Merge commit '720b16875295d57e0e6a4e0ec32db4d47412f896'
[unleashed.git] / kernel / fs / zfs / vdev_label.c
blobb76589f0f608e0b3f84c58078323432b06e31d27
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
28 * Virtual Device Labels
29 * ---------------------
31 * The vdev label serves several distinct purposes:
33 * 1. Uniquely identify this device as part of a ZFS pool and confirm its
34 * identity within the pool.
36 * 2. Verify that all the devices given in a configuration are present
37 * within the pool.
39 * 3. Determine the uberblock for the pool.
41 * 4. In case of an import operation, determine the configuration of the
42 * toplevel vdev of which it is a part.
44 * 5. If an import operation cannot find all the devices in the pool,
45 * provide enough information to the administrator to determine which
46 * devices are missing.
48 * It is important to note that while the kernel is responsible for writing the
49 * label, it only consumes the information in the first three cases. The
50 * latter information is only consumed in userland when determining the
51 * configuration to import a pool.
54 * Label Organization
55 * ------------------
57 * Before describing the contents of the label, it's important to understand how
58 * the labels are written and updated with respect to the uberblock.
60 * When the pool configuration is altered, either because it was newly created
61 * or a device was added, we want to update all the labels such that we can deal
62 * with fatal failure at any point. To this end, each disk has two labels which
63 * are updated before and after the uberblock is synced. Assuming we have
64 * labels and an uberblock with the following transaction groups:
66 * L1 UB L2
67 * +------+ +------+ +------+
68 * | | | | | |
69 * | t10 | | t10 | | t10 |
70 * | | | | | |
71 * +------+ +------+ +------+
73 * In this stable state, the labels and the uberblock were all updated within
74 * the same transaction group (10). Each label is mirrored and checksummed, so
75 * that we can detect when we fail partway through writing the label.
77 * In order to identify which labels are valid, the labels are written in the
78 * following manner:
80 * 1. For each vdev, update 'L1' to the new label
81 * 2. Update the uberblock
82 * 3. For each vdev, update 'L2' to the new label
84 * Given arbitrary failure, we can determine the correct label to use based on
85 * the transaction group. If we fail after updating L1 but before updating the
86 * UB, we will notice that L1's transaction group is greater than the uberblock,
87 * so L2 must be valid. If we fail after writing the uberblock but before
88 * writing L2, we will notice that L2's transaction group is less than L1, and
89 * therefore L1 is valid.
91 * Another added complexity is that not every label is updated when the config
92 * is synced. If we add a single device, we do not want to have to re-write
93 * every label for every device in the pool. This means that both L1 and L2 may
94 * be older than the pool uberblock, because the necessary information is stored
95 * on another vdev.
98 * On-disk Format
99 * --------------
101 * The vdev label consists of two distinct parts, and is wrapped within the
102 * vdev_label_t structure. The label includes 8k of padding to permit legacy
103 * VTOC disk labels, but is otherwise ignored.
105 * The first half of the label is a packed nvlist which contains pool wide
106 * properties, per-vdev properties, and configuration information. It is
107 * described in more detail below.
109 * The latter half of the label consists of a redundant array of uberblocks.
110 * These uberblocks are updated whenever a transaction group is committed,
111 * or when the configuration is updated. When a pool is loaded, we scan each
112 * vdev for the 'best' uberblock.
115 * Configuration Information
116 * -------------------------
118 * The nvlist describing the pool and vdev contains the following elements:
120 * version ZFS on-disk version
121 * name Pool name
122 * state Pool state
123 * txg Transaction group in which this label was written
124 * pool_guid Unique identifier for this pool
125 * vdev_tree An nvlist describing vdev tree.
126 * features_for_read
127 * An nvlist of the features necessary for reading the MOS.
129 * Each leaf device label also contains the following:
131 * top_guid Unique ID for top-level vdev in which this is contained
132 * guid Unique ID for the leaf vdev
134 * The 'vs' configuration follows the format described in 'spa_config.c'.
137 #include <sys/zfs_context.h>
138 #include <sys/spa.h>
139 #include <sys/spa_impl.h>
140 #include <sys/dmu.h>
141 #include <sys/zap.h>
142 #include <sys/vdev.h>
143 #include <sys/vdev_impl.h>
144 #include <sys/uberblock_impl.h>
145 #include <sys/metaslab.h>
146 #include <sys/zio.h>
147 #include <sys/dsl_scan.h>
148 #include <sys/abd.h>
149 #include <sys/fs/zfs.h>
152 * Basic routines to read and write from a vdev label.
153 * Used throughout the rest of this file.
155 uint64_t
156 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
158 ASSERT(offset < sizeof (vdev_label_t));
159 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
161 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
162 0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
166 * Returns back the vdev label associated with the passed in offset.
169 vdev_label_number(uint64_t psize, uint64_t offset)
171 int l;
173 if (offset >= psize - VDEV_LABEL_END_SIZE) {
174 offset -= psize - VDEV_LABEL_END_SIZE;
175 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
177 l = offset / sizeof (vdev_label_t);
178 return (l < VDEV_LABELS ? l : -1);
181 static void
182 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
183 uint64_t size, zio_done_func_t *done, void *private, int flags)
185 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
186 SCL_STATE_ALL);
187 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
189 zio_nowait(zio_read_phys(zio, vd,
190 vdev_label_offset(vd->vdev_psize, l, offset),
191 size, buf, ZIO_CHECKSUM_LABEL, done, private,
192 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
195 static void
196 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
197 uint64_t size, zio_done_func_t *done, void *private, int flags)
199 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
200 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
201 (SCL_CONFIG | SCL_STATE) &&
202 dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
203 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
205 zio_nowait(zio_write_phys(zio, vd,
206 vdev_label_offset(vd->vdev_psize, l, offset),
207 size, buf, ZIO_CHECKSUM_LABEL, done, private,
208 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
212 * Generate the nvlist representing this vdev's config.
214 nvlist_t *
215 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
216 vdev_config_flag_t flags)
218 nvlist_t *nv = NULL;
220 nv = fnvlist_alloc();
222 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
223 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
224 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
225 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
227 if (vd->vdev_path != NULL)
228 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
230 if (vd->vdev_devid != NULL)
231 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
233 if (vd->vdev_physpath != NULL)
234 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
235 vd->vdev_physpath);
237 if (vd->vdev_fru != NULL)
238 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
240 if (vd->vdev_nparity != 0) {
241 ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
242 VDEV_TYPE_RAIDZ) == 0);
245 * Make sure someone hasn't managed to sneak a fancy new vdev
246 * into a crufty old storage pool.
248 ASSERT(vd->vdev_nparity == 1 ||
249 (vd->vdev_nparity <= 2 &&
250 spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
251 (vd->vdev_nparity <= 3 &&
252 spa_version(spa) >= SPA_VERSION_RAIDZ3));
255 * Note that we'll add the nparity tag even on storage pools
256 * that only support a single parity device -- older software
257 * will just ignore it.
259 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
262 if (vd->vdev_wholedisk != -1ULL)
263 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
264 vd->vdev_wholedisk);
266 if (vd->vdev_not_present)
267 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
269 if (vd->vdev_isspare)
270 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
272 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
273 vd == vd->vdev_top) {
274 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
275 vd->vdev_ms_array);
276 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
277 vd->vdev_ms_shift);
278 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
279 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
280 vd->vdev_asize);
281 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
282 if (vd->vdev_removing)
283 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
284 vd->vdev_removing);
287 if (vd->vdev_dtl_sm != NULL) {
288 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
289 space_map_object(vd->vdev_dtl_sm));
292 if (vd->vdev_crtxg)
293 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
295 if (flags & VDEV_CONFIG_MOS) {
296 if (vd->vdev_leaf_zap != 0) {
297 ASSERT(vd->vdev_ops->vdev_op_leaf);
298 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
299 vd->vdev_leaf_zap);
302 if (vd->vdev_top_zap != 0) {
303 ASSERT(vd == vd->vdev_top);
304 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
305 vd->vdev_top_zap);
309 if (getstats) {
310 vdev_stat_t vs;
311 pool_scan_stat_t ps;
313 vdev_get_stats(vd, &vs);
314 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
315 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t));
317 /* provide either current or previous scan information */
318 if (spa_scan_get_stats(spa, &ps) == 0) {
319 fnvlist_add_uint64_array(nv,
320 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
321 sizeof (pool_scan_stat_t) / sizeof (uint64_t));
325 if (!vd->vdev_ops->vdev_op_leaf) {
326 nvlist_t **child;
327 int c, idx;
329 ASSERT(!vd->vdev_ishole);
331 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
332 KM_SLEEP);
334 for (c = 0, idx = 0; c < vd->vdev_children; c++) {
335 vdev_t *cvd = vd->vdev_child[c];
338 * If we're generating an nvlist of removing
339 * vdevs then skip over any device which is
340 * not being removed.
342 if ((flags & VDEV_CONFIG_REMOVING) &&
343 !cvd->vdev_removing)
344 continue;
346 child[idx++] = vdev_config_generate(spa, cvd,
347 getstats, flags);
350 if (idx) {
351 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
352 child, idx);
355 for (c = 0; c < idx; c++)
356 nvlist_free(child[c]);
358 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
360 } else {
361 const char *aux = NULL;
363 if (vd->vdev_offline && !vd->vdev_tmpoffline)
364 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
365 if (vd->vdev_resilver_txg != 0)
366 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
367 vd->vdev_resilver_txg);
368 if (vd->vdev_faulted)
369 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
370 if (vd->vdev_degraded)
371 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
372 if (vd->vdev_removed)
373 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
374 if (vd->vdev_unspare)
375 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
376 if (vd->vdev_ishole)
377 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
379 switch (vd->vdev_stat.vs_aux) {
380 case VDEV_AUX_ERR_EXCEEDED:
381 aux = "err_exceeded";
382 break;
384 case VDEV_AUX_EXTERNAL:
385 aux = "external";
386 break;
389 if (aux != NULL)
390 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
392 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
393 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
394 vd->vdev_orig_guid);
398 return (nv);
402 * Generate a view of the top-level vdevs. If we currently have holes
403 * in the namespace, then generate an array which contains a list of holey
404 * vdevs. Additionally, add the number of top-level children that currently
405 * exist.
407 void
408 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
410 vdev_t *rvd = spa->spa_root_vdev;
411 uint64_t *array;
412 uint_t c, idx;
414 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
416 for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
417 vdev_t *tvd = rvd->vdev_child[c];
419 if (tvd->vdev_ishole)
420 array[idx++] = c;
423 if (idx) {
424 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
425 array, idx) == 0);
428 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
429 rvd->vdev_children) == 0);
431 kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
435 * Returns the configuration from the label of the given vdev. For vdevs
436 * which don't have a txg value stored on their label (i.e. spares/cache)
437 * or have not been completely initialized (txg = 0) just return
438 * the configuration from the first valid label we find. Otherwise,
439 * find the most up-to-date label that does not exceed the specified
440 * 'txg' value.
442 nvlist_t *
443 vdev_label_read_config(vdev_t *vd, uint64_t txg)
445 spa_t *spa = vd->vdev_spa;
446 nvlist_t *config = NULL;
447 vdev_phys_t *vp;
448 abd_t *vp_abd;
449 zio_t *zio;
450 uint64_t best_txg = 0;
451 int error = 0;
452 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
453 ZIO_FLAG_SPECULATIVE;
455 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
457 if (!vdev_readable(vd))
458 return (NULL);
460 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
461 vp = abd_to_buf(vp_abd);
463 retry:
464 for (int l = 0; l < VDEV_LABELS; l++) {
465 nvlist_t *label = NULL;
467 zio = zio_root(spa, NULL, NULL, flags);
469 vdev_label_read(zio, vd, l, vp_abd,
470 offsetof(vdev_label_t, vl_vdev_phys),
471 sizeof (vdev_phys_t), NULL, NULL, flags);
473 if (zio_wait(zio) == 0 &&
474 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
475 &label, 0) == 0) {
476 uint64_t label_txg = 0;
479 * Auxiliary vdevs won't have txg values in their
480 * labels and newly added vdevs may not have been
481 * completely initialized so just return the
482 * configuration from the first valid label we
483 * encounter.
485 error = nvlist_lookup_uint64(label,
486 ZPOOL_CONFIG_POOL_TXG, &label_txg);
487 if ((error || label_txg == 0) && !config) {
488 config = label;
489 break;
490 } else if (label_txg <= txg && label_txg > best_txg) {
491 best_txg = label_txg;
492 nvlist_free(config);
493 config = fnvlist_dup(label);
497 if (label != NULL) {
498 nvlist_free(label);
499 label = NULL;
503 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
504 flags |= ZIO_FLAG_TRYHARD;
505 goto retry;
508 abd_free(vp_abd);
510 return (config);
514 * Determine if a device is in use. The 'spare_guid' parameter will be filled
515 * in with the device guid if this spare is active elsewhere on the system.
517 static boolean_t
518 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
519 uint64_t *spare_guid, uint64_t *l2cache_guid)
521 spa_t *spa = vd->vdev_spa;
522 uint64_t state, pool_guid, device_guid, txg, spare_pool;
523 uint64_t vdtxg = 0;
524 nvlist_t *label;
526 if (spare_guid)
527 *spare_guid = 0ULL;
528 if (l2cache_guid)
529 *l2cache_guid = 0ULL;
532 * Read the label, if any, and perform some basic sanity checks.
534 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
535 return (B_FALSE);
537 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
538 &vdtxg);
540 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
541 &state) != 0 ||
542 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
543 &device_guid) != 0) {
544 nvlist_free(label);
545 return (B_FALSE);
548 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
549 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
550 &pool_guid) != 0 ||
551 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
552 &txg) != 0)) {
553 nvlist_free(label);
554 return (B_FALSE);
557 nvlist_free(label);
560 * Check to see if this device indeed belongs to the pool it claims to
561 * be a part of. The only way this is allowed is if the device is a hot
562 * spare (which we check for later on).
564 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
565 !spa_guid_exists(pool_guid, device_guid) &&
566 !spa_spare_exists(device_guid, NULL, NULL) &&
567 !spa_l2cache_exists(device_guid, NULL))
568 return (B_FALSE);
571 * If the transaction group is zero, then this an initialized (but
572 * unused) label. This is only an error if the create transaction
573 * on-disk is the same as the one we're using now, in which case the
574 * user has attempted to add the same vdev multiple times in the same
575 * transaction.
577 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
578 txg == 0 && vdtxg == crtxg)
579 return (B_TRUE);
582 * Check to see if this is a spare device. We do an explicit check for
583 * spa_has_spare() here because it may be on our pending list of spares
584 * to add. We also check if it is an l2cache device.
586 if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
587 spa_has_spare(spa, device_guid)) {
588 if (spare_guid)
589 *spare_guid = device_guid;
591 switch (reason) {
592 case VDEV_LABEL_CREATE:
593 case VDEV_LABEL_L2CACHE:
594 return (B_TRUE);
596 case VDEV_LABEL_REPLACE:
597 return (!spa_has_spare(spa, device_guid) ||
598 spare_pool != 0ULL);
600 case VDEV_LABEL_SPARE:
601 return (spa_has_spare(spa, device_guid));
606 * Check to see if this is an l2cache device.
608 if (spa_l2cache_exists(device_guid, NULL))
609 return (B_TRUE);
612 * We can't rely on a pool's state if it's been imported
613 * read-only. Instead we look to see if the pools is marked
614 * read-only in the namespace and set the state to active.
616 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
617 (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
618 spa_mode(spa) == FREAD)
619 state = POOL_STATE_ACTIVE;
622 * If the device is marked ACTIVE, then this device is in use by another
623 * pool on the system.
625 return (state == POOL_STATE_ACTIVE);
629 * Initialize a vdev label. We check to make sure each leaf device is not in
630 * use, and writable. We put down an initial label which we will later
631 * overwrite with a complete label. Note that it's important to do this
632 * sequentially, not in parallel, so that we catch cases of multiple use of the
633 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
634 * itself.
637 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
639 spa_t *spa = vd->vdev_spa;
640 nvlist_t *label;
641 vdev_phys_t *vp;
642 abd_t *vp_abd;
643 abd_t *pad2;
644 uberblock_t *ub;
645 abd_t *ub_abd;
646 zio_t *zio;
647 char *buf;
648 size_t buflen;
649 int error;
650 uint64_t spare_guid, l2cache_guid;
651 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
653 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
655 for (int c = 0; c < vd->vdev_children; c++)
656 if ((error = vdev_label_init(vd->vdev_child[c],
657 crtxg, reason)) != 0)
658 return (error);
660 /* Track the creation time for this vdev */
661 vd->vdev_crtxg = crtxg;
663 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
664 return (0);
667 * Dead vdevs cannot be initialized.
669 if (vdev_is_dead(vd))
670 return (SET_ERROR(EIO));
673 * Determine if the vdev is in use.
675 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
676 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
677 return (SET_ERROR(EBUSY));
680 * If this is a request to add or replace a spare or l2cache device
681 * that is in use elsewhere on the system, then we must update the
682 * guid (which was initialized to a random value) to reflect the
683 * actual GUID (which is shared between multiple pools).
685 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
686 spare_guid != 0ULL) {
687 uint64_t guid_delta = spare_guid - vd->vdev_guid;
689 vd->vdev_guid += guid_delta;
691 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
692 pvd->vdev_guid_sum += guid_delta;
695 * If this is a replacement, then we want to fallthrough to the
696 * rest of the code. If we're adding a spare, then it's already
697 * labeled appropriately and we can just return.
699 if (reason == VDEV_LABEL_SPARE)
700 return (0);
701 ASSERT(reason == VDEV_LABEL_REPLACE ||
702 reason == VDEV_LABEL_SPLIT);
705 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
706 l2cache_guid != 0ULL) {
707 uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
709 vd->vdev_guid += guid_delta;
711 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
712 pvd->vdev_guid_sum += guid_delta;
715 * If this is a replacement, then we want to fallthrough to the
716 * rest of the code. If we're adding an l2cache, then it's
717 * already labeled appropriately and we can just return.
719 if (reason == VDEV_LABEL_L2CACHE)
720 return (0);
721 ASSERT(reason == VDEV_LABEL_REPLACE);
725 * Initialize its label.
727 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
728 abd_zero(vp_abd, sizeof (vdev_phys_t));
729 vp = abd_to_buf(vp_abd);
732 * Generate a label describing the pool and our top-level vdev.
733 * We mark it as being from txg 0 to indicate that it's not
734 * really part of an active pool just yet. The labels will
735 * be written again with a meaningful txg by spa_sync().
737 if (reason == VDEV_LABEL_SPARE ||
738 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
740 * For inactive hot spares, we generate a special label that
741 * identifies as a mutually shared hot spare. We write the
742 * label if we are adding a hot spare, or if we are removing an
743 * active hot spare (in which case we want to revert the
744 * labels).
746 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
748 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
749 spa_version(spa)) == 0);
750 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
751 POOL_STATE_SPARE) == 0);
752 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
753 vd->vdev_guid) == 0);
754 } else if (reason == VDEV_LABEL_L2CACHE ||
755 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
757 * For level 2 ARC devices, add a special label.
759 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
761 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
762 spa_version(spa)) == 0);
763 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
764 POOL_STATE_L2CACHE) == 0);
765 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
766 vd->vdev_guid) == 0);
767 } else {
768 uint64_t txg = 0ULL;
770 if (reason == VDEV_LABEL_SPLIT)
771 txg = spa->spa_uberblock.ub_txg;
772 label = spa_config_generate(spa, vd, txg, B_FALSE);
775 * Add our creation time. This allows us to detect multiple
776 * vdev uses as described above, and automatically expires if we
777 * fail.
779 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
780 crtxg) == 0);
783 buf = vp->vp_nvlist;
784 buflen = sizeof (vp->vp_nvlist);
786 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
787 if (error != 0) {
788 nvlist_free(label);
789 abd_free(vp_abd);
790 /* EFAULT means nvlist_pack ran out of room */
791 return (error == EFAULT ? ENAMETOOLONG : EINVAL);
795 * Initialize uberblock template.
797 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
798 abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
799 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
800 ub = abd_to_buf(ub_abd);
801 ub->ub_txg = 0;
803 /* Initialize the 2nd padding area. */
804 pad2 = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
805 abd_zero(pad2, VDEV_PAD_SIZE);
808 * Write everything in parallel.
810 retry:
811 zio = zio_root(spa, NULL, NULL, flags);
813 for (int l = 0; l < VDEV_LABELS; l++) {
815 vdev_label_write(zio, vd, l, vp_abd,
816 offsetof(vdev_label_t, vl_vdev_phys),
817 sizeof (vdev_phys_t), NULL, NULL, flags);
820 * Skip the 1st padding area.
821 * Zero out the 2nd padding area where it might have
822 * left over data from previous filesystem format.
824 vdev_label_write(zio, vd, l, pad2,
825 offsetof(vdev_label_t, vl_pad2),
826 VDEV_PAD_SIZE, NULL, NULL, flags);
828 vdev_label_write(zio, vd, l, ub_abd,
829 offsetof(vdev_label_t, vl_uberblock),
830 VDEV_UBERBLOCK_RING, NULL, NULL, flags);
833 error = zio_wait(zio);
835 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
836 flags |= ZIO_FLAG_TRYHARD;
837 goto retry;
840 nvlist_free(label);
841 abd_free(pad2);
842 abd_free(ub_abd);
843 abd_free(vp_abd);
846 * If this vdev hasn't been previously identified as a spare, then we
847 * mark it as such only if a) we are labeling it as a spare, or b) it
848 * exists as a spare elsewhere in the system. Do the same for
849 * level 2 ARC devices.
851 if (error == 0 && !vd->vdev_isspare &&
852 (reason == VDEV_LABEL_SPARE ||
853 spa_spare_exists(vd->vdev_guid, NULL, NULL)))
854 spa_spare_add(vd);
856 if (error == 0 && !vd->vdev_isl2cache &&
857 (reason == VDEV_LABEL_L2CACHE ||
858 spa_l2cache_exists(vd->vdev_guid, NULL)))
859 spa_l2cache_add(vd);
861 return (error);
865 * ==========================================================================
866 * uberblock load/sync
867 * ==========================================================================
871 * Consider the following situation: txg is safely synced to disk. We've
872 * written the first uberblock for txg + 1, and then we lose power. When we
873 * come back up, we fail to see the uberblock for txg + 1 because, say,
874 * it was on a mirrored device and the replica to which we wrote txg + 1
875 * is now offline. If we then make some changes and sync txg + 1, and then
876 * the missing replica comes back, then for a few seconds we'll have two
877 * conflicting uberblocks on disk with the same txg. The solution is simple:
878 * among uberblocks with equal txg, choose the one with the latest timestamp.
880 static int
881 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
883 if (ub1->ub_txg < ub2->ub_txg)
884 return (-1);
885 if (ub1->ub_txg > ub2->ub_txg)
886 return (1);
888 if (ub1->ub_timestamp < ub2->ub_timestamp)
889 return (-1);
890 if (ub1->ub_timestamp > ub2->ub_timestamp)
891 return (1);
893 return (0);
896 struct ubl_cbdata {
897 uberblock_t *ubl_ubbest; /* Best uberblock */
898 vdev_t *ubl_vd; /* vdev associated with the above */
901 static void
902 vdev_uberblock_load_done(zio_t *zio)
904 vdev_t *vd = zio->io_vd;
905 spa_t *spa = zio->io_spa;
906 zio_t *rio = zio->io_private;
907 uberblock_t *ub = abd_to_buf(zio->io_abd);
908 struct ubl_cbdata *cbp = rio->io_private;
910 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
912 if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
913 mutex_enter(&rio->io_lock);
914 if (ub->ub_txg <= spa->spa_load_max_txg &&
915 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
917 * Keep track of the vdev in which this uberblock
918 * was found. We will use this information later
919 * to obtain the config nvlist associated with
920 * this uberblock.
922 *cbp->ubl_ubbest = *ub;
923 cbp->ubl_vd = vd;
925 mutex_exit(&rio->io_lock);
928 abd_free(zio->io_abd);
931 static void
932 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
933 struct ubl_cbdata *cbp)
935 for (int c = 0; c < vd->vdev_children; c++)
936 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
938 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
939 for (int l = 0; l < VDEV_LABELS; l++) {
940 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
941 vdev_label_read(zio, vd, l,
942 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
943 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
944 VDEV_UBERBLOCK_SIZE(vd),
945 vdev_uberblock_load_done, zio, flags);
952 * Reads the 'best' uberblock from disk along with its associated
953 * configuration. First, we read the uberblock array of each label of each
954 * vdev, keeping track of the uberblock with the highest txg in each array.
955 * Then, we read the configuration from the same vdev as the best uberblock.
957 void
958 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
960 zio_t *zio;
961 spa_t *spa = rvd->vdev_spa;
962 struct ubl_cbdata cb;
963 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
964 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
966 ASSERT(ub);
967 ASSERT(config);
969 bzero(ub, sizeof (uberblock_t));
970 *config = NULL;
972 cb.ubl_ubbest = ub;
973 cb.ubl_vd = NULL;
975 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
976 zio = zio_root(spa, NULL, &cb, flags);
977 vdev_uberblock_load_impl(zio, rvd, flags, &cb);
978 (void) zio_wait(zio);
981 * It's possible that the best uberblock was discovered on a label
982 * that has a configuration which was written in a future txg.
983 * Search all labels on this vdev to find the configuration that
984 * matches the txg for our uberblock.
986 if (cb.ubl_vd != NULL)
987 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
988 spa_config_exit(spa, SCL_ALL, FTAG);
992 * On success, increment root zio's count of good writes.
993 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
995 static void
996 vdev_uberblock_sync_done(zio_t *zio)
998 uint64_t *good_writes = zio->io_private;
1000 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1001 atomic_inc_64(good_writes);
1005 * Write the uberblock to all labels of all leaves of the specified vdev.
1007 static void
1008 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
1010 for (int c = 0; c < vd->vdev_children; c++)
1011 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
1013 if (!vd->vdev_ops->vdev_op_leaf)
1014 return;
1016 if (!vdev_writeable(vd))
1017 return;
1019 int n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
1021 /* Copy the uberblock_t into the ABD */
1022 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1023 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1024 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1026 for (int l = 0; l < VDEV_LABELS; l++)
1027 vdev_label_write(zio, vd, l, ub_abd,
1028 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1029 vdev_uberblock_sync_done, zio->io_private,
1030 flags | ZIO_FLAG_DONT_PROPAGATE);
1032 abd_free(ub_abd);
1035 /* Sync the uberblocks to all vdevs in svd[] */
1037 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1039 spa_t *spa = svd[0]->vdev_spa;
1040 zio_t *zio;
1041 uint64_t good_writes = 0;
1043 zio = zio_root(spa, NULL, &good_writes, flags);
1045 for (int v = 0; v < svdcount; v++)
1046 vdev_uberblock_sync(zio, ub, svd[v], flags);
1048 (void) zio_wait(zio);
1051 * Flush the uberblocks to disk. This ensures that the odd labels
1052 * are no longer needed (because the new uberblocks and the even
1053 * labels are safely on disk), so it is safe to overwrite them.
1055 zio = zio_root(spa, NULL, NULL, flags);
1057 for (int v = 0; v < svdcount; v++)
1058 zio_flush(zio, svd[v]);
1060 (void) zio_wait(zio);
1062 return (good_writes >= 1 ? 0 : EIO);
1066 * On success, increment the count of good writes for our top-level vdev.
1068 static void
1069 vdev_label_sync_done(zio_t *zio)
1071 uint64_t *good_writes = zio->io_private;
1073 if (zio->io_error == 0)
1074 atomic_inc_64(good_writes);
1078 * If there weren't enough good writes, indicate failure to the parent.
1080 static void
1081 vdev_label_sync_top_done(zio_t *zio)
1083 uint64_t *good_writes = zio->io_private;
1085 if (*good_writes == 0)
1086 zio->io_error = SET_ERROR(EIO);
1088 kmem_free(good_writes, sizeof (uint64_t));
1092 * We ignore errors for log and cache devices, simply free the private data.
1094 static void
1095 vdev_label_sync_ignore_done(zio_t *zio)
1097 kmem_free(zio->io_private, sizeof (uint64_t));
1101 * Write all even or odd labels to all leaves of the specified vdev.
1103 static void
1104 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
1106 nvlist_t *label;
1107 vdev_phys_t *vp;
1108 abd_t *vp_abd;
1109 char *buf;
1110 size_t buflen;
1112 for (int c = 0; c < vd->vdev_children; c++)
1113 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
1115 if (!vd->vdev_ops->vdev_op_leaf)
1116 return;
1118 if (!vdev_writeable(vd))
1119 return;
1122 * Generate a label describing the top-level config to which we belong.
1124 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1126 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1127 abd_zero(vp_abd, sizeof (vdev_phys_t));
1128 vp = abd_to_buf(vp_abd);
1130 buf = vp->vp_nvlist;
1131 buflen = sizeof (vp->vp_nvlist);
1133 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1134 for (; l < VDEV_LABELS; l += 2) {
1135 vdev_label_write(zio, vd, l, vp_abd,
1136 offsetof(vdev_label_t, vl_vdev_phys),
1137 sizeof (vdev_phys_t),
1138 vdev_label_sync_done, zio->io_private,
1139 flags | ZIO_FLAG_DONT_PROPAGATE);
1143 abd_free(vp_abd);
1144 nvlist_free(label);
1148 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1150 list_t *dl = &spa->spa_config_dirty_list;
1151 vdev_t *vd;
1152 zio_t *zio;
1153 int error;
1156 * Write the new labels to disk.
1158 zio = zio_root(spa, NULL, NULL, flags);
1160 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1161 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1162 KM_SLEEP);
1164 ASSERT(!vd->vdev_ishole);
1166 zio_t *vio = zio_null(zio, spa, NULL,
1167 (vd->vdev_islog || vd->vdev_aux != NULL) ?
1168 vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1169 good_writes, flags);
1170 vdev_label_sync(vio, vd, l, txg, flags);
1171 zio_nowait(vio);
1174 error = zio_wait(zio);
1177 * Flush the new labels to disk.
1179 zio = zio_root(spa, NULL, NULL, flags);
1181 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1182 zio_flush(zio, vd);
1184 (void) zio_wait(zio);
1186 return (error);
1190 * Sync the uberblock and any changes to the vdev configuration.
1192 * The order of operations is carefully crafted to ensure that
1193 * if the system panics or loses power at any time, the state on disk
1194 * is still transactionally consistent. The in-line comments below
1195 * describe the failure semantics at each stage.
1197 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1198 * at any time, you can just call it again, and it will resume its work.
1201 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1203 spa_t *spa = svd[0]->vdev_spa;
1204 uberblock_t *ub = &spa->spa_uberblock;
1205 vdev_t *vd;
1206 zio_t *zio;
1207 int error = 0;
1208 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1210 retry:
1212 * Normally, we don't want to try too hard to write every label and
1213 * uberblock. If there is a flaky disk, we don't want the rest of the
1214 * sync process to block while we retry. But if we can't write a
1215 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1216 * bailing out and declaring the pool faulted.
1218 if (error != 0) {
1219 if ((flags & ZIO_FLAG_TRYHARD) != 0)
1220 return (error);
1221 flags |= ZIO_FLAG_TRYHARD;
1224 ASSERT(ub->ub_txg <= txg);
1227 * If this isn't a resync due to I/O errors,
1228 * and nothing changed in this transaction group,
1229 * and the vdev configuration hasn't changed,
1230 * then there's nothing to do.
1232 if (ub->ub_txg < txg &&
1233 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1234 list_is_empty(&spa->spa_config_dirty_list))
1235 return (0);
1237 if (txg > spa_freeze_txg(spa))
1238 return (0);
1240 ASSERT(txg <= spa->spa_final_txg);
1243 * Flush the write cache of every disk that's been written to
1244 * in this transaction group. This ensures that all blocks
1245 * written in this txg will be committed to stable storage
1246 * before any uberblock that references them.
1248 zio = zio_root(spa, NULL, NULL, flags);
1250 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1251 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1252 zio_flush(zio, vd);
1254 (void) zio_wait(zio);
1257 * Sync out the even labels (L0, L2) for every dirty vdev. If the
1258 * system dies in the middle of this process, that's OK: all of the
1259 * even labels that made it to disk will be newer than any uberblock,
1260 * and will therefore be considered invalid. The odd labels (L1, L3),
1261 * which have not yet been touched, will still be valid. We flush
1262 * the new labels to disk to ensure that all even-label updates
1263 * are committed to stable storage before the uberblock update.
1265 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1266 goto retry;
1269 * Sync the uberblocks to all vdevs in svd[].
1270 * If the system dies in the middle of this step, there are two cases
1271 * to consider, and the on-disk state is consistent either way:
1273 * (1) If none of the new uberblocks made it to disk, then the
1274 * previous uberblock will be the newest, and the odd labels
1275 * (which had not yet been touched) will be valid with respect
1276 * to that uberblock.
1278 * (2) If one or more new uberblocks made it to disk, then they
1279 * will be the newest, and the even labels (which had all
1280 * been successfully committed) will be valid with respect
1281 * to the new uberblocks.
1283 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1284 goto retry;
1287 * Sync out odd labels for every dirty vdev. If the system dies
1288 * in the middle of this process, the even labels and the new
1289 * uberblocks will suffice to open the pool. The next time
1290 * the pool is opened, the first thing we'll do -- before any
1291 * user data is modified -- is mark every vdev dirty so that
1292 * all labels will be brought up to date. We flush the new labels
1293 * to disk to ensure that all odd-label updates are committed to
1294 * stable storage before the next transaction group begins.
1296 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0)
1297 goto retry;
1299 return (0);