uadmin: remove audit support
[unleashed.git] / include / inet / sadb.h
blobea62235d60282950188940039479ddf64de1c992
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved.
25 * Copyright 2017 Joyent, Inc.
28 #ifndef _INET_SADB_H
29 #define _INET_SADB_H
31 #ifdef __cplusplus
32 extern "C" {
33 #endif
35 #include <inet/ipsec_info.h>
36 #include <sys/crypto/common.h>
37 #include <sys/crypto/api.h>
38 #include <sys/note.h>
40 #define IPSA_MAX_ADDRLEN 4 /* Max address len. (in 32-bits) for an SA. */
42 #define MAXSALTSIZE 8
45 * For combined mode ciphers, store the crypto_mechanism_t in the
46 * per-packet ipsec_in_t/ipsec_out_t structures. This is because the PARAMS
47 * and nonce values change for each packet. For non-combined mode
48 * ciphers, these values are constant for the life of the SA.
50 typedef struct ipsa_cm_mech_s {
51 crypto_mechanism_t combined_mech;
52 union {
53 CK_AES_CCM_PARAMS paramu_ccm;
54 CK_AES_GCM_PARAMS paramu_gcm;
55 } paramu;
56 uint8_t nonce[MAXSALTSIZE + sizeof (uint64_t)];
57 #define param_ulMACSize paramu.paramu_ccm.ulMACSize
58 #define param_ulNonceSize paramu.paramu_ccm.ipsa_ulNonceSize
59 #define param_ulAuthDataSize paramu.paramu_ccm.ipsa_ulAuthDataSize
60 #define param_ulDataSize paramu.paramu_ccm.ipsa_ulDataSize
61 #define param_nonce paramu.paramu_ccm.nonce
62 #define param_authData paramu.paramu_ccm.authData
63 #define param_pIv paramu.paramu_gcm.ipsa_pIv
64 #define param_ulIvLen paramu.paramu_gcm.ulIvLen
65 #define param_ulIvBits paramu.paramu_gcm.ulIvBits
66 #define param_pAAD paramu.paramu_gcm.pAAD
67 #define param_ulAADLen paramu.paramu_gcm.ulAADLen
68 #define param_ulTagBits paramu.paramu_gcm.ulTagBits
69 } ipsa_cm_mech_t;
72 * The Initialization Vector (also known as IV or Nonce) used to
73 * initialize the Block Cipher, is made up of a Counter and a Salt.
74 * The Counter is fixed at 64 bits and is incremented for each packet.
75 * The Salt value can be any whole byte value upto 64 bits. This is
76 * algorithm mode specific and can be configured with ipsecalgs(1m).
78 * We only support whole byte salt lengths, this is because the salt is
79 * stored in an array of uint8_t's. This is enforced by ipsecalgs(1m)
80 * which configures the salt length as a number of bytes. Checks are
81 * made to ensure the salt length defined in ipsecalgs(1m) fits in
82 * the ipsec_nonce_t.
84 * The Salt value remains constant for the life of the SA, the Salt is
85 * know to both peers, but NOT transmitted on the network. The Counter
86 * portion of the nonce is transmitted over the network with each packet
87 * and is confusingly described as the Initialization Vector by RFCs
88 * 4309/4106.
90 * The maximum Initialization Vector length is 128 bits, if the actual
91 * size is less, its padded internally by the algorithm.
93 * The nonce structure is defined like this in the SA (ipsa_t)to ensure
94 * the Initilization Vector (counter) is 64 bit aligned, because it will
95 * be incremented as an uint64_t. The nonce as used by the algorithms is
96 * a straight uint8_t array.
98 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
99 * | | | | |x|x|x|x| |
100 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
101 * salt_offset <------>
102 * ipsa_saltlen <------->
103 * ipsa_nonce_buf------^
104 * ipsa_salt-------------~~~~~~^
105 * ipsa_nonce------------~~~~~~^
106 * ipsa_iv-----------------------------^
108 typedef struct ipsec_nonce_s {
109 uint8_t salt[MAXSALTSIZE];
110 uint64_t iv;
111 } ipsec_nonce_t;
114 * IP security association. Synchronization assumes 32-bit loads, so
115 * the 64-bit quantities can't even be be read w/o locking it down!
118 /* keying info */
119 typedef struct ipsa_key_s {
120 uint8_t *sak_key; /* Algorithm key. */
121 uint_t sak_keylen; /* Algorithm key length (in bytes). */
122 uint_t sak_keybits; /* Algorithm key length (in bits) */
123 uint_t sak_algid; /* Algorithm ID number. */
124 } ipsa_key_t;
126 typedef struct ipsa_s {
127 struct ipsa_s *ipsa_next; /* Next in hash bucket */
128 struct ipsa_s **ipsa_ptpn; /* Pointer to previous next pointer. */
129 kmutex_t *ipsa_linklock; /* Pointer to hash-chain lock. */
130 void (*ipsa_freefunc)(struct ipsa_s *); /* freeassoc function */
131 void (*ipsa_noncefunc)(struct ipsa_s *, uchar_t *,
132 uint_t, uchar_t *, ipsa_cm_mech_t *, crypto_data_t *);
134 * NOTE: I may need more pointers, depending on future SA
135 * requirements.
137 ipsa_key_t ipsa_authkeydata;
138 #define ipsa_authkey ipsa_authkeydata.sak_key
139 #define ipsa_authkeylen ipsa_authkeydata.sak_keylen
140 #define ipsa_authkeybits ipsa_authkeydata.sak_keybits
141 #define ipsa_auth_alg ipsa_authkeydata.sak_algid
142 ipsa_key_t ipsa_encrkeydata;
143 #define ipsa_encrkey ipsa_encrkeydata.sak_key
144 #define ipsa_encrkeylen ipsa_encrkeydata.sak_keylen
145 #define ipsa_encrkeybits ipsa_encrkeydata.sak_keybits
146 #define ipsa_encr_alg ipsa_encrkeydata.sak_algid
148 struct ipsid_s *ipsa_src_cid; /* Source certificate identity */
149 struct ipsid_s *ipsa_dst_cid; /* Destination certificate identity */
150 mblk_t *ipsa_lpkt; /* Packet received while larval (CAS me) */
151 mblk_t *ipsa_bpkt_head; /* Packets received while idle */
152 mblk_t *ipsa_bpkt_tail;
153 #define SADB_MAX_IDLEPKTS 100
154 uint8_t ipsa_mblkcnt; /* Number of packets received while idle */
157 * PF_KEYv2 supports a replay window size of 255. Hence there is a
158 * need a bit vector to support a replay window of 255. 256 is a nice
159 * round number, so I support that.
161 * Use an array of uint64_t for best performance on 64-bit
162 * processors. (And hope that 32-bit compilers can handle things
163 * okay.) The " >> 6 " is to get the appropriate number of 64-bit
164 * ints.
166 #define SADB_MAX_REPLAY 256 /* Must be 0 mod 64. */
167 uint64_t ipsa_replay_arr[SADB_MAX_REPLAY >> 6];
169 uint64_t ipsa_unique_id; /* Non-zero for unique SAs */
170 uint64_t ipsa_unique_mask; /* mask value for unique_id */
173 * Reference count semantics:
175 * An SA has a reference count of 1 if something's pointing
176 * to it. This includes being in a hash table. So if an
177 * SA is in a hash table, it has a reference count of at least 1.
179 * When a ptr. to an IPSA is assigned, you MUST REFHOLD after
180 * said assignment. When a ptr. to an IPSA is released
181 * you MUST REFRELE. When the refcount hits 0, REFRELE
182 * will free the IPSA.
184 kmutex_t ipsa_lock; /* Locks non-linkage/refcnt fields. */
185 /* Q: Since I may be doing refcnts differently, will I need cv? */
186 uint_t ipsa_refcnt; /* Reference count. */
189 * The following four time fields are the ones monitored by ah_ager()
190 * and esp_ager() respectively. They are all absolute wall-clock
191 * times. The times of creation (i.e. add time) and first use are
192 * pretty straightforward. The soft and hard expire times are
193 * derived from the times of first use and creation, plus the minimum
194 * expiration times in the fields that follow this.
196 * For example, if I had a hard add time of 30 seconds, and a hard
197 * use time of 15, the ipsa_hardexpiretime would be time of add, plus
198 * 30 seconds. If I USE the SA such that time of first use plus 15
199 * seconds would be earlier than the add time plus 30 seconds, then
200 * ipsa_hardexpiretime would become this earlier time.
202 time_t ipsa_addtime; /* Time I was added. */
203 time_t ipsa_usetime; /* Time of my first use. */
204 time_t ipsa_lastuse; /* Time of my last use. */
205 time_t ipsa_idletime; /* Seconds of idle time */
206 time_t ipsa_last_nat_t_ka; /* Time of my last NAT-T keepalive. */
207 time_t ipsa_softexpiretime; /* Time of my first soft expire. */
208 time_t ipsa_hardexpiretime; /* Time of my first hard expire. */
209 time_t ipsa_idleexpiretime; /* Time of my next idle expire time */
211 struct ipsec_nonce_s *ipsa_nonce_buf;
212 uint8_t *ipsa_nonce;
213 uint_t ipsa_nonce_len;
214 uint8_t *ipsa_salt;
215 uint_t ipsa_saltbits;
216 uint_t ipsa_saltlen;
217 uint64_t *ipsa_iv;
219 uint64_t ipsa_iv_hardexpire;
220 uint64_t ipsa_iv_softexpire;
222 * The following fields are directly reflected in PF_KEYv2 LIFETIME
223 * extensions. The time_ts are in number-of-seconds, and the bytes
224 * are in... bytes.
226 time_t ipsa_softaddlt; /* Seconds of soft lifetime after add. */
227 time_t ipsa_softuselt; /* Seconds of soft lifetime after first use. */
228 time_t ipsa_hardaddlt; /* Seconds of hard lifetime after add. */
229 time_t ipsa_harduselt; /* Seconds of hard lifetime after first use. */
230 time_t ipsa_idleaddlt; /* Seconds of idle time after add */
231 time_t ipsa_idleuselt; /* Seconds of idle time after first use */
232 uint64_t ipsa_softbyteslt; /* Bytes of soft lifetime. */
233 uint64_t ipsa_hardbyteslt; /* Bytes of hard lifetime. */
234 uint64_t ipsa_bytes; /* Bytes encrypted/authed by this SA. */
237 * "Allocations" are a concept mentioned in PF_KEYv2. We do not
238 * support them, except to record them per the PF_KEYv2 spec.
240 uint_t ipsa_softalloc; /* Allocations allowed (soft). */
241 uint_t ipsa_hardalloc; /* Allocations allowed (hard). */
242 uint_t ipsa_alloc; /* Allocations made. */
244 uint_t ipsa_type; /* Type of security association. (AH/etc.) */
245 uint_t ipsa_state; /* State of my association. */
246 uint_t ipsa_replay_wsize; /* Size of replay window */
247 uint32_t ipsa_flags; /* Flags for security association. */
248 uint32_t ipsa_spi; /* Security parameters index. */
249 uint32_t ipsa_replay; /* Highest seen replay value for this SA. */
250 uint32_t ipsa_kmp; /* key management proto */
251 uint64_t ipsa_kmc; /* key management cookie (now 64-bit) */
253 boolean_t ipsa_haspeer; /* Has peer in another table. */
256 * Address storage.
257 * The source address can be INADDR_ANY, IN6ADDR_ANY, etc.
259 * Address families (per sys/socket.h) guide us. We could have just
260 * used sockaddr_storage
262 sa_family_t ipsa_addrfam;
263 sa_family_t ipsa_innerfam; /* Inner AF can be != src/dst AF. */
265 uint32_t ipsa_srcaddr[IPSA_MAX_ADDRLEN];
266 uint32_t ipsa_dstaddr[IPSA_MAX_ADDRLEN];
267 uint32_t ipsa_innersrc[IPSA_MAX_ADDRLEN];
268 uint32_t ipsa_innerdst[IPSA_MAX_ADDRLEN];
270 uint8_t ipsa_innersrcpfx;
271 uint8_t ipsa_innerdstpfx;
273 uint16_t ipsa_inbound_cksum; /* cksum correction for inbound packets */
274 uint16_t ipsa_local_nat_port; /* Local NAT-T port. (0 --> 4500) */
275 uint16_t ipsa_remote_nat_port; /* The other port that isn't 4500 */
277 /* these can only be v4 */
278 uint32_t ipsa_natt_addr_loc;
279 uint32_t ipsa_natt_addr_rem;
282 * icmp type and code. *_end are to specify ranges. if only
283 * a single value, * and *_end are the same value.
285 uint8_t ipsa_icmp_type;
286 uint8_t ipsa_icmp_type_end;
287 uint8_t ipsa_icmp_code;
288 uint8_t ipsa_icmp_code_end;
291 * For the kernel crypto framework.
293 crypto_key_t ipsa_kcfauthkey; /* authentication key */
294 crypto_key_t ipsa_kcfencrkey; /* encryption key */
295 crypto_ctx_template_t ipsa_authtmpl; /* auth context template */
296 crypto_ctx_template_t ipsa_encrtmpl; /* encr context template */
297 crypto_mechanism_t ipsa_amech; /* auth mech type and ICV len */
298 crypto_mechanism_t ipsa_emech; /* encr mech type */
299 size_t ipsa_mac_len; /* auth MAC/ICV length */
300 size_t ipsa_iv_len; /* encr IV length */
301 size_t ipsa_datalen; /* block length in bytes. */
304 * Input and output processing functions called from IP.
305 * The mblk_t is the data; the IPsec information is in the attributes
306 * Returns NULL if the mblk is consumed which it is if there was
307 * a failure or if pending. If failure then
308 * the ipIfInDiscards/OutDiscards counters are increased.
310 mblk_t *(*ipsa_output_func)(mblk_t *, ip_xmit_attr_t *);
311 mblk_t *(*ipsa_input_func)(mblk_t *, void *, ip_recv_attr_t *);
314 * Soft reference to paired SA
316 uint32_t ipsa_otherspi;
317 netstack_t *ipsa_netstack; /* Does not have a netstack_hold */
319 uint8_t ipsa_mac_exempt; /* MLS: mac exempt flag */
320 uchar_t ipsa_opt_storage[IP_MAX_OPT_LENGTH];
321 } ipsa_t;
324 * ipsa_t address handling macros. We want these to be inlined, and deal
325 * with 32-bit words to avoid bcmp/bcopy calls.
327 * Assume we only have AF_INET and AF_INET6 addresses for now. Also assume
328 * that we have 32-bit alignment on everything.
330 #define IPSA_IS_ADDR_UNSPEC(addr, fam) ((((uint32_t *)(addr))[0] == 0) && \
331 (((fam) == AF_INET) || (((uint32_t *)(addr))[3] == 0 && \
332 ((uint32_t *)(addr))[2] == 0 && ((uint32_t *)(addr))[1] == 0)))
333 #define IPSA_ARE_ADDR_EQUAL(addr1, addr2, fam) \
334 ((((uint32_t *)(addr1))[0] == ((uint32_t *)(addr2))[0]) && \
335 (((fam) == AF_INET) || \
336 (((uint32_t *)(addr1))[3] == ((uint32_t *)(addr2))[3] && \
337 ((uint32_t *)(addr1))[2] == ((uint32_t *)(addr2))[2] && \
338 ((uint32_t *)(addr1))[1] == ((uint32_t *)(addr2))[1])))
339 #define IPSA_COPY_ADDR(dstaddr, srcaddr, fam) { \
340 ((uint32_t *)(dstaddr))[0] = ((uint32_t *)(srcaddr))[0]; \
341 if ((fam) == AF_INET6) {\
342 ((uint32_t *)(dstaddr))[1] = ((uint32_t *)(srcaddr))[1]; \
343 ((uint32_t *)(dstaddr))[2] = ((uint32_t *)(srcaddr))[2]; \
344 ((uint32_t *)(dstaddr))[3] = ((uint32_t *)(srcaddr))[3]; } }
347 * ipsa_t reference hold/release macros.
349 * If you have a pointer, you REFHOLD. If you are releasing a pointer, you
350 * REFRELE. An ipsa_t that is newly inserted into the table should have
351 * a reference count of 1 (for the table's pointer), plus 1 more for every
352 * pointer that is referencing the ipsa_t.
355 #define IPSA_REFHOLD(ipsa) { \
356 atomic_inc_32(&(ipsa)->ipsa_refcnt); \
357 ASSERT((ipsa)->ipsa_refcnt != 0); \
361 * Decrement the reference count on the SA.
362 * In architectures e.g sun4u, where atomic_add_32_nv is just
363 * a cas, we need to maintain the right memory barrier semantics
364 * as that of mutex_exit i.e all the loads and stores should complete
365 * before the cas is executed. membar_exit() does that here.
368 #define IPSA_REFRELE(ipsa) { \
369 ASSERT((ipsa)->ipsa_refcnt != 0); \
370 membar_exit(); \
371 if (atomic_dec_32_nv(&(ipsa)->ipsa_refcnt) == 0) \
372 ((ipsa)->ipsa_freefunc)(ipsa); \
376 * Security association hash macros and definitions. For now, assume the
377 * IPsec model, and hash outbounds on destination address, and inbounds on
378 * SPI.
381 #define IPSEC_DEFAULT_HASH_SIZE 256
383 #define INBOUND_HASH(sadb, spi) ((spi) % ((sadb)->sdb_hashsize))
384 #define OUTBOUND_HASH_V4(sadb, v4addr) ((v4addr) % ((sadb)->sdb_hashsize))
385 #define OUTBOUND_HASH_V6(sadb, v6addr) OUTBOUND_HASH_V4((sadb), \
386 (*(uint32_t *)&(v6addr)) ^ (*(((uint32_t *)&(v6addr)) + 1)) ^ \
387 (*(((uint32_t *)&(v6addr)) + 2)) ^ (*(((uint32_t *)&(v6addr)) + 3)))
390 * Syntactic sugar to find the appropriate hash bucket directly.
393 #define INBOUND_BUCKET(sadb, spi) &(((sadb)->sdb_if)[INBOUND_HASH(sadb, spi)])
394 #define OUTBOUND_BUCKET_V4(sadb, v4addr) \
395 &(((sadb)->sdb_of)[OUTBOUND_HASH_V4(sadb, v4addr)])
396 #define OUTBOUND_BUCKET_V6(sadb, v6addr) \
397 &(((sadb)->sdb_of)[OUTBOUND_HASH_V6(sadb, v6addr)])
399 #define IPSA_F_PFS SADB_SAFLAGS_PFS /* PFS in use for this SA? */
400 #define IPSA_F_NOREPFLD SADB_SAFLAGS_NOREPLAY /* No replay field, for */
401 /* backward compat. */
402 #define IPSA_F_USED SADB_X_SAFLAGS_USED /* SA has been used. */
403 #define IPSA_F_UNIQUE SADB_X_SAFLAGS_UNIQUE /* SA is unique */
404 #define IPSA_F_AALG1 SADB_X_SAFLAGS_AALG1 /* Auth alg flag 1 */
405 #define IPSA_F_AALG2 SADB_X_SAFLAGS_AALG2 /* Auth alg flag 2 */
406 #define IPSA_F_EALG1 SADB_X_SAFLAGS_EALG1 /* Encrypt alg flag 1 */
407 #define IPSA_F_EALG2 SADB_X_SAFLAGS_EALG2 /* Encrypt alg flag 2 */
409 #define IPSA_F_ASYNC 0x200000 /* Call KCF asynchronously? */
410 #define IPSA_F_NATT_LOC SADB_X_SAFLAGS_NATT_LOC
411 #define IPSA_F_NATT_REM SADB_X_SAFLAGS_NATT_REM
412 #define IPSA_F_BEHIND_NAT SADB_X_SAFLAGS_NATTED
413 #define IPSA_F_NATT (SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM | \
414 SADB_X_SAFLAGS_NATTED)
415 #define IPSA_F_CINVALID 0x40000 /* SA shouldn't be cached */
416 #define IPSA_F_PAIRED SADB_X_SAFLAGS_PAIRED /* SA is one of a pair */
417 #define IPSA_F_OUTBOUND SADB_X_SAFLAGS_OUTBOUND /* SA direction bit */
418 #define IPSA_F_INBOUND SADB_X_SAFLAGS_INBOUND /* SA direction bit */
419 #define IPSA_F_TUNNEL SADB_X_SAFLAGS_TUNNEL
421 * These flags are only defined here to prevent a flag value collision.
423 #define IPSA_F_COMBINED SADB_X_SAFLAGS_EALG1 /* Defined in pfkeyv2.h */
424 #define IPSA_F_COUNTERMODE SADB_X_SAFLAGS_EALG2 /* Defined in pfkeyv2.h */
427 * Sets of flags that are allowed to by set or modified by PF_KEY apps.
429 #define AH_UPDATE_SETTABLE_FLAGS \
430 (SADB_X_SAFLAGS_PAIRED | SADB_SAFLAGS_NOREPLAY | \
431 SADB_X_SAFLAGS_OUTBOUND | SADB_X_SAFLAGS_INBOUND | \
432 SADB_X_SAFLAGS_KM1 | SADB_X_SAFLAGS_KM2 | \
433 SADB_X_SAFLAGS_KM3 | SADB_X_SAFLAGS_KM4)
435 /* AH can't set NAT flags (or even use NAT). Add NAT flags to the ESP set. */
436 #define ESP_UPDATE_SETTABLE_FLAGS (AH_UPDATE_SETTABLE_FLAGS | IPSA_F_NATT)
438 #define AH_ADD_SETTABLE_FLAGS \
439 (AH_UPDATE_SETTABLE_FLAGS | SADB_X_SAFLAGS_AALG1 | \
440 SADB_X_SAFLAGS_AALG2 | SADB_X_SAFLAGS_TUNNEL | \
441 SADB_SAFLAGS_NOREPLAY)
443 /* AH can't set NAT flags (or even use NAT). Add NAT flags to the ESP set. */
444 #define ESP_ADD_SETTABLE_FLAGS (AH_ADD_SETTABLE_FLAGS | IPSA_F_NATT | \
445 SADB_X_SAFLAGS_EALG1 | SADB_X_SAFLAGS_EALG2)
449 /* SA states are important for handling UPDATE PF_KEY messages. */
450 #define IPSA_STATE_LARVAL SADB_SASTATE_LARVAL
451 #define IPSA_STATE_MATURE SADB_SASTATE_MATURE
452 #define IPSA_STATE_DYING SADB_SASTATE_DYING
453 #define IPSA_STATE_DEAD SADB_SASTATE_DEAD
454 #define IPSA_STATE_IDLE SADB_X_SASTATE_IDLE
455 #define IPSA_STATE_ACTIVE_ELSEWHERE SADB_X_SASTATE_ACTIVE_ELSEWHERE
458 * NOTE: If the document authors do things right in defining algorithms, we'll
459 * probably have flags for what all is here w.r.t. replay, ESP w/HMAC,
460 * etc.
463 #define IPSA_T_ACQUIRE SEC_TYPE_NONE /* If this typed returned, sa needed */
464 #define IPSA_T_AH SEC_TYPE_AH /* IPsec AH association */
465 #define IPSA_T_ESP SEC_TYPE_ESP /* IPsec ESP association */
467 #define IPSA_AALG_NONE SADB_AALG_NONE /* No auth. algorithm */
468 #define IPSA_AALG_MD5H SADB_AALG_MD5HMAC /* MD5-HMAC algorithm */
469 #define IPSA_AALG_SHA1H SADB_AALG_SHA1HMAC /* SHA1-HMAC algorithm */
471 #define IPSA_EALG_NONE SADB_EALG_NONE /* No encryption algorithm */
472 #define IPSA_EALG_DES_CBC SADB_EALG_DESCBC
473 #define IPSA_EALG_3DES SADB_EALG_3DESCBC
476 * Protect each ipsa_t bucket (and linkage) with a lock.
479 typedef struct isaf_s {
480 ipsa_t *isaf_ipsa;
481 kmutex_t isaf_lock;
482 uint64_t isaf_gen;
483 } isaf_t;
486 * ACQUIRE record. If AH/ESP/whatever cannot find an association for outbound
487 * traffic, it sends up an SADB_ACQUIRE message and create an ACQUIRE record.
490 #define IPSACQ_MAXPACKETS 4 /* Number of packets that can be queued up */
491 /* waiting for an ACQUIRE to finish. */
493 typedef struct ipsacq_s {
494 struct ipsacq_s *ipsacq_next;
495 struct ipsacq_s **ipsacq_ptpn;
496 kmutex_t *ipsacq_linklock;
497 struct ipsec_policy_s *ipsacq_policy;
498 struct ipsec_action_s *ipsacq_act;
500 sa_family_t ipsacq_addrfam; /* Address family. */
501 sa_family_t ipsacq_inneraddrfam; /* Inner-packet address family. */
502 int ipsacq_numpackets; /* How many packets queued up so far. */
503 uint32_t ipsacq_seq; /* PF_KEY sequence number. */
504 uint64_t ipsacq_unique_id; /* Unique ID for SAs that need it. */
506 kmutex_t ipsacq_lock; /* Protects non-linkage fields. */
507 time_t ipsacq_expire; /* Wall-clock time when this record expires. */
508 mblk_t *ipsacq_mp; /* List of datagrams waiting for an SA. */
510 /* These two point inside the last mblk inserted. */
511 uint32_t *ipsacq_srcaddr;
512 uint32_t *ipsacq_dstaddr;
514 /* Cache these instead of point so we can mask off accordingly */
515 uint32_t ipsacq_innersrc[IPSA_MAX_ADDRLEN];
516 uint32_t ipsacq_innerdst[IPSA_MAX_ADDRLEN];
518 /* These may change per-acquire. */
519 uint16_t ipsacq_srcport;
520 uint16_t ipsacq_dstport;
521 uint8_t ipsacq_proto;
522 uint8_t ipsacq_inner_proto;
523 uint8_t ipsacq_innersrcpfx;
524 uint8_t ipsacq_innerdstpfx;
526 /* icmp type and code of triggering packet (if applicable) */
527 uint8_t ipsacq_icmp_type;
528 uint8_t ipsacq_icmp_code;
530 } ipsacq_t;
533 * Kernel-generated sequence numbers will be no less than 0x80000000 to
534 * forestall any cretinous problems with manual keying accidentally updating
535 * an ACQUIRE entry.
537 #define IACQF_LOWEST_SEQ 0x80000000
539 #define SADB_AGE_INTERVAL_DEFAULT 8000
542 * ACQUIRE fanout. Protect each linkage with a lock.
545 typedef struct iacqf_s {
546 ipsacq_t *iacqf_ipsacq;
547 kmutex_t iacqf_lock;
548 } iacqf_t;
551 * A (network protocol, ipsec protocol) specific SADB.
552 * (i.e., one each for {ah, esp} and {v4, v6}.
554 * Keep outbound assocs in a simple hash table for now.
555 * One danger point, multiple SAs for a single dest will clog a bucket.
556 * For the future, consider two-level hashing (2nd hash on IPC?), then probe.
559 typedef struct sadb_s
561 isaf_t *sdb_of;
562 isaf_t *sdb_if;
563 iacqf_t *sdb_acq;
564 int sdb_hashsize;
565 } sadb_t;
568 * A pair of SADB's (one for v4, one for v6), and related state.
571 typedef struct sadbp_s
573 uint32_t s_satype;
574 uint32_t *s_acquire_timeout;
575 sadb_t s_v4;
576 sadb_t s_v6;
577 uint32_t s_addflags;
578 uint32_t s_updateflags;
579 } sadbp_t;
582 * A pair of SA's for a single connection, the structure contains a
583 * pointer to a SA and the SA its paired with (opposite direction) as well
584 * as the SA's respective hash buckets.
586 typedef struct ipsap_s
588 boolean_t in_inbound_table;
589 isaf_t *ipsap_bucket;
590 ipsa_t *ipsap_sa_ptr;
591 isaf_t *ipsap_pbucket;
592 ipsa_t *ipsap_psa_ptr;
593 } ipsap_t;
595 typedef struct templist_s
597 ipsa_t *ipsa;
598 struct templist_s *next;
599 } templist_t;
601 /* Pointer to an all-zeroes IPv6 address. */
602 #define ALL_ZEROES_PTR ((uint32_t *)&ipv6_all_zeros)
605 * Form unique id from ip_xmit_attr_t.
607 #define SA_FORM_UNIQUE_ID(ixa) \
608 SA_UNIQUE_ID((ixa)->ixa_ipsec_src_port, (ixa)->ixa_ipsec_dst_port, \
609 (((ixa)->ixa_flags & IXAF_IPSEC_TUNNEL) ? \
610 ((ixa)->ixa_ipsec_inaf == AF_INET6 ? \
611 IPPROTO_IPV6 : IPPROTO_ENCAP) : \
612 (ixa)->ixa_ipsec_proto), \
613 (((ixa)->ixa_flags & IXAF_IPSEC_TUNNEL) ? \
614 (ixa)->ixa_ipsec_proto : 0))
617 * This macro is used to generate unique ids (along with the addresses, both
618 * inner and outer) for outbound datagrams that require unique SAs.
620 * N.B. casts and unsigned shift amounts discourage unwarranted
621 * sign extension of dstport, proto, and iproto.
623 * Unique ID is 64-bits allocated as follows (pardon my big-endian bias):
625 * 6 4 43 33 11
626 * 3 7 09 21 65 0
627 * +---------------*-------+-------+--------------+---------------+
628 * | MUST-BE-ZERO |<iprot>|<proto>| <src port> | <dest port> |
629 * +---------------*-------+-------+--------------+---------------+
631 * If there are inner addresses (tunnel mode) the ports come from the
632 * inner addresses. If there are no inner addresses, the ports come from
633 * the outer addresses (transport mode). Tunnel mode MUST have <proto>
634 * set to either IPPROTO_ENCAP or IPPPROTO_IPV6.
636 #define SA_UNIQUE_ID(srcport, dstport, proto, iproto) \
637 ((srcport) | ((uint64_t)(dstport) << 16U) | \
638 ((uint64_t)(proto) << 32U) | ((uint64_t)(iproto) << 40U))
641 * SA_UNIQUE_MASK generates a mask value to use when comparing the unique value
642 * from a packet to an SA.
645 #define SA_UNIQUE_MASK(srcport, dstport, proto, iproto) \
646 SA_UNIQUE_ID((srcport != 0) ? 0xffff : 0, \
647 (dstport != 0) ? 0xffff : 0, \
648 (proto != 0) ? 0xff : 0, \
649 (iproto != 0) ? 0xff : 0)
652 * Decompose unique id back into its original fields.
654 #define SA_IPROTO(ipsa) ((ipsa)->ipsa_unique_id>>40)&0xff
655 #define SA_PROTO(ipsa) ((ipsa)->ipsa_unique_id>>32)&0xff
656 #define SA_SRCPORT(ipsa) ((ipsa)->ipsa_unique_id & 0xffff)
657 #define SA_DSTPORT(ipsa) (((ipsa)->ipsa_unique_id >> 16) & 0xffff)
659 typedef struct ipsa_query_s ipsa_query_t;
661 typedef boolean_t (*ipsa_match_fn_t)(ipsa_query_t *, ipsa_t *);
663 #define IPSA_NMATCH 10
666 * SADB query structure.
668 * Provide a generalized mechanism for matching entries in the SADB;
669 * one of these structures is initialized using sadb_form_query(),
670 * and then can be used as a parameter to sadb_match_query() which returns
671 * B_TRUE if the SA matches the query.
673 * Under the covers, sadb_form_query populates the matchers[] array with
674 * functions which are called one at a time until one fails to match.
676 struct ipsa_query_s {
677 uint32_t req, match;
678 sadb_address_t *srcext, *dstext;
679 sadb_ident_t *srcid, *dstid;
680 sadb_x_kmc_t *kmcext;
681 sadb_sa_t *assoc;
682 uint32_t spi;
683 struct sockaddr_in *src;
684 struct sockaddr_in6 *src6;
685 struct sockaddr_in *dst;
686 struct sockaddr_in6 *dst6;
687 sa_family_t af;
688 uint32_t *srcaddr, *dstaddr;
689 uint32_t ifindex;
690 uint32_t kmp;
691 uint64_t kmc;
692 char *didstr, *sidstr;
693 uint16_t didtype, sidtype;
694 sadbp_t *spp;
695 sadb_t *sp;
696 isaf_t *inbound, *outbound;
697 uint32_t outhash;
698 uint32_t inhash;
699 ipsa_match_fn_t matchers[IPSA_NMATCH];
702 #define IPSA_Q_SA 0x00000001
703 #define IPSA_Q_DST 0x00000002
704 #define IPSA_Q_SRC 0x00000004
705 #define IPSA_Q_DSTID 0x00000008
706 #define IPSA_Q_SRCID 0x00000010
707 #define IPSA_Q_KMC 0x00000020
708 #define IPSA_Q_INBOUND 0x00000040 /* fill in inbound isaf_t */
709 #define IPSA_Q_OUTBOUND 0x00000080 /* fill in outbound isaf_t */
711 int sadb_form_query(keysock_in_t *, uint32_t, uint32_t, ipsa_query_t *, int *);
712 boolean_t sadb_match_query(ipsa_query_t *q, ipsa_t *sa);
716 * All functions that return an ipsa_t will return it with IPSA_REFHOLD()
717 * already called.
720 /* SA retrieval (inbound and outbound) */
721 ipsa_t *ipsec_getassocbyspi(isaf_t *, uint32_t, uint32_t *, uint32_t *,
722 sa_family_t);
723 ipsa_t *ipsec_getassocbyconn(isaf_t *, ip_xmit_attr_t *, uint32_t *, uint32_t *,
724 sa_family_t, uint8_t);
726 /* SA insertion. */
727 int sadb_insertassoc(ipsa_t *, isaf_t *);
729 /* SA table construction and destruction. */
730 void sadbp_init(const char *name, sadbp_t *, int, int, netstack_t *);
731 void sadbp_flush(sadbp_t *, netstack_t *);
732 void sadbp_destroy(sadbp_t *, netstack_t *);
734 /* SA insertion and deletion. */
735 int sadb_insertassoc(ipsa_t *, isaf_t *);
736 void sadb_unlinkassoc(ipsa_t *);
738 /* Support routines to interface a keysock consumer to PF_KEY. */
739 mblk_t *sadb_keysock_out(minor_t);
740 int sadb_hardsoftchk(sadb_lifetime_t *, sadb_lifetime_t *, sadb_lifetime_t *);
741 void sadb_pfkey_echo(queue_t *, mblk_t *, sadb_msg_t *, struct keysock_in_s *,
742 ipsa_t *);
743 void sadb_pfkey_error(queue_t *, mblk_t *, int, int, uint_t);
744 void sadb_keysock_hello(queue_t **, queue_t *, mblk_t *, void (*)(void *),
745 void *, timeout_id_t *, int);
746 int sadb_addrcheck(queue_t *, mblk_t *, sadb_ext_t *, uint_t, netstack_t *);
747 boolean_t sadb_addrfix(keysock_in_t *, queue_t *, mblk_t *, netstack_t *);
748 int sadb_addrset(ire_t *);
749 int sadb_delget_sa(mblk_t *, keysock_in_t *, sadbp_t *, int *, queue_t *,
750 uint8_t);
752 int sadb_purge_sa(mblk_t *, keysock_in_t *, sadb_t *, int *, queue_t *);
753 int sadb_common_add(queue_t *, mblk_t *, sadb_msg_t *,
754 keysock_in_t *, isaf_t *, isaf_t *, ipsa_t *, boolean_t, boolean_t, int *,
755 netstack_t *, sadbp_t *);
756 void sadb_set_usetime(ipsa_t *);
757 boolean_t sadb_age_bytes(queue_t *, ipsa_t *, uint64_t, boolean_t);
758 int sadb_update_sa(mblk_t *, keysock_in_t *, mblk_t **, sadbp_t *,
759 int *, queue_t *, int (*)(mblk_t *, keysock_in_t *, int *, netstack_t *),
760 netstack_t *, uint8_t);
761 void sadb_acquire(mblk_t *, ip_xmit_attr_t *, boolean_t, boolean_t);
762 void gcm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
763 crypto_data_t *);
764 void ccm_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
765 crypto_data_t *);
766 void cbc_params_init(ipsa_t *, uchar_t *, uint_t, uchar_t *, ipsa_cm_mech_t *,
767 crypto_data_t *);
769 void sadb_destroy_acquire(ipsacq_t *, netstack_t *);
770 struct ipsec_stack;
771 ipsa_t *sadb_getspi(keysock_in_t *, uint32_t, int *, netstack_t *);
772 void sadb_in_acquire(sadb_msg_t *, sadbp_t *, queue_t *, netstack_t *);
773 boolean_t sadb_replay_check(ipsa_t *, uint32_t);
774 boolean_t sadb_replay_peek(ipsa_t *, uint32_t);
775 int sadb_dump(queue_t *, mblk_t *, keysock_in_t *, sadb_t *);
776 void sadb_replay_delete(ipsa_t *);
777 void sadb_ager(sadb_t *, queue_t *, int, netstack_t *);
779 timeout_id_t sadb_retimeout(hrtime_t, queue_t *, void (*)(void *), void *,
780 uint_t *, uint_t, short);
781 void sadb_sa_refrele(void *target);
782 mblk_t *sadb_set_lpkt(ipsa_t *, mblk_t *, ip_recv_attr_t *);
783 mblk_t *sadb_clear_lpkt(ipsa_t *);
784 void sadb_buf_pkt(ipsa_t *, mblk_t *, ip_recv_attr_t *);
785 void sadb_clear_buf_pkt(void *ipkt);
787 /* Note that buf_pkt is the product of ip_recv_attr_to_mblk() */
788 #define HANDLE_BUF_PKT(taskq, stack, dropper, buf_pkt) \
790 if (buf_pkt != NULL) { \
791 if (taskq_dispatch(taskq, sadb_clear_buf_pkt, \
792 (void *) buf_pkt, TQ_NOSLEEP) == 0) { \
793 /* Dispatch was unsuccessful drop the packets. */ \
794 mblk_t *tmp; \
795 while (buf_pkt != NULL) { \
796 tmp = buf_pkt->b_next; \
797 buf_pkt->b_next = NULL; \
798 buf_pkt = ip_recv_attr_free_mblk(buf_pkt); \
799 ip_drop_packet(buf_pkt, B_TRUE, NULL, \
800 DROPPER(stack, \
801 ipds_sadb_inidle_timeout), \
802 &dropper); \
803 buf_pkt = tmp; \
810 * Two IPsec rate-limiting routines.
812 /*PRINTFLIKE6*/
813 extern void ipsec_rl_strlog(netstack_t *, short, short, char,
814 ushort_t, char *, ...)
815 __KPRINTFLIKE(6);
816 extern void ipsec_assocfailure(short, short, char, ushort_t, char *, uint32_t,
817 void *, int, netstack_t *);
820 * Algorithm types.
823 #define IPSEC_NALGTYPES 2
825 typedef enum ipsec_algtype {
826 IPSEC_ALG_AUTH = 0,
827 IPSEC_ALG_ENCR = 1,
828 IPSEC_ALG_ALL = 2
829 } ipsec_algtype_t;
832 * Definitions as per IPsec/ISAKMP DOI.
835 #define IPSEC_MAX_ALGS 256
836 #define PROTO_IPSEC_AH 2
837 #define PROTO_IPSEC_ESP 3
840 * Common algorithm info.
842 typedef struct ipsec_alginfo
844 uint8_t alg_id;
845 uint8_t alg_flags;
846 uint16_t *alg_key_sizes;
847 uint16_t *alg_block_sizes;
848 uint16_t *alg_params;
849 uint16_t alg_nkey_sizes;
850 uint16_t alg_ivlen;
851 uint16_t alg_icvlen;
852 uint8_t alg_saltlen;
853 uint16_t alg_nblock_sizes;
854 uint16_t alg_nparams;
855 uint16_t alg_minbits;
856 uint16_t alg_maxbits;
857 uint16_t alg_datalen;
859 * increment: number of bits from keysize to keysize
860 * default: # of increments from min to default key len
862 uint16_t alg_increment;
863 uint16_t alg_default;
864 uint16_t alg_default_bits;
866 * Min, max, and default key sizes effectively supported
867 * by the encryption framework.
869 uint16_t alg_ef_minbits;
870 uint16_t alg_ef_maxbits;
871 uint16_t alg_ef_default;
872 uint16_t alg_ef_default_bits;
874 crypto_mech_type_t alg_mech_type; /* KCF mechanism type */
875 crypto_mech_name_t alg_mech_name; /* KCF mechanism name */
876 } ipsec_alginfo_t;
878 #define alg_datalen alg_block_sizes[0]
879 #define ALG_VALID(_alg) ((_alg)->alg_flags & ALG_FLAG_VALID)
882 * Software crypto execution mode.
884 typedef enum {
885 IPSEC_ALGS_EXEC_SYNC = 0,
886 IPSEC_ALGS_EXEC_ASYNC = 1
887 } ipsec_algs_exec_mode_t;
889 extern void ipsec_alg_reg(ipsec_algtype_t, ipsec_alginfo_t *, netstack_t *);
890 extern void ipsec_alg_unreg(ipsec_algtype_t, uint8_t, netstack_t *);
891 extern void ipsec_alg_fix_min_max(ipsec_alginfo_t *, ipsec_algtype_t,
892 netstack_t *ns);
893 extern void alg_flag_check(ipsec_alginfo_t *);
894 extern void ipsec_alg_free(ipsec_alginfo_t *);
895 extern void ipsec_register_prov_update(void);
896 extern void sadb_alg_update(ipsec_algtype_t, uint8_t, boolean_t, netstack_t *);
899 * Context templates management.
902 #define IPSEC_CTX_TMPL_ALLOC ((crypto_ctx_template_t)-1)
903 #define IPSEC_CTX_TMPL(_sa, _which, _type, _tmpl) { \
904 if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) { \
905 mutex_enter(&assoc->ipsa_lock); \
906 if ((_sa)->_which == IPSEC_CTX_TMPL_ALLOC) { \
907 ipsec_stack_t *ipss; \
909 ipss = assoc->ipsa_netstack->netstack_ipsec; \
910 rw_enter(&ipss->ipsec_alg_lock, RW_READER); \
911 (void) ipsec_create_ctx_tmpl(_sa, _type); \
912 rw_exit(&ipss->ipsec_alg_lock); \
914 mutex_exit(&assoc->ipsa_lock); \
915 if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) \
916 _tmpl = NULL; \
920 extern int ipsec_create_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
921 extern void ipsec_destroy_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
923 /* key checking */
924 extern int ipsec_check_key(crypto_mech_type_t, sadb_key_t *, boolean_t, int *);
926 typedef struct ipsec_kstats_s {
927 kstat_named_t esp_stat_in_requests;
928 kstat_named_t esp_stat_in_discards;
929 kstat_named_t esp_stat_lookup_failure;
930 kstat_named_t ah_stat_in_requests;
931 kstat_named_t ah_stat_in_discards;
932 kstat_named_t ah_stat_lookup_failure;
933 kstat_named_t sadb_acquire_maxpackets;
934 kstat_named_t sadb_acquire_qhiwater;
935 } ipsec_kstats_t;
938 * (ipss)->ipsec_kstats is equal to (ipss)->ipsec_ksp->ks_data if
939 * kstat_create_netstack for (ipss)->ipsec_ksp succeeds, but when it
940 * fails, it will be NULL. Note this is done for all stack instances,
941 * so it *could* fail. hence a non-NULL checking is done for
942 * IP_ESP_BUMP_STAT, IP_AH_BUMP_STAT and IP_ACQUIRE_STAT
944 #define IP_ESP_BUMP_STAT(ipss, x) \
945 do { \
946 if ((ipss)->ipsec_kstats != NULL) \
947 ((ipss)->ipsec_kstats->esp_stat_ ## x).value.ui64++; \
948 _NOTE(CONSTCOND) \
949 } while (0)
951 #define IP_AH_BUMP_STAT(ipss, x) \
952 do { \
953 if ((ipss)->ipsec_kstats != NULL) \
954 ((ipss)->ipsec_kstats->ah_stat_ ## x).value.ui64++; \
955 _NOTE(CONSTCOND) \
956 } while (0)
958 #define IP_ACQUIRE_STAT(ipss, val, new) \
959 do { \
960 if ((ipss)->ipsec_kstats != NULL && \
961 ((uint64_t)(new)) > \
962 ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64) \
963 ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64 = \
964 ((uint64_t)(new)); \
965 _NOTE(CONSTCOND) \
966 } while (0)
969 #ifdef __cplusplus
971 #endif
973 #endif /* _INET_SADB_H */