Merge commit '720b16875295d57e0e6a4e0ec32db4d47412f896'
[unleashed.git] / kernel / fs / zfs / vdev_queue.c
blob3d2014579c88f52ea4a156e544ce5998c15a828f
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
31 #include <sys/zfs_context.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/spa_impl.h>
34 #include <sys/zio.h>
35 #include <sys/avl.h>
36 #include <sys/dsl_pool.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/abd.h>
41 * ZFS I/O Scheduler
42 * ---------------
44 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The
45 * I/O scheduler determines when and in what order those operations are
46 * issued. The I/O scheduler divides operations into five I/O classes
47 * prioritized in the following order: sync read, sync write, async read,
48 * async write, and scrub/resilver. Each queue defines the minimum and
49 * maximum number of concurrent operations that may be issued to the device.
50 * In addition, the device has an aggregate maximum. Note that the sum of the
51 * per-queue minimums must not exceed the aggregate maximum, and if the
52 * aggregate maximum is equal to or greater than the sum of the per-queue
53 * maximums, the per-queue minimum has no effect.
55 * For many physical devices, throughput increases with the number of
56 * concurrent operations, but latency typically suffers. Further, physical
57 * devices typically have a limit at which more concurrent operations have no
58 * effect on throughput or can actually cause it to decrease.
60 * The scheduler selects the next operation to issue by first looking for an
61 * I/O class whose minimum has not been satisfied. Once all are satisfied and
62 * the aggregate maximum has not been hit, the scheduler looks for classes
63 * whose maximum has not been satisfied. Iteration through the I/O classes is
64 * done in the order specified above. No further operations are issued if the
65 * aggregate maximum number of concurrent operations has been hit or if there
66 * are no operations queued for an I/O class that has not hit its maximum.
67 * Every time an i/o is queued or an operation completes, the I/O scheduler
68 * looks for new operations to issue.
70 * All I/O classes have a fixed maximum number of outstanding operations
71 * except for the async write class. Asynchronous writes represent the data
72 * that is committed to stable storage during the syncing stage for
73 * transaction groups (see txg.c). Transaction groups enter the syncing state
74 * periodically so the number of queued async writes will quickly burst up and
75 * then bleed down to zero. Rather than servicing them as quickly as possible,
76 * the I/O scheduler changes the maximum number of active async write i/os
77 * according to the amount of dirty data in the pool (see dsl_pool.c). Since
78 * both throughput and latency typically increase with the number of
79 * concurrent operations issued to physical devices, reducing the burstiness
80 * in the number of concurrent operations also stabilizes the response time of
81 * operations from other -- and in particular synchronous -- queues. In broad
82 * strokes, the I/O scheduler will issue more concurrent operations from the
83 * async write queue as there's more dirty data in the pool.
85 * Async Writes
87 * The number of concurrent operations issued for the async write I/O class
88 * follows a piece-wise linear function defined by a few adjustable points.
90 * | o---------| <-- zfs_vdev_async_write_max_active
91 * ^ | /^ |
92 * | | / | |
93 * active | / | |
94 * I/O | / | |
95 * count | / | |
96 * | / | |
97 * |------------o | | <-- zfs_vdev_async_write_min_active
98 * 0|____________^______|_________|
99 * 0% | | 100% of zfs_dirty_data_max
100 * | |
101 * | `-- zfs_vdev_async_write_active_max_dirty_percent
102 * `--------- zfs_vdev_async_write_active_min_dirty_percent
104 * Until the amount of dirty data exceeds a minimum percentage of the dirty
105 * data allowed in the pool, the I/O scheduler will limit the number of
106 * concurrent operations to the minimum. As that threshold is crossed, the
107 * number of concurrent operations issued increases linearly to the maximum at
108 * the specified maximum percentage of the dirty data allowed in the pool.
110 * Ideally, the amount of dirty data on a busy pool will stay in the sloped
111 * part of the function between zfs_vdev_async_write_active_min_dirty_percent
112 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
113 * maximum percentage, this indicates that the rate of incoming data is
114 * greater than the rate that the backend storage can handle. In this case, we
115 * must further throttle incoming writes (see dmu_tx_delay() for details).
119 * The maximum number of i/os active to each device. Ideally, this will be >=
120 * the sum of each queue's max_active. It must be at least the sum of each
121 * queue's min_active.
123 uint32_t zfs_vdev_max_active = 1000;
126 * Per-queue limits on the number of i/os active to each device. If the
127 * sum of the queue's max_active is < zfs_vdev_max_active, then the
128 * min_active comes into play. We will send min_active from each queue,
129 * and then select from queues in the order defined by zio_priority_t.
131 * In general, smaller max_active's will lead to lower latency of synchronous
132 * operations. Larger max_active's may lead to higher overall throughput,
133 * depending on underlying storage.
135 * The ratio of the queues' max_actives determines the balance of performance
136 * between reads, writes, and scrubs. E.g., increasing
137 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
138 * more quickly, but reads and writes to have higher latency and lower
139 * throughput.
141 uint32_t zfs_vdev_sync_read_min_active = 10;
142 uint32_t zfs_vdev_sync_read_max_active = 10;
143 uint32_t zfs_vdev_sync_write_min_active = 10;
144 uint32_t zfs_vdev_sync_write_max_active = 10;
145 uint32_t zfs_vdev_async_read_min_active = 1;
146 uint32_t zfs_vdev_async_read_max_active = 3;
147 uint32_t zfs_vdev_async_write_min_active = 1;
148 uint32_t zfs_vdev_async_write_max_active = 10;
149 uint32_t zfs_vdev_scrub_min_active = 1;
150 uint32_t zfs_vdev_scrub_max_active = 2;
153 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
154 * dirty data, use zfs_vdev_async_write_min_active. When it has more than
155 * zfs_vdev_async_write_active_max_dirty_percent, use
156 * zfs_vdev_async_write_max_active. The value is linearly interpolated
157 * between min and max.
159 int zfs_vdev_async_write_active_min_dirty_percent = 30;
160 int zfs_vdev_async_write_active_max_dirty_percent = 60;
163 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
164 * For read I/Os, we also aggregate across small adjacency gaps; for writes
165 * we include spans of optional I/Os to aid aggregation at the disk even when
166 * they aren't able to help us aggregate at this level.
168 int zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE;
169 int zfs_vdev_read_gap_limit = 32 << 10;
170 int zfs_vdev_write_gap_limit = 4 << 10;
173 * Define the queue depth percentage for each top-level. This percentage is
174 * used in conjunction with zfs_vdev_async_max_active to determine how many
175 * allocations a specific top-level vdev should handle. Once the queue depth
176 * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100
177 * then allocator will stop allocating blocks on that top-level device.
178 * The default kernel setting is 1000% which will yield 100 allocations per
179 * device. For userland testing, the default setting is 300% which equates
180 * to 30 allocations per device.
182 #ifdef _KERNEL
183 int zfs_vdev_queue_depth_pct = 1000;
184 #else
185 int zfs_vdev_queue_depth_pct = 300;
186 #endif
190 vdev_queue_offset_compare(const void *x1, const void *x2)
192 const zio_t *z1 = x1;
193 const zio_t *z2 = x2;
195 if (z1->io_offset < z2->io_offset)
196 return (-1);
197 if (z1->io_offset > z2->io_offset)
198 return (1);
200 if (z1 < z2)
201 return (-1);
202 if (z1 > z2)
203 return (1);
205 return (0);
208 static inline avl_tree_t *
209 vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
211 return (&vq->vq_class[p].vqc_queued_tree);
214 static inline avl_tree_t *
215 vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
217 ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE);
218 if (t == ZIO_TYPE_READ)
219 return (&vq->vq_read_offset_tree);
220 else
221 return (&vq->vq_write_offset_tree);
225 vdev_queue_timestamp_compare(const void *x1, const void *x2)
227 const zio_t *z1 = x1;
228 const zio_t *z2 = x2;
230 if (z1->io_timestamp < z2->io_timestamp)
231 return (-1);
232 if (z1->io_timestamp > z2->io_timestamp)
233 return (1);
235 if (z1 < z2)
236 return (-1);
237 if (z1 > z2)
238 return (1);
240 return (0);
243 void
244 vdev_queue_init(vdev_t *vd)
246 vdev_queue_t *vq = &vd->vdev_queue;
248 mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
249 vq->vq_vdev = vd;
251 avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
252 sizeof (zio_t), offsetof(struct zio, io_queue_node));
253 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
254 vdev_queue_offset_compare, sizeof (zio_t),
255 offsetof(struct zio, io_offset_node));
256 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
257 vdev_queue_offset_compare, sizeof (zio_t),
258 offsetof(struct zio, io_offset_node));
260 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
261 int (*compfn) (const void *, const void *);
264 * The synchronous i/o queues are dispatched in FIFO rather
265 * than LBA order. This provides more consistent latency for
266 * these i/os.
268 if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE)
269 compfn = vdev_queue_timestamp_compare;
270 else
271 compfn = vdev_queue_offset_compare;
273 avl_create(vdev_queue_class_tree(vq, p), compfn,
274 sizeof (zio_t), offsetof(struct zio, io_queue_node));
278 void
279 vdev_queue_fini(vdev_t *vd)
281 vdev_queue_t *vq = &vd->vdev_queue;
283 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
284 avl_destroy(vdev_queue_class_tree(vq, p));
285 avl_destroy(&vq->vq_active_tree);
286 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
287 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
289 mutex_destroy(&vq->vq_lock);
292 static void
293 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
295 spa_t *spa = zio->io_spa;
297 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
298 avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
299 avl_add(vdev_queue_type_tree(vq, zio->io_type), zio);
301 mutex_enter(&spa->spa_iokstat_lock);
302 spa->spa_queue_stats[zio->io_priority].spa_queued++;
303 if (spa->spa_iokstat != NULL)
304 kstat_waitq_enter(spa->spa_iokstat->ks_data);
305 mutex_exit(&spa->spa_iokstat_lock);
308 static void
309 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
311 spa_t *spa = zio->io_spa;
313 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
314 avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
315 avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio);
317 mutex_enter(&spa->spa_iokstat_lock);
318 ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
319 spa->spa_queue_stats[zio->io_priority].spa_queued--;
320 if (spa->spa_iokstat != NULL)
321 kstat_waitq_exit(spa->spa_iokstat->ks_data);
322 mutex_exit(&spa->spa_iokstat_lock);
325 static void
326 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
328 spa_t *spa = zio->io_spa;
329 ASSERT(MUTEX_HELD(&vq->vq_lock));
330 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
331 vq->vq_class[zio->io_priority].vqc_active++;
332 avl_add(&vq->vq_active_tree, zio);
334 mutex_enter(&spa->spa_iokstat_lock);
335 spa->spa_queue_stats[zio->io_priority].spa_active++;
336 if (spa->spa_iokstat != NULL)
337 kstat_runq_enter(spa->spa_iokstat->ks_data);
338 mutex_exit(&spa->spa_iokstat_lock);
341 static void
342 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
344 spa_t *spa = zio->io_spa;
345 ASSERT(MUTEX_HELD(&vq->vq_lock));
346 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
347 vq->vq_class[zio->io_priority].vqc_active--;
348 avl_remove(&vq->vq_active_tree, zio);
350 mutex_enter(&spa->spa_iokstat_lock);
351 ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
352 spa->spa_queue_stats[zio->io_priority].spa_active--;
353 if (spa->spa_iokstat != NULL) {
354 kstat_io_t *ksio = spa->spa_iokstat->ks_data;
356 kstat_runq_exit(spa->spa_iokstat->ks_data);
357 if (zio->io_type == ZIO_TYPE_READ) {
358 ksio->reads++;
359 ksio->nread += zio->io_size;
360 } else if (zio->io_type == ZIO_TYPE_WRITE) {
361 ksio->writes++;
362 ksio->nwritten += zio->io_size;
365 mutex_exit(&spa->spa_iokstat_lock);
368 static void
369 vdev_queue_agg_io_done(zio_t *aio)
371 if (aio->io_type == ZIO_TYPE_READ) {
372 zio_t *pio;
373 zio_link_t *zl = NULL;
374 while ((pio = zio_walk_parents(aio, &zl)) != NULL) {
375 abd_copy_off(pio->io_abd, aio->io_abd,
376 0, pio->io_offset - aio->io_offset, pio->io_size);
380 abd_free(aio->io_abd);
383 static int
384 vdev_queue_class_min_active(zio_priority_t p)
386 switch (p) {
387 case ZIO_PRIORITY_SYNC_READ:
388 return (zfs_vdev_sync_read_min_active);
389 case ZIO_PRIORITY_SYNC_WRITE:
390 return (zfs_vdev_sync_write_min_active);
391 case ZIO_PRIORITY_ASYNC_READ:
392 return (zfs_vdev_async_read_min_active);
393 case ZIO_PRIORITY_ASYNC_WRITE:
394 return (zfs_vdev_async_write_min_active);
395 case ZIO_PRIORITY_SCRUB:
396 return (zfs_vdev_scrub_min_active);
397 default:
398 panic("invalid priority %u", p);
399 return (0);
403 static int
404 vdev_queue_max_async_writes(spa_t *spa)
406 int writes;
407 uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total;
408 uint64_t min_bytes = zfs_dirty_data_max *
409 zfs_vdev_async_write_active_min_dirty_percent / 100;
410 uint64_t max_bytes = zfs_dirty_data_max *
411 zfs_vdev_async_write_active_max_dirty_percent / 100;
414 * Sync tasks correspond to interactive user actions. To reduce the
415 * execution time of those actions we push data out as fast as possible.
417 if (spa_has_pending_synctask(spa)) {
418 return (zfs_vdev_async_write_max_active);
421 if (dirty < min_bytes)
422 return (zfs_vdev_async_write_min_active);
423 if (dirty > max_bytes)
424 return (zfs_vdev_async_write_max_active);
427 * linear interpolation:
428 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
429 * move right by min_bytes
430 * move up by min_writes
432 writes = (dirty - min_bytes) *
433 (zfs_vdev_async_write_max_active -
434 zfs_vdev_async_write_min_active) /
435 (max_bytes - min_bytes) +
436 zfs_vdev_async_write_min_active;
437 ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
438 ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
439 return (writes);
442 static int
443 vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
445 switch (p) {
446 case ZIO_PRIORITY_SYNC_READ:
447 return (zfs_vdev_sync_read_max_active);
448 case ZIO_PRIORITY_SYNC_WRITE:
449 return (zfs_vdev_sync_write_max_active);
450 case ZIO_PRIORITY_ASYNC_READ:
451 return (zfs_vdev_async_read_max_active);
452 case ZIO_PRIORITY_ASYNC_WRITE:
453 return (vdev_queue_max_async_writes(spa));
454 case ZIO_PRIORITY_SCRUB:
455 return (zfs_vdev_scrub_max_active);
456 default:
457 panic("invalid priority %u", p);
458 return (0);
463 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
464 * there is no eligible class.
466 static zio_priority_t
467 vdev_queue_class_to_issue(vdev_queue_t *vq)
469 spa_t *spa = vq->vq_vdev->vdev_spa;
470 zio_priority_t p;
472 if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
473 return (ZIO_PRIORITY_NUM_QUEUEABLE);
475 /* find a queue that has not reached its minimum # outstanding i/os */
476 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
477 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
478 vq->vq_class[p].vqc_active <
479 vdev_queue_class_min_active(p))
480 return (p);
484 * If we haven't found a queue, look for one that hasn't reached its
485 * maximum # outstanding i/os.
487 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
488 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
489 vq->vq_class[p].vqc_active <
490 vdev_queue_class_max_active(spa, p))
491 return (p);
494 /* No eligible queued i/os */
495 return (ZIO_PRIORITY_NUM_QUEUEABLE);
499 * Compute the range spanned by two i/os, which is the endpoint of the last
500 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
501 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
502 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
504 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
505 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
507 static zio_t *
508 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
510 zio_t *first, *last, *aio, *dio, *mandatory, *nio;
511 uint64_t maxgap = 0;
512 uint64_t size;
513 boolean_t stretch = B_FALSE;
514 avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type);
515 enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
517 if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
518 return (NULL);
520 first = last = zio;
522 if (zio->io_type == ZIO_TYPE_READ)
523 maxgap = zfs_vdev_read_gap_limit;
526 * We can aggregate I/Os that are sufficiently adjacent and of
527 * the same flavor, as expressed by the AGG_INHERIT flags.
528 * The latter requirement is necessary so that certain
529 * attributes of the I/O, such as whether it's a normal I/O
530 * or a scrub/resilver, can be preserved in the aggregate.
531 * We can include optional I/Os, but don't allow them
532 * to begin a range as they add no benefit in that situation.
536 * We keep track of the last non-optional I/O.
538 mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
541 * Walk backwards through sufficiently contiguous I/Os
542 * recording the last non-optional I/O.
544 while ((dio = AVL_PREV(t, first)) != NULL &&
545 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
546 IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
547 IO_GAP(dio, first) <= maxgap) {
548 first = dio;
549 if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
550 mandatory = first;
554 * Skip any initial optional I/Os.
556 while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
557 first = AVL_NEXT(t, first);
558 ASSERT(first != NULL);
562 * Walk forward through sufficiently contiguous I/Os.
563 * The aggregation limit does not apply to optional i/os, so that
564 * we can issue contiguous writes even if they are larger than the
565 * aggregation limit.
567 while ((dio = AVL_NEXT(t, last)) != NULL &&
568 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
569 (IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit ||
570 (dio->io_flags & ZIO_FLAG_OPTIONAL)) &&
571 IO_GAP(last, dio) <= maxgap) {
572 last = dio;
573 if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
574 mandatory = last;
578 * Now that we've established the range of the I/O aggregation
579 * we must decide what to do with trailing optional I/Os.
580 * For reads, there's nothing to do. While we are unable to
581 * aggregate further, it's possible that a trailing optional
582 * I/O would allow the underlying device to aggregate with
583 * subsequent I/Os. We must therefore determine if the next
584 * non-optional I/O is close enough to make aggregation
585 * worthwhile.
587 if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
588 zio_t *nio = last;
589 while ((dio = AVL_NEXT(t, nio)) != NULL &&
590 IO_GAP(nio, dio) == 0 &&
591 IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
592 nio = dio;
593 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
594 stretch = B_TRUE;
595 break;
600 if (stretch) {
602 * We are going to include an optional io in our aggregated
603 * span, thus closing the write gap. Only mandatory i/os can
604 * start aggregated spans, so make sure that the next i/o
605 * after our span is mandatory.
607 dio = AVL_NEXT(t, last);
608 dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
609 } else {
610 /* do not include the optional i/o */
611 while (last != mandatory && last != first) {
612 ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
613 last = AVL_PREV(t, last);
614 ASSERT(last != NULL);
618 if (first == last)
619 return (NULL);
621 size = IO_SPAN(first, last);
622 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
624 aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
625 abd_alloc_for_io(size, B_TRUE), size, first->io_type,
626 zio->io_priority, flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
627 vdev_queue_agg_io_done, NULL);
628 aio->io_timestamp = first->io_timestamp;
630 nio = first;
631 do {
632 dio = nio;
633 nio = AVL_NEXT(t, dio);
634 ASSERT3U(dio->io_type, ==, aio->io_type);
636 if (dio->io_flags & ZIO_FLAG_NODATA) {
637 ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
638 abd_zero_off(aio->io_abd,
639 dio->io_offset - aio->io_offset, dio->io_size);
640 } else if (dio->io_type == ZIO_TYPE_WRITE) {
641 abd_copy_off(aio->io_abd, dio->io_abd,
642 dio->io_offset - aio->io_offset, 0, dio->io_size);
645 zio_add_child(dio, aio);
646 vdev_queue_io_remove(vq, dio);
647 zio_vdev_io_bypass(dio);
648 zio_execute(dio);
649 } while (dio != last);
651 return (aio);
654 static zio_t *
655 vdev_queue_io_to_issue(vdev_queue_t *vq)
657 zio_t *zio, *aio;
658 zio_priority_t p;
659 avl_index_t idx;
660 avl_tree_t *tree;
661 zio_t search;
663 again:
664 ASSERT(MUTEX_HELD(&vq->vq_lock));
666 p = vdev_queue_class_to_issue(vq);
668 if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
669 /* No eligible queued i/os */
670 return (NULL);
674 * For LBA-ordered queues (async / scrub), issue the i/o which follows
675 * the most recently issued i/o in LBA (offset) order.
677 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
679 tree = vdev_queue_class_tree(vq, p);
680 search.io_timestamp = 0;
681 search.io_offset = vq->vq_last_offset + 1;
682 VERIFY3P(avl_find(tree, &search, &idx), ==, NULL);
683 zio = avl_nearest(tree, idx, AVL_AFTER);
684 if (zio == NULL)
685 zio = avl_first(tree);
686 ASSERT3U(zio->io_priority, ==, p);
688 aio = vdev_queue_aggregate(vq, zio);
689 if (aio != NULL)
690 zio = aio;
691 else
692 vdev_queue_io_remove(vq, zio);
695 * If the I/O is or was optional and therefore has no data, we need to
696 * simply discard it. We need to drop the vdev queue's lock to avoid a
697 * deadlock that we could encounter since this I/O will complete
698 * immediately.
700 if (zio->io_flags & ZIO_FLAG_NODATA) {
701 mutex_exit(&vq->vq_lock);
702 zio_vdev_io_bypass(zio);
703 zio_execute(zio);
704 mutex_enter(&vq->vq_lock);
705 goto again;
708 vdev_queue_pending_add(vq, zio);
709 vq->vq_last_offset = zio->io_offset;
711 return (zio);
714 zio_t *
715 vdev_queue_io(zio_t *zio)
717 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
718 zio_t *nio;
720 if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
721 return (zio);
724 * Children i/os inherent their parent's priority, which might
725 * not match the child's i/o type. Fix it up here.
727 if (zio->io_type == ZIO_TYPE_READ) {
728 if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
729 zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
730 zio->io_priority != ZIO_PRIORITY_SCRUB)
731 zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
732 } else {
733 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
734 if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
735 zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
736 zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
739 zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
741 mutex_enter(&vq->vq_lock);
742 zio->io_timestamp = gethrtime();
743 vdev_queue_io_add(vq, zio);
744 nio = vdev_queue_io_to_issue(vq);
745 mutex_exit(&vq->vq_lock);
747 if (nio == NULL)
748 return (NULL);
750 if (nio->io_done == vdev_queue_agg_io_done) {
751 zio_nowait(nio);
752 return (NULL);
755 return (nio);
758 void
759 vdev_queue_io_done(zio_t *zio)
761 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
762 zio_t *nio;
764 mutex_enter(&vq->vq_lock);
766 vdev_queue_pending_remove(vq, zio);
768 vq->vq_io_complete_ts = gethrtime();
770 while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
771 mutex_exit(&vq->vq_lock);
772 if (nio->io_done == vdev_queue_agg_io_done) {
773 zio_nowait(nio);
774 } else {
775 zio_vdev_io_reissue(nio);
776 zio_execute(nio);
778 mutex_enter(&vq->vq_lock);
781 mutex_exit(&vq->vq_lock);