Merge commit '720b16875295d57e0e6a4e0ec32db4d47412f896'
[unleashed.git] / kernel / fs / zfs / zap_micro.c
blob15dda6856b393b33895bb4a69aa5492653ddc950
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2017 Nexenta Systems, Inc.
30 #include <sys/zio.h>
31 #include <sys/spa.h>
32 #include <sys/dmu.h>
33 #include <sys/zfs_context.h>
34 #include <sys/zap.h>
35 #include <sys/refcount.h>
36 #include <sys/zap_impl.h>
37 #include <sys/zap_leaf.h>
38 #include <sys/avl.h>
39 #include <sys/arc.h>
40 #include <sys/dmu_objset.h>
42 #ifdef _KERNEL
43 #include <sys/sunddi.h>
44 #endif
46 extern inline mzap_phys_t *zap_m_phys(zap_t *zap);
48 static int mzap_upgrade(zap_t **zapp,
49 void *tag, dmu_tx_t *tx, zap_flags_t flags);
51 uint64_t
52 zap_getflags(zap_t *zap)
54 if (zap->zap_ismicro)
55 return (0);
56 return (zap_f_phys(zap)->zap_flags);
59 int
60 zap_hashbits(zap_t *zap)
62 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
63 return (48);
64 else
65 return (28);
68 uint32_t
69 zap_maxcd(zap_t *zap)
71 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
72 return ((1<<16)-1);
73 else
74 return (-1U);
77 static uint64_t
78 zap_hash(zap_name_t *zn)
80 zap_t *zap = zn->zn_zap;
81 uint64_t h = 0;
83 if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
84 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
85 h = *(uint64_t *)zn->zn_key_orig;
86 } else {
87 h = zap->zap_salt;
88 ASSERT(h != 0);
89 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
91 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
92 int i;
93 const uint64_t *wp = zn->zn_key_norm;
95 ASSERT(zn->zn_key_intlen == 8);
96 for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) {
97 int j;
98 uint64_t word = *wp;
100 for (j = 0; j < zn->zn_key_intlen; j++) {
101 h = (h >> 8) ^
102 zfs_crc64_table[(h ^ word) & 0xFF];
103 word >>= NBBY;
106 } else {
107 int i, len;
108 const uint8_t *cp = zn->zn_key_norm;
111 * We previously stored the terminating null on
112 * disk, but didn't hash it, so we need to
113 * continue to not hash it. (The
114 * zn_key_*_numints includes the terminating
115 * null for non-binary keys.)
117 len = zn->zn_key_norm_numints - 1;
119 ASSERT(zn->zn_key_intlen == 1);
120 for (i = 0; i < len; cp++, i++) {
121 h = (h >> 8) ^
122 zfs_crc64_table[(h ^ *cp) & 0xFF];
127 * Don't use all 64 bits, since we need some in the cookie for
128 * the collision differentiator. We MUST use the high bits,
129 * since those are the ones that we first pay attention to when
130 * chosing the bucket.
132 h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
134 return (h);
137 static int
138 zap_normalize(zap_t *zap, const char *name, char *namenorm, int normflags)
140 size_t inlen, outlen;
141 int err;
143 ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
145 inlen = strlen(name) + 1;
146 outlen = ZAP_MAXNAMELEN;
148 err = 0;
149 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
150 normflags | U8_TEXTPREP_IGNORE_NULL | U8_TEXTPREP_IGNORE_INVALID,
151 U8_UNICODE_LATEST, &err);
153 return (err);
156 boolean_t
157 zap_match(zap_name_t *zn, const char *matchname)
159 ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
161 if (zn->zn_matchtype & MT_NORMALIZE) {
162 char norm[ZAP_MAXNAMELEN];
164 if (zap_normalize(zn->zn_zap, matchname, norm,
165 zn->zn_normflags) != 0)
166 return (B_FALSE);
168 return (strcmp(zn->zn_key_norm, norm) == 0);
169 } else {
170 return (strcmp(zn->zn_key_orig, matchname) == 0);
174 void
175 zap_name_free(zap_name_t *zn)
177 kmem_free(zn, sizeof (zap_name_t));
180 zap_name_t *
181 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
183 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
185 zn->zn_zap = zap;
186 zn->zn_key_intlen = sizeof (*key);
187 zn->zn_key_orig = key;
188 zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
189 zn->zn_matchtype = mt;
190 zn->zn_normflags = zap->zap_normflags;
193 * If we're dealing with a case sensitive lookup on a mixed or
194 * insensitive fs, remove U8_TEXTPREP_TOUPPER or the lookup
195 * will fold case to all caps overriding the lookup request.
197 if (mt & MT_MATCH_CASE)
198 zn->zn_normflags &= ~U8_TEXTPREP_TOUPPER;
200 if (zap->zap_normflags) {
202 * We *must* use zap_normflags because this normalization is
203 * what the hash is computed from.
205 if (zap_normalize(zap, key, zn->zn_normbuf,
206 zap->zap_normflags) != 0) {
207 zap_name_free(zn);
208 return (NULL);
210 zn->zn_key_norm = zn->zn_normbuf;
211 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
212 } else {
213 if (mt != 0) {
214 zap_name_free(zn);
215 return (NULL);
217 zn->zn_key_norm = zn->zn_key_orig;
218 zn->zn_key_norm_numints = zn->zn_key_orig_numints;
221 zn->zn_hash = zap_hash(zn);
223 if (zap->zap_normflags != zn->zn_normflags) {
225 * We *must* use zn_normflags because this normalization is
226 * what the matching is based on. (Not the hash!)
228 if (zap_normalize(zap, key, zn->zn_normbuf,
229 zn->zn_normflags) != 0) {
230 zap_name_free(zn);
231 return (NULL);
233 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
236 return (zn);
239 zap_name_t *
240 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
242 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
244 ASSERT(zap->zap_normflags == 0);
245 zn->zn_zap = zap;
246 zn->zn_key_intlen = sizeof (*key);
247 zn->zn_key_orig = zn->zn_key_norm = key;
248 zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
249 zn->zn_matchtype = 0;
251 zn->zn_hash = zap_hash(zn);
252 return (zn);
255 static void
256 mzap_byteswap(mzap_phys_t *buf, size_t size)
258 int i, max;
259 buf->mz_block_type = BSWAP_64(buf->mz_block_type);
260 buf->mz_salt = BSWAP_64(buf->mz_salt);
261 buf->mz_normflags = BSWAP_64(buf->mz_normflags);
262 max = (size / MZAP_ENT_LEN) - 1;
263 for (i = 0; i < max; i++) {
264 buf->mz_chunk[i].mze_value =
265 BSWAP_64(buf->mz_chunk[i].mze_value);
266 buf->mz_chunk[i].mze_cd =
267 BSWAP_32(buf->mz_chunk[i].mze_cd);
271 void
272 zap_byteswap(void *buf, size_t size)
274 uint64_t block_type;
276 block_type = *(uint64_t *)buf;
278 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
279 /* ASSERT(magic == ZAP_LEAF_MAGIC); */
280 mzap_byteswap(buf, size);
281 } else {
282 fzap_byteswap(buf, size);
286 static int
287 mze_compare(const void *arg1, const void *arg2)
289 const mzap_ent_t *mze1 = arg1;
290 const mzap_ent_t *mze2 = arg2;
292 if (mze1->mze_hash > mze2->mze_hash)
293 return (+1);
294 if (mze1->mze_hash < mze2->mze_hash)
295 return (-1);
296 if (mze1->mze_cd > mze2->mze_cd)
297 return (+1);
298 if (mze1->mze_cd < mze2->mze_cd)
299 return (-1);
300 return (0);
303 static void
304 mze_insert(zap_t *zap, int chunkid, uint64_t hash)
306 mzap_ent_t *mze;
308 ASSERT(zap->zap_ismicro);
309 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
311 mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
312 mze->mze_chunkid = chunkid;
313 mze->mze_hash = hash;
314 mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
315 ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
316 avl_add(&zap->zap_m.zap_avl, mze);
319 static mzap_ent_t *
320 mze_find(zap_name_t *zn)
322 mzap_ent_t mze_tofind;
323 mzap_ent_t *mze;
324 avl_index_t idx;
325 avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
327 ASSERT(zn->zn_zap->zap_ismicro);
328 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
330 mze_tofind.mze_hash = zn->zn_hash;
331 mze_tofind.mze_cd = 0;
333 mze = avl_find(avl, &mze_tofind, &idx);
334 if (mze == NULL)
335 mze = avl_nearest(avl, idx, AVL_AFTER);
336 for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
337 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
338 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
339 return (mze);
342 return (NULL);
345 static uint32_t
346 mze_find_unused_cd(zap_t *zap, uint64_t hash)
348 mzap_ent_t mze_tofind;
349 mzap_ent_t *mze;
350 avl_index_t idx;
351 avl_tree_t *avl = &zap->zap_m.zap_avl;
352 uint32_t cd;
354 ASSERT(zap->zap_ismicro);
355 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
357 mze_tofind.mze_hash = hash;
358 mze_tofind.mze_cd = 0;
360 cd = 0;
361 for (mze = avl_find(avl, &mze_tofind, &idx);
362 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
363 if (mze->mze_cd != cd)
364 break;
365 cd++;
368 return (cd);
371 static void
372 mze_remove(zap_t *zap, mzap_ent_t *mze)
374 ASSERT(zap->zap_ismicro);
375 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
377 avl_remove(&zap->zap_m.zap_avl, mze);
378 kmem_free(mze, sizeof (mzap_ent_t));
381 static void
382 mze_destroy(zap_t *zap)
384 mzap_ent_t *mze;
385 void *avlcookie = NULL;
387 while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
388 kmem_free(mze, sizeof (mzap_ent_t));
389 avl_destroy(&zap->zap_m.zap_avl);
392 static zap_t *
393 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
395 zap_t *winner;
396 zap_t *zap;
397 int i;
398 uint64_t *zap_hdr = (uint64_t *)db->db_data;
399 uint64_t zap_block_type = zap_hdr[0];
400 uint64_t zap_magic = zap_hdr[1];
402 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
404 zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
405 rw_init(&zap->zap_rwlock, 0, 0, 0);
406 rw_enter(&zap->zap_rwlock, RW_WRITER);
407 zap->zap_objset = os;
408 zap->zap_object = obj;
409 zap->zap_dbuf = db;
411 if (zap_block_type != ZBT_MICRO) {
412 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
413 zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
414 if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) {
415 winner = NULL; /* No actual winner here... */
416 goto handle_winner;
418 } else {
419 zap->zap_ismicro = TRUE;
423 * Make sure that zap_ismicro is set before we let others see
424 * it, because zap_lockdir() checks zap_ismicro without the lock
425 * held.
427 dmu_buf_init_user(&zap->zap_dbu, zap_evict_sync, NULL, &zap->zap_dbuf);
428 winner = dmu_buf_set_user(db, &zap->zap_dbu);
430 if (winner != NULL)
431 goto handle_winner;
433 if (zap->zap_ismicro) {
434 zap->zap_salt = zap_m_phys(zap)->mz_salt;
435 zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
436 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
437 avl_create(&zap->zap_m.zap_avl, mze_compare,
438 sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
440 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
441 mzap_ent_phys_t *mze =
442 &zap_m_phys(zap)->mz_chunk[i];
443 if (mze->mze_name[0]) {
444 zap_name_t *zn;
446 zap->zap_m.zap_num_entries++;
447 zn = zap_name_alloc(zap, mze->mze_name, 0);
448 mze_insert(zap, i, zn->zn_hash);
449 zap_name_free(zn);
452 } else {
453 zap->zap_salt = zap_f_phys(zap)->zap_salt;
454 zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
456 ASSERT3U(sizeof (struct zap_leaf_header), ==,
457 2*ZAP_LEAF_CHUNKSIZE);
460 * The embedded pointer table should not overlap the
461 * other members.
463 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
464 &zap_f_phys(zap)->zap_salt);
467 * The embedded pointer table should end at the end of
468 * the block
470 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
471 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
472 (uintptr_t)zap_f_phys(zap), ==,
473 zap->zap_dbuf->db_size);
475 rw_exit(&zap->zap_rwlock);
476 return (zap);
478 handle_winner:
479 rw_exit(&zap->zap_rwlock);
480 rw_destroy(&zap->zap_rwlock);
481 if (!zap->zap_ismicro)
482 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
483 kmem_free(zap, sizeof (zap_t));
484 return (winner);
487 static int
488 zap_lockdir_impl(dmu_buf_t *db, void *tag, dmu_tx_t *tx,
489 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
491 zap_t *zap;
492 krw_t lt;
494 ASSERT0(db->db_offset);
495 objset_t *os = dmu_buf_get_objset(db);
496 uint64_t obj = db->db_object;
498 *zapp = NULL;
500 #ifdef ZFS_DEBUG
502 dmu_object_info_t doi;
503 dmu_object_info_from_db(db, &doi);
504 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
506 #endif
508 zap = dmu_buf_get_user(db);
509 if (zap == NULL) {
510 zap = mzap_open(os, obj, db);
511 if (zap == NULL) {
513 * mzap_open() didn't like what it saw on-disk.
514 * Check for corruption!
516 return (SET_ERROR(EIO));
521 * We're checking zap_ismicro without the lock held, in order to
522 * tell what type of lock we want. Once we have some sort of
523 * lock, see if it really is the right type. In practice this
524 * can only be different if it was upgraded from micro to fat,
525 * and micro wanted WRITER but fat only needs READER.
527 lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
528 rw_enter(&zap->zap_rwlock, lt);
529 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
530 /* it was upgraded, now we only need reader */
531 ASSERT(lt == RW_WRITER);
532 ASSERT(RW_READER ==
533 (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
534 rw_downgrade(&zap->zap_rwlock);
535 lt = RW_READER;
538 zap->zap_objset = os;
540 if (lt == RW_WRITER)
541 dmu_buf_will_dirty(db, tx);
543 ASSERT3P(zap->zap_dbuf, ==, db);
545 ASSERT(!zap->zap_ismicro ||
546 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
547 if (zap->zap_ismicro && tx && adding &&
548 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
549 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
550 if (newsz > MZAP_MAX_BLKSZ) {
551 dprintf("upgrading obj %llu: num_entries=%u\n",
552 obj, zap->zap_m.zap_num_entries);
553 *zapp = zap;
554 int err = mzap_upgrade(zapp, tag, tx, 0);
555 if (err != 0)
556 rw_exit(&zap->zap_rwlock);
557 return (err);
559 VERIFY0(dmu_object_set_blocksize(os, obj, newsz, 0, tx));
560 zap->zap_m.zap_num_chunks =
561 db->db_size / MZAP_ENT_LEN - 1;
564 *zapp = zap;
565 return (0);
568 static int
569 zap_lockdir_by_dnode(dnode_t *dn, dmu_tx_t *tx,
570 krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp)
572 dmu_buf_t *db;
573 int err;
575 err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH);
576 if (err != 0) {
577 return (err);
579 err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
580 if (err != 0) {
581 dmu_buf_rele(db, tag);
583 return (err);
587 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
588 krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp)
590 dmu_buf_t *db;
591 int err;
593 err = dmu_buf_hold(os, obj, 0, tag, &db, DMU_READ_NO_PREFETCH);
594 if (err != 0)
595 return (err);
596 err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
597 if (err != 0)
598 dmu_buf_rele(db, tag);
599 return (err);
602 void
603 zap_unlockdir(zap_t *zap, void *tag)
605 rw_exit(&zap->zap_rwlock);
606 dmu_buf_rele(zap->zap_dbuf, tag);
609 static int
610 mzap_upgrade(zap_t **zapp, void *tag, dmu_tx_t *tx, zap_flags_t flags)
612 mzap_phys_t *mzp;
613 int i, sz, nchunks;
614 int err = 0;
615 zap_t *zap = *zapp;
617 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
619 sz = zap->zap_dbuf->db_size;
620 mzp = zio_buf_alloc(sz);
621 bcopy(zap->zap_dbuf->db_data, mzp, sz);
622 nchunks = zap->zap_m.zap_num_chunks;
624 if (!flags) {
625 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
626 1ULL << fzap_default_block_shift, 0, tx);
627 if (err) {
628 zio_buf_free(mzp, sz);
629 return (err);
633 dprintf("upgrading obj=%llu with %u chunks\n",
634 zap->zap_object, nchunks);
635 /* XXX destroy the avl later, so we can use the stored hash value */
636 mze_destroy(zap);
638 fzap_upgrade(zap, tx, flags);
640 for (i = 0; i < nchunks; i++) {
641 mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
642 zap_name_t *zn;
643 if (mze->mze_name[0] == 0)
644 continue;
645 dprintf("adding %s=%llu\n",
646 mze->mze_name, mze->mze_value);
647 zn = zap_name_alloc(zap, mze->mze_name, 0);
648 err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd,
649 tag, tx);
650 zap = zn->zn_zap; /* fzap_add_cd() may change zap */
651 zap_name_free(zn);
652 if (err)
653 break;
655 zio_buf_free(mzp, sz);
656 *zapp = zap;
657 return (err);
661 * The "normflags" determine the behavior of the matchtype_t which is
662 * passed to zap_lookup_norm(). Names which have the same normalized
663 * version will be stored with the same hash value, and therefore we can
664 * perform normalization-insensitive lookups. We can be Unicode form-
665 * insensitive and/or case-insensitive. The following flags are valid for
666 * "normflags":
668 * U8_TEXTPREP_NFC
669 * U8_TEXTPREP_NFD
670 * U8_TEXTPREP_NFKC
671 * U8_TEXTPREP_NFKD
672 * U8_TEXTPREP_TOUPPER
674 * The *_NF* (Normalization Form) flags are mutually exclusive; at most one
675 * of them may be supplied.
677 void
678 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
679 dmu_tx_t *tx)
681 dmu_buf_t *db;
682 mzap_phys_t *zp;
684 VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
686 #ifdef ZFS_DEBUG
688 dmu_object_info_t doi;
689 dmu_object_info_from_db(db, &doi);
690 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
692 #endif
694 dmu_buf_will_dirty(db, tx);
695 zp = db->db_data;
696 zp->mz_block_type = ZBT_MICRO;
697 zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
698 zp->mz_normflags = normflags;
699 dmu_buf_rele(db, FTAG);
701 if (flags != 0) {
702 zap_t *zap;
703 /* Only fat zap supports flags; upgrade immediately. */
704 VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
705 B_FALSE, B_FALSE, FTAG, &zap));
706 VERIFY3U(0, ==, mzap_upgrade(&zap, FTAG, tx, flags));
707 zap_unlockdir(zap, FTAG);
712 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
713 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
715 return (zap_create_claim_norm(os, obj,
716 0, ot, bonustype, bonuslen, tx));
720 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
721 dmu_object_type_t ot,
722 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
724 int err;
726 err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
727 if (err != 0)
728 return (err);
729 mzap_create_impl(os, obj, normflags, 0, tx);
730 return (0);
733 uint64_t
734 zap_create(objset_t *os, dmu_object_type_t ot,
735 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
737 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
740 uint64_t
741 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
742 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
744 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
746 mzap_create_impl(os, obj, normflags, 0, tx);
747 return (obj);
750 uint64_t
751 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
752 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
753 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
755 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
757 ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
758 leaf_blockshift <= SPA_OLD_MAXBLOCKSHIFT &&
759 indirect_blockshift >= SPA_MINBLOCKSHIFT &&
760 indirect_blockshift <= SPA_OLD_MAXBLOCKSHIFT);
762 VERIFY(dmu_object_set_blocksize(os, obj,
763 1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
765 mzap_create_impl(os, obj, normflags, flags, tx);
766 return (obj);
770 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
773 * dmu_object_free will free the object number and free the
774 * data. Freeing the data will cause our pageout function to be
775 * called, which will destroy our data (zap_leaf_t's and zap_t).
778 return (dmu_object_free(os, zapobj, tx));
781 void
782 zap_evict_sync(void *dbu)
784 zap_t *zap = dbu;
786 rw_destroy(&zap->zap_rwlock);
788 if (zap->zap_ismicro)
789 mze_destroy(zap);
790 else
791 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
793 kmem_free(zap, sizeof (zap_t));
797 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
799 zap_t *zap;
800 int err;
802 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
803 if (err)
804 return (err);
805 if (!zap->zap_ismicro) {
806 err = fzap_count(zap, count);
807 } else {
808 *count = zap->zap_m.zap_num_entries;
810 zap_unlockdir(zap, FTAG);
811 return (err);
815 * zn may be NULL; if not specified, it will be computed if needed.
816 * See also the comment above zap_entry_normalization_conflict().
818 static boolean_t
819 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
821 mzap_ent_t *other;
822 int direction = AVL_BEFORE;
823 boolean_t allocdzn = B_FALSE;
825 if (zap->zap_normflags == 0)
826 return (B_FALSE);
828 again:
829 for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
830 other && other->mze_hash == mze->mze_hash;
831 other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
833 if (zn == NULL) {
834 zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
835 MT_NORMALIZE);
836 allocdzn = B_TRUE;
838 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
839 if (allocdzn)
840 zap_name_free(zn);
841 return (B_TRUE);
845 if (direction == AVL_BEFORE) {
846 direction = AVL_AFTER;
847 goto again;
850 if (allocdzn)
851 zap_name_free(zn);
852 return (B_FALSE);
856 * Routines for manipulating attributes.
860 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
861 uint64_t integer_size, uint64_t num_integers, void *buf)
863 return (zap_lookup_norm(os, zapobj, name, integer_size,
864 num_integers, buf, 0, NULL, 0, NULL));
867 static int
868 zap_lookup_impl(zap_t *zap, const char *name,
869 uint64_t integer_size, uint64_t num_integers, void *buf,
870 matchtype_t mt, char *realname, int rn_len,
871 boolean_t *ncp)
873 int err = 0;
874 mzap_ent_t *mze;
875 zap_name_t *zn;
877 zn = zap_name_alloc(zap, name, mt);
878 if (zn == NULL)
879 return (SET_ERROR(ENOTSUP));
881 if (!zap->zap_ismicro) {
882 err = fzap_lookup(zn, integer_size, num_integers, buf,
883 realname, rn_len, ncp);
884 } else {
885 mze = mze_find(zn);
886 if (mze == NULL) {
887 err = SET_ERROR(ENOENT);
888 } else {
889 if (num_integers < 1) {
890 err = SET_ERROR(EOVERFLOW);
891 } else if (integer_size != 8) {
892 err = SET_ERROR(EINVAL);
893 } else {
894 *(uint64_t *)buf =
895 MZE_PHYS(zap, mze)->mze_value;
896 (void) strlcpy(realname,
897 MZE_PHYS(zap, mze)->mze_name, rn_len);
898 if (ncp) {
899 *ncp = mzap_normalization_conflict(zap,
900 zn, mze);
905 zap_name_free(zn);
906 return (err);
910 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
911 uint64_t integer_size, uint64_t num_integers, void *buf,
912 matchtype_t mt, char *realname, int rn_len,
913 boolean_t *ncp)
915 zap_t *zap;
916 int err;
918 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
919 if (err != 0)
920 return (err);
921 err = zap_lookup_impl(zap, name, integer_size,
922 num_integers, buf, mt, realname, rn_len, ncp);
923 zap_unlockdir(zap, FTAG);
924 return (err);
928 zap_lookup_by_dnode(dnode_t *dn, const char *name,
929 uint64_t integer_size, uint64_t num_integers, void *buf)
931 return (zap_lookup_norm_by_dnode(dn, name, integer_size,
932 num_integers, buf, 0, NULL, 0, NULL));
936 zap_lookup_norm_by_dnode(dnode_t *dn, const char *name,
937 uint64_t integer_size, uint64_t num_integers, void *buf,
938 matchtype_t mt, char *realname, int rn_len,
939 boolean_t *ncp)
941 zap_t *zap;
942 int err;
944 err = zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE,
945 FTAG, &zap);
946 if (err != 0)
947 return (err);
948 err = zap_lookup_impl(zap, name, integer_size,
949 num_integers, buf, mt, realname, rn_len, ncp);
950 zap_unlockdir(zap, FTAG);
951 return (err);
955 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
956 int key_numints)
958 zap_t *zap;
959 int err;
960 zap_name_t *zn;
962 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
963 if (err)
964 return (err);
965 zn = zap_name_alloc_uint64(zap, key, key_numints);
966 if (zn == NULL) {
967 zap_unlockdir(zap, FTAG);
968 return (SET_ERROR(ENOTSUP));
971 fzap_prefetch(zn);
972 zap_name_free(zn);
973 zap_unlockdir(zap, FTAG);
974 return (err);
978 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
979 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
981 zap_t *zap;
982 int err;
983 zap_name_t *zn;
985 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
986 if (err)
987 return (err);
988 zn = zap_name_alloc_uint64(zap, key, key_numints);
989 if (zn == NULL) {
990 zap_unlockdir(zap, FTAG);
991 return (SET_ERROR(ENOTSUP));
994 err = fzap_lookup(zn, integer_size, num_integers, buf,
995 NULL, 0, NULL);
996 zap_name_free(zn);
997 zap_unlockdir(zap, FTAG);
998 return (err);
1002 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
1004 int err = zap_lookup_norm(os, zapobj, name, 0,
1005 0, NULL, 0, NULL, 0, NULL);
1006 if (err == EOVERFLOW || err == EINVAL)
1007 err = 0; /* found, but skipped reading the value */
1008 return (err);
1012 zap_length(objset_t *os, uint64_t zapobj, const char *name,
1013 uint64_t *integer_size, uint64_t *num_integers)
1015 zap_t *zap;
1016 int err;
1017 mzap_ent_t *mze;
1018 zap_name_t *zn;
1020 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1021 if (err)
1022 return (err);
1023 zn = zap_name_alloc(zap, name, 0);
1024 if (zn == NULL) {
1025 zap_unlockdir(zap, FTAG);
1026 return (SET_ERROR(ENOTSUP));
1028 if (!zap->zap_ismicro) {
1029 err = fzap_length(zn, integer_size, num_integers);
1030 } else {
1031 mze = mze_find(zn);
1032 if (mze == NULL) {
1033 err = SET_ERROR(ENOENT);
1034 } else {
1035 if (integer_size)
1036 *integer_size = 8;
1037 if (num_integers)
1038 *num_integers = 1;
1041 zap_name_free(zn);
1042 zap_unlockdir(zap, FTAG);
1043 return (err);
1047 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1048 int key_numints, uint64_t *integer_size, uint64_t *num_integers)
1050 zap_t *zap;
1051 int err;
1052 zap_name_t *zn;
1054 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1055 if (err)
1056 return (err);
1057 zn = zap_name_alloc_uint64(zap, key, key_numints);
1058 if (zn == NULL) {
1059 zap_unlockdir(zap, FTAG);
1060 return (SET_ERROR(ENOTSUP));
1062 err = fzap_length(zn, integer_size, num_integers);
1063 zap_name_free(zn);
1064 zap_unlockdir(zap, FTAG);
1065 return (err);
1068 static void
1069 mzap_addent(zap_name_t *zn, uint64_t value)
1071 int i;
1072 zap_t *zap = zn->zn_zap;
1073 int start = zap->zap_m.zap_alloc_next;
1074 uint32_t cd;
1076 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
1078 #ifdef ZFS_DEBUG
1079 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
1080 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1081 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
1083 #endif
1085 cd = mze_find_unused_cd(zap, zn->zn_hash);
1086 /* given the limited size of the microzap, this can't happen */
1087 ASSERT(cd < zap_maxcd(zap));
1089 again:
1090 for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
1091 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1092 if (mze->mze_name[0] == 0) {
1093 mze->mze_value = value;
1094 mze->mze_cd = cd;
1095 (void) strcpy(mze->mze_name, zn->zn_key_orig);
1096 zap->zap_m.zap_num_entries++;
1097 zap->zap_m.zap_alloc_next = i+1;
1098 if (zap->zap_m.zap_alloc_next ==
1099 zap->zap_m.zap_num_chunks)
1100 zap->zap_m.zap_alloc_next = 0;
1101 mze_insert(zap, i, zn->zn_hash);
1102 return;
1105 if (start != 0) {
1106 start = 0;
1107 goto again;
1109 ASSERT(!"out of entries!");
1112 static int
1113 zap_add_impl(zap_t *zap, const char *key,
1114 int integer_size, uint64_t num_integers,
1115 const void *val, dmu_tx_t *tx, void *tag)
1117 int err = 0;
1118 mzap_ent_t *mze;
1119 const uint64_t *intval = val;
1120 zap_name_t *zn;
1122 zn = zap_name_alloc(zap, key, 0);
1123 if (zn == NULL) {
1124 zap_unlockdir(zap, tag);
1125 return (SET_ERROR(ENOTSUP));
1127 if (!zap->zap_ismicro) {
1128 err = fzap_add(zn, integer_size, num_integers, val, tag, tx);
1129 zap = zn->zn_zap; /* fzap_add() may change zap */
1130 } else if (integer_size != 8 || num_integers != 1 ||
1131 strlen(key) >= MZAP_NAME_LEN) {
1132 err = mzap_upgrade(&zn->zn_zap, tag, tx, 0);
1133 if (err == 0) {
1134 err = fzap_add(zn, integer_size, num_integers, val,
1135 tag, tx);
1137 zap = zn->zn_zap; /* fzap_add() may change zap */
1138 } else {
1139 mze = mze_find(zn);
1140 if (mze != NULL) {
1141 err = SET_ERROR(EEXIST);
1142 } else {
1143 mzap_addent(zn, *intval);
1146 ASSERT(zap == zn->zn_zap);
1147 zap_name_free(zn);
1148 if (zap != NULL) /* may be NULL if fzap_add() failed */
1149 zap_unlockdir(zap, tag);
1150 return (err);
1154 zap_add(objset_t *os, uint64_t zapobj, const char *key,
1155 int integer_size, uint64_t num_integers,
1156 const void *val, dmu_tx_t *tx)
1158 zap_t *zap;
1159 int err;
1161 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1162 if (err != 0)
1163 return (err);
1164 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1165 /* zap_add_impl() calls zap_unlockdir() */
1166 return (err);
1170 zap_add_by_dnode(dnode_t *dn, const char *key,
1171 int integer_size, uint64_t num_integers,
1172 const void *val, dmu_tx_t *tx)
1174 zap_t *zap;
1175 int err;
1177 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1178 if (err != 0)
1179 return (err);
1180 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1181 /* zap_add_impl() calls zap_unlockdir() */
1182 return (err);
1186 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1187 int key_numints, int integer_size, uint64_t num_integers,
1188 const void *val, dmu_tx_t *tx)
1190 zap_t *zap;
1191 int err;
1192 zap_name_t *zn;
1194 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1195 if (err)
1196 return (err);
1197 zn = zap_name_alloc_uint64(zap, key, key_numints);
1198 if (zn == NULL) {
1199 zap_unlockdir(zap, FTAG);
1200 return (SET_ERROR(ENOTSUP));
1202 err = fzap_add(zn, integer_size, num_integers, val, FTAG, tx);
1203 zap = zn->zn_zap; /* fzap_add() may change zap */
1204 zap_name_free(zn);
1205 if (zap != NULL) /* may be NULL if fzap_add() failed */
1206 zap_unlockdir(zap, FTAG);
1207 return (err);
1211 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1212 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1214 zap_t *zap;
1215 mzap_ent_t *mze;
1216 uint64_t oldval;
1217 const uint64_t *intval = val;
1218 zap_name_t *zn;
1219 int err;
1221 #ifdef ZFS_DEBUG
1223 * If there is an old value, it shouldn't change across the
1224 * lockdir (eg, due to bprewrite's xlation).
1226 if (integer_size == 8 && num_integers == 1)
1227 (void) zap_lookup(os, zapobj, name, 8, 1, &oldval);
1228 #endif
1230 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1231 if (err)
1232 return (err);
1233 zn = zap_name_alloc(zap, name, 0);
1234 if (zn == NULL) {
1235 zap_unlockdir(zap, FTAG);
1236 return (SET_ERROR(ENOTSUP));
1238 if (!zap->zap_ismicro) {
1239 err = fzap_update(zn, integer_size, num_integers, val,
1240 FTAG, tx);
1241 zap = zn->zn_zap; /* fzap_update() may change zap */
1242 } else if (integer_size != 8 || num_integers != 1 ||
1243 strlen(name) >= MZAP_NAME_LEN) {
1244 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1245 zapobj, integer_size, num_integers, name);
1246 err = mzap_upgrade(&zn->zn_zap, FTAG, tx, 0);
1247 if (err == 0) {
1248 err = fzap_update(zn, integer_size, num_integers,
1249 val, FTAG, tx);
1251 zap = zn->zn_zap; /* fzap_update() may change zap */
1252 } else {
1253 mze = mze_find(zn);
1254 if (mze != NULL) {
1255 ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval);
1256 MZE_PHYS(zap, mze)->mze_value = *intval;
1257 } else {
1258 mzap_addent(zn, *intval);
1261 ASSERT(zap == zn->zn_zap);
1262 zap_name_free(zn);
1263 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1264 zap_unlockdir(zap, FTAG);
1265 return (err);
1269 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1270 int key_numints,
1271 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1273 zap_t *zap;
1274 zap_name_t *zn;
1275 int err;
1277 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1278 if (err)
1279 return (err);
1280 zn = zap_name_alloc_uint64(zap, key, key_numints);
1281 if (zn == NULL) {
1282 zap_unlockdir(zap, FTAG);
1283 return (SET_ERROR(ENOTSUP));
1285 err = fzap_update(zn, integer_size, num_integers, val, FTAG, tx);
1286 zap = zn->zn_zap; /* fzap_update() may change zap */
1287 zap_name_free(zn);
1288 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1289 zap_unlockdir(zap, FTAG);
1290 return (err);
1294 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1296 return (zap_remove_norm(os, zapobj, name, 0, tx));
1299 static int
1300 zap_remove_impl(zap_t *zap, const char *name,
1301 matchtype_t mt, dmu_tx_t *tx)
1303 mzap_ent_t *mze;
1304 zap_name_t *zn;
1305 int err = 0;
1307 zn = zap_name_alloc(zap, name, mt);
1308 if (zn == NULL)
1309 return (SET_ERROR(ENOTSUP));
1310 if (!zap->zap_ismicro) {
1311 err = fzap_remove(zn, tx);
1312 } else {
1313 mze = mze_find(zn);
1314 if (mze == NULL) {
1315 err = SET_ERROR(ENOENT);
1316 } else {
1317 zap->zap_m.zap_num_entries--;
1318 bzero(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid],
1319 sizeof (mzap_ent_phys_t));
1320 mze_remove(zap, mze);
1323 zap_name_free(zn);
1324 return (err);
1328 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1329 matchtype_t mt, dmu_tx_t *tx)
1331 zap_t *zap;
1332 int err;
1334 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1335 if (err)
1336 return (err);
1337 err = zap_remove_impl(zap, name, mt, tx);
1338 zap_unlockdir(zap, FTAG);
1339 return (err);
1343 zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx)
1345 zap_t *zap;
1346 int err;
1348 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1349 if (err)
1350 return (err);
1351 err = zap_remove_impl(zap, name, 0, tx);
1352 zap_unlockdir(zap, FTAG);
1353 return (err);
1357 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1358 int key_numints, dmu_tx_t *tx)
1360 zap_t *zap;
1361 int err;
1362 zap_name_t *zn;
1364 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1365 if (err)
1366 return (err);
1367 zn = zap_name_alloc_uint64(zap, key, key_numints);
1368 if (zn == NULL) {
1369 zap_unlockdir(zap, FTAG);
1370 return (SET_ERROR(ENOTSUP));
1372 err = fzap_remove(zn, tx);
1373 zap_name_free(zn);
1374 zap_unlockdir(zap, FTAG);
1375 return (err);
1379 * Routines for iterating over the attributes.
1382 void
1383 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1384 uint64_t serialized)
1386 zc->zc_objset = os;
1387 zc->zc_zap = NULL;
1388 zc->zc_leaf = NULL;
1389 zc->zc_zapobj = zapobj;
1390 zc->zc_serialized = serialized;
1391 zc->zc_hash = 0;
1392 zc->zc_cd = 0;
1395 void
1396 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1398 zap_cursor_init_serialized(zc, os, zapobj, 0);
1401 void
1402 zap_cursor_fini(zap_cursor_t *zc)
1404 if (zc->zc_zap) {
1405 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1406 zap_unlockdir(zc->zc_zap, NULL);
1407 zc->zc_zap = NULL;
1409 if (zc->zc_leaf) {
1410 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1411 zap_put_leaf(zc->zc_leaf);
1412 zc->zc_leaf = NULL;
1414 zc->zc_objset = NULL;
1417 uint64_t
1418 zap_cursor_serialize(zap_cursor_t *zc)
1420 if (zc->zc_hash == -1ULL)
1421 return (-1ULL);
1422 if (zc->zc_zap == NULL)
1423 return (zc->zc_serialized);
1424 ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1425 ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1428 * We want to keep the high 32 bits of the cursor zero if we can, so
1429 * that 32-bit programs can access this. So usually use a small
1430 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1431 * of the cursor.
1433 * [ collision differentiator | zap_hashbits()-bit hash value ]
1435 return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1436 ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1440 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1442 int err;
1443 avl_index_t idx;
1444 mzap_ent_t mze_tofind;
1445 mzap_ent_t *mze;
1447 if (zc->zc_hash == -1ULL)
1448 return (SET_ERROR(ENOENT));
1450 if (zc->zc_zap == NULL) {
1451 int hb;
1452 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1453 RW_READER, TRUE, FALSE, NULL, &zc->zc_zap);
1454 if (err)
1455 return (err);
1458 * To support zap_cursor_init_serialized, advance, retrieve,
1459 * we must add to the existing zc_cd, which may already
1460 * be 1 due to the zap_cursor_advance.
1462 ASSERT(zc->zc_hash == 0);
1463 hb = zap_hashbits(zc->zc_zap);
1464 zc->zc_hash = zc->zc_serialized << (64 - hb);
1465 zc->zc_cd += zc->zc_serialized >> hb;
1466 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1467 zc->zc_cd = 0;
1468 } else {
1469 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1471 if (!zc->zc_zap->zap_ismicro) {
1472 err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1473 } else {
1474 mze_tofind.mze_hash = zc->zc_hash;
1475 mze_tofind.mze_cd = zc->zc_cd;
1477 mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1478 if (mze == NULL) {
1479 mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1480 idx, AVL_AFTER);
1482 if (mze) {
1483 mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1484 ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1485 za->za_normalization_conflict =
1486 mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1487 za->za_integer_length = 8;
1488 za->za_num_integers = 1;
1489 za->za_first_integer = mzep->mze_value;
1490 (void) strcpy(za->za_name, mzep->mze_name);
1491 zc->zc_hash = mze->mze_hash;
1492 zc->zc_cd = mze->mze_cd;
1493 err = 0;
1494 } else {
1495 zc->zc_hash = -1ULL;
1496 err = SET_ERROR(ENOENT);
1499 rw_exit(&zc->zc_zap->zap_rwlock);
1500 return (err);
1503 void
1504 zap_cursor_advance(zap_cursor_t *zc)
1506 if (zc->zc_hash == -1ULL)
1507 return;
1508 zc->zc_cd++;
1512 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1514 int err;
1515 zap_t *zap;
1517 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1518 if (err)
1519 return (err);
1521 bzero(zs, sizeof (zap_stats_t));
1523 if (zap->zap_ismicro) {
1524 zs->zs_blocksize = zap->zap_dbuf->db_size;
1525 zs->zs_num_entries = zap->zap_m.zap_num_entries;
1526 zs->zs_num_blocks = 1;
1527 } else {
1528 fzap_get_stats(zap, zs);
1530 zap_unlockdir(zap, FTAG);
1531 return (0);