4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
28 * Zone Console Driver.
30 * This driver, derived from the pts/ptm drivers, is the pseudo console driver
31 * for system zones. Its implementation is straightforward. Each instance
32 * of the driver represents a global-zone/local-zone pair (this maps in a
33 * straightforward way to the commonly used terminal notion of "master side"
34 * and "slave side", and we use that terminology throughout).
36 * Instances of zcons are onlined as children of /pseudo/zconsnex@1/
37 * by zoneadmd in userland, using the devctl framework; thus the driver
38 * does not need to maintain any sort of "admin" node.
40 * The driver shuttles I/O from master side to slave side and back. In a break
41 * from the pts/ptm semantics, if one side is not open, I/O directed towards
42 * it will simply be discarded. This is so that if zoneadmd is not holding
43 * the master side console open (i.e. it has died somehow), processes in
44 * the zone do not experience any errors and I/O to the console does not
47 * TODO: we may want to revisit the other direction; i.e. we may want
48 * zoneadmd to be able to detect whether no zone processes are holding the
49 * console open, an unusual situation.
55 * The ZC_HOLDSLAVE and ZC_RELEASESLAVE ioctls instruct the master side of the
56 * console to hold and release a reference to the slave side's vnode. They are
57 * meant to be issued by zoneadmd after the console device node is created and
58 * before it is destroyed so that the slave's STREAMS anchor, ptem, is
59 * preserved when ttymon starts popping STREAMS modules from within the
60 * associated zone. This guarantees that the zone console will always have
61 * terminal semantics while the zone is running.
63 * Here is the issue: the ptem module is anchored in the zone console
64 * (slave side) so that processes within the associated non-global zone will
65 * fail to pop it off, thus ensuring that the slave will retain terminal
66 * semantics. When a process attempts to pop the anchor off of a stream, the
67 * STREAMS subsystem checks whether the calling process' zone is the same as
68 * that of the process that pushed the anchor onto the stream and cancels the
69 * pop if they differ. zoneadmd used to hold an open file descriptor for the
70 * slave while the associated non-global zone ran, thus ensuring that the
71 * slave's STREAMS anchor would never be popped from within the non-global zone
72 * (because zoneadmd runs in the global zone). However, this file descriptor
73 * was removed to make zone console management more robust. sad(7D) is now
74 * used to automatically set up the slave's STREAMS modules when the zone
75 * console is freshly opened within the associated non-global zone. However,
76 * when a process within the non-global zone freshly opens the zone console, the
77 * anchor is pushed from within the non-global zone, making it possible for
78 * processes within the non-global zone (e.g., ttymon) to pop the anchor and
79 * destroy the zone console's terminal semantics.
81 * One solution is to make the zcons device hold the slave open while the
82 * associated non-global zone runs so that the STREAMS anchor will always be
83 * associated with the global zone. Unfortunately, the slave cannot be opened
84 * from within the zcons driver because the driver is not reentrant: it has
85 * an outer STREAMS perimeter. Therefore, the next best option is for zcons to
86 * provide an ioctl interface to zoneadmd to manage holding and releasing
87 * the slave side of the console. It is sufficient to hold the slave side's
88 * vnode and bump the associated snode's reference count to preserve the slave's
89 * STREAMS configuration while the associated zone runs, so that's what the
95 * This ioctl takes a file descriptor as an argument. It effectively gets a
96 * reference to the slave side's minor node's vnode and bumps the associated
97 * snode's reference count. The vnode reference is stored in the zcons device
98 * node's soft state. This ioctl succeeds if the given file descriptor refers
99 * to the slave side's minor node or if there is already a reference to the
100 * slave side's minor node's vnode in the device's soft state.
105 * This ioctl takes a file descriptor as an argument. It effectively releases
106 * the vnode reference stored in the zcons device node's soft state (which was
107 * previously acquired via ZC_HOLDSLAVE) and decrements the reference count of
108 * the snode associated with the vnode. This ioctl succeeds if the given file
109 * descriptor refers to the slave side's minor node or if no reference to the
110 * slave side's minor node's vnode is stored in the device's soft state.
113 * Note that the file descriptor arguments for both ioctls must be cast to
114 * integers of pointer width.
116 * Here's how the dance between zcons and zoneadmd works:
119 * 1. While booting the zone, zoneadmd creates an instance of zcons.
120 * 2. zoneadmd opens the master and slave sides of the new zone console
121 * and issues the ZC_HOLDSLAVE ioctl on the master side, passing its
122 * file descriptor for the slave side as the ioctl argument.
123 * 3. zcons holds the slave side's vnode, bumps the snode's reference
124 * count, and stores a pointer to the vnode in the device's soft
126 * 4. zoneadmd closes the master and slave sides and continues to boot
130 * 1. While halting the zone, zoneadmd opens the master and slave sides
131 * of the zone's console and issues the ZC_RELEASESLAVE ioctl on the
132 * master side, passing its file descriptor for the slave side as the
134 * 2. zcons decrements the slave side's snode's reference count, releases
135 * the slave's vnode, and eliminates its reference to the vnode in the
136 * device's soft state.
137 * 3. zoneadmd closes the master and slave sides.
138 * 4. zoneadmd destroys the zcons device and continues to halt the zone.
140 * It is necessary for zoneadmd to hold the slave open while issuing
141 * ZC_RELEASESLAVE because zcons might otherwise release the last reference to
142 * the slave's vnode. If it does, then specfs will panic because it will expect
143 * that the STREAMS configuration for the vnode was destroyed, which VN_RELE
144 * doesn't do. Forcing zoneadmd to hold the slave open guarantees that zcons
145 * won't release the vnode's last reference. zoneadmd will properly destroy the
146 * vnode and the snode when it closes the file descriptor.
148 * Technically, any process that can access the master side can issue these
149 * ioctls, but they should be treated as private interfaces for zoneadmd.
152 #include <sys/types.h>
153 #include <sys/cmn_err.h>
154 #include <sys/conf.h>
155 #include <sys/cred.h>
157 #include <sys/debug.h>
158 #include <sys/devops.h>
159 #include <sys/errno.h>
160 #include <sys/file.h>
161 #include <sys/kstr.h>
162 #include <sys/modctl.h>
163 #include <sys/param.h>
164 #include <sys/stat.h>
165 #include <sys/stream.h>
166 #include <sys/stropts.h>
167 #include <sys/strsun.h>
168 #include <sys/sunddi.h>
169 #include <sys/sysmacros.h>
170 #include <sys/systm.h>
171 #include <sys/types.h>
172 #include <sys/zcons.h>
173 #include <sys/vnode.h>
174 #include <sys/fs/snode.h>
175 #include <sys/zone.h>
177 static int zc_getinfo(dev_info_t
*, ddi_info_cmd_t
, void *, void **);
178 static int zc_attach(dev_info_t
*, ddi_attach_cmd_t
);
179 static int zc_detach(dev_info_t
*, ddi_detach_cmd_t
);
181 static int zc_open(queue_t
*, dev_t
*, int, int, cred_t
*);
182 static int zc_close(queue_t
*, int, cred_t
*);
183 static void zc_wput(queue_t
*, mblk_t
*);
184 static void zc_rsrv(queue_t
*);
185 static void zc_wsrv(queue_t
*);
188 * The instance number is encoded in the dev_t in the minor number; the lowest
189 * bit of the minor number is used to track the master vs. slave side of the
190 * virtual console. The rest of the bits in the minor number are the instance.
192 #define ZC_MASTER_MINOR 0
193 #define ZC_SLAVE_MINOR 1
195 #define ZC_INSTANCE(x) (getminor((x)) >> 1)
196 #define ZC_NODE(x) (getminor((x)) & 0x01)
199 * This macro converts a zc_state_t pointer to the associated slave minor node's
202 #define ZC_STATE_TO_SLAVEDEV(x) (makedevice(ddi_driver_major((x)->zc_devinfo), \
203 (minor_t)(ddi_get_instance((x)->zc_devinfo) << 1 | ZC_SLAVE_MINOR)))
206 #define DBG(a) if (zcons_debug) cmn_err(CE_NOTE, a)
207 #define DBG1(a, b) if (zcons_debug) cmn_err(CE_NOTE, a, b)
211 * Zone Console Pseudo Terminal Module: stream data structure definitions
213 static struct module_info zc_info
= {
214 31337, /* c0z we r hAx0rs */
222 static struct qinit zc_rinit
= {
232 static struct qinit zc_winit
= {
242 static struct streamtab zc_tab_info
= {
249 #define ZC_CONF_FLAG (D_MP | D_MTQPAIR | D_MTOUTPERIM | D_MTOCEXCL)
252 * this will define (struct cb_ops cb_zc_ops) and (struct dev_ops zc_ops)
254 DDI_DEFINE_STREAM_OPS(zc_ops
, nulldev
, nulldev
, zc_attach
, zc_detach
, nodev
, \
255 zc_getinfo
, ZC_CONF_FLAG
, &zc_tab_info
, ddi_quiesce_not_needed
);
258 * Module linkage information for the kernel.
261 static struct modldrv modldrv
= {
262 &mod_driverops
, /* Type of module (this is a pseudo driver) */
263 "Zone console driver", /* description of module */
264 &zc_ops
/* driver ops */
267 static struct modlinkage modlinkage
= {
273 typedef struct zc_state
{
274 dev_info_t
*zc_devinfo
;
275 queue_t
*zc_master_rdq
;
276 queue_t
*zc_slave_rdq
;
277 vnode_t
*zc_slave_vnode
;
281 #define ZC_STATE_MOPEN 0x01
282 #define ZC_STATE_SOPEN 0x02
284 static void *zc_soft_state
;
287 * List of STREAMS modules that should be pushed onto every slave instance.
289 static char *zcons_mods
[] = {
301 if ((err
= ddi_soft_state_init(&zc_soft_state
,
302 sizeof (zc_state_t
), 0)) != 0) {
306 if ((err
= mod_install(&modlinkage
)) != 0)
307 ddi_soft_state_fini(zc_soft_state
);
318 if ((err
= mod_remove(&modlinkage
)) != 0) {
322 ddi_soft_state_fini(&zc_soft_state
);
327 _info(struct modinfo
*modinfop
)
329 return (mod_info(&modlinkage
, modinfop
));
333 zc_attach(dev_info_t
*dip
, ddi_attach_cmd_t cmd
)
338 if (cmd
!= DDI_ATTACH
)
339 return (DDI_FAILURE
);
341 instance
= ddi_get_instance(dip
);
342 if (ddi_soft_state_zalloc(zc_soft_state
, instance
) != DDI_SUCCESS
)
343 return (DDI_FAILURE
);
346 * Create the master and slave minor nodes.
348 if ((ddi_create_minor_node(dip
, ZCONS_SLAVE_NAME
, S_IFCHR
,
349 instance
<< 1 | ZC_SLAVE_MINOR
, DDI_PSEUDO
, 0) == DDI_FAILURE
) ||
350 (ddi_create_minor_node(dip
, ZCONS_MASTER_NAME
, S_IFCHR
,
351 instance
<< 1 | ZC_MASTER_MINOR
, DDI_PSEUDO
, 0) == DDI_FAILURE
)) {
352 ddi_remove_minor_node(dip
, NULL
);
353 ddi_soft_state_free(zc_soft_state
, instance
);
354 return (DDI_FAILURE
);
357 VERIFY((zcs
= ddi_get_soft_state(zc_soft_state
, instance
)) != NULL
);
358 zcs
->zc_devinfo
= dip
;
359 return (DDI_SUCCESS
);
363 zc_detach(dev_info_t
*dip
, ddi_detach_cmd_t cmd
)
368 if (cmd
!= DDI_DETACH
)
369 return (DDI_FAILURE
);
371 instance
= ddi_get_instance(dip
);
372 if ((zcs
= ddi_get_soft_state(zc_soft_state
, instance
)) == NULL
)
373 return (DDI_FAILURE
);
375 if ((zcs
->zc_state
& ZC_STATE_MOPEN
) ||
376 (zcs
->zc_state
& ZC_STATE_SOPEN
)) {
377 DBG1("zc_detach: device (dip=%p) still open\n", (void *)dip
);
378 return (DDI_FAILURE
);
381 ddi_remove_minor_node(dip
, NULL
);
382 ddi_soft_state_free(zc_soft_state
, instance
);
384 return (DDI_SUCCESS
);
389 * getinfo(9e) entrypoint.
393 zc_getinfo(dev_info_t
*dip
, ddi_info_cmd_t infocmd
, void *arg
, void **result
)
396 int instance
= ZC_INSTANCE((dev_t
)arg
);
399 case DDI_INFO_DEVT2DEVINFO
:
400 if ((zcs
= ddi_get_soft_state(zc_soft_state
, instance
)) == NULL
)
401 return (DDI_FAILURE
);
402 *result
= zcs
->zc_devinfo
;
403 return (DDI_SUCCESS
);
404 case DDI_INFO_DEVT2INSTANCE
:
405 *result
= (void *)(uintptr_t)instance
;
406 return (DDI_SUCCESS
);
408 return (DDI_FAILURE
);
412 * Return the equivalent queue from the other side of the relationship.
413 * e.g.: given the slave's write queue, return the master's write queue.
416 zc_switch(queue_t
*qp
)
418 zc_state_t
*zcs
= qp
->q_ptr
;
421 if (qp
== zcs
->zc_master_rdq
)
422 return (zcs
->zc_slave_rdq
);
423 else if (OTHERQ(qp
) == zcs
->zc_master_rdq
&& zcs
->zc_slave_rdq
!= NULL
)
424 return (OTHERQ(zcs
->zc_slave_rdq
));
425 else if (qp
== zcs
->zc_slave_rdq
)
426 return (zcs
->zc_master_rdq
);
427 else if (OTHERQ(qp
) == zcs
->zc_slave_rdq
&& zcs
->zc_master_rdq
!= NULL
)
428 return (OTHERQ(zcs
->zc_master_rdq
));
434 * For debugging and outputting messages. Returns the name of the side of
435 * the relationship associated with this queue.
440 zc_state_t
*zcs
= qp
->q_ptr
;
443 if (qp
== zcs
->zc_master_rdq
||
444 OTHERQ(qp
) == zcs
->zc_master_rdq
) {
447 ASSERT(qp
== zcs
->zc_slave_rdq
|| OTHERQ(qp
) == zcs
->zc_slave_rdq
);
453 zc_master_open(zc_state_t
*zcs
,
454 queue_t
*rqp
, /* pointer to the read side queue */
455 dev_t
*devp
, /* pointer to stream tail's dev */
456 int oflag
, /* the user open(2) supplied flags */
457 int sflag
, /* open state flag */
458 cred_t
*credp
) /* credentials */
461 struct stroptions
*sop
;
464 * Enforce exclusivity on the master side; the only consumer should
465 * be the zoneadmd for the zone.
467 if ((zcs
->zc_state
& ZC_STATE_MOPEN
) != 0)
470 if ((mop
= allocb(sizeof (struct stroptions
), BPRI_MED
)) == NULL
) {
471 DBG("zc_master_open(): mop allocation failed\n");
475 zcs
->zc_state
|= ZC_STATE_MOPEN
;
478 * q_ptr stores driver private data; stash the soft state data on both
479 * read and write sides of the queue.
481 WR(rqp
)->q_ptr
= rqp
->q_ptr
= zcs
;
485 * Following qprocson(), the master side is fully plumbed into the
486 * STREAM and may send/receive messages. Setting zcs->zc_master_rdq
487 * will allow the slave to send messages to us (the master).
488 * This cannot occur before qprocson() because the master is not
489 * ready to process them until that point.
491 zcs
->zc_master_rdq
= rqp
;
494 * set up hi/lo water marks on stream head read queue and add
495 * controlling tty as needed.
497 mop
->b_datap
->db_type
= M_SETOPTS
;
498 mop
->b_wptr
+= sizeof (struct stroptions
);
499 sop
= (struct stroptions
*)(void *)mop
->b_rptr
;
501 sop
->so_flags
= SO_HIWAT
| SO_LOWAT
;
503 sop
->so_flags
= SO_HIWAT
| SO_LOWAT
| SO_ISTTY
;
504 sop
->so_hiwat
= _TTY_BUFSIZ
;
513 zc_slave_open(zc_state_t
*zcs
,
514 queue_t
*rqp
, /* pointer to the read side queue */
515 dev_t
*devp
, /* pointer to stream tail's dev */
516 int oflag
, /* the user open(2) supplied flags */
517 int sflag
, /* open state flag */
518 cred_t
*credp
) /* credentials */
521 struct stroptions
*sop
;
528 * The slave side can be opened as many times as needed.
530 if ((zcs
->zc_state
& ZC_STATE_SOPEN
) != 0) {
531 ASSERT((rqp
!= NULL
) && (WR(rqp
)->q_ptr
== zcs
));
536 * Set up sad(7D) so that the necessary STREAMS modules will be in
537 * place. A wrinkle is that 'ptem' must be anchored
538 * in place (see streamio(7i)) because we always want the console to
539 * have terminal semantics.
541 minor
= ddi_get_instance(zcs
->zc_devinfo
) << 1 | ZC_SLAVE_MINOR
;
542 major
= ddi_driver_major(zcs
->zc_devinfo
);
545 if (kstr_autopush(SET_AUTOPUSH
, &major
, &minor
, &lastminor
,
546 &anchorindex
, zcons_mods
) != 0) {
547 DBG("zc_slave_open(): kstr_autopush() failed\n");
551 if ((mop
= allocb(sizeof (struct stroptions
), BPRI_MED
)) == NULL
) {
552 DBG("zc_slave_open(): mop allocation failed\n");
556 zcs
->zc_state
|= ZC_STATE_SOPEN
;
559 * q_ptr stores driver private data; stash the soft state data on both
560 * read and write sides of the queue.
562 WR(rqp
)->q_ptr
= rqp
->q_ptr
= zcs
;
567 * Must follow qprocson(), since we aren't ready to process until then.
569 zcs
->zc_slave_rdq
= rqp
;
572 * set up hi/lo water marks on stream head read queue and add
573 * controlling tty as needed.
575 mop
->b_datap
->db_type
= M_SETOPTS
;
576 mop
->b_wptr
+= sizeof (struct stroptions
);
577 sop
= (struct stroptions
*)(void *)mop
->b_rptr
;
578 sop
->so_flags
= SO_HIWAT
| SO_LOWAT
| SO_ISTTY
;
579 sop
->so_hiwat
= _TTY_BUFSIZ
;
587 * open(9e) entrypoint; checks sflag, and rejects anything unordinary.
590 zc_open(queue_t
*rqp
, /* pointer to the read side queue */
591 dev_t
*devp
, /* pointer to stream tail's dev */
592 int oflag
, /* the user open(2) supplied flags */
593 int sflag
, /* open state flag */
594 cred_t
*credp
) /* credentials */
596 int instance
= ZC_INSTANCE(*devp
);
603 if ((zcs
= ddi_get_soft_state(zc_soft_state
, instance
)) == NULL
)
606 switch (ZC_NODE(*devp
)) {
607 case ZC_MASTER_MINOR
:
608 ret
= zc_master_open(zcs
, rqp
, devp
, oflag
, sflag
, credp
);
611 ret
= zc_slave_open(zcs
, rqp
, devp
, oflag
, sflag
, credp
);
622 * close(9e) entrypoint.
626 zc_close(queue_t
*rqp
, int flag
, cred_t
*credp
)
634 zcs
= (zc_state_t
*)rqp
->q_ptr
;
636 if (rqp
== zcs
->zc_master_rdq
) {
637 DBG("Closing master side");
639 zcs
->zc_master_rdq
= NULL
;
640 zcs
->zc_state
&= ~ZC_STATE_MOPEN
;
643 * qenable slave side write queue so that it can flush
644 * its messages as master's read queue is going away
646 if (zcs
->zc_slave_rdq
!= NULL
) {
647 qenable(WR(zcs
->zc_slave_rdq
));
651 WR(rqp
)->q_ptr
= rqp
->q_ptr
= NULL
;
653 } else if (rqp
== zcs
->zc_slave_rdq
) {
655 DBG("Closing slave side");
656 zcs
->zc_state
&= ~ZC_STATE_SOPEN
;
657 zcs
->zc_slave_rdq
= NULL
;
660 while ((bp
= getq(wqp
)) != NULL
) {
661 if (zcs
->zc_master_rdq
!= NULL
)
662 putnext(zcs
->zc_master_rdq
, bp
);
663 else if (bp
->b_datap
->db_type
== M_IOCTL
)
664 miocnak(wqp
, bp
, 0, 0);
670 * Qenable master side write queue so that it can flush its
671 * messages as slaves's read queue is going away.
673 if (zcs
->zc_master_rdq
!= NULL
)
674 qenable(WR(zcs
->zc_master_rdq
));
677 WR(rqp
)->q_ptr
= rqp
->q_ptr
= NULL
;
680 * Clear the sad configuration so that reopening doesn't fail
681 * to set up sad configuration.
683 major
= ddi_driver_major(zcs
->zc_devinfo
);
684 minor
= ddi_get_instance(zcs
->zc_devinfo
) << 1 | ZC_SLAVE_MINOR
;
685 (void) kstr_autopush(CLR_AUTOPUSH
, &major
, &minor
, NULL
, NULL
,
693 handle_mflush(queue_t
*qp
, mblk_t
*mp
)
696 DBG1("M_FLUSH on %s side", zc_side(qp
));
698 if (*mp
->b_rptr
& FLUSHW
) {
699 DBG1("M_FLUSH, FLUSHW, %s side", zc_side(qp
));
700 flushq(qp
, FLUSHDATA
);
701 *mp
->b_rptr
&= ~FLUSHW
;
702 if ((*mp
->b_rptr
& FLUSHR
) == 0) {
704 * FLUSHW only. Change to FLUSHR and putnext other side,
707 *mp
->b_rptr
|= FLUSHR
;
708 if (zc_switch(RD(qp
)) != NULL
) {
709 putnext(zc_switch(RD(qp
)), mp
);
712 } else if ((zc_switch(RD(qp
)) != NULL
) &&
713 (nmp
= copyb(mp
)) != NULL
) {
715 * It is a FLUSHRW; we copy the mblk and send
716 * it to the other side, since we still need to use
717 * the mblk in FLUSHR processing, below.
719 putnext(zc_switch(RD(qp
)), nmp
);
723 if (*mp
->b_rptr
& FLUSHR
) {
724 DBG("qreply(qp) turning FLUSHR around\n");
732 * wput(9E) is symmetric for master and slave sides, so this handles both
733 * without splitting the codepath. (The only exception to this is the
734 * processing of zcons ioctls, which is restricted to the master side.)
736 * zc_wput() looks at the other side; if there is no process holding that
737 * side open, it frees the message. This prevents processes from hanging
738 * if no one is holding open the console. Otherwise, it putnext's high
739 * priority messages, putnext's normal messages if possible, and otherwise
740 * enqueues the messages; in the case that something is enqueued, wsrv(9E)
741 * will take care of eventually shuttling I/O to the other side.
744 zc_wput(queue_t
*qp
, mblk_t
*mp
)
746 unsigned char type
= mp
->b_datap
->db_type
;
748 struct iocblk
*iocbp
;
750 struct snode
*slave_snodep
;
755 DBG1("entering zc_wput, %s side", zc_side(qp
));
758 * Process zcons ioctl messages if qp is the master console's write
761 zcs
= (zc_state_t
*)qp
->q_ptr
;
762 if (zcs
->zc_master_rdq
!= NULL
&& qp
== WR(zcs
->zc_master_rdq
) &&
764 iocbp
= (struct iocblk
*)(void *)mp
->b_rptr
;
765 switch (iocbp
->ioc_cmd
) {
768 * Hold the slave's vnode and increment the refcount
769 * of the snode. If the vnode is already held, then
772 if (iocbp
->ioc_count
!= TRANSPARENT
) {
773 miocack(qp
, mp
, 0, EINVAL
);
776 if (zcs
->zc_slave_vnode
!= NULL
) {
777 miocack(qp
, mp
, 0, 0);
782 * The process that passed the ioctl must be running in
785 if (curzone
!= global_zone
) {
786 miocack(qp
, mp
, 0, EINVAL
);
791 * The calling process must pass a file descriptor for
795 (int)(intptr_t)*(caddr_t
*)(void *)mp
->b_cont
->
797 slave_filep
= getf(slave_fd
);
798 if (slave_filep
== NULL
) {
799 miocack(qp
, mp
, 0, EINVAL
);
802 if (ZC_STATE_TO_SLAVEDEV(zcs
) !=
803 slave_filep
->f_vnode
->v_rdev
) {
805 miocack(qp
, mp
, 0, EINVAL
);
810 * Get a reference to the slave's vnode. Also bump the
811 * reference count on the associated snode.
813 ASSERT(vn_matchops(slave_filep
->f_vnode
,
814 spec_getvnodeops()));
815 zcs
->zc_slave_vnode
= slave_filep
->f_vnode
;
816 VN_HOLD(zcs
->zc_slave_vnode
);
817 slave_snodep
= VTOCS(zcs
->zc_slave_vnode
);
818 mutex_enter(&slave_snodep
->s_lock
);
819 ++slave_snodep
->s_count
;
820 mutex_exit(&slave_snodep
->s_lock
);
822 miocack(qp
, mp
, 0, 0);
824 case ZC_RELEASESLAVE
:
826 * Release the master's handle on the slave's vnode.
827 * If there isn't a handle for the vnode, then indicate
830 if (iocbp
->ioc_count
!= TRANSPARENT
) {
831 miocack(qp
, mp
, 0, EINVAL
);
834 if (zcs
->zc_slave_vnode
== NULL
) {
835 miocack(qp
, mp
, 0, 0);
840 * The process that passed the ioctl must be running in
843 if (curzone
!= global_zone
) {
844 miocack(qp
, mp
, 0, EINVAL
);
849 * The process that passed the ioctl must have provided
850 * a file descriptor for the slave device. Make sure
854 (int)(intptr_t)*(caddr_t
*)(void *)mp
->b_cont
->
856 slave_filep
= getf(slave_fd
);
857 if (slave_filep
== NULL
) {
858 miocack(qp
, mp
, 0, EINVAL
);
861 if (zcs
->zc_slave_vnode
->v_rdev
!=
862 slave_filep
->f_vnode
->v_rdev
) {
864 miocack(qp
, mp
, 0, EINVAL
);
869 * Decrement the snode's reference count and release the
872 ASSERT(vn_matchops(slave_filep
->f_vnode
,
873 spec_getvnodeops()));
874 slave_snodep
= VTOCS(zcs
->zc_slave_vnode
);
875 mutex_enter(&slave_snodep
->s_lock
);
876 --slave_snodep
->s_count
;
877 mutex_exit(&slave_snodep
->s_lock
);
878 VN_RELE(zcs
->zc_slave_vnode
);
879 zcs
->zc_slave_vnode
= NULL
;
881 miocack(qp
, mp
, 0, 0);
888 if (zc_switch(RD(qp
)) == NULL
) {
889 DBG1("wput to %s side (no one listening)", zc_side(qp
));
892 handle_mflush(qp
, mp
);
895 miocnak(qp
, mp
, 0, 0);
905 DBG1("(hipri) wput, %s side", zc_side(qp
));
907 case M_READ
: /* supposedly from ldterm? */
908 DBG("zc_wput: tossing M_READ\n");
912 handle_mflush(qp
, mp
);
916 * Put this to the other side.
918 ASSERT(zc_switch(RD(qp
)) != NULL
);
919 putnext(zc_switch(RD(qp
)), mp
);
922 DBG1("done (hipri) wput, %s side", zc_side(qp
));
927 * Only putnext if there isn't already something in the queue.
928 * otherwise things would wind up out of order.
930 if (qp
->q_first
== NULL
&& bcanputnext(RD(zc_switch(qp
)), mp
->b_band
)) {
931 DBG("wput: putting message to other side\n");
932 putnext(RD(zc_switch(qp
)), mp
);
934 DBG("wput: putting msg onto queue\n");
937 DBG1("done wput, %s side", zc_side(qp
));
941 * rsrv(9E) is symmetric for master and slave, so zc_rsrv() handles both
942 * without splitting up the codepath.
944 * Enable the write side of the partner. This triggers the partner to send
945 * messages queued on its write side to this queue's read side.
951 zcs
= (zc_state_t
*)qp
->q_ptr
;
954 * Care must be taken here, as either of the master or slave side
955 * qptr could be NULL.
957 ASSERT(qp
== zcs
->zc_master_rdq
|| qp
== zcs
->zc_slave_rdq
);
958 if (zc_switch(qp
) == NULL
) {
959 DBG("zc_rsrv: other side isn't listening\n");
962 qenable(WR(zc_switch(qp
)));
966 * This routine is symmetric for master and slave, so it handles both without
967 * splitting up the codepath.
969 * If there are messages on this queue that can be sent to the other, send
970 * them via putnext(). Else, if queued messages cannot be sent, leave them
978 DBG1("zc_wsrv master (%s) side", zc_side(qp
));
981 * Partner has no read queue, so take the data, and throw it away.
983 if (zc_switch(RD(qp
)) == NULL
) {
984 DBG("zc_wsrv: other side isn't listening");
985 while ((mp
= getq(qp
)) != NULL
) {
986 if (mp
->b_datap
->db_type
== M_IOCTL
)
987 miocnak(qp
, mp
, 0, 0);
991 flushq(qp
, FLUSHALL
);
996 * while there are messages on this write queue...
998 while ((mp
= getq(qp
)) != NULL
) {
1000 * Due to the way zc_wput is implemented, we should never
1001 * see a control message here.
1003 ASSERT(mp
->b_datap
->db_type
< QPCTL
);
1005 if (bcanputnext(RD(zc_switch(qp
)), mp
->b_band
)) {
1006 DBG("wsrv: send message to other side\n");
1007 putnext(RD(zc_switch(qp
)), mp
);
1009 DBG("wsrv: putting msg back on queue\n");
1010 (void) putbq(qp
, mp
);