void) rw_unlock(&ztest_name_lock
);
2383 ztest_spa_upgrade(ztest_ds_t
*zd
, uint64_t id
)
2386 uint64_t initial_version
= SPA_VERSION_INITIAL
;
2387 uint64_t version
, newversion
;
2388 nvlist_t
*nvroot
, *props
;
2391 VERIFY0(mutex_lock(&ztest_vdev_lock
));
2392 name
= kmem_asprintf("%s_upgrade", ztest_opts
.zo_pool
);
2395 * Clean up from previous runs.
2397 (void) spa_destroy(name
);
2399 nvroot
= make_vdev_root(NULL
, NULL
, name
, ztest_opts
.zo_vdev_size
, 0,
2400 0, ztest_opts
.zo_raidz
, ztest_opts
.zo_mirrors
, 1);
2403 * If we're configuring a RAIDZ device then make sure that the
2404 * the initial version is capable of supporting that feature.
2406 switch (ztest_opts
.zo_raidz_parity
) {
2409 initial_version
= SPA_VERSION_INITIAL
;
2412 initial_version
= SPA_VERSION_RAIDZ2
;
2415 initial_version
= SPA_VERSION_RAIDZ3
;
2420 * Create a pool with a spa version that can be upgraded. Pick
2421 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2424 version
= ztest_random_spa_version(initial_version
);
2425 } while (version
> SPA_VERSION_BEFORE_FEATURES
);
2427 props
= fnvlist_alloc();
2428 fnvlist_add_uint64(props
,
2429 zpool_prop_to_name(ZPOOL_PROP_VERSION
), version
);
2430 VERIFY0(spa_create(name
, nvroot
, props
, NULL
));
2431 fnvlist_free(nvroot
);
2432 fnvlist_free(props
);
2434 VERIFY0(spa_open(name
, &spa
, FTAG
));
2435 VERIFY3U(spa_version(spa
), ==, version
);
2436 newversion
= ztest_random_spa_version(version
+ 1);
2438 if (ztest_opts
.zo_verbose
>= 4) {
2439 (void) printf("upgrading spa version from %llu to %llu\n",
2440 (u_longlong_t
)version
, (u_longlong_t
)newversion
);
2443 spa_upgrade(spa
, newversion
);
2444 VERIFY3U(spa_version(spa
), >, version
);
2445 VERIFY3U(spa_version(spa
), ==, fnvlist_lookup_uint64(spa
->spa_config
,
2446 zpool_prop_to_name(ZPOOL_PROP_VERSION
)));
2447 spa_close(spa
, FTAG
);
2450 VERIFY0(mutex_unlock(&ztest_vdev_lock
));
2454 vdev_lookup_by_path(vdev_t
*vd
, const char *path
)
2458 if (vd
->vdev_path
!= NULL
&& strcmp(path
, vd
->vdev_path
) == 0)
2461 for (int c
= 0; c
< vd
->vdev_children
; c
++)
2462 if ((mvd
= vdev_lookup_by_path(vd
->vdev_child
[c
], path
)) !=
2470 * Find the first available hole which can be used as a top-level.
2473 find_vdev_hole(spa_t
*spa
)
2475 vdev_t
*rvd
= spa
->spa_root_vdev
;
2478 ASSERT(spa_config_held(spa
, SCL_VDEV
, RW_READER
) == SCL_VDEV
);
2480 for (c
= 0; c
< rvd
->vdev_children
; c
++) {
2481 vdev_t
*cvd
= rvd
->vdev_child
[c
];
2483 if (cvd
->vdev_ishole
)
2490 * Verify that vdev_add() works as expected.
2494 ztest_vdev_add_remove(ztest_ds_t
*zd
, uint64_t id
)
2496 ztest_shared_t
*zs
= ztest_shared
;
2497 spa_t
*spa
= ztest_spa
;
2503 VERIFY(mutex_lock(&ztest_vdev_lock
) == 0);
2504 leaves
= MAX(zs
->zs_mirrors
+ zs
->zs_splits
, 1) * ztest_opts
.zo_raidz
;
2506 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
2508 ztest_shared
->zs_vdev_next_leaf
= find_vdev_hole(spa
) * leaves
;
2511 * If we have slogs then remove them 1/4 of the time.
2513 if (spa_has_slogs(spa
) && ztest_random(4) == 0) {
2515 * Grab the guid from the head of the log class rotor.
2517 guid
= spa_log_class(spa
)->mc_rotor
->mg_vd
->vdev_guid
;
2519 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
2522 * We have to grab the zs_name_lock as writer to
2523 * prevent a race between removing a slog (dmu_objset_find)
2524 * and destroying a dataset. Removing the slog will
2525 * grab a reference on the dataset which may cause
2526 * dmu_objset_destroy() to fail with EBUSY thus
2527 * leaving the dataset in an inconsistent state.
2529 VERIFY(rw_wrlock(&ztest_name_lock
) == 0);
2530 error
= spa_vdev_remove(spa
, guid
, B_FALSE
);
2531 VERIFY(rw_unlock(&ztest_name_lock
) == 0);
2533 if (error
&& error
!= EEXIST
)
2534 fatal(0, "spa_vdev_remove() = %d", error
);
2536 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
2539 * Make 1/4 of the devices be log devices.
2541 nvroot
= make_vdev_root(NULL
, NULL
, NULL
,
2542 ztest_opts
.zo_vdev_size
, 0,
2543 ztest_random(4) == 0, ztest_opts
.zo_raidz
,
2546 error
= spa_vdev_add(spa
, nvroot
);
2547 nvlist_free(nvroot
);
2549 if (error
== ENOSPC
)
2550 ztest_record_enospc("spa_vdev_add");
2551 else if (error
!= 0)
2552 fatal(0, "spa_vdev_add() = %d", error
);
2555 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
2559 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2563 ztest_vdev_aux_add_remove(ztest_ds_t
*zd
, uint64_t id
)
2565 ztest_shared_t
*zs
= ztest_shared
;
2566 spa_t
*spa
= ztest_spa
;
2567 vdev_t
*rvd
= spa
->spa_root_vdev
;
2568 spa_aux_vdev_t
*sav
;
2573 if (ztest_random(2) == 0) {
2574 sav
= &spa
->spa_spares
;
2575 aux
= ZPOOL_CONFIG_SPARES
;
2577 sav
= &spa
->spa_l2cache
;
2578 aux
= ZPOOL_CONFIG_L2CACHE
;
2581 VERIFY(mutex_lock(&ztest_vdev_lock
) == 0);
2583 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
2585 if (sav
->sav_count
!= 0 && ztest_random(4) == 0) {
2587 * Pick a random device to remove.
2589 guid
= sav
->sav_vdevs
[ztest_random(sav
->sav_count
)]->vdev_guid
;
2592 * Find an unused device we can add.
2594 zs
->zs_vdev_aux
= 0;
2596 char path
[MAXPATHLEN
];
2598 (void) snprintf(path
, sizeof (path
), ztest_aux_template
,
2599 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
, aux
,
2601 for (c
= 0; c
< sav
->sav_count
; c
++)
2602 if (strcmp(sav
->sav_vdevs
[c
]->vdev_path
,
2605 if (c
== sav
->sav_count
&&
2606 vdev_lookup_by_path(rvd
, path
) == NULL
)
2612 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
2618 nvlist_t
*nvroot
= make_vdev_root(NULL
, aux
, NULL
,
2619 (ztest_opts
.zo_vdev_size
* 5) / 4, 0, 0, 0, 0, 1);
2620 error
= spa_vdev_add(spa
, nvroot
);
2622 fatal(0, "spa_vdev_add(%p) = %d", nvroot
, error
);
2623 nvlist_free(nvroot
);
2626 * Remove an existing device. Sometimes, dirty its
2627 * vdev state first to make sure we handle removal
2628 * of devices that have pending state changes.
2630 if (ztest_random(2) == 0)
2631 (void) vdev_online(spa
, guid
, 0, NULL
);
2633 error
= spa_vdev_remove(spa
, guid
, B_FALSE
);
2634 if (error
!= 0 && error
!= EBUSY
)
2635 fatal(0, "spa_vdev_remove(%llu) = %d", guid
, error
);
2638 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
2642 * split a pool if it has mirror tlvdevs
2646 ztest_split_pool(ztest_ds_t
*zd
, uint64_t id
)
2648 ztest_shared_t
*zs
= ztest_shared
;
2649 spa_t
*spa
= ztest_spa
;
2650 vdev_t
*rvd
= spa
->spa_root_vdev
;
2651 nvlist_t
*tree
, **child
, *config
, *split
, **schild
;
2652 uint_t c
, children
, schildren
= 0, lastlogid
= 0;
2655 VERIFY(mutex_lock(&ztest_vdev_lock
) == 0);
2657 /* ensure we have a useable config; mirrors of raidz aren't supported */
2658 if (zs
->zs_mirrors
< 3 || ztest_opts
.zo_raidz
> 1) {
2659 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
2663 /* clean up the old pool, if any */
2664 (void) spa_destroy("splitp");
2666 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
2668 /* generate a config from the existing config */
2669 mutex_enter(&spa
->spa_props_lock
);
2670 VERIFY(nvlist_lookup_nvlist(spa
->spa_config
, ZPOOL_CONFIG_VDEV_TREE
,
2672 mutex_exit(&spa
->spa_props_lock
);
2674 VERIFY(nvlist_lookup_nvlist_array(tree
, ZPOOL_CONFIG_CHILDREN
, &child
,
2677 schild
= malloc(rvd
->vdev_children
* sizeof (nvlist_t
*));
2678 for (c
= 0; c
< children
; c
++) {
2679 vdev_t
*tvd
= rvd
->vdev_child
[c
];
2683 if (tvd
->vdev_islog
|| tvd
->vdev_ops
== &vdev_hole_ops
) {
2684 VERIFY(nvlist_alloc(&schild
[schildren
], NV_UNIQUE_NAME
,
2686 VERIFY(nvlist_add_string(schild
[schildren
],
2687 ZPOOL_CONFIG_TYPE
, VDEV_TYPE_HOLE
) == 0);
2688 VERIFY(nvlist_add_uint64(schild
[schildren
],
2689 ZPOOL_CONFIG_IS_HOLE
, 1) == 0);
2691 lastlogid
= schildren
;
2696 VERIFY(nvlist_lookup_nvlist_array(child
[c
],
2697 ZPOOL_CONFIG_CHILDREN
, &mchild
, &mchildren
) == 0);
2698 VERIFY(nvlist_dup(mchild
[0], &schild
[schildren
++], 0) == 0);
2701 /* OK, create a config that can be used to split */
2702 VERIFY(nvlist_alloc(&split
, NV_UNIQUE_NAME
, 0) == 0);
2703 VERIFY(nvlist_add_string(split
, ZPOOL_CONFIG_TYPE
,
2704 VDEV_TYPE_ROOT
) == 0);
2705 VERIFY(nvlist_add_nvlist_array(split
, ZPOOL_CONFIG_CHILDREN
, schild
,
2706 lastlogid
!= 0 ? lastlogid
: schildren
) == 0);
2708 VERIFY(nvlist_alloc(&config
, NV_UNIQUE_NAME
, 0) == 0);
2709 VERIFY(nvlist_add_nvlist(config
, ZPOOL_CONFIG_VDEV_TREE
, split
) == 0);
2711 for (c
= 0; c
< schildren
; c
++)
2712 nvlist_free(schild
[c
]);
2716 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
2718 (void) rw_wrlock(&ztest_name_lock
);
2719 error
= spa_vdev_split_mirror(spa
, "splitp", config
, NULL
, B_FALSE
);
2720 (void) rw_unlock(&ztest_name_lock
);
2722 nvlist_free(config
);
2725 (void) printf("successful split - results:\n");
2726 mutex_enter(&spa_namespace_lock
);
2727 show_pool_stats(spa
);
2728 show_pool_stats(spa_lookup("splitp"));
2729 mutex_exit(&spa_namespace_lock
);
2733 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
2738 * Verify that we can attach and detach devices.
2742 ztest_vdev_attach_detach(ztest_ds_t
*zd
, uint64_t id
)
2744 ztest_shared_t
*zs
= ztest_shared
;
2745 spa_t
*spa
= ztest_spa
;
2746 spa_aux_vdev_t
*sav
= &spa
->spa_spares
;
2747 vdev_t
*rvd
= spa
->spa_root_vdev
;
2748 vdev_t
*oldvd
, *newvd
, *pvd
;
2752 uint64_t ashift
= ztest_get_ashift();
2753 uint64_t oldguid
, pguid
;
2754 uint64_t oldsize
, newsize
;
2755 char oldpath
[MAXPATHLEN
], newpath
[MAXPATHLEN
];
2757 int oldvd_has_siblings
= B_FALSE
;
2758 int newvd_is_spare
= B_FALSE
;
2760 int error
, expected_error
;
2762 VERIFY(mutex_lock(&ztest_vdev_lock
) == 0);
2763 leaves
= MAX(zs
->zs_mirrors
, 1) * ztest_opts
.zo_raidz
;
2765 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
2768 * Decide whether to do an attach or a replace.
2770 replacing
= ztest_random(2);
2773 * Pick a random top-level vdev.
2775 top
= ztest_random_vdev_top(spa
, B_TRUE
);
2778 * Pick a random leaf within it.
2780 leaf
= ztest_random(leaves
);
2785 oldvd
= rvd
->vdev_child
[top
];
2786 if (zs
->zs_mirrors
>= 1) {
2787 ASSERT(oldvd
->vdev_ops
== &vdev_mirror_ops
);
2788 ASSERT(oldvd
->vdev_children
>= zs
->zs_mirrors
);
2789 oldvd
= oldvd
->vdev_child
[leaf
/ ztest_opts
.zo_raidz
];
2791 if (ztest_opts
.zo_raidz
> 1) {
2792 ASSERT(oldvd
->vdev_ops
== &vdev_raidz_ops
);
2793 ASSERT(oldvd
->vdev_children
== ztest_opts
.zo_raidz
);
2794 oldvd
= oldvd
->vdev_child
[leaf
% ztest_opts
.zo_raidz
];
2798 * If we're already doing an attach or replace, oldvd may be a
2799 * mirror vdev -- in which case, pick a random child.
2801 while (oldvd
->vdev_children
!= 0) {
2802 oldvd_has_siblings
= B_TRUE
;
2803 ASSERT(oldvd
->vdev_children
>= 2);
2804 oldvd
= oldvd
->vdev_child
[ztest_random(oldvd
->vdev_children
)];
2807 oldguid
= oldvd
->vdev_guid
;
2808 oldsize
= vdev_get_min_asize(oldvd
);
2809 oldvd_is_log
= oldvd
->vdev_top
->vdev_islog
;
2810 (void) strcpy(oldpath
, oldvd
->vdev_path
);
2811 pvd
= oldvd
->vdev_parent
;
2812 pguid
= pvd
->vdev_guid
;
2815 * If oldvd has siblings, then half of the time, detach it.
2817 if (oldvd_has_siblings
&& ztest_random(2) == 0) {
2818 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
2819 error
= spa_vdev_detach(spa
, oldguid
, pguid
, B_FALSE
);
2820 if (error
!= 0 && error
!= ENODEV
&& error
!= EBUSY
&&
2822 fatal(0, "detach (%s) returned %d", oldpath
, error
);
2823 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
2828 * For the new vdev, choose with equal probability between the two
2829 * standard paths (ending in either 'a' or 'b') or a random hot spare.
2831 if (sav
->sav_count
!= 0 && ztest_random(3) == 0) {
2832 newvd
= sav
->sav_vdevs
[ztest_random(sav
->sav_count
)];
2833 newvd_is_spare
= B_TRUE
;
2834 (void) strcpy(newpath
, newvd
->vdev_path
);
2836 (void) snprintf(newpath
, sizeof (newpath
), ztest_dev_template
,
2837 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
,
2838 top
* leaves
+ leaf
);
2839 if (ztest_random(2) == 0)
2840 newpath
[strlen(newpath
) - 1] = 'b';
2841 newvd
= vdev_lookup_by_path(rvd
, newpath
);
2845 newsize
= vdev_get_min_asize(newvd
);
2848 * Make newsize a little bigger or smaller than oldsize.
2849 * If it's smaller, the attach should fail.
2850 * If it's larger, and we're doing a replace,
2851 * we should get dynamic LUN growth when we're done.
2853 newsize
= 10 * oldsize
/ (9 + ztest_random(3));
2857 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
2858 * unless it's a replace; in that case any non-replacing parent is OK.
2860 * If newvd is already part of the pool, it should fail with EBUSY.
2862 * If newvd is too small, it should fail with EOVERFLOW.
2864 if (pvd
->vdev_ops
!= &vdev_mirror_ops
&&
2865 pvd
->vdev_ops
!= &vdev_root_ops
&& (!replacing
||
2866 pvd
->vdev_ops
== &vdev_replacing_ops
||
2867 pvd
->vdev_ops
== &vdev_spare_ops
))
2868 expected_error
= ENOTSUP
;
2869 else if (newvd_is_spare
&& (!replacing
|| oldvd_is_log
))
2870 expected_error
= ENOTSUP
;
2871 else if (newvd
== oldvd
)
2872 expected_error
= replacing
? 0 : EBUSY
;
2873 else if (vdev_lookup_by_path(rvd
, newpath
) != NULL
)
2874 expected_error
= EBUSY
;
2875 else if (newsize
< oldsize
)
2876 expected_error
= EOVERFLOW
;
2877 else if (ashift
> oldvd
->vdev_top
->vdev_ashift
)
2878 expected_error
= EDOM
;
2882 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
2885 * Build the nvlist describing newpath.
2887 root
= make_vdev_root(newpath
, NULL
, NULL
, newvd
== NULL
? newsize
: 0,
2888 ashift
, 0, 0, 0, 1);
2890 error
= spa_vdev_attach(spa
, oldguid
, root
, replacing
);
2895 * If our parent was the replacing vdev, but the replace completed,
2896 * then instead of failing with ENOTSUP we may either succeed,
2897 * fail with ENODEV, or fail with EOVERFLOW.
2899 if (expected_error
== ENOTSUP
&&
2900 (error
== 0 || error
== ENODEV
|| error
== EOVERFLOW
))
2901 expected_error
= error
;
2904 * If someone grew the LUN, the replacement may be too small.
2906 if (error
== EOVERFLOW
|| error
== EBUSY
)
2907 expected_error
= error
;
2909 /* XXX workaround 6690467 */
2910 if (error
!= expected_error
&& expected_error
!= EBUSY
) {
2911 fatal(0, "attach (%s %llu, %s %llu, %d) "
2912 "returned %d, expected %d",
2913 oldpath
, oldsize
, newpath
,
2914 newsize
, replacing
, error
, expected_error
);
2917 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
2921 * Callback function which expands the physical size of the vdev.
2924 grow_vdev(vdev_t
*vd
, void *arg
)
2926 spa_t
*spa
= vd
->vdev_spa
;
2927 size_t *newsize
= arg
;
2931 ASSERT(spa_config_held(spa
, SCL_STATE
, RW_READER
) == SCL_STATE
);
2932 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
2934 if ((fd
= open(vd
->vdev_path
, O_RDWR
)) == -1)
2937 fsize
= lseek(fd
, 0, SEEK_END
);
2938 (void) ftruncate(fd
, *newsize
);
2940 if (ztest_opts
.zo_verbose
>= 6) {
2941 (void) printf("%s grew from %lu to %lu bytes\n",
2942 vd
->vdev_path
, (ulong_t
)fsize
, (ulong_t
)*newsize
);
2949 * Callback function which expands a given vdev by calling vdev_online().
2953 online_vdev(vdev_t
*vd
, void *arg
)
2955 spa_t
*spa
= vd
->vdev_spa
;
2956 vdev_t
*tvd
= vd
->vdev_top
;
2957 uint64_t guid
= vd
->vdev_guid
;
2958 uint64_t generation
= spa
->spa_config_generation
+ 1;
2959 vdev_state_t newstate
= VDEV_STATE_UNKNOWN
;
2962 ASSERT(spa_config_held(spa
, SCL_STATE
, RW_READER
) == SCL_STATE
);
2963 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
2965 /* Calling vdev_online will initialize the new metaslabs */
2966 spa_config_exit(spa
, SCL_STATE
, spa
);
2967 error
= vdev_online(spa
, guid
, ZFS_ONLINE_EXPAND
, &newstate
);
2968 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
2971 * If vdev_online returned an error or the underlying vdev_open
2972 * failed then we abort the expand. The only way to know that
2973 * vdev_open fails is by checking the returned newstate.
2975 if (error
|| newstate
!= VDEV_STATE_HEALTHY
) {
2976 if (ztest_opts
.zo_verbose
>= 5) {
2977 (void) printf("Unable to expand vdev, state %llu, "
2978 "error %d\n", (u_longlong_t
)newstate
, error
);
2982 ASSERT3U(newstate
, ==, VDEV_STATE_HEALTHY
);
2985 * Since we dropped the lock we need to ensure that we're
2986 * still talking to the original vdev. It's possible this
2987 * vdev may have been detached/replaced while we were
2988 * trying to online it.
2990 if (generation
!= spa
->spa_config_generation
) {
2991 if (ztest_opts
.zo_verbose
>= 5) {
2992 (void) printf("vdev configuration has changed, "
2993 "guid %llu, state %llu, expected gen %llu, "
2996 (u_longlong_t
)tvd
->vdev_state
,
2997 (u_longlong_t
)generation
,
2998 (u_longlong_t
)spa
->spa_config_generation
);
3006 * Traverse the vdev tree calling the supplied function.
3007 * We continue to walk the tree until we either have walked all
3008 * children or we receive a non-NULL return from the callback.
3009 * If a NULL callback is passed, then we just return back the first
3010 * leaf vdev we encounter.
3013 vdev_walk_tree(vdev_t
*vd
, vdev_t
*(*func
)(vdev_t
*, void *), void *arg
)
3015 if (vd
->vdev_ops
->vdev_op_leaf
) {
3019 return (func(vd
, arg
));
3022 for (uint_t c
= 0; c
< vd
->vdev_children
; c
++) {
3023 vdev_t
*cvd
= vd
->vdev_child
[c
];
3024 if ((cvd
= vdev_walk_tree(cvd
, func
, arg
)) != NULL
)
3031 * Verify that dynamic LUN growth works as expected.
3035 ztest_vdev_LUN_growth(ztest_ds_t
*zd
, uint64_t id
)
3037 spa_t
*spa
= ztest_spa
;
3039 metaslab_class_t
*mc
;
3040 metaslab_group_t
*mg
;
3041 size_t psize
, newsize
;
3043 uint64_t old_class_space
, new_class_space
, old_ms_count
, new_ms_count
;
3045 VERIFY(mutex_lock(&ztest_vdev_lock
) == 0);
3046 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
3048 top
= ztest_random_vdev_top(spa
, B_TRUE
);
3050 tvd
= spa
->spa_root_vdev
->vdev_child
[top
];
3053 old_ms_count
= tvd
->vdev_ms_count
;
3054 old_class_space
= metaslab_class_get_space(mc
);
3057 * Determine the size of the first leaf vdev associated with
3058 * our top-level device.
3060 vd
= vdev_walk_tree(tvd
, NULL
, NULL
);
3061 ASSERT3P(vd
, !=, NULL
);
3062 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
3064 psize
= vd
->vdev_psize
;
3067 * We only try to expand the vdev if it's healthy, less than 4x its
3068 * original size, and it has a valid psize.
3070 if (tvd
->vdev_state
!= VDEV_STATE_HEALTHY
||
3071 psize
== 0 || psize
>= 4 * ztest_opts
.zo_vdev_size
) {
3072 spa_config_exit(spa
, SCL_STATE
, spa
);
3073 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
3077 newsize
= psize
+ psize
/ 8;
3078 ASSERT3U(newsize
, >, psize
);
3080 if (ztest_opts
.zo_verbose
>= 6) {
3081 (void) printf("Expanding LUN %s from %lu to %lu\n",
3082 vd
->vdev_path
, (ulong_t
)psize
, (ulong_t
)newsize
);
3086 * Growing the vdev is a two step process:
3087 * 1). expand the physical size (i.e. relabel)
3088 * 2). online the vdev to create the new metaslabs
3090 if (vdev_walk_tree(tvd
, grow_vdev
, &newsize
) != NULL
||
3091 vdev_walk_tree(tvd
, online_vdev
, NULL
) != NULL
||
3092 tvd
->vdev_state
!= VDEV_STATE_HEALTHY
) {
3093 if (ztest_opts
.zo_verbose
>= 5) {
3094 (void) printf("Could not expand LUN because "
3095 "the vdev configuration changed.\n");
3097 spa_config_exit(spa
, SCL_STATE
, spa
);
3098 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
3102 spa_config_exit(spa
, SCL_STATE
, spa
);
3105 * Expanding the LUN will update the config asynchronously,
3106 * thus we must wait for the async thread to complete any
3107 * pending tasks before proceeding.
3111 mutex_enter(&spa
->spa_async_lock
);
3112 done
= (spa
->spa_async_thread
== NULL
&& !spa
->spa_async_tasks
);
3113 mutex_exit(&spa
->spa_async_lock
);
3116 txg_wait_synced(spa_get_dsl(spa
), 0);
3117 (void) poll(NULL
, 0, 100);
3120 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
3122 tvd
= spa
->spa_root_vdev
->vdev_child
[top
];
3123 new_ms_count
= tvd
->vdev_ms_count
;
3124 new_class_space
= metaslab_class_get_space(mc
);
3126 if (tvd
->vdev_mg
!= mg
|| mg
->mg_class
!= mc
) {
3127 if (ztest_opts
.zo_verbose
>= 5) {
3128 (void) printf("Could not verify LUN expansion due to "
3129 "intervening vdev offline or remove.\n");
3131 spa_config_exit(spa
, SCL_STATE
, spa
);
3132 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
3137 * Make sure we were able to grow the vdev.
3139 if (new_ms_count
<= old_ms_count
)
3140 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n",
3141 old_ms_count
, new_ms_count
);
3144 * Make sure we were able to grow the pool.
3146 if (new_class_space
<= old_class_space
)
3147 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n",
3148 old_class_space
, new_class_space
);
3150 if (ztest_opts
.zo_verbose
>= 5) {
3151 char oldnumbuf
[6], newnumbuf
[6];
3153 nicenum(old_class_space
, oldnumbuf
);
3154 nicenum(new_class_space
, newnumbuf
);
3155 (void) printf("%s grew from %s to %s\n",
3156 spa
->spa_name
, oldnumbuf
, newnumbuf
);
3159 spa_config_exit(spa
, SCL_STATE
, spa
);
3160 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
3164 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3168 ztest_objset_create_cb(objset_t
*os
, void *arg
, cred_t
*cr
, dmu_tx_t
*tx
)
3171 * Create the objects common to all ztest datasets.
3173 VERIFY(zap_create_claim(os
, ZTEST_DIROBJ
,
3174 DMU_OT_ZAP_OTHER
, DMU_OT_NONE
, 0, tx
) == 0);
3178 ztest_dataset_create(char *dsname
)
3180 uint64_t zilset
= ztest_random(100);
3181 int err
= dmu_objset_create(dsname
, DMU_OST_OTHER
, 0,
3182 ztest_objset_create_cb
, NULL
);
3184 if (err
|| zilset
< 80)
3187 if (ztest_opts
.zo_verbose
>= 6)
3188 (void) printf("Setting dataset %s to sync always\n", dsname
);
3189 return (ztest_dsl_prop_set_uint64(dsname
, ZFS_PROP_SYNC
,
3190 ZFS_SYNC_ALWAYS
, B_FALSE
));
3195 ztest_objset_destroy_cb(const char *name
, void *arg
)
3198 dmu_object_info_t doi
;
3202 * Verify that the dataset contains a directory object.
3204 VERIFY0(dmu_objset_own(name
, DMU_OST_OTHER
, B_TRUE
, FTAG
, &os
));
3205 error
= dmu_object_info(os
, ZTEST_DIROBJ
, &doi
);
3206 if (error
!= ENOENT
) {
3207 /* We could have crashed in the middle of destroying it */
3209 ASSERT3U(doi
.doi_type
, ==, DMU_OT_ZAP_OTHER
);
3210 ASSERT3S(doi
.doi_physical_blocks_512
, >=, 0);
3212 dmu_objset_disown(os
, FTAG
);
3215 * Destroy the dataset.
3217 if (strchr(name
, '@') != NULL
) {
3218 VERIFY0(dsl_destroy_snapshot(name
, B_FALSE
));
3220 VERIFY0(dsl_destroy_head(name
));
3226 ztest_snapshot_create(char *osname
, uint64_t id
)
3228 char snapname
[MAXNAMELEN
];
3231 (void) snprintf(snapname
, sizeof (snapname
), "%llu", (u_longlong_t
)id
);
3233 error
= dmu_objset_snapshot_one(osname
, snapname
);
3234 if (error
== ENOSPC
) {
3235 ztest_record_enospc(FTAG
);
3238 if (error
!= 0 && error
!= EEXIST
) {
3239 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname
,
3246 ztest_snapshot_destroy(char *osname
, uint64_t id
)
3248 char snapname
[MAXNAMELEN
];
3251 (void) snprintf(snapname
, MAXNAMELEN
, "%s@%llu", osname
,
3254 error
= dsl_destroy_snapshot(snapname
, B_FALSE
);
3255 if (error
!= 0 && error
!= ENOENT
)
3256 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname
, error
);
3262 ztest_dmu_objset_create_destroy(ztest_ds_t
*zd
, uint64_t id
)
3268 char name
[MAXNAMELEN
];
3271 (void) rw_rdlock(&ztest_name_lock
);
3273 (void) snprintf(name
, MAXNAMELEN
, "%s/temp_%llu",
3274 ztest_opts
.zo_pool
, (u_longlong_t
)id
);
3277 * If this dataset exists from a previous run, process its replay log
3278 * half of the time. If we don't replay it, then dmu_objset_destroy()
3279 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3281 if (ztest_random(2) == 0 &&
3282 dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
, FTAG
, &os
) == 0) {
3283 ztest_zd_init(&zdtmp
, NULL
, os
);
3284 zil_replay(os
, &zdtmp
, ztest_replay_vector
);
3285 ztest_zd_fini(&zdtmp
);
3286 dmu_objset_disown(os
, FTAG
);
3290 * There may be an old instance of the dataset we're about to
3291 * create lying around from a previous run. If so, destroy it
3292 * and all of its snapshots.
3294 (void) dmu_objset_find(name
, ztest_objset_destroy_cb
, NULL
,
3295 DS_FIND_CHILDREN
| DS_FIND_SNAPSHOTS
);
3298 * Verify that the destroyed dataset is no longer in the namespace.
3300 VERIFY3U(ENOENT
, ==, dmu_objset_own(name
, DMU_OST_OTHER
, B_TRUE
,
3304 * Verify that we can create a new dataset.
3306 error
= ztest_dataset_create(name
);
3308 if (error
== ENOSPC
) {
3309 ztest_record_enospc(FTAG
);
3310 (void) rw_unlock(&ztest_name_lock
);
3313 fatal(0, "dmu_objset_create(%s) = %d", name
, error
);
3316 VERIFY0(dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
, FTAG
, &os
));
3318 ztest_zd_init(&zdtmp
, NULL
, os
);
3321 * Open the intent log for it.
3323 zilog
= zil_open(os
, ztest_get_data
);
3326 * Put some objects in there, do a little I/O to them,
3327 * and randomly take a couple of snapshots along the way.
3329 iters
= ztest_random(5);
3330 for (int i
= 0; i
< iters
; i
++) {
3331 ztest_dmu_object_alloc_free(&zdtmp
, id
);
3332 if (ztest_random(iters
) == 0)
3333 (void) ztest_snapshot_create(name
, i
);
3337 * Verify that we cannot create an existing dataset.
3339 VERIFY3U(EEXIST
, ==,
3340 dmu_objset_create(name
, DMU_OST_OTHER
, 0, NULL
, NULL
));
3343 * Verify that we can hold an objset that is also owned.
3345 VERIFY3U(0, ==, dmu_objset_hold(name
, FTAG
, &os2
));
3346 dmu_objset_rele(os2
, FTAG
);
3349 * Verify that we cannot own an objset that is already owned.
3352 dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
, FTAG
, &os2
));
3355 dmu_objset_disown(os
, FTAG
);
3356 ztest_zd_fini(&zdtmp
);
3358 (void) rw_unlock(&ztest_name_lock
);
3362 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3365 ztest_dmu_snapshot_create_destroy(ztest_ds_t
*zd
, uint64_t id
)
3367 (void) rw_rdlock(&ztest_name_lock
);
3368 (void) ztest_snapshot_destroy(zd
->zd_name
, id
);
3369 (void) ztest_snapshot_create(zd
->zd_name
, id
);
3370 (void) rw_unlock(&ztest_name_lock
);
3374 * Cleanup non-standard snapshots and clones.
3377 ztest_dsl_dataset_cleanup(char *osname
, uint64_t id
)
3379 char snap1name
[MAXNAMELEN
];
3380 char clone1name
[MAXNAMELEN
];
3381 char snap2name
[MAXNAMELEN
];
3382 char clone2name
[MAXNAMELEN
];
3383 char snap3name
[MAXNAMELEN
];
3386 (void) snprintf(snap1name
, MAXNAMELEN
, "%s@s1_%llu", osname
, id
);
3387 (void) snprintf(clone1name
, MAXNAMELEN
, "%s/c1_%llu", osname
, id
);
3388 (void) snprintf(snap2name
, MAXNAMELEN
, "%s@s2_%llu", clone1name
, id
);
3389 (void) snprintf(clone2name
, MAXNAMELEN
, "%s/c2_%llu", osname
, id
);
3390 (void) snprintf(snap3name
, MAXNAMELEN
, "%s@s3_%llu", clone1name
, id
);
3392 error
= dsl_destroy_head(clone2name
);
3393 if (error
&& error
!= ENOENT
)
3394 fatal(0, "dsl_destroy_head(%s) = %d", clone2name
, error
);
3395 error
= dsl_destroy_snapshot(snap3name
, B_FALSE
);
3396 if (error
&& error
!= ENOENT
)
3397 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name
, error
);
3398 error
= dsl_destroy_snapshot(snap2name
, B_FALSE
);
3399 if (error
&& error
!= ENOENT
)
3400 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name
, error
);
3401 error
= dsl_destroy_head(clone1name
);
3402 if (error
&& error
!= ENOENT
)
3403 fatal(0, "dsl_destroy_head(%s) = %d", clone1name
, error
);
3404 error
= dsl_destroy_snapshot(snap1name
, B_FALSE
);
3405 if (error
&& error
!= ENOENT
)
3406 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name
, error
);
3410 * Verify dsl_dataset_promote handles EBUSY
3413 ztest_dsl_dataset_promote_busy(ztest_ds_t
*zd
, uint64_t id
)
3416 char snap1name
[MAXNAMELEN
];
3417 char clone1name
[MAXNAMELEN
];
3418 char snap2name
[MAXNAMELEN
];
3419 char clone2name
[MAXNAMELEN
];
3420 char snap3name
[MAXNAMELEN
];
3421 char *osname
= zd
->zd_name
;
3424 (void) rw_rdlock(&ztest_name_lock
);
3426 ztest_dsl_dataset_cleanup(osname
, id
);
3428 (void) snprintf(snap1name
, MAXNAMELEN
, "%s@s1_%llu", osname
, id
);
3429 (void) snprintf(clone1name
, MAXNAMELEN
, "%s/c1_%llu", osname
, id
);
3430 (void) snprintf(snap2name
, MAXNAMELEN
, "%s@s2_%llu", clone1name
, id
);
3431 (void) snprintf(clone2name
, MAXNAMELEN
, "%s/c2_%llu", osname
, id
);
3432 (void) snprintf(snap3name
, MAXNAMELEN
, "%s@s3_%llu", clone1name
, id
);
3434 error
= dmu_objset_snapshot_one(osname
, strchr(snap1name
, '@') + 1);
3435 if (error
&& error
!= EEXIST
) {
3436 if (error
== ENOSPC
) {
3437 ztest_record_enospc(FTAG
);
3440 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name
, error
);
3443 error
= dmu_objset_clone(clone1name
, snap1name
);
3445 if (error
== ENOSPC
) {
3446 ztest_record_enospc(FTAG
);
3449 fatal(0, "dmu_objset_create(%s) = %d", clone1name
, error
);
3452 error
= dmu_objset_snapshot_one(clone1name
, strchr(snap2name
, '@') + 1);
3453 if (error
&& error
!= EEXIST
) {
3454 if (error
== ENOSPC
) {
3455 ztest_record_enospc(FTAG
);
3458 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name
, error
);
3461 error
= dmu_objset_snapshot_one(clone1name
, strchr(snap3name
, '@') + 1);
3462 if (error
&& error
!= EEXIST
) {
3463 if (error
== ENOSPC
) {
3464 ztest_record_enospc(FTAG
);
3467 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name
, error
);
3470 error
= dmu_objset_clone(clone2name
, snap3name
);
3472 if (error
== ENOSPC
) {
3473 ztest_record_enospc(FTAG
);
3476 fatal(0, "dmu_objset_create(%s) = %d", clone2name
, error
);
3479 error
= dmu_objset_own(snap2name
, DMU_OST_ANY
, B_TRUE
, FTAG
, &os
);
3481 fatal(0, "dmu_objset_own(%s) = %d", snap2name
, error
);
3482 error
= dsl_dataset_promote(clone2name
, NULL
);
3483 if (error
== ENOSPC
) {
3484 dmu_objset_disown(os
, FTAG
);
3485 ztest_record_enospc(FTAG
);
3489 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name
,
3491 dmu_objset_disown(os
, FTAG
);
3494 ztest_dsl_dataset_cleanup(osname
, id
);
3496 (void) rw_unlock(&ztest_name_lock
);
3500 * Verify that dmu_object_{alloc,free} work as expected.
3503 ztest_dmu_object_alloc_free(ztest_ds_t
*zd
, uint64_t id
)
3506 int batchsize
= sizeof (od
) / sizeof (od
[0]);
3508 for (int b
= 0; b
< batchsize
; b
++)
3509 ztest_od_init(&od
[b
], id
, FTAG
, b
, DMU_OT_UINT64_OTHER
, 0, 0);
3512 * Destroy the previous batch of objects, create a new batch,
3513 * and do some I/O on the new objects.
3515 if (ztest_object_init(zd
, od
, sizeof (od
), B_TRUE
) != 0)
3518 while (ztest_random(4 * batchsize
) != 0)
3519 ztest_io(zd
, od
[ztest_random(batchsize
)].od_object
,
3520 ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
3524 * Verify that dmu_{read,write} work as expected.
3527 ztest_dmu_read_write(ztest_ds_t
*zd
, uint64_t id
)
3529 objset_t
*os
= zd
->zd_os
;
3532 int i
, freeit
, error
;
3534 bufwad_t
*packbuf
, *bigbuf
, *pack
, *bigH
, *bigT
;
3535 uint64_t packobj
, packoff
, packsize
, bigobj
, bigoff
, bigsize
;
3536 uint64_t chunksize
= (1000 + ztest_random(1000)) * sizeof (uint64_t);
3537 uint64_t regions
= 997;
3538 uint64_t stride
= 123456789ULL;
3539 uint64_t width
= 40;
3540 int free_percent
= 5;
3543 * This test uses two objects, packobj and bigobj, that are always
3544 * updated together (i.e. in the same tx) so that their contents are
3545 * in sync and can be compared. Their contents relate to each other
3546 * in a simple way: packobj is a dense array of 'bufwad' structures,
3547 * while bigobj is a sparse array of the same bufwads. Specifically,
3548 * for any index n, there are three bufwads that should be identical:
3550 * packobj, at offset n * sizeof (bufwad_t)
3551 * bigobj, at the head of the nth chunk
3552 * bigobj, at the tail of the nth chunk
3554 * The chunk size is arbitrary. It doesn't have to be a power of two,
3555 * and it doesn't have any relation to the object blocksize.
3556 * The only requirement is that it can hold at least two bufwads.
3558 * Normally, we write the bufwad to each of these locations.
3559 * However, free_percent of the time we instead write zeroes to
3560 * packobj and perform a dmu_free_range() on bigobj. By comparing
3561 * bigobj to packobj, we can verify that the DMU is correctly
3562 * tracking which parts of an object are allocated and free,
3563 * and that the contents of the allocated blocks are correct.
3567 * Read the directory info. If it's the first time, set things up.
3569 ztest_od_init(&od
[0], id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, chunksize
);
3570 ztest_od_init(&od
[1], id
, FTAG
, 1, DMU_OT_UINT64_OTHER
, 0, chunksize
);
3572 if (ztest_object_init(zd
, od
, sizeof (od
), B_FALSE
) != 0)
3575 bigobj
= od
[0].od_object
;
3576 packobj
= od
[1].od_object
;
3577 chunksize
= od
[0].od_gen
;
3578 ASSERT(chunksize
== od
[1].od_gen
);
3581 * Prefetch a random chunk of the big object.
3582 * Our aim here is to get some async reads in flight
3583 * for blocks that we may free below; the DMU should
3584 * handle this race correctly.
3586 n
= ztest_random(regions
) * stride
+ ztest_random(width
);
3587 s
= 1 + ztest_random(2 * width
- 1);
3588 dmu_prefetch(os
, bigobj
, 0, n
* chunksize
, s
* chunksize
,
3589 ZIO_PRIORITY_SYNC_READ
);
3592 * Pick a random index and compute the offsets into packobj and bigobj.
3594 n
= ztest_random(regions
) * stride
+ ztest_random(width
);
3595 s
= 1 + ztest_random(width
- 1);
3597 packoff
= n
* sizeof (bufwad_t
);
3598 packsize
= s
* sizeof (bufwad_t
);
3600 bigoff
= n
* chunksize
;
3601 bigsize
= s
* chunksize
;
3603 packbuf
= umem_alloc(packsize
, UMEM_NOFAIL
);
3604 bigbuf
= umem_alloc(bigsize
, UMEM_NOFAIL
);
3607 * free_percent of the time, free a range of bigobj rather than
3610 freeit
= (ztest_random(100) < free_percent
);
3613 * Read the current contents of our objects.
3615 error
= dmu_read(os
, packobj
, packoff
, packsize
, packbuf
,
3618 error
= dmu_read(os
, bigobj
, bigoff
, bigsize
, bigbuf
,
3623 * Get a tx for the mods to both packobj and bigobj.
3625 tx
= dmu_tx_create(os
);
3627 dmu_tx_hold_write(tx
, packobj
, packoff
, packsize
);
3630 dmu_tx_hold_free(tx
, bigobj
, bigoff
, bigsize
);
3632 dmu_tx_hold_write(tx
, bigobj
, bigoff
, bigsize
);
3634 /* This accounts for setting the checksum/compression. */
3635 dmu_tx_hold_bonus(tx
, bigobj
);
3637 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
3639 umem_free(packbuf
, packsize
);
3640 umem_free(bigbuf
, bigsize
);
3644 enum zio_checksum cksum
;
3646 cksum
= (enum zio_checksum
)
3647 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM
);
3648 } while (cksum
>= ZIO_CHECKSUM_LEGACY_FUNCTIONS
);
3649 dmu_object_set_checksum(os
, bigobj
, cksum
, tx
);
3651 enum zio_compress comp
;
3653 comp
= (enum zio_compress
)
3654 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION
);
3655 } while (comp
>= ZIO_COMPRESS_LEGACY_FUNCTIONS
);
3656 dmu_object_set_compress(os
, bigobj
, comp
, tx
);
3659 * For each index from n to n + s, verify that the existing bufwad
3660 * in packobj matches the bufwads at the head and tail of the
3661 * corresponding chunk in bigobj. Then update all three bufwads
3662 * with the new values we want to write out.
3664 for (i
= 0; i
< s
; i
++) {
3666 pack
= (bufwad_t
*)((char *)packbuf
+ i
* sizeof (bufwad_t
));
3668 bigH
= (bufwad_t
*)((char *)bigbuf
+ i
* chunksize
);
3670 bigT
= (bufwad_t
*)((char *)bigH
+ chunksize
) - 1;
3672 ASSERT((uintptr_t)bigH
- (uintptr_t)bigbuf
< bigsize
);
3673 ASSERT((uintptr_t)bigT
- (uintptr_t)bigbuf
< bigsize
);
3675 if (pack
->bw_txg
> txg
)
3676 fatal(0, "future leak: got %llx, open txg is %llx",
3679 if (pack
->bw_data
!= 0 && pack
->bw_index
!= n
+ i
)
3680 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3681 pack
->bw_index
, n
, i
);
3683 if (bcmp(pack
, bigH
, sizeof (bufwad_t
)) != 0)
3684 fatal(0, "pack/bigH mismatch in %p/%p", pack
, bigH
);
3686 if (bcmp(pack
, bigT
, sizeof (bufwad_t
)) != 0)
3687 fatal(0, "pack/bigT mismatch in %p/%p", pack
, bigT
);
3690 bzero(pack
, sizeof (bufwad_t
));
3692 pack
->bw_index
= n
+ i
;
3694 pack
->bw_data
= 1 + ztest_random(-2ULL);
3701 * We've verified all the old bufwads, and made new ones.
3702 * Now write them out.
3704 dmu_write(os
, packobj
, packoff
, packsize
, packbuf
, tx
);
3707 if (ztest_opts
.zo_verbose
>= 7) {
3708 (void) printf("freeing offset %llx size %llx"
3710 (u_longlong_t
)bigoff
,
3711 (u_longlong_t
)bigsize
,
3714 VERIFY(0 == dmu_free_range(os
, bigobj
, bigoff
, bigsize
, tx
));
3716 if (ztest_opts
.zo_verbose
>= 7) {
3717 (void) printf("writing offset %llx size %llx"
3719 (u_longlong_t
)bigoff
,
3720 (u_longlong_t
)bigsize
,
3723 dmu_write(os
, bigobj
, bigoff
, bigsize
, bigbuf
, tx
);
3729 * Sanity check the stuff we just wrote.
3732 void *packcheck
= umem_alloc(packsize
, UMEM_NOFAIL
);
3733 void *bigcheck
= umem_alloc(bigsize
, UMEM_NOFAIL
);
3735 VERIFY(0 == dmu_read(os
, packobj
, packoff
,
3736 packsize
, packcheck
, DMU_READ_PREFETCH
));
3737 VERIFY(0 == dmu_read(os
, bigobj
, bigoff
,
3738 bigsize
, bigcheck
, DMU_READ_PREFETCH
));
3740 ASSERT(bcmp(packbuf
, packcheck
, packsize
) == 0);
3741 ASSERT(bcmp(bigbuf
, bigcheck
, bigsize
) == 0);
3743 umem_free(packcheck
, packsize
);
3744 umem_free(bigcheck
, bigsize
);
3747 umem_free(packbuf
, packsize
);
3748 umem_free(bigbuf
, bigsize
);
3752 compare_and_update_pbbufs(uint64_t s
, bufwad_t
*packbuf
, bufwad_t
*bigbuf
,
3753 uint64_t bigsize
, uint64_t n
, uint64_t chunksize
, uint64_t txg
)
3761 * For each index from n to n + s, verify that the existing bufwad
3762 * in packobj matches the bufwads at the head and tail of the
3763 * corresponding chunk in bigobj. Then update all three bufwads
3764 * with the new values we want to write out.
3766 for (i
= 0; i
< s
; i
++) {
3768 pack
= (bufwad_t
*)((char *)packbuf
+ i
* sizeof (bufwad_t
));
3770 bigH
= (bufwad_t
*)((char *)bigbuf
+ i
* chunksize
);
3772 bigT
= (bufwad_t
*)((char *)bigH
+ chunksize
) - 1;
3774 ASSERT((uintptr_t)bigH
- (uintptr_t)bigbuf
< bigsize
);
3775 ASSERT((uintptr_t)bigT
- (uintptr_t)bigbuf
< bigsize
);
3777 if (pack
->bw_txg
> txg
)
3778 fatal(0, "future leak: got %llx, open txg is %llx",
3781 if (pack
->bw_data
!= 0 && pack
->bw_index
!= n
+ i
)
3782 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3783 pack
->bw_index
, n
, i
);
3785 if (bcmp(pack
, bigH
, sizeof (bufwad_t
)) != 0)
3786 fatal(0, "pack/bigH mismatch in %p/%p", pack
, bigH
);
3788 if (bcmp(pack
, bigT
, sizeof (bufwad_t
)) != 0)
3789 fatal(0, "pack/bigT mismatch in %p/%p", pack
, bigT
);
3791 pack
->bw_index
= n
+ i
;
3793 pack
->bw_data
= 1 + ztest_random(-2ULL);
3801 ztest_dmu_read_write_zcopy(ztest_ds_t
*zd
, uint64_t id
)
3803 objset_t
*os
= zd
->zd_os
;
3809 bufwad_t
*packbuf
, *bigbuf
;
3810 uint64_t packobj
, packoff
, packsize
, bigobj
, bigoff
, bigsize
;
3811 uint64_t blocksize
= ztest_random_blocksize();
3812 uint64_t chunksize
= blocksize
;
3813 uint64_t regions
= 997;
3814 uint64_t stride
= 123456789ULL;
3816 dmu_buf_t
*bonus_db
;
3817 arc_buf_t
**bigbuf_arcbufs
;
3818 dmu_object_info_t doi
;
3821 * This test uses two objects, packobj and bigobj, that are always
3822 * updated together (i.e. in the same tx) so that their contents are
3823 * in sync and can be compared. Their contents relate to each other
3824 * in a simple way: packobj is a dense array of 'bufwad' structures,
3825 * while bigobj is a sparse array of the same bufwads. Specifically,
3826 * for any index n, there are three bufwads that should be identical:
3828 * packobj, at offset n * sizeof (bufwad_t)
3829 * bigobj, at the head of the nth chunk
3830 * bigobj, at the tail of the nth chunk
3832 * The chunk size is set equal to bigobj block size so that
3833 * dmu_assign_arcbuf() can be tested for object updates.
3837 * Read the directory info. If it's the first time, set things up.
3839 ztest_od_init(&od
[0], id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, blocksize
, 0);
3840 ztest_od_init(&od
[1], id
, FTAG
, 1, DMU_OT_UINT64_OTHER
, 0, chunksize
);
3842 if (ztest_object_init(zd
, od
, sizeof (od
), B_FALSE
) != 0)
3845 bigobj
= od
[0].od_object
;
3846 packobj
= od
[1].od_object
;
3847 blocksize
= od
[0].od_blocksize
;
3848 chunksize
= blocksize
;
3849 ASSERT(chunksize
== od
[1].od_gen
);
3851 VERIFY(dmu_object_info(os
, bigobj
, &doi
) == 0);
3852 VERIFY(ISP2(doi
.doi_data_block_size
));
3853 VERIFY(chunksize
== doi
.doi_data_block_size
);
3854 VERIFY(chunksize
>= 2 * sizeof (bufwad_t
));
3857 * Pick a random index and compute the offsets into packobj and bigobj.
3859 n
= ztest_random(regions
) * stride
+ ztest_random(width
);
3860 s
= 1 + ztest_random(width
- 1);
3862 packoff
= n
* sizeof (bufwad_t
);
3863 packsize
= s
* sizeof (bufwad_t
);
3865 bigoff
= n
* chunksize
;
3866 bigsize
= s
* chunksize
;
3868 packbuf
= umem_zalloc(packsize
, UMEM_NOFAIL
);
3869 bigbuf
= umem_zalloc(bigsize
, UMEM_NOFAIL
);
3871 VERIFY3U(0, ==, dmu_bonus_hold(os
, bigobj
, FTAG
, &bonus_db
));
3873 bigbuf_arcbufs
= umem_zalloc(2 * s
* sizeof (arc_buf_t
*), UMEM_NOFAIL
);
3876 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
3877 * Iteration 1 test zcopy to already referenced dbufs.
3878 * Iteration 2 test zcopy to dirty dbuf in the same txg.
3879 * Iteration 3 test zcopy to dbuf dirty in previous txg.
3880 * Iteration 4 test zcopy when dbuf is no longer dirty.
3881 * Iteration 5 test zcopy when it can't be done.
3882 * Iteration 6 one more zcopy write.
3884 for (i
= 0; i
< 7; i
++) {
3889 * In iteration 5 (i == 5) use arcbufs
3890 * that don't match bigobj blksz to test
3891 * dmu_assign_arcbuf() when it can't directly
3892 * assign an arcbuf to a dbuf.
3894 for (j
= 0; j
< s
; j
++) {
3895 if (i
!= 5 || chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
3897 dmu_request_arcbuf(bonus_db
, chunksize
);
3899 bigbuf_arcbufs
[2 * j
] =
3900 dmu_request_arcbuf(bonus_db
, chunksize
/ 2);
3901 bigbuf_arcbufs
[2 * j
+ 1] =
3902 dmu_request_arcbuf(bonus_db
, chunksize
/ 2);
3907 * Get a tx for the mods to both packobj and bigobj.
3909 tx
= dmu_tx_create(os
);
3911 dmu_tx_hold_write(tx
, packobj
, packoff
, packsize
);
3912 dmu_tx_hold_write(tx
, bigobj
, bigoff
, bigsize
);
3914 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
3916 umem_free(packbuf
, packsize
);
3917 umem_free(bigbuf
, bigsize
);
3918 for (j
= 0; j
< s
; j
++) {
3920 chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
3921 dmu_return_arcbuf(bigbuf_arcbufs
[j
]);
3924 bigbuf_arcbufs
[2 * j
]);
3926 bigbuf_arcbufs
[2 * j
+ 1]);
3929 umem_free(bigbuf_arcbufs
, 2 * s
* sizeof (arc_buf_t
*));
3930 dmu_buf_rele(bonus_db
, FTAG
);
3935 * 50% of the time don't read objects in the 1st iteration to
3936 * test dmu_assign_arcbuf() for the case when there're no
3937 * existing dbufs for the specified offsets.
3939 if (i
!= 0 || ztest_random(2) != 0) {
3940 error
= dmu_read(os
, packobj
, packoff
,
3941 packsize
, packbuf
, DMU_READ_PREFETCH
);
3943 error
= dmu_read(os
, bigobj
, bigoff
, bigsize
,
3944 bigbuf
, DMU_READ_PREFETCH
);
3947 compare_and_update_pbbufs(s
, packbuf
, bigbuf
, bigsize
,
3951 * We've verified all the old bufwads, and made new ones.
3952 * Now write them out.
3954 dmu_write(os
, packobj
, packoff
, packsize
, packbuf
, tx
);
3955 if (ztest_opts
.zo_verbose
>= 7) {
3956 (void) printf("writing offset %llx size %llx"
3958 (u_longlong_t
)bigoff
,
3959 (u_longlong_t
)bigsize
,
3962 for (off
= bigoff
, j
= 0; j
< s
; j
++, off
+= chunksize
) {
3964 if (i
!= 5 || chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
3965 bcopy((caddr_t
)bigbuf
+ (off
- bigoff
),
3966 bigbuf_arcbufs
[j
]->b_data
, chunksize
);
3968 bcopy((caddr_t
)bigbuf
+ (off
- bigoff
),
3969 bigbuf_arcbufs
[2 * j
]->b_data
,
3971 bcopy((caddr_t
)bigbuf
+ (off
- bigoff
) +
3973 bigbuf_arcbufs
[2 * j
+ 1]->b_data
,
3978 VERIFY(dmu_buf_hold(os
, bigobj
, off
,
3979 FTAG
, &dbt
, DMU_READ_NO_PREFETCH
) == 0);
3981 if (i
!= 5 || chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
3982 dmu_assign_arcbuf(bonus_db
, off
,
3983 bigbuf_arcbufs
[j
], tx
);
3985 dmu_assign_arcbuf(bonus_db
, off
,
3986 bigbuf_arcbufs
[2 * j
], tx
);
3987 dmu_assign_arcbuf(bonus_db
,
3988 off
+ chunksize
/ 2,
3989 bigbuf_arcbufs
[2 * j
+ 1], tx
);
3992 dmu_buf_rele(dbt
, FTAG
);
3998 * Sanity check the stuff we just wrote.
4001 void *packcheck
= umem_alloc(packsize
, UMEM_NOFAIL
);
4002 void *bigcheck
= umem_alloc(bigsize
, UMEM_NOFAIL
);
4004 VERIFY(0 == dmu_read(os
, packobj
, packoff
,
4005 packsize
, packcheck
, DMU_READ_PREFETCH
));
4006 VERIFY(0 == dmu_read(os
, bigobj
, bigoff
,
4007 bigsize
, bigcheck
, DMU_READ_PREFETCH
));
4009 ASSERT(bcmp(packbuf
, packcheck
, packsize
) == 0);
4010 ASSERT(bcmp(bigbuf
, bigcheck
, bigsize
) == 0);
4012 umem_free(packcheck
, packsize
);
4013 umem_free(bigcheck
, bigsize
);
4016 txg_wait_open(dmu_objset_pool(os
), 0);
4017 } else if (i
== 3) {
4018 txg_wait_synced(dmu_objset_pool(os
), 0);
4022 dmu_buf_rele(bonus_db
, FTAG
);
4023 umem_free(packbuf
, packsize
);
4024 umem_free(bigbuf
, bigsize
);
4025 umem_free(bigbuf_arcbufs
, 2 * s
* sizeof (arc_buf_t
*));
4030 ztest_dmu_write_parallel(ztest_ds_t
*zd
, uint64_t id
)
4033 uint64_t offset
= (1ULL << (ztest_random(20) + 43)) +
4034 (ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
4037 * Have multiple threads write to large offsets in an object
4038 * to verify that parallel writes to an object -- even to the
4039 * same blocks within the object -- doesn't cause any trouble.
4041 ztest_od_init(&od
[0], ID_PARALLEL
, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0);
4043 if (ztest_object_init(zd
, od
, sizeof (od
), B_FALSE
) != 0)
4046 while (ztest_random(10) != 0)
4047 ztest_io(zd
, od
[0].od_object
, offset
);
4051 ztest_dmu_prealloc(ztest_ds_t
*zd
, uint64_t id
)
4054 uint64_t offset
= (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT
)) +
4055 (ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
4056 uint64_t count
= ztest_random(20) + 1;
4057 uint64_t blocksize
= ztest_random_blocksize();
4060 ztest_od_init(&od
[0], id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, blocksize
, 0);
4062 if (ztest_object_init(zd
, od
, sizeof (od
), !ztest_random(2)) != 0)
4065 if (ztest_truncate(zd
, od
[0].od_object
, offset
, count
* blocksize
) != 0)
4068 ztest_prealloc(zd
, od
[0].od_object
, offset
, count
* blocksize
);
4070 data
= umem_zalloc(blocksize
, UMEM_NOFAIL
);
4072 while (ztest_random(count
) != 0) {
4073 uint64_t randoff
= offset
+ (ztest_random(count
) * blocksize
);
4074 if (ztest_write(zd
, od
[0].od_object
, randoff
, blocksize
,
4077 while (ztest_random(4) != 0)
4078 ztest_io(zd
, od
[0].od_object
, randoff
);
4081 umem_free(data
, blocksize
);
4085 * Verify that zap_{create,destroy,add,remove,update} work as expected.
4087 #define ZTEST_ZAP_MIN_INTS 1
4088 #define ZTEST_ZAP_MAX_INTS 4
4089 #define ZTEST_ZAP_MAX_PROPS 1000
4092 ztest_zap(ztest_ds_t
*zd
, uint64_t id
)
4094 objset_t
*os
= zd
->zd_os
;
4097 uint64_t txg
, last_txg
;
4098 uint64_t value
[ZTEST_ZAP_MAX_INTS
];
4099 uint64_t zl_ints
, zl_intsize
, prop
;
4102 char propname
[100], txgname
[100];
4104 char *hc
[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4106 ztest_od_init(&od
[0], id
, FTAG
, 0, DMU_OT_ZAP_OTHER
, 0, 0);
4108 if (ztest_object_init(zd
, od
, sizeof (od
), !ztest_random(2)) != 0)
4111 object
= od
[0].od_object
;
4114 * Generate a known hash collision, and verify that
4115 * we can lookup and remove both entries.
4117 tx
= dmu_tx_create(os
);
4118 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
4119 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
4122 for (i
= 0; i
< 2; i
++) {
4124 VERIFY3U(0, ==, zap_add(os
, object
, hc
[i
], sizeof (uint64_t),
4127 for (i
= 0; i
< 2; i
++) {
4128 VERIFY3U(EEXIST
, ==, zap_add(os
, object
, hc
[i
],
4129 sizeof (uint64_t), 1, &value
[i
], tx
));
4131 zap_length(os
, object
, hc
[i
], &zl_intsize
, &zl_ints
));
4132 ASSERT3U(zl_intsize
, ==, sizeof (uint64_t));
4133 ASSERT3U(zl_ints
, ==, 1);
4135 for (i
= 0; i
< 2; i
++) {
4136 VERIFY3U(0, ==, zap_remove(os
, object
, hc
[i
], tx
));
4141 * Generate a buch of random entries.
4143 ints
= MAX(ZTEST_ZAP_MIN_INTS
, object
% ZTEST_ZAP_MAX_INTS
);
4145 prop
= ztest_random(ZTEST_ZAP_MAX_PROPS
);
4146 (void) sprintf(propname
, "prop_%llu", (u_longlong_t
)prop
);
4147 (void) sprintf(txgname
, "txg_%llu", (u_longlong_t
)prop
);
4148 bzero(value
, sizeof (value
));
4152 * If these zap entries already exist, validate their contents.
4154 error
= zap_length(os
, object
, txgname
, &zl_intsize
, &zl_ints
);
4156 ASSERT3U(zl_intsize
, ==, sizeof (uint64_t));
4157 ASSERT3U(zl_ints
, ==, 1);
4159 VERIFY(zap_lookup(os
, object
, txgname
, zl_intsize
,
4160 zl_ints
, &last_txg
) == 0);
4162 VERIFY(zap_length(os
, object
, propname
, &zl_intsize
,
4165 ASSERT3U(zl_intsize
, ==, sizeof (uint64_t));
4166 ASSERT3U(zl_ints
, ==, ints
);
4168 VERIFY(zap_lookup(os
, object
, propname
, zl_intsize
,
4169 zl_ints
, value
) == 0);
4171 for (i
= 0; i
< ints
; i
++) {
4172 ASSERT3U(value
[i
], ==, last_txg
+ object
+ i
);
4175 ASSERT3U(error
, ==, ENOENT
);
4179 * Atomically update two entries in our zap object.
4180 * The first is named txg_%llu, and contains the txg
4181 * in which the property was last updated. The second
4182 * is named prop_%llu, and the nth element of its value
4183 * should be txg + object + n.
4185 tx
= dmu_tx_create(os
);
4186 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
4187 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
4192 fatal(0, "zap future leak: old %llu new %llu", last_txg
, txg
);
4194 for (i
= 0; i
< ints
; i
++)
4195 value
[i
] = txg
+ object
+ i
;
4197 VERIFY3U(0, ==, zap_update(os
, object
, txgname
, sizeof (uint64_t),
4199 VERIFY3U(0, ==, zap_update(os
, object
, propname
, sizeof (uint64_t),
4205 * Remove a random pair of entries.
4207 prop
= ztest_random(ZTEST_ZAP_MAX_PROPS
);
4208 (void) sprintf(propname
, "prop_%llu", (u_longlong_t
)prop
);
4209 (void) sprintf(txgname
, "txg_%llu", (u_longlong_t
)prop
);
4211 error
= zap_length(os
, object
, txgname
, &zl_intsize
, &zl_ints
);
4213 if (error
== ENOENT
)
4218 tx
= dmu_tx_create(os
);
4219 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
4220 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
4223 VERIFY3U(0, ==, zap_remove(os
, object
, txgname
, tx
));
4224 VERIFY3U(0, ==, zap_remove(os
, object
, propname
, tx
));
4229 * Testcase to test the upgrading of a microzap to fatzap.
4232 ztest_fzap(ztest_ds_t
*zd
, uint64_t id
)
4234 objset_t
*os
= zd
->zd_os
;
4236 uint64_t object
, txg
;
4238 ztest_od_init(&od
[0], id
, FTAG
, 0, DMU_OT_ZAP_OTHER
, 0, 0);
4240 if (ztest_object_init(zd
, od
, sizeof (od
), !ztest_random(2)) != 0)
4243 object
= od
[0].od_object
;
4246 * Add entries to this ZAP and make sure it spills over
4247 * and gets upgraded to a fatzap. Also, since we are adding
4248 * 2050 entries we should see ptrtbl growth and leaf-block split.
4250 for (int i
= 0; i
< 2050; i
++) {
4251 char name
[MAXNAMELEN
];
4256 (void) snprintf(name
, sizeof (name
), "fzap-%llu-%llu",
4259 tx
= dmu_tx_create(os
);
4260 dmu_tx_hold_zap(tx
, object
, B_TRUE
, name
);
4261 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
4264 error
= zap_add(os
, object
, name
, sizeof (uint64_t), 1,
4266 ASSERT(error
== 0 || error
== EEXIST
);
4273 ztest_zap_parallel(ztest_ds_t
*zd
, uint64_t id
)
4275 objset_t
*os
= zd
->zd_os
;
4277 uint64_t txg
, object
, count
, wsize
, wc
, zl_wsize
, zl_wc
;
4279 int i
, namelen
, error
;
4280 int micro
= ztest_random(2);
4281 char name
[20], string_value
[20];
4284 ztest_od_init(&od
[0], ID_PARALLEL
, FTAG
, micro
, DMU_OT_ZAP_OTHER
, 0, 0);
4286 if (ztest_object_init(zd
, od
, sizeof (od
), B_FALSE
) != 0)
4289 object
= od
[0].od_object
;
4292 * Generate a random name of the form 'xxx.....' where each
4293 * x is a random printable character and the dots are dots.
4294 * There are 94 such characters, and the name length goes from
4295 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4297 namelen
= ztest_random(sizeof (name
) - 5) + 5 + 1;
4299 for (i
= 0; i
< 3; i
++)
4300 name
[i
] = '!' + ztest_random('~' - '!' + 1);
4301 for (; i
< namelen
- 1; i
++)
4305 if ((namelen
& 1) || micro
) {
4306 wsize
= sizeof (txg
);
4312 data
= string_value
;
4316 VERIFY0(zap_count(os
, object
, &count
));
4317 ASSERT(count
!= -1ULL);
4320 * Select an operation: length, lookup, add, update, remove.
4322 i
= ztest_random(5);
4325 tx
= dmu_tx_create(os
);
4326 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
4327 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
4330 bcopy(name
, string_value
, namelen
);
4334 bzero(string_value
, namelen
);
4340 error
= zap_length(os
, object
, name
, &zl_wsize
, &zl_wc
);
4342 ASSERT3U(wsize
, ==, zl_wsize
);
4343 ASSERT3U(wc
, ==, zl_wc
);
4345 ASSERT3U(error
, ==, ENOENT
);
4350 error
= zap_lookup(os
, object
, name
, wsize
, wc
, data
);
4352 if (data
== string_value
&&
4353 bcmp(name
, data
, namelen
) != 0)
4354 fatal(0, "name '%s' != val '%s' len %d",
4355 name
, data
, namelen
);
4357 ASSERT3U(error
, ==, ENOENT
);
4362 error
= zap_add(os
, object
, name
, wsize
, wc
, data
, tx
);
4363 ASSERT(error
== 0 || error
== EEXIST
);
4367 VERIFY(zap_update(os
, object
, name
, wsize
, wc
, data
, tx
) == 0);
4371 error
= zap_remove(os
, object
, name
, tx
);
4372 ASSERT(error
== 0 || error
== ENOENT
);
4381 * Commit callback data.
4383 typedef struct ztest_cb_data
{
4384 list_node_t zcd_node
;
4386 int zcd_expected_err
;
4387 boolean_t zcd_added
;
4388 boolean_t zcd_called
;
4392 /* This is the actual commit callback function */
4394 ztest_commit_callback(void *arg
, int error
)
4396 ztest_cb_data_t
*data
= arg
;
4397 uint64_t synced_txg
;
4399 VERIFY(data
!= NULL
);
4400 VERIFY3S(data
->zcd_expected_err
, ==, error
);
4401 VERIFY(!data
->zcd_called
);
4403 synced_txg
= spa_last_synced_txg(data
->zcd_spa
);
4404 if (data
->zcd_txg
> synced_txg
)
4405 fatal(0, "commit callback of txg %" PRIu64
" called prematurely"
4406 ", last synced txg = %" PRIu64
"\n", data
->zcd_txg
,
4409 data
->zcd_called
= B_TRUE
;
4411 if (error
== ECANCELED
) {
4412 ASSERT0(data
->zcd_txg
);
4413 ASSERT(!data
->zcd_added
);
4416 * The private callback data should be destroyed here, but
4417 * since we are going to check the zcd_called field after
4418 * dmu_tx_abort(), we will destroy it there.
4423 /* Was this callback added to the global callback list? */
4424 if (!data
->zcd_added
)
4427 ASSERT3U(data
->zcd_txg
, !=, 0);
4429 /* Remove our callback from the list */
4430 (void) mutex_lock(&zcl
.zcl_callbacks_lock
);
4431 list_remove(&zcl
.zcl_callbacks
, data
);
4432 (void) mutex_unlock(&zcl
.zcl_callbacks_lock
);
4435 umem_free(data
, sizeof (ztest_cb_data_t
));
4438 /* Allocate and initialize callback data structure */
4439 static ztest_cb_data_t
*
4440 ztest_create_cb_data(objset_t
*os
, uint64_t txg
)
4442 ztest_cb_data_t
*cb_data
;
4444 cb_data
= umem_zalloc(sizeof (ztest_cb_data_t
), UMEM_NOFAIL
);
4446 cb_data
->zcd_txg
= txg
;
4447 cb_data
->zcd_spa
= dmu_objset_spa(os
);
4453 * If a number of txgs equal to this threshold have been created after a commit
4454 * callback has been registered but not called, then we assume there is an
4455 * implementation bug.
4457 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2)
4460 * Commit callback test.
4463 ztest_dmu_commit_callbacks(ztest_ds_t
*zd
, uint64_t id
)
4465 objset_t
*os
= zd
->zd_os
;
4468 ztest_cb_data_t
*cb_data
[3], *tmp_cb
;
4469 uint64_t old_txg
, txg
;
4472 ztest_od_init(&od
[0], id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0);
4474 if (ztest_object_init(zd
, od
, sizeof (od
), B_FALSE
) != 0)
4477 tx
= dmu_tx_create(os
);
4479 cb_data
[0] = ztest_create_cb_data(os
, 0);
4480 dmu_tx_callback_register(tx
, ztest_commit_callback
, cb_data
[0]);
4482 dmu_tx_hold_write(tx
, od
[0].od_object
, 0, sizeof (uint64_t));
4484 /* Every once in a while, abort the transaction on purpose */
4485 if (ztest_random(100) == 0)
4489 error
= dmu_tx_assign(tx
, TXG_NOWAIT
);
4491 txg
= error
? 0 : dmu_tx_get_txg(tx
);
4493 cb_data
[0]->zcd_txg
= txg
;
4494 cb_data
[1] = ztest_create_cb_data(os
, txg
);
4495 dmu_tx_callback_register(tx
, ztest_commit_callback
, cb_data
[1]);
4499 * It's not a strict requirement to call the registered
4500 * callbacks from inside dmu_tx_abort(), but that's what
4501 * it's supposed to happen in the current implementation
4502 * so we will check for that.
4504 for (i
= 0; i
< 2; i
++) {
4505 cb_data
[i
]->zcd_expected_err
= ECANCELED
;
4506 VERIFY(!cb_data
[i
]->zcd_called
);
4511 for (i
= 0; i
< 2; i
++) {
4512 VERIFY(cb_data
[i
]->zcd_called
);
4513 umem_free(cb_data
[i
], sizeof (ztest_cb_data_t
));
4519 cb_data
[2] = ztest_create_cb_data(os
, txg
);
4520 dmu_tx_callback_register(tx
, ztest_commit_callback
, cb_data
[2]);
4523 * Read existing data to make sure there isn't a future leak.
4525 VERIFY(0 == dmu_read(os
, od
[0].od_object
, 0, sizeof (uint64_t),
4526 &old_txg
, DMU_READ_PREFETCH
));
4529 fatal(0, "future leak: got %" PRIu64
", open txg is %" PRIu64
,
4532 dmu_write(os
, od
[0].od_object
, 0, sizeof (uint64_t), &txg
, tx
);
4534 (void) mutex_lock(&zcl
.zcl_callbacks_lock
);
4537 * Since commit callbacks don't have any ordering requirement and since
4538 * it is theoretically possible for a commit callback to be called
4539 * after an arbitrary amount of time has elapsed since its txg has been
4540 * synced, it is difficult to reliably determine whether a commit
4541 * callback hasn't been called due to high load or due to a flawed
4544 * In practice, we will assume that if after a certain number of txgs a
4545 * commit callback hasn't been called, then most likely there's an
4546 * implementation bug..
4548 tmp_cb
= list_head(&zcl
.zcl_callbacks
);
4549 if (tmp_cb
!= NULL
&&
4550 (txg
- ZTEST_COMMIT_CALLBACK_THRESH
) > tmp_cb
->zcd_txg
) {
4551 fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4552 PRIu64
", open txg: %" PRIu64
"\n", tmp_cb
->zcd_txg
, txg
);
4556 * Let's find the place to insert our callbacks.
4558 * Even though the list is ordered by txg, it is possible for the
4559 * insertion point to not be the end because our txg may already be
4560 * quiescing at this point and other callbacks in the open txg
4561 * (from other objsets) may have sneaked in.
4563 tmp_cb
= list_tail(&zcl
.zcl_callbacks
);
4564 while (tmp_cb
!= NULL
&& tmp_cb
->zcd_txg
> txg
)
4565 tmp_cb
= list_prev(&zcl
.zcl_callbacks
, tmp_cb
);
4567 /* Add the 3 callbacks to the list */
4568 for (i
= 0; i
< 3; i
++) {
4570 list_insert_head(&zcl
.zcl_callbacks
, cb_data
[i
]);
4572 list_insert_after(&zcl
.zcl_callbacks
, tmp_cb
,
4575 cb_data
[i
]->zcd_added
= B_TRUE
;
4576 VERIFY(!cb_data
[i
]->zcd_called
);
4578 tmp_cb
= cb_data
[i
];
4581 (void) mutex_unlock(&zcl
.zcl_callbacks_lock
);
4588 ztest_dsl_prop_get_set(ztest_ds_t
*zd
, uint64_t id
)
4590 zfs_prop_t proplist
[] = {
4592 ZFS_PROP_COMPRESSION
,
4597 (void) rw_rdlock(&ztest_name_lock
);
4599 for (int p
= 0; p
< sizeof (proplist
) / sizeof (proplist
[0]); p
++)
4600 (void) ztest_dsl_prop_set_uint64(zd
->zd_name
, proplist
[p
],
4601 ztest_random_dsl_prop(proplist
[p
]), (int)ztest_random(2));
4603 (void) rw_unlock(&ztest_name_lock
);
4608 ztest_spa_prop_get_set(ztest_ds_t
*zd
, uint64_t id
)
4610 nvlist_t
*props
= NULL
;
4612 (void) rw_rdlock(&ztest_name_lock
);
4614 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO
,
4615 ZIO_DEDUPDITTO_MIN
+ ztest_random(ZIO_DEDUPDITTO_MIN
));
4617 VERIFY0(spa_prop_get(ztest_spa
, &props
));
4619 if (ztest_opts
.zo_verbose
>= 6)
4620 dump_nvlist(props
, 4);
4624 (void) rw_unlock(&ztest_name_lock
);
4628 user_release_one(const char *snapname
, const char *holdname
)
4630 nvlist_t
*snaps
, *holds
;
4633 snaps
= fnvlist_alloc();
4634 holds
= fnvlist_alloc();
4635 fnvlist_add_boolean(holds
, holdname
);
4636 fnvlist_add_nvlist(snaps
, snapname
, holds
);
4637 fnvlist_free(holds
);
4638 error
= dsl_dataset_user_release(snaps
, NULL
);
4639 fnvlist_free(snaps
);
4644 * Test snapshot hold/release and deferred destroy.
4647 ztest_dmu_snapshot_hold(ztest_ds_t
*zd
, uint64_t id
)
4650 objset_t
*os
= zd
->zd_os
;
4654 char clonename
[100];
4656 char osname
[MAXNAMELEN
];
4659 (void) rw_rdlock(&ztest_name_lock
);
4661 dmu_objset_name(os
, osname
);
4663 (void) snprintf(snapname
, sizeof (snapname
), "sh1_%llu", id
);
4664 (void) snprintf(fullname
, sizeof (fullname
), "%s@%s", osname
, snapname
);
4665 (void) snprintf(clonename
, sizeof (clonename
),
4666 "%s/ch1_%llu", osname
, id
);
4667 (void) snprintf(tag
, sizeof (tag
), "tag_%llu", id
);
4670 * Clean up from any previous run.
4672 error
= dsl_destroy_head(clonename
);
4673 if (error
!= ENOENT
)
4675 error
= user_release_one(fullname
, tag
);
4676 if (error
!= ESRCH
&& error
!= ENOENT
)
4678 error
= dsl_destroy_snapshot(fullname
, B_FALSE
);
4679 if (error
!= ENOENT
)
4683 * Create snapshot, clone it, mark snap for deferred destroy,
4684 * destroy clone, verify snap was also destroyed.
4686 error
= dmu_objset_snapshot_one(osname
, snapname
);
4688 if (error
== ENOSPC
) {
4689 ztest_record_enospc("dmu_objset_snapshot");
4692 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname
, error
);
4695 error
= dmu_objset_clone(clonename
, fullname
);
4697 if (error
== ENOSPC
) {
4698 ztest_record_enospc("dmu_objset_clone");
4701 fatal(0, "dmu_objset_clone(%s) = %d", clonename
, error
);
4704 error
= dsl_destroy_snapshot(fullname
, B_TRUE
);
4706 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4710 error
= dsl_destroy_head(clonename
);
4712 fatal(0, "dsl_destroy_head(%s) = %d", clonename
, error
);
4714 error
= dmu_objset_hold(fullname
, FTAG
, &origin
);
4715 if (error
!= ENOENT
)
4716 fatal(0, "dmu_objset_hold(%s) = %d", fullname
, error
);
4719 * Create snapshot, add temporary hold, verify that we can't
4720 * destroy a held snapshot, mark for deferred destroy,
4721 * release hold, verify snapshot was destroyed.
4723 error
= dmu_objset_snapshot_one(osname
, snapname
);
4725 if (error
== ENOSPC
) {
4726 ztest_record_enospc("dmu_objset_snapshot");
4729 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname
, error
);
4732 holds
= fnvlist_alloc();
4733 fnvlist_add_string(holds
, fullname
, tag
);
4734 error
= dsl_dataset_user_hold(holds
, 0, NULL
);
4735 fnvlist_free(holds
);
4737 if (error
== ENOSPC
) {
4738 ztest_record_enospc("dsl_dataset_user_hold");
4741 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
4742 fullname
, tag
, error
);
4745 error
= dsl_destroy_snapshot(fullname
, B_FALSE
);
4746 if (error
!= EBUSY
) {
4747 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
4751 error
= dsl_destroy_snapshot(fullname
, B_TRUE
);
4753 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4757 error
= user_release_one(fullname
, tag
);
4759 fatal(0, "user_release_one(%s, %s) = %d", fullname
, tag
, error
);
4761 VERIFY3U(dmu_objset_hold(fullname
, FTAG
, &origin
), ==, ENOENT
);
4764 (void) rw_unlock(&ztest_name_lock
);
4768 * Inject random faults into the on-disk data.
4772 ztest_fault_inject(ztest_ds_t
*zd
, uint64_t id
)
4774 ztest_shared_t
*zs
= ztest_shared
;
4775 spa_t
*spa
= ztest_spa
;
4779 uint64_t bad
= 0x1990c0ffeedecade;
4781 char path0
[MAXPATHLEN
];
4782 char pathrand
[MAXPATHLEN
];
4784 int bshift
= SPA_MAXBLOCKSHIFT
+ 2; /* don't scrog all labels */
4790 boolean_t islog
= B_FALSE
;
4792 VERIFY(mutex_lock(&ztest_vdev_lock
) == 0);
4793 maxfaults
= MAXFAULTS();
4794 leaves
= MAX(zs
->zs_mirrors
, 1) * ztest_opts
.zo_raidz
;
4795 mirror_save
= zs
->zs_mirrors
;
4796 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
4798 ASSERT(leaves
>= 1);
4801 * Grab the name lock as reader. There are some operations
4802 * which don't like to have their vdevs changed while
4803 * they are in progress (i.e. spa_change_guid). Those
4804 * operations will have grabbed the name lock as writer.
4806 (void) rw_rdlock(&ztest_name_lock
);
4809 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
4811 spa_config_enter(spa
, SCL_STATE
, FTAG
, RW_READER
);
4813 if (ztest_random(2) == 0) {
4815 * Inject errors on a normal data device or slog device.
4817 top
= ztest_random_vdev_top(spa
, B_TRUE
);
4818 leaf
= ztest_random(leaves
) + zs
->zs_splits
;
4821 * Generate paths to the first leaf in this top-level vdev,
4822 * and to the random leaf we selected. We'll induce transient
4823 * write failures and random online/offline activity on leaf 0,
4824 * and we'll write random garbage to the randomly chosen leaf.
4826 (void) snprintf(path0
, sizeof (path0
), ztest_dev_template
,
4827 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
,
4828 top
* leaves
+ zs
->zs_splits
);
4829 (void) snprintf(pathrand
, sizeof (pathrand
), ztest_dev_template
,
4830 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
,
4831 top
* leaves
+ leaf
);
4833 vd0
= vdev_lookup_by_path(spa
->spa_root_vdev
, path0
);
4834 if (vd0
!= NULL
&& vd0
->vdev_top
->vdev_islog
)
4838 * If the top-level vdev needs to be resilvered
4839 * then we only allow faults on the device that is
4842 if (vd0
!= NULL
&& maxfaults
!= 1 &&
4843 (!vdev_resilver_needed(vd0
->vdev_top
, NULL
, NULL
) ||
4844 vd0
->vdev_resilver_txg
!= 0)) {
4846 * Make vd0 explicitly claim to be unreadable,
4847 * or unwriteable, or reach behind its back
4848 * and close the underlying fd. We can do this if
4849 * maxfaults == 0 because we'll fail and reexecute,
4850 * and we can do it if maxfaults >= 2 because we'll
4851 * have enough redundancy. If maxfaults == 1, the
4852 * combination of this with injection of random data
4853 * corruption below exceeds the pool's fault tolerance.
4855 vdev_file_t
*vf
= vd0
->vdev_tsd
;
4857 if (vf
!= NULL
&& ztest_random(3) == 0) {
4858 (void) close(vf
->vf_vnode
->v_fd
);
4859 vf
->vf_vnode
->v_fd
= -1;
4860 } else if (ztest_random(2) == 0) {
4861 vd0
->vdev_cant_read
= B_TRUE
;
4863 vd0
->vdev_cant_write
= B_TRUE
;
4865 guid0
= vd0
->vdev_guid
;
4869 * Inject errors on an l2cache device.
4871 spa_aux_vdev_t
*sav
= &spa
->spa_l2cache
;
4873 if (sav
->sav_count
== 0) {
4874 spa_config_exit(spa
, SCL_STATE
, FTAG
);
4875 (void) rw_unlock(&ztest_name_lock
);
4878 vd0
= sav
->sav_vdevs
[ztest_random(sav
->sav_count
)];
4879 guid0
= vd0
->vdev_guid
;
4880 (void) strcpy(path0
, vd0
->vdev_path
);
4881 (void) strcpy(pathrand
, vd0
->vdev_path
);
4885 maxfaults
= INT_MAX
; /* no limit on cache devices */
4888 spa_config_exit(spa
, SCL_STATE
, FTAG
);
4889 (void) rw_unlock(&ztest_name_lock
);
4892 * If we can tolerate two or more faults, or we're dealing
4893 * with a slog, randomly online/offline vd0.
4895 if ((maxfaults
>= 2 || islog
) && guid0
!= 0) {
4896 if (ztest_random(10) < 6) {
4897 int flags
= (ztest_random(2) == 0 ?
4898 ZFS_OFFLINE_TEMPORARY
: 0);
4901 * We have to grab the zs_name_lock as writer to
4902 * prevent a race between offlining a slog and
4903 * destroying a dataset. Offlining the slog will
4904 * grab a reference on the dataset which may cause
4905 * dmu_objset_destroy() to fail with EBUSY thus
4906 * leaving the dataset in an inconsistent state.
4909 (void) rw_wrlock(&ztest_name_lock
);
4911 VERIFY(vdev_offline(spa
, guid0
, flags
) != EBUSY
);
4914 (void) rw_unlock(&ztest_name_lock
);
4917 * Ideally we would like to be able to randomly
4918 * call vdev_[on|off]line without holding locks
4919 * to force unpredictable failures but the side
4920 * effects of vdev_[on|off]line prevent us from
4921 * doing so. We grab the ztest_vdev_lock here to
4922 * prevent a race between injection testing and
4925 VERIFY(mutex_lock(&ztest_vdev_lock
) == 0);
4926 (void) vdev_online(spa
, guid0
, 0, NULL
);
4927 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
4935 * We have at least single-fault tolerance, so inject data corruption.
4937 fd
= open(pathrand
, O_RDWR
);
4939 if (fd
== -1) /* we hit a gap in the device namespace */
4942 fsize
= lseek(fd
, 0, SEEK_END
);
4944 while (--iters
!= 0) {
4946 * The offset must be chosen carefully to ensure that
4947 * we do not inject a given logical block with errors
4948 * on two different leaf devices, because ZFS can not
4949 * tolerate that (if maxfaults==1).
4951 * We divide each leaf into chunks of size
4952 * (# leaves * SPA_MAXBLOCKSIZE * 4). Within each chunk
4953 * there is a series of ranges to which we can inject errors.
4954 * Each range can accept errors on only a single leaf vdev.
4955 * The error injection ranges are separated by ranges
4956 * which we will not inject errors on any device (DMZs).
4957 * Each DMZ must be large enough such that a single block
4958 * can not straddle it, so that a single block can not be
4959 * a target in two different injection ranges (on different
4962 * For example, with 3 leaves, each chunk looks like:
4963 * 0 to 32M: injection range for leaf 0
4964 * 32M to 64M: DMZ - no injection allowed
4965 * 64M to 96M: injection range for leaf 1
4966 * 96M to 128M: DMZ - no injection allowed
4967 * 128M to 160M: injection range for leaf 2
4968 * 160M to 192M: DMZ - no injection allowed
4970 offset
= ztest_random(fsize
/ (leaves
<< bshift
)) *
4971 (leaves
<< bshift
) + (leaf
<< bshift
) +
4972 (ztest_random(1ULL << (bshift
- 1)) & -8ULL);
4974 if (offset
>= fsize
)
4977 VERIFY(mutex_lock(&ztest_vdev_lock
) == 0);
4978 if (mirror_save
!= zs
->zs_mirrors
) {
4979 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
4984 if (pwrite(fd
, &bad
, sizeof (bad
), offset
) != sizeof (bad
))
4985 fatal(1, "can't inject bad word at 0x%llx in %s",
4988 VERIFY(mutex_unlock(&ztest_vdev_lock
) == 0);
4990 if (ztest_opts
.zo_verbose
>= 7)
4991 (void) printf("injected bad word into %s,"
4992 " offset 0x%llx\n", pathrand
, (u_longlong_t
)offset
);
4999 * Verify that DDT repair works as expected.
5002 ztest_ddt_repair(ztest_ds_t
*zd
, uint64_t id
)
5004 ztest_shared_t
*zs
= ztest_shared
;
5005 spa_t
*spa
= ztest_spa
;
5006 objset_t
*os
= zd
->zd_os
;
5008 uint64_t object
, blocksize
, txg
, pattern
, psize
;
5009 enum zio_checksum checksum
= spa_dedup_checksum(spa
);
5014 int copies
= 2 * ZIO_DEDUPDITTO_MIN
;
5016 blocksize
= ztest_random_blocksize();
5017 blocksize
= MIN(blocksize
, 2048); /* because we write so many */
5019 ztest_od_init(&od
[0], id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, blocksize
, 0);
5021 if (ztest_object_init(zd
, od
, sizeof (od
), B_FALSE
) != 0)
5025 * Take the name lock as writer to prevent anyone else from changing
5026 * the pool and dataset properies we need to maintain during this test.
5028 (void) rw_wrlock(&ztest_name_lock
);
5030 if (ztest_dsl_prop_set_uint64(zd
->zd_name
, ZFS_PROP_DEDUP
, checksum
,
5032 ztest_dsl_prop_set_uint64(zd
->zd_name
, ZFS_PROP_COPIES
, 1,
5034 (void) rw_unlock(&ztest_name_lock
);
5038 object
= od
[0].od_object
;
5039 blocksize
= od
[0].od_blocksize
;
5040 pattern
= zs
->zs_guid
^ dmu_objset_fsid_guid(os
);
5042 ASSERT(object
!= 0);
5044 tx
= dmu_tx_create(os
);
5045 dmu_tx_hold_write(tx
, object
, 0, copies
* blocksize
);
5046 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
5048 (void) rw_unlock(&ztest_name_lock
);
5053 * Write all the copies of our block.
5055 for (int i
= 0; i
< copies
; i
++) {
5056 uint64_t offset
= i
* blocksize
;
5057 int error
= dmu_buf_hold(os
, object
, offset
, FTAG
, &db
,
5058 DMU_READ_NO_PREFETCH
);
5060 fatal(B_FALSE
, "dmu_buf_hold(%p, %llu, %llu) = %u",
5061 os
, (long long)object
, (long long) offset
, error
);
5063 ASSERT(db
->db_offset
== offset
);
5064 ASSERT(db
->db_size
== blocksize
);
5065 ASSERT(ztest_pattern_match(db
->db_data
, db
->db_size
, pattern
) ||
5066 ztest_pattern_match(db
->db_data
, db
->db_size
, 0ULL));
5067 dmu_buf_will_fill(db
, tx
);
5068 ztest_pattern_set(db
->db_data
, db
->db_size
, pattern
);
5069 dmu_buf_rele(db
, FTAG
);
5073 txg_wait_synced(spa_get_dsl(spa
), txg
);
5076 * Find out what block we got.
5078 VERIFY0(dmu_buf_hold(os
, object
, 0, FTAG
, &db
,
5079 DMU_READ_NO_PREFETCH
));
5080 blk
= *((dmu_buf_impl_t
*)db
)->db_blkptr
;
5081 dmu_buf_rele(db
, FTAG
);
5084 * Damage the block. Dedup-ditto will save us when we read it later.
5086 psize
= BP_GET_PSIZE(&blk
);
5087 buf
= zio_buf_alloc(psize
);
5088 ztest_pattern_set(buf
, psize
, ~pattern
);
5090 (void) zio_wait(zio_rewrite(NULL
, spa
, 0, &blk
,
5091 buf
, psize
, NULL
, NULL
, ZIO_PRIORITY_SYNC_WRITE
,
5092 ZIO_FLAG_CANFAIL
| ZIO_FLAG_INDUCE_DAMAGE
, NULL
));
5094 zio_buf_free(buf
, psize
);
5096 (void) rw_unlock(&ztest_name_lock
);
5104 ztest_scrub(ztest_ds_t
*zd
, uint64_t id
)
5106 spa_t
*spa
= ztest_spa
;
5108 (void) spa_scan(spa
, POOL_SCAN_SCRUB
);
5109 (void) poll(NULL
, 0, 100); /* wait a moment, then force a restart */
5110 (void) spa_scan(spa
, POOL_SCAN_SCRUB
);
5114 * Change the guid for the pool.
5118 ztest_reguid(ztest_ds_t
*zd
, uint64_t id
)
5120 spa_t
*spa
= ztest_spa
;
5121 uint64_t orig
, load
;
5124 orig
= spa_guid(spa
);
5125 load
= spa_load_guid(spa
);
5127 (void) rw_wrlock(&ztest_name_lock
);
5128 error
= spa_change_guid(spa
);
5129 (void) rw_unlock(&ztest_name_lock
);
5134 if (ztest_opts
.zo_verbose
>= 4) {
5135 (void) printf("Changed guid old %llu -> %llu\n",
5136 (u_longlong_t
)orig
, (u_longlong_t
)spa_guid(spa
));
5139 VERIFY3U(orig
, !=, spa_guid(spa
));
5140 VERIFY3U(load
, ==, spa_load_guid(spa
));
5144 * Rename the pool to a different name and then rename it back.
5148 ztest_spa_rename(ztest_ds_t
*zd
, uint64_t id
)
5150 char *oldname
, *newname
;
5153 (void) rw_wrlock(&ztest_name_lock
);
5155 oldname
= ztest_opts
.zo_pool
;
5156 newname
= umem_alloc(strlen(oldname
) + 5, UMEM_NOFAIL
);
5157 (void) strcpy(newname
, oldname
);
5158 (void) strcat(newname
, "_tmp");
5163 VERIFY3U(0, ==, spa_rename(oldname
, newname
));
5166 * Try to open it under the old name, which shouldn't exist
5168 VERIFY3U(ENOENT
, ==, spa_open(oldname
, &spa
, FTAG
));
5171 * Open it under the new name and make sure it's still the same spa_t.
5173 VERIFY3U(0, ==, spa_open(newname
, &spa
, FTAG
));
5175 ASSERT(spa
== ztest_spa
);
5176 spa_close(spa
, FTAG
);
5179 * Rename it back to the original
5181 VERIFY3U(0, ==, spa_rename(newname
, oldname
));
5184 * Make sure it can still be opened
5186 VERIFY3U(0, ==, spa_open(oldname
, &spa
, FTAG
));
5188 ASSERT(spa
== ztest_spa
);
5189 spa_close(spa
, FTAG
);
5191 umem_free(newname
, strlen(newname
) + 1);
5193 (void) rw_unlock(&ztest_name_lock
);
5197 * Verify pool integrity by running zdb.
5200 ztest_run_zdb(char *pool
)
5203 char zdb
[MAXPATHLEN
+ MAXNAMELEN
+ 20];
5211 (void) realpath(getexecname(), zdb
);
5213 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
5214 bin
= strstr(zdb
, "/usr/bin/");
5215 ztest
= strstr(bin
, "/ztest");
5217 isalen
= ztest
- isa
;
5221 "/usr/sbin%.*s/zdb -bcc%s%s -d -U %s %s",
5224 ztest_opts
.zo_verbose
>= 3 ? "s" : "",
5225 ztest_opts
.zo_verbose
>= 4 ? "v" : "",
5230 if (ztest_opts
.zo_verbose
>= 5)
5231 (void) printf("Executing %s\n", strstr(zdb
, "zdb "));
5233 fp
= popen(zdb
, "r");
5235 while (fgets(zbuf
, sizeof (zbuf
), fp
) != NULL
)
5236 if (ztest_opts
.zo_verbose
>= 3)
5237 (void) printf("%s", zbuf
);
5239 status
= pclose(fp
);
5244 ztest_dump_core
= 0;
5245 if (WIFEXITED(status
))
5246 fatal(0, "'%s' exit code %d", zdb
, WEXITSTATUS(status
));
5248 fatal(0, "'%s' died with signal %d", zdb
, WTERMSIG(status
));
5252 ztest_walk_pool_directory(char *header
)
5256 if (ztest_opts
.zo_verbose
>= 6)
5257 (void) printf("%s\n", header
);
5259 mutex_enter(&spa_namespace_lock
);
5260 while ((spa
= spa_next(spa
)) != NULL
)
5261 if (ztest_opts
.zo_verbose
>= 6)
5262 (void) printf("\t%s\n", spa_name(spa
));
5263 mutex_exit(&spa_namespace_lock
);
5267 ztest_spa_import_export(char *oldname
, char *newname
)
5269 nvlist_t
*config
, *newconfig
;
5274 if (ztest_opts
.zo_verbose
>= 4) {
5275 (void) printf("import/export: old = %s, new = %s\n",
5280 * Clean up from previous runs.
5282 (void) spa_destroy(newname
);
5285 * Get the pool's configuration and guid.
5287 VERIFY3U(0, ==, spa_open(oldname
, &spa
, FTAG
));
5290 * Kick off a scrub to tickle scrub/export races.
5292 if (ztest_random(2) == 0)
5293 (void) spa_scan(spa
, POOL_SCAN_SCRUB
);
5295 pool_guid
= spa_guid(spa
);
5296 spa_close(spa
, FTAG
);
5298 ztest_walk_pool_directory("pools before export");
5303 VERIFY3U(0, ==, spa_export(oldname
, &config
, B_FALSE
, B_FALSE
));
5305 ztest_walk_pool_directory("pools after export");
5310 newconfig
= spa_tryimport(config
);
5311 ASSERT(newconfig
!= NULL
);
5312 nvlist_free(newconfig
);
5315 * Import it under the new name.
5317 error
= spa_import(newname
, config
, NULL
, 0);
5319 dump_nvlist(config
, 0);
5320 fatal(B_FALSE
, "couldn't import pool %s as %s: error %u",
5321 oldname
, newname
, error
);
5324 ztest_walk_pool_directory("pools after import");
5327 * Try to import it again -- should fail with EEXIST.
5329 VERIFY3U(EEXIST
, ==, spa_import(newname
, config
, NULL
, 0));
5332 * Try to import it under a different name -- should fail with EEXIST.
5334 VERIFY3U(EEXIST
, ==, spa_import(oldname
, config
, NULL
, 0));
5337 * Verify that the pool is no longer visible under the old name.
5339 VERIFY3U(ENOENT
, ==, spa_open(oldname
, &spa
, FTAG
));
5342 * Verify that we can open and close the pool using the new name.
5344 VERIFY3U(0, ==, spa_open(newname
, &spa
, FTAG
));
5345 ASSERT(pool_guid
== spa_guid(spa
));
5346 spa_close(spa
, FTAG
);
5348 nvlist_free(config
);
5352 ztest_resume(spa_t
*spa
)
5354 if (spa_suspended(spa
) && ztest_opts
.zo_verbose
>= 6)
5355 (void) printf("resuming from suspended state\n");
5356 spa_vdev_state_enter(spa
, SCL_NONE
);
5357 vdev_clear(spa
, NULL
);
5358 (void) spa_vdev_state_exit(spa
, NULL
, 0);
5359 (void) zio_resume(spa
);
5363 ztest_resume_thread(void *arg
)
5367 while (!ztest_exiting
) {
5368 if (spa_suspended(spa
))
5370 (void) poll(NULL
, 0, 100);
5376 ztest_deadman_thread(void *arg
)
5378 ztest_shared_t
*zs
= arg
;
5379 spa_t
*spa
= ztest_spa
;
5380 hrtime_t delta
, total
= 0;
5383 delta
= zs
->zs_thread_stop
- zs
->zs_thread_start
+
5384 MSEC2NSEC(zfs_deadman_synctime_ms
);
5386 (void) poll(NULL
, 0, (int)NSEC2MSEC(delta
));
5389 * If the pool is suspended then fail immediately. Otherwise,
5390 * check to see if the pool is making any progress. If
5391 * vdev_deadman() discovers that there hasn't been any recent
5392 * I/Os then it will end up aborting the tests.
5394 if (spa_suspended(spa
) || spa
->spa_root_vdev
== NULL
) {
5395 fatal(0, "aborting test after %llu seconds because "
5396 "pool has transitioned to a suspended state.",
5397 zfs_deadman_synctime_ms
/ 1000);
5400 vdev_deadman(spa
->spa_root_vdev
);
5402 total
+= zfs_deadman_synctime_ms
/1000;
5403 (void) printf("ztest has been running for %lld seconds\n",
5409 ztest_execute(int test
, ztest_info_t
*zi
, uint64_t id
)
5411 ztest_ds_t
*zd
= &ztest_ds
[id
% ztest_opts
.zo_datasets
];
5412 ztest_shared_callstate_t
*zc
= ZTEST_GET_SHARED_CALLSTATE(test
);
5413 hrtime_t functime
= gethrtime();
5415 for (int i
= 0; i
< zi
->zi_iters
; i
++)
5416 zi
->zi_func(zd
, id
);
5418 functime
= gethrtime() - functime
;
5420 atomic_add_64(&zc
->zc_count
, 1);
5421 atomic_add_64(&zc
->zc_time
, functime
);
5423 if (ztest_opts
.zo_verbose
>= 4) {
5425 (void) dladdr((void *)zi
->zi_func
, &dli
);
5426 (void) printf("%6.2f sec in %s\n",
5427 (double)functime
/ NANOSEC
, dli
.dli_sname
);
5432 ztest_thread(void *arg
)
5435 uint64_t id
= (uintptr_t)arg
;
5436 ztest_shared_t
*zs
= ztest_shared
;
5440 ztest_shared_callstate_t
*zc
;
5442 while ((now
= gethrtime()) < zs
->zs_thread_stop
) {
5444 * See if it's time to force a crash.
5446 if (now
> zs
->zs_thread_kill
)
5450 * If we're getting ENOSPC with some regularity, stop.
5452 if (zs
->zs_enospc_count
> 10)
5456 * Pick a random function to execute.
5458 rand
= ztest_random(ZTEST_FUNCS
);
5459 zi
= &ztest_info
[rand
];
5460 zc
= ZTEST_GET_SHARED_CALLSTATE(rand
);
5461 call_next
= zc
->zc_next
;
5463 if (now
>= call_next
&&
5464 atomic_cas_64(&zc
->zc_next
, call_next
, call_next
+
5465 ztest_random(2 * zi
->zi_interval
[0] + 1)) == call_next
) {
5466 ztest_execute(rand
, zi
, id
);
5474 ztest_dataset_name(char *dsname
, char *pool
, int d
)
5476 (void) snprintf(dsname
, MAXNAMELEN
, "%s/ds_%d", pool
, d
);
5480 ztest_dataset_destroy(int d
)
5482 char name
[MAXNAMELEN
];
5484 ztest_dataset_name(name
, ztest_opts
.zo_pool
, d
);
5486 if (ztest_opts
.zo_verbose
>= 3)
5487 (void) printf("Destroying %s to free up space\n", name
);
5490 * Cleanup any non-standard clones and snapshots. In general,
5491 * ztest thread t operates on dataset (t % zopt_datasets),
5492 * so there may be more than one thing to clean up.
5494 for (int t
= d
; t
< ztest_opts
.zo_threads
;
5495 t
+= ztest_opts
.zo_datasets
) {
5496 ztest_dsl_dataset_cleanup(name
, t
);
5499 (void) dmu_objset_find(name
, ztest_objset_destroy_cb
, NULL
,
5500 DS_FIND_SNAPSHOTS
| DS_FIND_CHILDREN
);
5504 ztest_dataset_dirobj_verify(ztest_ds_t
*zd
)
5506 uint64_t usedobjs
, dirobjs
, scratch
;
5509 * ZTEST_DIROBJ is the object directory for the entire dataset.
5510 * Therefore, the number of objects in use should equal the
5511 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
5512 * If not, we have an object leak.
5514 * Note that we can only check this in ztest_dataset_open(),
5515 * when the open-context and syncing-context values agree.
5516 * That's because zap_count() returns the open-context value,
5517 * while dmu_objset_space() returns the rootbp fill count.
5519 VERIFY3U(0, ==, zap_count(zd
->zd_os
, ZTEST_DIROBJ
, &dirobjs
));
5520 dmu_objset_space(zd
->zd_os
, &scratch
, &scratch
, &usedobjs
, &scratch
);
5521 ASSERT3U(dirobjs
+ 1, ==, usedobjs
);
5525 ztest_dataset_open(int d
)
5527 ztest_ds_t
*zd
= &ztest_ds
[d
];
5528 uint64_t committed_seq
= ZTEST_GET_SHARED_DS(d
)->zd_seq
;
5531 char name
[MAXNAMELEN
];
5534 ztest_dataset_name(name
, ztest_opts
.zo_pool
, d
);
5536 (void) rw_rdlock(&ztest_name_lock
);
5538 error
= ztest_dataset_create(name
);
5539 if (error
== ENOSPC
) {
5540 (void) rw_unlock(&ztest_name_lock
);
5541 ztest_record_enospc(FTAG
);
5544 ASSERT(error
== 0 || error
== EEXIST
);
5546 VERIFY0(dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
, zd
, &os
));
5547 (void) rw_unlock(&ztest_name_lock
);
5549 ztest_zd_init(zd
, ZTEST_GET_SHARED_DS(d
), os
);
5551 zilog
= zd
->zd_zilog
;
5553 if (zilog
->zl_header
->zh_claim_lr_seq
!= 0 &&
5554 zilog
->zl_header
->zh_claim_lr_seq
< committed_seq
)
5555 fatal(0, "missing log records: claimed %llu < committed %llu",
5556 zilog
->zl_header
->zh_claim_lr_seq
, committed_seq
);
5558 ztest_dataset_dirobj_verify(zd
);
5560 zil_replay(os
, zd
, ztest_replay_vector
);
5562 ztest_dataset_dirobj_verify(zd
);
5564 if (ztest_opts
.zo_verbose
>= 6)
5565 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
5567 (u_longlong_t
)zilog
->zl_parse_blk_count
,
5568 (u_longlong_t
)zilog
->zl_parse_lr_count
,
5569 (u_longlong_t
)zilog
->zl_replaying_seq
);
5571 zilog
= zil_open(os
, ztest_get_data
);
5573 if (zilog
->zl_replaying_seq
!= 0 &&
5574 zilog
->zl_replaying_seq
< committed_seq
)
5575 fatal(0, "missing log records: replayed %llu < committed %llu",
5576 zilog
->zl_replaying_seq
, committed_seq
);
5582 ztest_dataset_close(int d
)
5584 ztest_ds_t
*zd
= &ztest_ds
[d
];
5586 zil_close(zd
->zd_zilog
);
5587 dmu_objset_disown(zd
->zd_os
, zd
);
5593 * Kick off threads to run tests on all datasets in parallel.
5596 ztest_run(ztest_shared_t
*zs
)
5601 thread_t resume_tid
;
5604 ztest_exiting
= B_FALSE
;
5607 * Initialize parent/child shared state.
5609 VERIFY(_mutex_init(&ztest_vdev_lock
, USYNC_THREAD
, NULL
) == 0);
5610 VERIFY(rwlock_init(&ztest_name_lock
, USYNC_THREAD
, NULL
) == 0);
5612 zs
->zs_thread_start
= gethrtime();
5613 zs
->zs_thread_stop
=
5614 zs
->zs_thread_start
+ ztest_opts
.zo_passtime
* NANOSEC
;
5615 zs
->zs_thread_stop
= MIN(zs
->zs_thread_stop
, zs
->zs_proc_stop
);
5616 zs
->zs_thread_kill
= zs
->zs_thread_stop
;
5617 if (ztest_random(100) < ztest_opts
.zo_killrate
) {
5618 zs
->zs_thread_kill
-=
5619 ztest_random(ztest_opts
.zo_passtime
* NANOSEC
);
5622 (void) _mutex_init(&zcl
.zcl_callbacks_lock
, USYNC_THREAD
, NULL
);
5624 list_create(&zcl
.zcl_callbacks
, sizeof (ztest_cb_data_t
),
5625 offsetof(ztest_cb_data_t
, zcd_node
));
5630 kernel_init(FREAD
| FWRITE
);
5631 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
5632 spa
->spa_debug
= B_TRUE
;
5633 metaslab_preload_limit
= ztest_random(20) + 1;
5636 VERIFY0(dmu_objset_own(ztest_opts
.zo_pool
,
5637 DMU_OST_ANY
, B_TRUE
, FTAG
, &os
));
5638 zs
->zs_guid
= dmu_objset_fsid_guid(os
);
5639 dmu_objset_disown(os
, FTAG
);
5641 spa
->spa_dedup_ditto
= 2 * ZIO_DEDUPDITTO_MIN
;
5644 * We don't expect the pool to suspend unless maxfaults == 0,
5645 * in which case ztest_fault_inject() temporarily takes away
5646 * the only valid replica.
5648 if (MAXFAULTS() == 0)
5649 spa
->spa_failmode
= ZIO_FAILURE_MODE_WAIT
;
5651 spa
->spa_failmode
= ZIO_FAILURE_MODE_PANIC
;
5654 * Create a thread to periodically resume suspended I/O.
5656 VERIFY(thr_create(0, 0, ztest_resume_thread
, spa
, THR_BOUND
,
5660 * Create a deadman thread to abort() if we hang.
5662 VERIFY(thr_create(0, 0, ztest_deadman_thread
, zs
, THR_BOUND
,
5666 * Verify that we can safely inquire about about any object,
5667 * whether it's allocated or not. To make it interesting,
5668 * we probe a 5-wide window around each power of two.
5669 * This hits all edge cases, including zero and the max.
5671 for (int t
= 0; t
< 64; t
++) {
5672 for (int d
= -5; d
<= 5; d
++) {
5673 error
= dmu_object_info(spa
->spa_meta_objset
,
5674 (1ULL << t
) + d
, NULL
);
5675 ASSERT(error
== 0 || error
== ENOENT
||
5681 * If we got any ENOSPC errors on the previous run, destroy something.
5683 if (zs
->zs_enospc_count
!= 0) {
5684 int d
= ztest_random(ztest_opts
.zo_datasets
);
5685 ztest_dataset_destroy(d
);
5687 zs
->zs_enospc_count
= 0;
5689 tid
= umem_zalloc(ztest_opts
.zo_threads
* sizeof (thread_t
),
5692 if (ztest_opts
.zo_verbose
>= 4)
5693 (void) printf("starting main threads...\n");
5696 * Kick off all the tests that run in parallel.
5698 for (int t
= 0; t
< ztest_opts
.zo_threads
; t
++) {
5699 if (t
< ztest_opts
.zo_datasets
&&
5700 ztest_dataset_open(t
) != 0)
5702 VERIFY(thr_create(0, 0, ztest_thread
, (void *)(uintptr_t)t
,
5703 THR_BOUND
, &tid
[t
]) == 0);
5707 * Wait for all of the tests to complete. We go in reverse order
5708 * so we don't close datasets while threads are still using them.
5710 for (int t
= ztest_opts
.zo_threads
- 1; t
>= 0; t
--) {
5711 VERIFY(thr_join(tid
[t
], NULL
, NULL
) == 0);
5712 if (t
< ztest_opts
.zo_datasets
)
5713 ztest_dataset_close(t
);
5716 txg_wait_synced(spa_get_dsl(spa
), 0);
5718 zs
->zs_alloc
= metaslab_class_get_alloc(spa_normal_class(spa
));
5719 zs
->zs_space
= metaslab_class_get_space(spa_normal_class(spa
));
5720 zfs_dbgmsg_print(FTAG
);
5722 umem_free(tid
, ztest_opts
.zo_threads
* sizeof (thread_t
));
5724 /* Kill the resume thread */
5725 ztest_exiting
= B_TRUE
;
5726 VERIFY(thr_join(resume_tid
, NULL
, NULL
) == 0);
5730 * Right before closing the pool, kick off a bunch of async I/O;
5731 * spa_close() should wait for it to complete.
5733 for (uint64_t object
= 1; object
< 50; object
++) {
5734 dmu_prefetch(spa
->spa_meta_objset
, object
, 0, 0, 1ULL << 20,
5735 ZIO_PRIORITY_SYNC_READ
);
5738 spa_close(spa
, FTAG
);
5741 * Verify that we can loop over all pools.
5743 mutex_enter(&spa_namespace_lock
);
5744 for (spa
= spa_next(NULL
); spa
!= NULL
; spa
= spa_next(spa
))
5745 if (ztest_opts
.zo_verbose
> 3)
5746 (void) printf("spa_next: found %s\n", spa_name(spa
));
5747 mutex_exit(&spa_namespace_lock
);
5750 * Verify that we can export the pool and reimport it under a
5753 if (ztest_random(2) == 0) {
5754 char name
[MAXNAMELEN
];
5755 (void) snprintf(name
, MAXNAMELEN
, "%s_import",
5756 ztest_opts
.zo_pool
);
5757 ztest_spa_import_export(ztest_opts
.zo_pool
, name
);
5758 ztest_spa_import_export(name
, ztest_opts
.zo_pool
);
5763 list_destroy(&zcl
.zcl_callbacks
);
5765 (void) _mutex_destroy(&zcl
.zcl_callbacks_lock
);
5767 (void) rwlock_destroy(&ztest_name_lock
);
5768 (void) _mutex_destroy(&ztest_vdev_lock
);
5774 ztest_ds_t
*zd
= &ztest_ds
[0];
5778 if (ztest_opts
.zo_verbose
>= 3)
5779 (void) printf("testing spa_freeze()...\n");
5781 kernel_init(FREAD
| FWRITE
);
5782 VERIFY3U(0, ==, spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
5783 VERIFY3U(0, ==, ztest_dataset_open(0));
5784 spa
->spa_debug
= B_TRUE
;
5788 * Force the first log block to be transactionally allocated.
5789 * We have to do this before we freeze the pool -- otherwise
5790 * the log chain won't be anchored.
5792 while (BP_IS_HOLE(&zd
->zd_zilog
->zl_header
->zh_log
)) {
5793 ztest_dmu_object_alloc_free(zd
, 0);
5794 zil_commit(zd
->zd_zilog
, 0);
5797 txg_wait_synced(spa_get_dsl(spa
), 0);
5800 * Freeze the pool. This stops spa_sync() from doing anything,
5801 * so that the only way to record changes from now on is the ZIL.
5806 * Because it is hard to predict how much space a write will actually
5807 * require beforehand, we leave ourselves some fudge space to write over
5810 uint64_t capacity
= metaslab_class_get_space(spa_normal_class(spa
)) / 2;
5813 * Run tests that generate log records but don't alter the pool config
5814 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
5815 * We do a txg_wait_synced() after each iteration to force the txg
5816 * to increase well beyond the last synced value in the uberblock.
5817 * The ZIL should be OK with that.
5819 * Run a random number of times less than zo_maxloops and ensure we do
5820 * not run out of space on the pool.
5822 while (ztest_random(10) != 0 &&
5823 numloops
++ < ztest_opts
.zo_maxloops
&&
5824 metaslab_class_get_alloc(spa_normal_class(spa
)) < capacity
) {
5826 ztest_od_init(&od
, 0, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0);
5827 VERIFY0(ztest_object_init(zd
, &od
, sizeof (od
), B_FALSE
));
5828 ztest_io(zd
, od
.od_object
,
5829 ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
5830 txg_wait_synced(spa_get_dsl(spa
), 0);
5834 * Commit all of the changes we just generated.
5836 zil_commit(zd
->zd_zilog
, 0);
5837 txg_wait_synced(spa_get_dsl(spa
), 0);
5840 * Close our dataset and close the pool.
5842 ztest_dataset_close(0);
5843 spa_close(spa
, FTAG
);
5847 * Open and close the pool and dataset to induce log replay.
5849 kernel_init(FREAD
| FWRITE
);
5850 VERIFY3U(0, ==, spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
5851 ASSERT(spa_freeze_txg(spa
) == UINT64_MAX
);
5852 VERIFY3U(0, ==, ztest_dataset_open(0));
5853 ztest_dataset_close(0);
5855 spa
->spa_debug
= B_TRUE
;
5857 txg_wait_synced(spa_get_dsl(spa
), 0);
5858 ztest_reguid(NULL
, 0);
5860 spa_close(spa
, FTAG
);
5865 print_time(hrtime_t t
, char *timebuf
)
5867 hrtime_t s
= t
/ NANOSEC
;
5868 hrtime_t m
= s
/ 60;
5869 hrtime_t h
= m
/ 60;
5870 hrtime_t d
= h
/ 24;
5879 (void) sprintf(timebuf
,
5880 "%llud%02lluh%02llum%02llus", d
, h
, m
, s
);
5882 (void) sprintf(timebuf
, "%lluh%02llum%02llus", h
, m
, s
);
5884 (void) sprintf(timebuf
, "%llum%02llus", m
, s
);
5886 (void) sprintf(timebuf
, "%llus", s
);
5894 VERIFY(nvlist_alloc(&props
, NV_UNIQUE_NAME
, 0) == 0);
5895 if (ztest_random(2) == 0)
5897 VERIFY(nvlist_add_uint64(props
, "autoreplace", 1) == 0);
5903 * Create a storage pool with the given name and initial vdev size.
5904 * Then test spa_freeze() functionality.
5907 ztest_init(ztest_shared_t
*zs
)
5910 nvlist_t
*nvroot
, *props
;
5912 VERIFY(_mutex_init(&ztest_vdev_lock
, USYNC_THREAD
, NULL
) == 0);
5913 VERIFY(rwlock_init(&ztest_name_lock
, USYNC_THREAD
, NULL
) == 0);
5915 kernel_init(FREAD
| FWRITE
);
5918 * Create the storage pool.
5920 (void) spa_destroy(ztest_opts
.zo_pool
);
5921 ztest_shared
->zs_vdev_next_leaf
= 0;
5923 zs
->zs_mirrors
= ztest_opts
.zo_mirrors
;
5924 nvroot
= make_vdev_root(NULL
, NULL
, NULL
, ztest_opts
.zo_vdev_size
, 0,
5925 0, ztest_opts
.zo_raidz
, zs
->zs_mirrors
, 1);
5926 props
= make_random_props();
5927 for (int i
= 0; i
< SPA_FEATURES
; i
++) {
5929 (void) snprintf(buf
, sizeof (buf
), "feature@%s",
5930 spa_feature_table
[i
].fi_uname
);
5931 VERIFY3U(0, ==, nvlist_add_uint64(props
, buf
, 0));
5933 VERIFY3U(0, ==, spa_create(ztest_opts
.zo_pool
, nvroot
, props
, NULL
));
5934 nvlist_free(nvroot
);
5937 VERIFY3U(0, ==, spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
5938 zs
->zs_metaslab_sz
=
5939 1ULL << spa
->spa_root_vdev
->vdev_child
[0]->vdev_ms_shift
;
5941 spa_close(spa
, FTAG
);
5945 ztest_run_zdb(ztest_opts
.zo_pool
);
5949 ztest_run_zdb(ztest_opts
.zo_pool
);
5951 (void) rwlock_destroy(&ztest_name_lock
);
5952 (void) _mutex_destroy(&ztest_vdev_lock
);
5958 static char ztest_name_data
[] = "/tmp/ztest.data.XXXXXX";
5960 ztest_fd_data
= mkstemp(ztest_name_data
);
5961 ASSERT3S(ztest_fd_data
, >=, 0);
5962 (void) unlink(ztest_name_data
);
5967 shared_data_size(ztest_shared_hdr_t
*hdr
)
5971 size
= hdr
->zh_hdr_size
;
5972 size
+= hdr
->zh_opts_size
;
5973 size
+= hdr
->zh_size
;
5974 size
+= hdr
->zh_stats_size
* hdr
->zh_stats_count
;
5975 size
+= hdr
->zh_ds_size
* hdr
->zh_ds_count
;
5984 ztest_shared_hdr_t
*hdr
;
5986 hdr
= (void *)mmap(0, P2ROUNDUP(sizeof (*hdr
), getpagesize()),
5987 PROT_READ
| PROT_WRITE
, MAP_SHARED
, ztest_fd_data
, 0);
5988 ASSERT(hdr
!= MAP_FAILED
);
5990 VERIFY3U(0, ==, ftruncate(ztest_fd_data
, sizeof (ztest_shared_hdr_t
)));
5992 hdr
->zh_hdr_size
= sizeof (ztest_shared_hdr_t
);
5993 hdr
->zh_opts_size
= sizeof (ztest_shared_opts_t
);
5994 hdr
->zh_size
= sizeof (ztest_shared_t
);
5995 hdr
->zh_stats_size
= sizeof (ztest_shared_callstate_t
);
5996 hdr
->zh_stats_count
= ZTEST_FUNCS
;
5997 hdr
->zh_ds_size
= sizeof (ztest_shared_ds_t
);
5998 hdr
->zh_ds_count
= ztest_opts
.zo_datasets
;
6000 size
= shared_data_size(hdr
);
6001 VERIFY3U(0, ==, ftruncate(ztest_fd_data
, size
));
6003 (void) munmap((caddr_t
)hdr
, P2ROUNDUP(sizeof (*hdr
), getpagesize()));
6010 ztest_shared_hdr_t
*hdr
;
6013 hdr
= (void *)mmap(0, P2ROUNDUP(sizeof (*hdr
), getpagesize()),
6014 PROT_READ
, MAP_SHARED
, ztest_fd_data
, 0);
6015 ASSERT(hdr
!= MAP_FAILED
);
6017 size
= shared_data_size(hdr
);
6019 (void) munmap((caddr_t
)hdr
, P2ROUNDUP(sizeof (*hdr
), getpagesize()));
6020 hdr
= ztest_shared_hdr
= (void *)mmap(0, P2ROUNDUP(size
, getpagesize()),
6021 PROT_READ
| PROT_WRITE
, MAP_SHARED
, ztest_fd_data
, 0);
6022 ASSERT(hdr
!= MAP_FAILED
);
6023 buf
= (uint8_t *)hdr
;
6025 offset
= hdr
->zh_hdr_size
;
6026 ztest_shared_opts
= (void *)&buf
[offset
];
6027 offset
+= hdr
->zh_opts_size
;
6028 ztest_shared
= (void *)&buf
[offset
];
6029 offset
+= hdr
->zh_size
;
6030 ztest_shared_callstate
= (void *)&buf
[offset
];
6031 offset
+= hdr
->zh_stats_size
* hdr
->zh_stats_count
;
6032 ztest_shared_ds
= (void *)&buf
[offset
];
6036 exec_child(char *cmd
, char *libpath
, boolean_t ignorekill
, int *statusp
)
6040 char *cmdbuf
= NULL
;
6045 cmdbuf
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
6046 (void) strlcpy(cmdbuf
, getexecname(), MAXPATHLEN
);
6051 fatal(1, "fork failed");
6053 if (pid
== 0) { /* child */
6054 char *emptyargv
[2] = { cmd
, NULL
};
6055 char fd_data_str
[12];
6057 struct rlimit rl
= { 1024, 1024 };
6058 (void) setrlimit(RLIMIT_NOFILE
, &rl
);
6060 (void) close(ztest_fd_rand
);
6062 snprintf(fd_data_str
, 12, "%d", ztest_fd_data
));
6063 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str
, 1));
6065 (void) enable_extended_FILE_stdio(-1, -1);
6066 if (libpath
!= NULL
)
6067 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath
, 1));
6068 (void) execv(cmd
, emptyargv
);
6069 ztest_dump_core
= B_FALSE
;
6070 fatal(B_TRUE
, "exec failed: %s", cmd
);
6073 if (cmdbuf
!= NULL
) {
6074 umem_free(cmdbuf
, MAXPATHLEN
);
6078 while (waitpid(pid
, &status
, 0) != pid
)
6080 if (statusp
!= NULL
)
6083 if (WIFEXITED(status
)) {
6084 if (WEXITSTATUS(status
) != 0) {
6085 (void) fprintf(stderr
, "child exited with code %d\n",
6086 WEXITSTATUS(status
));
6090 } else if (WIFSIGNALED(status
)) {
6091 if (!ignorekill
|| WTERMSIG(status
) != SIGKILL
) {
6092 (void) fprintf(stderr
, "child died with signal %d\n",
6098 (void) fprintf(stderr
, "something strange happened to child\n");
6105 ztest_run_init(void)
6107 ztest_shared_t
*zs
= ztest_shared
;
6109 ASSERT(ztest_opts
.zo_init
!= 0);
6112 * Blow away any existing copy of zpool.cache
6114 (void) remove(spa_config_path
);
6117 * Create and initialize our storage pool.
6119 for (int i
= 1; i
<= ztest_opts
.zo_init
; i
++) {
6120 bzero(zs
, sizeof (ztest_shared_t
));
6121 if (ztest_opts
.zo_verbose
>= 3 &&
6122 ztest_opts
.zo_init
!= 1) {
6123 (void) printf("ztest_init(), pass %d\n", i
);
6130 main(int argc
, char **argv
)
6138 ztest_shared_callstate_t
*zc
;
6144 char *fd_data_str
= getenv("ZTEST_FD_DATA");
6146 (void) setvbuf(stdout
, NULL
, _IOLBF
, 0);
6148 dprintf_setup(&argc
, argv
);
6149 zfs_deadman_synctime_ms
= 300000;
6151 ztest_fd_rand
= open("/dev/urandom", O_RDONLY
);
6152 ASSERT3S(ztest_fd_rand
, >=, 0);
6155 process_options(argc
, argv
);
6160 bcopy(&ztest_opts
, ztest_shared_opts
,
6161 sizeof (*ztest_shared_opts
));
6163 ztest_fd_data
= atoi(fd_data_str
);
6165 bcopy(ztest_shared_opts
, &ztest_opts
, sizeof (ztest_opts
));
6167 ASSERT3U(ztest_opts
.zo_datasets
, ==, ztest_shared_hdr
->zh_ds_count
);
6169 /* Override location of zpool.cache */
6170 VERIFY3U(asprintf((char **)&spa_config_path
, "%s/zpool.cache",
6171 ztest_opts
.zo_dir
), !=, -1);
6173 ztest_ds
= umem_alloc(ztest_opts
.zo_datasets
* sizeof (ztest_ds_t
),
6178 metaslab_gang_bang
= ztest_opts
.zo_metaslab_gang_bang
;
6179 metaslab_df_alloc_threshold
=
6180 zs
->zs_metaslab_df_alloc_threshold
;
6189 hasalt
= (strlen(ztest_opts
.zo_alt_ztest
) != 0);
6191 if (ztest_opts
.zo_verbose
>= 1) {
6192 (void) printf("%llu vdevs, %d datasets, %d threads,"
6193 " %llu seconds...\n",
6194 (u_longlong_t
)ztest_opts
.zo_vdevs
,
6195 ztest_opts
.zo_datasets
,
6196 ztest_opts
.zo_threads
,
6197 (u_longlong_t
)ztest_opts
.zo_time
);
6200 cmd
= umem_alloc(MAXNAMELEN
, UMEM_NOFAIL
);
6201 (void) strlcpy(cmd
, getexecname(), MAXNAMELEN
);
6203 zs
->zs_do_init
= B_TRUE
;
6204 if (strlen(ztest_opts
.zo_alt_ztest
) != 0) {
6205 if (ztest_opts
.zo_verbose
>= 1) {
6206 (void) printf("Executing older ztest for "
6207 "initialization: %s\n", ztest_opts
.zo_alt_ztest
);
6209 VERIFY(!exec_child(ztest_opts
.zo_alt_ztest
,
6210 ztest_opts
.zo_alt_libpath
, B_FALSE
, NULL
));
6212 VERIFY(!exec_child(NULL
, NULL
, B_FALSE
, NULL
));
6214 zs
->zs_do_init
= B_FALSE
;
6216 zs
->zs_proc_start
= gethrtime();
6217 zs
->zs_proc_stop
= zs
->zs_proc_start
+ ztest_opts
.zo_time
* NANOSEC
;
6219 for (int f
= 0; f
< ZTEST_FUNCS
; f
++) {
6220 zi
= &ztest_info
[f
];
6221 zc
= ZTEST_GET_SHARED_CALLSTATE(f
);
6222 if (zs
->zs_proc_start
+ zi
->zi_interval
[0] > zs
->zs_proc_stop
)
6223 zc
->zc_next
= UINT64_MAX
;
6225 zc
->zc_next
= zs
->zs_proc_start
+
6226 ztest_random(2 * zi
->zi_interval
[0] + 1);
6230 * Run the tests in a loop. These tests include fault injection
6231 * to verify that self-healing data works, and forced crashes
6232 * to verify that we never lose on-disk consistency.
6234 while (gethrtime() < zs
->zs_proc_stop
) {
6239 * Initialize the workload counters for each function.
6241 for (int f
= 0; f
< ZTEST_FUNCS
; f
++) {
6242 zc
= ZTEST_GET_SHARED_CALLSTATE(f
);
6247 /* Set the allocation switch size */
6248 zs
->zs_metaslab_df_alloc_threshold
=
6249 ztest_random(zs
->zs_metaslab_sz
/ 4) + 1;
6251 if (!hasalt
|| ztest_random(2) == 0) {
6252 if (hasalt
&& ztest_opts
.zo_verbose
>= 1) {
6253 (void) printf("Executing newer ztest: %s\n",
6257 killed
= exec_child(cmd
, NULL
, B_TRUE
, &status
);
6259 if (hasalt
&& ztest_opts
.zo_verbose
>= 1) {
6260 (void) printf("Executing older ztest: %s\n",
6261 ztest_opts
.zo_alt_ztest
);
6264 killed
= exec_child(ztest_opts
.zo_alt_ztest
,
6265 ztest_opts
.zo_alt_libpath
, B_TRUE
, &status
);
6272 if (ztest_opts
.zo_verbose
>= 1) {
6273 hrtime_t now
= gethrtime();
6275 now
= MIN(now
, zs
->zs_proc_stop
);
6276 print_time(zs
->zs_proc_stop
- now
, timebuf
);
6277 nicenum(zs
->zs_space
, numbuf
);
6279 (void) printf("Pass %3d, %8s, %3llu ENOSPC, "
6280 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
6282 WIFEXITED(status
) ? "Complete" : "SIGKILL",
6283 (u_longlong_t
)zs
->zs_enospc_count
,
6284 100.0 * zs
->zs_alloc
/ zs
->zs_space
,
6286 100.0 * (now
- zs
->zs_proc_start
) /
6287 (ztest_opts
.zo_time
* NANOSEC
), timebuf
);
6290 if (ztest_opts
.zo_verbose
>= 2) {
6291 (void) printf("\nWorkload summary:\n\n");
6292 (void) printf("%7s %9s %s\n",
6293 "Calls", "Time", "Function");
6294 (void) printf("%7s %9s %s\n",
6295 "-----", "----", "--------");
6296 for (int f
= 0; f
< ZTEST_FUNCS
; f
++) {
6299 zi
= &ztest_info
[f
];
6300 zc
= ZTEST_GET_SHARED_CALLSTATE(f
);
6301 print_time(zc
->zc_time
, timebuf
);
6302 (void) dladdr((void *)zi
->zi_func
, &dli
);
6303 (void) printf("%7llu %9s %s\n",
6304 (u_longlong_t
)zc
->zc_count
, timebuf
,
6307 (void) printf("\n");
6311 * It's possible that we killed a child during a rename test,
6312 * in which case we'll have a 'ztest_tmp' pool lying around
6313 * instead of 'ztest'. Do a blind rename in case this happened.
6316 if (spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
) == 0) {
6317 spa_close(spa
, FTAG
);
6319 char tmpname
[MAXNAMELEN
];
6321 kernel_init(FREAD
| FWRITE
);
6322 (void) snprintf(tmpname
, sizeof (tmpname
), "%s_tmp",
6323 ztest_opts
.zo_pool
);
6324 (void) spa_rename(tmpname
, ztest_opts
.zo_pool
);
6328 ztest_run_zdb(ztest_opts
.zo_pool
);
6331 if (ztest_opts
.zo_verbose
>= 1) {
6333 (void) printf("%d runs of older ztest: %s\n", older
,
6334 ztest_opts
.zo_alt_ztest
);
6335 (void) printf("%d runs of newer ztest: %s\n", newer
,
6338 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
6339 kills
, iters
- kills
, (100.0 * kills
) / MAX(1, iters
));
6342 umem_free(cmd
, MAXNAMELEN
);