Merge commit '720b16875295d57e0e6a4e0ec32db4d47412f896'
[unleashed.git] / kernel / fs / zfs / spa.c
blobe97aa59a40747ce7a99826a872c41235aa2539d5
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright 2017 Joyent, Inc.
31 * Copyright (c) 2017 Datto Inc.
35 * SPA: Storage Pool Allocator
37 * This file contains all the routines used when modifying on-disk SPA state.
38 * This includes opening, importing, destroying, exporting a pool, and syncing a
39 * pool.
42 #include <sys/zfs_context.h>
43 #include <sys/fm/fs/zfs.h>
44 #include <sys/spa_impl.h>
45 #include <sys/zio.h>
46 #include <sys/zio_checksum.h>
47 #include <sys/dmu.h>
48 #include <sys/dmu_tx.h>
49 #include <sys/zap.h>
50 #include <sys/zil.h>
51 #include <sys/ddt.h>
52 #include <sys/vdev_impl.h>
53 #include <sys/metaslab.h>
54 #include <sys/metaslab_impl.h>
55 #include <sys/uberblock_impl.h>
56 #include <sys/txg.h>
57 #include <sys/avl.h>
58 #include <sys/dmu_traverse.h>
59 #include <sys/dmu_objset.h>
60 #include <sys/unique.h>
61 #include <sys/dsl_pool.h>
62 #include <sys/dsl_dataset.h>
63 #include <sys/dsl_dir.h>
64 #include <sys/dsl_prop.h>
65 #include <sys/dsl_synctask.h>
66 #include <sys/fs/zfs.h>
67 #include <sys/arc.h>
68 #include <sys/callb.h>
69 #include <sys/systeminfo.h>
70 #include <sys/spa_boot.h>
71 #include <sys/zfs_ioctl.h>
72 #include <sys/dsl_scan.h>
73 #include <sys/zfeature.h>
74 #include <sys/dsl_destroy.h>
75 #include <sys/abd.h>
77 #ifdef _KERNEL
78 #include <sys/bootprops.h>
79 #include <sys/callb.h>
80 #include <sys/cpupart.h>
81 #include <sys/pool.h>
82 #include <sys/sysdc.h>
83 #include <sys/zone.h>
84 #endif /* _KERNEL */
86 #include "zfs_prop.h"
87 #include "zfs_comutil.h"
90 * The interval, in seconds, at which failed configuration cache file writes
91 * should be retried.
93 static int zfs_ccw_retry_interval = 300;
95 typedef enum zti_modes {
96 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
97 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
98 ZTI_MODE_NULL, /* don't create a taskq */
99 ZTI_NMODES
100 } zti_modes_t;
102 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
103 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
104 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
106 #define ZTI_N(n) ZTI_P(n, 1)
107 #define ZTI_ONE ZTI_N(1)
109 typedef struct zio_taskq_info {
110 zti_modes_t zti_mode;
111 uint_t zti_value;
112 uint_t zti_count;
113 } zio_taskq_info_t;
115 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
116 "issue", "issue_high", "intr", "intr_high"
120 * This table defines the taskq settings for each ZFS I/O type. When
121 * initializing a pool, we use this table to create an appropriately sized
122 * taskq. Some operations are low volume and therefore have a small, static
123 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
124 * macros. Other operations process a large amount of data; the ZTI_BATCH
125 * macro causes us to create a taskq oriented for throughput. Some operations
126 * are so high frequency and short-lived that the taskq itself can become a a
127 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
128 * additional degree of parallelism specified by the number of threads per-
129 * taskq and the number of taskqs; when dispatching an event in this case, the
130 * particular taskq is chosen at random.
132 * The different taskq priorities are to handle the different contexts (issue
133 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
134 * need to be handled with minimum delay.
136 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
137 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
138 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
139 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
140 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
141 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
142 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
143 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
146 static sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl,
147 const char *name);
148 static void spa_event_post(sysevent_t *ev);
149 static void spa_sync_version(void *arg, dmu_tx_t *tx);
150 static void spa_sync_props(void *arg, dmu_tx_t *tx);
151 static boolean_t spa_has_active_shared_spare(spa_t *spa);
152 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
153 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
154 char **ereport);
155 static void spa_vdev_resilver_done(spa_t *spa);
157 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
158 id_t zio_taskq_psrset_bind = PS_NONE;
159 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
160 uint_t zio_taskq_basedc = 80; /* base duty cycle */
162 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
163 extern int zfs_sync_pass_deferred_free;
166 * This (illegal) pool name is used when temporarily importing a spa_t in order
167 * to get the vdev stats associated with the imported devices.
169 #define TRYIMPORT_NAME "$import"
172 * ==========================================================================
173 * SPA properties routines
174 * ==========================================================================
178 * Add a (source=src, propname=propval) list to an nvlist.
180 static void
181 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
182 uint64_t intval, zprop_source_t src)
184 const char *propname = zpool_prop_to_name(prop);
185 nvlist_t *propval;
187 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
188 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
190 if (strval != NULL)
191 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
192 else
193 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
195 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
196 nvlist_free(propval);
200 * Get property values from the spa configuration.
202 static void
203 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
205 vdev_t *rvd = spa->spa_root_vdev;
206 dsl_pool_t *pool = spa->spa_dsl_pool;
207 uint64_t size, alloc, cap, version;
208 zprop_source_t src = ZPROP_SRC_NONE;
209 spa_config_dirent_t *dp;
210 metaslab_class_t *mc = spa_normal_class(spa);
212 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
214 if (rvd != NULL) {
215 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
216 size = metaslab_class_get_space(spa_normal_class(spa));
217 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
218 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
219 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
220 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
221 size - alloc, src);
223 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
224 metaslab_class_fragmentation(mc), src);
225 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
226 metaslab_class_expandable_space(mc), src);
227 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
228 (spa_mode(spa) == FREAD), src);
230 cap = (size == 0) ? 0 : (alloc * 100 / size);
231 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
233 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
234 ddt_get_pool_dedup_ratio(spa), src);
236 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
237 rvd->vdev_state, src);
239 version = spa_version(spa);
240 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
241 src = ZPROP_SRC_DEFAULT;
242 else
243 src = ZPROP_SRC_LOCAL;
244 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
247 if (pool != NULL) {
249 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
250 * when opening pools before this version freedir will be NULL.
252 if (pool->dp_free_dir != NULL) {
253 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
254 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
255 src);
256 } else {
257 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
258 NULL, 0, src);
261 if (pool->dp_leak_dir != NULL) {
262 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
263 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
264 src);
265 } else {
266 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
267 NULL, 0, src);
271 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
273 if (spa->spa_comment != NULL) {
274 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
275 0, ZPROP_SRC_LOCAL);
278 if (spa->spa_root != NULL)
279 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
280 0, ZPROP_SRC_LOCAL);
282 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
283 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
284 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
285 } else {
286 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
287 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
290 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
291 if (dp->scd_path == NULL) {
292 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
293 "none", 0, ZPROP_SRC_LOCAL);
294 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
295 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
296 dp->scd_path, 0, ZPROP_SRC_LOCAL);
302 * Get zpool property values.
305 spa_prop_get(spa_t *spa, nvlist_t **nvp)
307 objset_t *mos = spa->spa_meta_objset;
308 zap_cursor_t zc;
309 zap_attribute_t za;
310 int err;
312 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
314 mutex_enter(&spa->spa_props_lock);
317 * Get properties from the spa config.
319 spa_prop_get_config(spa, nvp);
321 /* If no pool property object, no more prop to get. */
322 if (mos == NULL || spa->spa_pool_props_object == 0) {
323 mutex_exit(&spa->spa_props_lock);
324 return (0);
328 * Get properties from the MOS pool property object.
330 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
331 (err = zap_cursor_retrieve(&zc, &za)) == 0;
332 zap_cursor_advance(&zc)) {
333 uint64_t intval = 0;
334 char *strval = NULL;
335 zprop_source_t src = ZPROP_SRC_DEFAULT;
336 zpool_prop_t prop;
338 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
339 continue;
341 switch (za.za_integer_length) {
342 case 8:
343 /* integer property */
344 if (za.za_first_integer !=
345 zpool_prop_default_numeric(prop))
346 src = ZPROP_SRC_LOCAL;
348 if (prop == ZPOOL_PROP_BOOTFS) {
349 dsl_pool_t *dp;
350 dsl_dataset_t *ds = NULL;
352 dp = spa_get_dsl(spa);
353 dsl_pool_config_enter(dp, FTAG);
354 if (err = dsl_dataset_hold_obj(dp,
355 za.za_first_integer, FTAG, &ds)) {
356 dsl_pool_config_exit(dp, FTAG);
357 break;
360 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
361 KM_SLEEP);
362 dsl_dataset_name(ds, strval);
363 dsl_dataset_rele(ds, FTAG);
364 dsl_pool_config_exit(dp, FTAG);
365 } else {
366 strval = NULL;
367 intval = za.za_first_integer;
370 spa_prop_add_list(*nvp, prop, strval, intval, src);
372 if (strval != NULL)
373 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
375 break;
377 case 1:
378 /* string property */
379 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
380 err = zap_lookup(mos, spa->spa_pool_props_object,
381 za.za_name, 1, za.za_num_integers, strval);
382 if (err) {
383 kmem_free(strval, za.za_num_integers);
384 break;
386 spa_prop_add_list(*nvp, prop, strval, 0, src);
387 kmem_free(strval, za.za_num_integers);
388 break;
390 default:
391 break;
394 zap_cursor_fini(&zc);
395 mutex_exit(&spa->spa_props_lock);
396 out:
397 if (err && err != ENOENT) {
398 nvlist_free(*nvp);
399 *nvp = NULL;
400 return (err);
403 return (0);
407 * Validate the given pool properties nvlist and modify the list
408 * for the property values to be set.
410 static int
411 spa_prop_validate(spa_t *spa, nvlist_t *props)
413 nvpair_t *elem;
414 int error = 0, reset_bootfs = 0;
415 uint64_t objnum = 0;
416 boolean_t has_feature = B_FALSE;
418 elem = NULL;
419 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
420 uint64_t intval;
421 char *strval, *slash, *check, *fname;
422 const char *propname = nvpair_name(elem);
423 zpool_prop_t prop = zpool_name_to_prop(propname);
425 switch (prop) {
426 case ZPROP_INVAL:
427 if (!zpool_prop_feature(propname)) {
428 error = SET_ERROR(EINVAL);
429 break;
433 * Sanitize the input.
435 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
436 error = SET_ERROR(EINVAL);
437 break;
440 if (nvpair_value_uint64(elem, &intval) != 0) {
441 error = SET_ERROR(EINVAL);
442 break;
445 if (intval != 0) {
446 error = SET_ERROR(EINVAL);
447 break;
450 fname = strchr(propname, '@') + 1;
451 if (zfeature_lookup_name(fname, NULL) != 0) {
452 error = SET_ERROR(EINVAL);
453 break;
456 has_feature = B_TRUE;
457 break;
459 case ZPOOL_PROP_VERSION:
460 error = nvpair_value_uint64(elem, &intval);
461 if (!error &&
462 (intval < spa_version(spa) ||
463 intval > SPA_VERSION_BEFORE_FEATURES ||
464 has_feature))
465 error = SET_ERROR(EINVAL);
466 break;
468 case ZPOOL_PROP_DELEGATION:
469 case ZPOOL_PROP_AUTOREPLACE:
470 case ZPOOL_PROP_LISTSNAPS:
471 case ZPOOL_PROP_AUTOEXPAND:
472 error = nvpair_value_uint64(elem, &intval);
473 if (!error && intval > 1)
474 error = SET_ERROR(EINVAL);
475 break;
477 case ZPOOL_PROP_BOOTFS:
479 * If the pool version is less than SPA_VERSION_BOOTFS,
480 * or the pool is still being created (version == 0),
481 * the bootfs property cannot be set.
483 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
484 error = SET_ERROR(ENOTSUP);
485 break;
489 * Make sure the vdev config is bootable
491 if (!vdev_is_bootable(spa->spa_root_vdev)) {
492 error = SET_ERROR(ENOTSUP);
493 break;
496 reset_bootfs = 1;
498 error = nvpair_value_string(elem, &strval);
500 if (!error) {
501 objset_t *os;
502 uint64_t propval;
504 if (strval == NULL || strval[0] == '\0') {
505 objnum = zpool_prop_default_numeric(
506 ZPOOL_PROP_BOOTFS);
507 break;
510 if (error = dmu_objset_hold(strval, FTAG, &os))
511 break;
514 * Must be ZPL, and its property settings
515 * must be supported by GRUB (compression
516 * is not gzip, and large blocks are not used).
519 if (dmu_objset_type(os) != DMU_OST_ZFS) {
520 error = SET_ERROR(ENOTSUP);
521 } else if ((error =
522 dsl_prop_get_int_ds(dmu_objset_ds(os),
523 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
524 &propval)) == 0 &&
525 !BOOTFS_COMPRESS_VALID(propval)) {
526 error = SET_ERROR(ENOTSUP);
527 } else {
528 objnum = dmu_objset_id(os);
530 dmu_objset_rele(os, FTAG);
532 break;
534 case ZPOOL_PROP_FAILUREMODE:
535 error = nvpair_value_uint64(elem, &intval);
536 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
537 intval > ZIO_FAILURE_MODE_PANIC))
538 error = SET_ERROR(EINVAL);
541 * This is a special case which only occurs when
542 * the pool has completely failed. This allows
543 * the user to change the in-core failmode property
544 * without syncing it out to disk (I/Os might
545 * currently be blocked). We do this by returning
546 * EIO to the caller (spa_prop_set) to trick it
547 * into thinking we encountered a property validation
548 * error.
550 if (!error && spa_suspended(spa)) {
551 spa->spa_failmode = intval;
552 error = SET_ERROR(EIO);
554 break;
556 case ZPOOL_PROP_CACHEFILE:
557 if ((error = nvpair_value_string(elem, &strval)) != 0)
558 break;
560 if (strval[0] == '\0')
561 break;
563 if (strcmp(strval, "none") == 0)
564 break;
566 if (strval[0] != '/') {
567 error = SET_ERROR(EINVAL);
568 break;
571 slash = strrchr(strval, '/');
572 ASSERT(slash != NULL);
574 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
575 strcmp(slash, "/..") == 0)
576 error = SET_ERROR(EINVAL);
577 break;
579 case ZPOOL_PROP_COMMENT:
580 if ((error = nvpair_value_string(elem, &strval)) != 0)
581 break;
582 for (check = strval; *check != '\0'; check++) {
584 * The kernel doesn't have an easy isprint()
585 * check. For this kernel check, we merely
586 * check ASCII apart from DEL. Fix this if
587 * there is an easy-to-use kernel isprint().
589 if (*check >= 0x7f) {
590 error = SET_ERROR(EINVAL);
591 break;
594 if (strlen(strval) > ZPROP_MAX_COMMENT)
595 error = E2BIG;
596 break;
598 case ZPOOL_PROP_DEDUPDITTO:
599 if (spa_version(spa) < SPA_VERSION_DEDUP)
600 error = SET_ERROR(ENOTSUP);
601 else
602 error = nvpair_value_uint64(elem, &intval);
603 if (error == 0 &&
604 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
605 error = SET_ERROR(EINVAL);
606 break;
609 if (error)
610 break;
613 if (!error && reset_bootfs) {
614 error = nvlist_remove(props,
615 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
617 if (!error) {
618 error = nvlist_add_uint64(props,
619 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
623 return (error);
626 void
627 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
629 char *cachefile;
630 spa_config_dirent_t *dp;
632 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
633 &cachefile) != 0)
634 return;
636 dp = kmem_alloc(sizeof (spa_config_dirent_t),
637 KM_SLEEP);
639 if (cachefile[0] == '\0')
640 dp->scd_path = spa_strdup(spa_config_path);
641 else if (strcmp(cachefile, "none") == 0)
642 dp->scd_path = NULL;
643 else
644 dp->scd_path = spa_strdup(cachefile);
646 list_insert_head(&spa->spa_config_list, dp);
647 if (need_sync)
648 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
652 spa_prop_set(spa_t *spa, nvlist_t *nvp)
654 int error;
655 nvpair_t *elem = NULL;
656 boolean_t need_sync = B_FALSE;
658 if ((error = spa_prop_validate(spa, nvp)) != 0)
659 return (error);
661 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
662 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
664 if (prop == ZPOOL_PROP_CACHEFILE ||
665 prop == ZPOOL_PROP_ALTROOT ||
666 prop == ZPOOL_PROP_READONLY)
667 continue;
669 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
670 uint64_t ver;
672 if (prop == ZPOOL_PROP_VERSION) {
673 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
674 } else {
675 ASSERT(zpool_prop_feature(nvpair_name(elem)));
676 ver = SPA_VERSION_FEATURES;
677 need_sync = B_TRUE;
680 /* Save time if the version is already set. */
681 if (ver == spa_version(spa))
682 continue;
685 * In addition to the pool directory object, we might
686 * create the pool properties object, the features for
687 * read object, the features for write object, or the
688 * feature descriptions object.
690 error = dsl_sync_task(spa->spa_name, NULL,
691 spa_sync_version, &ver,
692 6, ZFS_SPACE_CHECK_RESERVED);
693 if (error)
694 return (error);
695 continue;
698 need_sync = B_TRUE;
699 break;
702 if (need_sync) {
703 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
704 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
707 return (0);
711 * If the bootfs property value is dsobj, clear it.
713 void
714 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
716 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
717 VERIFY(zap_remove(spa->spa_meta_objset,
718 spa->spa_pool_props_object,
719 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
720 spa->spa_bootfs = 0;
724 /*ARGSUSED*/
725 static int
726 spa_change_guid_check(void *arg, dmu_tx_t *tx)
728 uint64_t *newguid = arg;
729 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
730 vdev_t *rvd = spa->spa_root_vdev;
731 uint64_t vdev_state;
733 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
734 vdev_state = rvd->vdev_state;
735 spa_config_exit(spa, SCL_STATE, FTAG);
737 if (vdev_state != VDEV_STATE_HEALTHY)
738 return (SET_ERROR(ENXIO));
740 ASSERT3U(spa_guid(spa), !=, *newguid);
742 return (0);
745 static void
746 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
748 uint64_t *newguid = arg;
749 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
750 uint64_t oldguid;
751 vdev_t *rvd = spa->spa_root_vdev;
753 oldguid = spa_guid(spa);
755 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
756 rvd->vdev_guid = *newguid;
757 rvd->vdev_guid_sum += (*newguid - oldguid);
758 vdev_config_dirty(rvd);
759 spa_config_exit(spa, SCL_STATE, FTAG);
761 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
762 oldguid, *newguid);
766 * Change the GUID for the pool. This is done so that we can later
767 * re-import a pool built from a clone of our own vdevs. We will modify
768 * the root vdev's guid, our own pool guid, and then mark all of our
769 * vdevs dirty. Note that we must make sure that all our vdevs are
770 * online when we do this, or else any vdevs that weren't present
771 * would be orphaned from our pool. We are also going to issue a
772 * sysevent to update any watchers.
775 spa_change_guid(spa_t *spa)
777 int error;
778 uint64_t guid;
780 mutex_enter(&spa->spa_vdev_top_lock);
781 mutex_enter(&spa_namespace_lock);
782 guid = spa_generate_guid(NULL);
784 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
785 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
787 if (error == 0) {
788 spa_config_sync(spa, B_FALSE, B_TRUE);
789 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
792 mutex_exit(&spa_namespace_lock);
793 mutex_exit(&spa->spa_vdev_top_lock);
795 return (error);
799 * ==========================================================================
800 * SPA state manipulation (open/create/destroy/import/export)
801 * ==========================================================================
804 static int
805 spa_error_entry_compare(const void *a, const void *b)
807 spa_error_entry_t *sa = (spa_error_entry_t *)a;
808 spa_error_entry_t *sb = (spa_error_entry_t *)b;
809 int ret;
811 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
812 sizeof (zbookmark_phys_t));
814 if (ret < 0)
815 return (-1);
816 else if (ret > 0)
817 return (1);
818 else
819 return (0);
823 * Utility function which retrieves copies of the current logs and
824 * re-initializes them in the process.
826 void
827 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
829 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
831 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
832 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
834 avl_create(&spa->spa_errlist_scrub,
835 spa_error_entry_compare, sizeof (spa_error_entry_t),
836 offsetof(spa_error_entry_t, se_avl));
837 avl_create(&spa->spa_errlist_last,
838 spa_error_entry_compare, sizeof (spa_error_entry_t),
839 offsetof(spa_error_entry_t, se_avl));
842 static void
843 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
845 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
846 enum zti_modes mode = ztip->zti_mode;
847 uint_t value = ztip->zti_value;
848 uint_t count = ztip->zti_count;
849 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
850 char name[32];
851 uint_t flags = 0;
852 boolean_t batch = B_FALSE;
854 if (mode == ZTI_MODE_NULL) {
855 tqs->stqs_count = 0;
856 tqs->stqs_taskq = NULL;
857 return;
860 ASSERT3U(count, >, 0);
862 tqs->stqs_count = count;
863 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
865 switch (mode) {
866 case ZTI_MODE_FIXED:
867 ASSERT3U(value, >=, 1);
868 value = MAX(value, 1);
869 break;
871 case ZTI_MODE_BATCH:
872 batch = B_TRUE;
873 flags |= TASKQ_THREADS_CPU_PCT;
874 value = zio_taskq_batch_pct;
875 break;
877 default:
878 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
879 "spa_activate()",
880 zio_type_name[t], zio_taskq_types[q], mode, value);
881 break;
884 for (uint_t i = 0; i < count; i++) {
885 taskq_t *tq;
887 if (count > 1) {
888 (void) snprintf(name, sizeof (name), "%s_%s_%u",
889 zio_type_name[t], zio_taskq_types[q], i);
890 } else {
891 (void) snprintf(name, sizeof (name), "%s_%s",
892 zio_type_name[t], zio_taskq_types[q]);
895 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
896 if (batch)
897 flags |= TASKQ_DC_BATCH;
899 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
900 spa->spa_proc, zio_taskq_basedc, flags);
901 } else {
902 pri_t pri = maxclsyspri;
904 * The write issue taskq can be extremely CPU
905 * intensive. Run it at slightly lower priority
906 * than the other taskqs.
908 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
909 pri--;
911 tq = taskq_create_proc(name, value, pri, 50,
912 INT_MAX, spa->spa_proc, flags);
915 tqs->stqs_taskq[i] = tq;
919 static void
920 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
922 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
924 if (tqs->stqs_taskq == NULL) {
925 ASSERT0(tqs->stqs_count);
926 return;
929 for (uint_t i = 0; i < tqs->stqs_count; i++) {
930 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
931 taskq_destroy(tqs->stqs_taskq[i]);
934 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
935 tqs->stqs_taskq = NULL;
939 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
940 * Note that a type may have multiple discrete taskqs to avoid lock contention
941 * on the taskq itself. In that case we choose which taskq at random by using
942 * the low bits of gethrtime().
944 void
945 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
946 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
948 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
949 taskq_t *tq;
951 ASSERT3P(tqs->stqs_taskq, !=, NULL);
952 ASSERT3U(tqs->stqs_count, !=, 0);
954 if (tqs->stqs_count == 1) {
955 tq = tqs->stqs_taskq[0];
956 } else {
957 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
960 taskq_dispatch_ent(tq, func, arg, flags, ent);
963 static void
964 spa_create_zio_taskqs(spa_t *spa)
966 for (int t = 0; t < ZIO_TYPES; t++) {
967 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
968 spa_taskqs_init(spa, t, q);
973 #ifdef _KERNEL
974 static void
975 spa_thread(void *arg)
977 callb_cpr_t cprinfo;
979 spa_t *spa = arg;
980 user_t *pu = PTOU(curproc);
982 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
983 spa->spa_name);
985 ASSERT(curproc != &p0);
986 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
987 "zpool-%s", spa->spa_name);
988 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
990 /* bind this thread to the requested psrset */
991 if (zio_taskq_psrset_bind != PS_NONE) {
992 pool_lock();
993 mutex_enter(&cpu_lock);
994 mutex_enter(&pidlock);
995 mutex_enter(&curproc->p_lock);
997 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
998 0, NULL, NULL) == 0) {
999 curthread->t_bind_pset = zio_taskq_psrset_bind;
1000 } else {
1001 cmn_err(CE_WARN,
1002 "Couldn't bind process for zfs pool \"%s\" to "
1003 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1006 mutex_exit(&curproc->p_lock);
1007 mutex_exit(&pidlock);
1008 mutex_exit(&cpu_lock);
1009 pool_unlock();
1012 if (zio_taskq_sysdc) {
1013 sysdc_thread_enter(curthread, 100, 0);
1016 spa->spa_proc = curproc;
1017 spa->spa_did = curthread->t_did;
1019 spa_create_zio_taskqs(spa);
1021 mutex_enter(&spa->spa_proc_lock);
1022 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1024 spa->spa_proc_state = SPA_PROC_ACTIVE;
1025 cv_broadcast(&spa->spa_proc_cv);
1027 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1028 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1029 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1030 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1032 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1033 spa->spa_proc_state = SPA_PROC_GONE;
1034 spa->spa_proc = &p0;
1035 cv_broadcast(&spa->spa_proc_cv);
1036 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1038 mutex_enter(&curproc->p_lock);
1039 lwp_exit();
1041 #endif
1044 * Activate an uninitialized pool.
1046 static void
1047 spa_activate(spa_t *spa, int mode)
1049 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1051 spa->spa_state = POOL_STATE_ACTIVE;
1052 spa->spa_mode = mode;
1054 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1055 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1057 /* Try to create a covering process */
1058 mutex_enter(&spa->spa_proc_lock);
1059 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1060 ASSERT(spa->spa_proc == &p0);
1061 spa->spa_did = 0;
1063 /* Only create a process if we're going to be around a while. */
1064 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1065 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1066 NULL, 0) == 0) {
1067 spa->spa_proc_state = SPA_PROC_CREATED;
1068 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1069 cv_wait(&spa->spa_proc_cv,
1070 &spa->spa_proc_lock);
1072 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1073 ASSERT(spa->spa_proc != &p0);
1074 ASSERT(spa->spa_did != 0);
1075 } else {
1076 #ifdef _KERNEL
1077 cmn_err(CE_WARN,
1078 "Couldn't create process for zfs pool \"%s\"\n",
1079 spa->spa_name);
1080 #endif
1083 mutex_exit(&spa->spa_proc_lock);
1085 /* If we didn't create a process, we need to create our taskqs. */
1086 if (spa->spa_proc == &p0) {
1087 spa_create_zio_taskqs(spa);
1090 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1091 offsetof(vdev_t, vdev_config_dirty_node));
1092 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1093 offsetof(objset_t, os_evicting_node));
1094 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1095 offsetof(vdev_t, vdev_state_dirty_node));
1097 txg_list_create(&spa->spa_vdev_txg_list, spa,
1098 offsetof(struct vdev, vdev_txg_node));
1100 avl_create(&spa->spa_errlist_scrub,
1101 spa_error_entry_compare, sizeof (spa_error_entry_t),
1102 offsetof(spa_error_entry_t, se_avl));
1103 avl_create(&spa->spa_errlist_last,
1104 spa_error_entry_compare, sizeof (spa_error_entry_t),
1105 offsetof(spa_error_entry_t, se_avl));
1109 * Opposite of spa_activate().
1111 static void
1112 spa_deactivate(spa_t *spa)
1114 ASSERT(spa->spa_sync_on == B_FALSE);
1115 ASSERT(spa->spa_dsl_pool == NULL);
1116 ASSERT(spa->spa_root_vdev == NULL);
1117 ASSERT(spa->spa_async_zio_root == NULL);
1118 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1120 spa_evicting_os_wait(spa);
1122 txg_list_destroy(&spa->spa_vdev_txg_list);
1124 list_destroy(&spa->spa_config_dirty_list);
1125 list_destroy(&spa->spa_evicting_os_list);
1126 list_destroy(&spa->spa_state_dirty_list);
1128 for (int t = 0; t < ZIO_TYPES; t++) {
1129 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1130 spa_taskqs_fini(spa, t, q);
1134 metaslab_class_destroy(spa->spa_normal_class);
1135 spa->spa_normal_class = NULL;
1137 metaslab_class_destroy(spa->spa_log_class);
1138 spa->spa_log_class = NULL;
1141 * If this was part of an import or the open otherwise failed, we may
1142 * still have errors left in the queues. Empty them just in case.
1144 spa_errlog_drain(spa);
1146 avl_destroy(&spa->spa_errlist_scrub);
1147 avl_destroy(&spa->spa_errlist_last);
1149 spa->spa_state = POOL_STATE_UNINITIALIZED;
1151 mutex_enter(&spa->spa_proc_lock);
1152 if (spa->spa_proc_state != SPA_PROC_NONE) {
1153 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1154 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1155 cv_broadcast(&spa->spa_proc_cv);
1156 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1157 ASSERT(spa->spa_proc != &p0);
1158 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1160 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1161 spa->spa_proc_state = SPA_PROC_NONE;
1163 ASSERT(spa->spa_proc == &p0);
1164 mutex_exit(&spa->spa_proc_lock);
1167 * We want to make sure spa_thread() has actually exited the ZFS
1168 * module, so that the module can't be unloaded out from underneath
1169 * it.
1171 if (spa->spa_did != 0) {
1172 thread_join(spa->spa_did);
1173 spa->spa_did = 0;
1178 * Verify a pool configuration, and construct the vdev tree appropriately. This
1179 * will create all the necessary vdevs in the appropriate layout, with each vdev
1180 * in the CLOSED state. This will prep the pool before open/creation/import.
1181 * All vdev validation is done by the vdev_alloc() routine.
1183 static int
1184 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1185 uint_t id, int atype)
1187 nvlist_t **child;
1188 uint_t children;
1189 int error;
1191 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1192 return (error);
1194 if ((*vdp)->vdev_ops->vdev_op_leaf)
1195 return (0);
1197 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1198 &child, &children);
1200 if (error == ENOENT)
1201 return (0);
1203 if (error) {
1204 vdev_free(*vdp);
1205 *vdp = NULL;
1206 return (SET_ERROR(EINVAL));
1209 for (int c = 0; c < children; c++) {
1210 vdev_t *vd;
1211 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1212 atype)) != 0) {
1213 vdev_free(*vdp);
1214 *vdp = NULL;
1215 return (error);
1219 ASSERT(*vdp != NULL);
1221 return (0);
1225 * Opposite of spa_load().
1227 static void
1228 spa_unload(spa_t *spa)
1230 int i;
1232 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1235 * Stop async tasks.
1237 spa_async_suspend(spa);
1240 * Stop syncing.
1242 if (spa->spa_sync_on) {
1243 txg_sync_stop(spa->spa_dsl_pool);
1244 spa->spa_sync_on = B_FALSE;
1248 * Even though vdev_free() also calls vdev_metaslab_fini, we need
1249 * to call it earlier, before we wait for async i/o to complete.
1250 * This ensures that there is no async metaslab prefetching, by
1251 * calling taskq_wait(mg_taskq).
1253 if (spa->spa_root_vdev != NULL) {
1254 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1255 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1256 vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1257 spa_config_exit(spa, SCL_ALL, FTAG);
1261 * Wait for any outstanding async I/O to complete.
1263 if (spa->spa_async_zio_root != NULL) {
1264 for (int i = 0; i < max_ncpus; i++)
1265 (void) zio_wait(spa->spa_async_zio_root[i]);
1266 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1267 spa->spa_async_zio_root = NULL;
1270 bpobj_close(&spa->spa_deferred_bpobj);
1272 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1275 * Close all vdevs.
1277 if (spa->spa_root_vdev)
1278 vdev_free(spa->spa_root_vdev);
1279 ASSERT(spa->spa_root_vdev == NULL);
1282 * Close the dsl pool.
1284 if (spa->spa_dsl_pool) {
1285 dsl_pool_close(spa->spa_dsl_pool);
1286 spa->spa_dsl_pool = NULL;
1287 spa->spa_meta_objset = NULL;
1290 ddt_unload(spa);
1293 * Drop and purge level 2 cache
1295 spa_l2cache_drop(spa);
1297 for (i = 0; i < spa->spa_spares.sav_count; i++)
1298 vdev_free(spa->spa_spares.sav_vdevs[i]);
1299 if (spa->spa_spares.sav_vdevs) {
1300 kmem_free(spa->spa_spares.sav_vdevs,
1301 spa->spa_spares.sav_count * sizeof (void *));
1302 spa->spa_spares.sav_vdevs = NULL;
1304 if (spa->spa_spares.sav_config) {
1305 nvlist_free(spa->spa_spares.sav_config);
1306 spa->spa_spares.sav_config = NULL;
1308 spa->spa_spares.sav_count = 0;
1310 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1311 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1312 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1314 if (spa->spa_l2cache.sav_vdevs) {
1315 kmem_free(spa->spa_l2cache.sav_vdevs,
1316 spa->spa_l2cache.sav_count * sizeof (void *));
1317 spa->spa_l2cache.sav_vdevs = NULL;
1319 if (spa->spa_l2cache.sav_config) {
1320 nvlist_free(spa->spa_l2cache.sav_config);
1321 spa->spa_l2cache.sav_config = NULL;
1323 spa->spa_l2cache.sav_count = 0;
1325 spa->spa_async_suspended = 0;
1327 if (spa->spa_comment != NULL) {
1328 spa_strfree(spa->spa_comment);
1329 spa->spa_comment = NULL;
1332 spa_config_exit(spa, SCL_ALL, FTAG);
1336 * Load (or re-load) the current list of vdevs describing the active spares for
1337 * this pool. When this is called, we have some form of basic information in
1338 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1339 * then re-generate a more complete list including status information.
1341 static void
1342 spa_load_spares(spa_t *spa)
1344 nvlist_t **spares;
1345 uint_t nspares;
1346 int i;
1347 vdev_t *vd, *tvd;
1349 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1352 * First, close and free any existing spare vdevs.
1354 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1355 vd = spa->spa_spares.sav_vdevs[i];
1357 /* Undo the call to spa_activate() below */
1358 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1359 B_FALSE)) != NULL && tvd->vdev_isspare)
1360 spa_spare_remove(tvd);
1361 vdev_close(vd);
1362 vdev_free(vd);
1365 if (spa->spa_spares.sav_vdevs)
1366 kmem_free(spa->spa_spares.sav_vdevs,
1367 spa->spa_spares.sav_count * sizeof (void *));
1369 if (spa->spa_spares.sav_config == NULL)
1370 nspares = 0;
1371 else
1372 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1373 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1375 spa->spa_spares.sav_count = (int)nspares;
1376 spa->spa_spares.sav_vdevs = NULL;
1378 if (nspares == 0)
1379 return;
1382 * Construct the array of vdevs, opening them to get status in the
1383 * process. For each spare, there is potentially two different vdev_t
1384 * structures associated with it: one in the list of spares (used only
1385 * for basic validation purposes) and one in the active vdev
1386 * configuration (if it's spared in). During this phase we open and
1387 * validate each vdev on the spare list. If the vdev also exists in the
1388 * active configuration, then we also mark this vdev as an active spare.
1390 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1391 KM_SLEEP);
1392 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1393 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1394 VDEV_ALLOC_SPARE) == 0);
1395 ASSERT(vd != NULL);
1397 spa->spa_spares.sav_vdevs[i] = vd;
1399 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1400 B_FALSE)) != NULL) {
1401 if (!tvd->vdev_isspare)
1402 spa_spare_add(tvd);
1405 * We only mark the spare active if we were successfully
1406 * able to load the vdev. Otherwise, importing a pool
1407 * with a bad active spare would result in strange
1408 * behavior, because multiple pool would think the spare
1409 * is actively in use.
1411 * There is a vulnerability here to an equally bizarre
1412 * circumstance, where a dead active spare is later
1413 * brought back to life (onlined or otherwise). Given
1414 * the rarity of this scenario, and the extra complexity
1415 * it adds, we ignore the possibility.
1417 if (!vdev_is_dead(tvd))
1418 spa_spare_activate(tvd);
1421 vd->vdev_top = vd;
1422 vd->vdev_aux = &spa->spa_spares;
1424 if (vdev_open(vd) != 0)
1425 continue;
1427 if (vdev_validate_aux(vd) == 0)
1428 spa_spare_add(vd);
1432 * Recompute the stashed list of spares, with status information
1433 * this time.
1435 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1436 DATA_TYPE_NVLIST_ARRAY) == 0);
1438 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1439 KM_SLEEP);
1440 for (i = 0; i < spa->spa_spares.sav_count; i++)
1441 spares[i] = vdev_config_generate(spa,
1442 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1443 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1444 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1445 for (i = 0; i < spa->spa_spares.sav_count; i++)
1446 nvlist_free(spares[i]);
1447 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1451 * Load (or re-load) the current list of vdevs describing the active l2cache for
1452 * this pool. When this is called, we have some form of basic information in
1453 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1454 * then re-generate a more complete list including status information.
1455 * Devices which are already active have their details maintained, and are
1456 * not re-opened.
1458 static void
1459 spa_load_l2cache(spa_t *spa)
1461 nvlist_t **l2cache;
1462 uint_t nl2cache;
1463 int i, j, oldnvdevs;
1464 uint64_t guid;
1465 vdev_t *vd, **oldvdevs, **newvdevs;
1466 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1468 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1470 if (sav->sav_config != NULL) {
1471 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1472 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1473 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1474 } else {
1475 nl2cache = 0;
1476 newvdevs = NULL;
1479 oldvdevs = sav->sav_vdevs;
1480 oldnvdevs = sav->sav_count;
1481 sav->sav_vdevs = NULL;
1482 sav->sav_count = 0;
1485 * Process new nvlist of vdevs.
1487 for (i = 0; i < nl2cache; i++) {
1488 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1489 &guid) == 0);
1491 newvdevs[i] = NULL;
1492 for (j = 0; j < oldnvdevs; j++) {
1493 vd = oldvdevs[j];
1494 if (vd != NULL && guid == vd->vdev_guid) {
1496 * Retain previous vdev for add/remove ops.
1498 newvdevs[i] = vd;
1499 oldvdevs[j] = NULL;
1500 break;
1504 if (newvdevs[i] == NULL) {
1506 * Create new vdev
1508 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1509 VDEV_ALLOC_L2CACHE) == 0);
1510 ASSERT(vd != NULL);
1511 newvdevs[i] = vd;
1514 * Commit this vdev as an l2cache device,
1515 * even if it fails to open.
1517 spa_l2cache_add(vd);
1519 vd->vdev_top = vd;
1520 vd->vdev_aux = sav;
1522 spa_l2cache_activate(vd);
1524 if (vdev_open(vd) != 0)
1525 continue;
1527 (void) vdev_validate_aux(vd);
1529 if (!vdev_is_dead(vd))
1530 l2arc_add_vdev(spa, vd);
1535 * Purge vdevs that were dropped
1537 for (i = 0; i < oldnvdevs; i++) {
1538 uint64_t pool;
1540 vd = oldvdevs[i];
1541 if (vd != NULL) {
1542 ASSERT(vd->vdev_isl2cache);
1544 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1545 pool != 0ULL && l2arc_vdev_present(vd))
1546 l2arc_remove_vdev(vd);
1547 vdev_clear_stats(vd);
1548 vdev_free(vd);
1552 if (oldvdevs)
1553 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1555 if (sav->sav_config == NULL)
1556 goto out;
1558 sav->sav_vdevs = newvdevs;
1559 sav->sav_count = (int)nl2cache;
1562 * Recompute the stashed list of l2cache devices, with status
1563 * information this time.
1565 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1566 DATA_TYPE_NVLIST_ARRAY) == 0);
1568 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1569 for (i = 0; i < sav->sav_count; i++)
1570 l2cache[i] = vdev_config_generate(spa,
1571 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1572 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1573 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1574 out:
1575 for (i = 0; i < sav->sav_count; i++)
1576 nvlist_free(l2cache[i]);
1577 if (sav->sav_count)
1578 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1581 static int
1582 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1584 dmu_buf_t *db;
1585 char *packed = NULL;
1586 size_t nvsize = 0;
1587 int error;
1588 *value = NULL;
1590 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1591 if (error != 0)
1592 return (error);
1594 nvsize = *(uint64_t *)db->db_data;
1595 dmu_buf_rele(db, FTAG);
1597 packed = kmem_alloc(nvsize, KM_SLEEP);
1598 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1599 DMU_READ_PREFETCH);
1600 if (error == 0)
1601 error = nvlist_unpack(packed, nvsize, value, 0);
1602 kmem_free(packed, nvsize);
1604 return (error);
1608 * Checks to see if the given vdev could not be opened, in which case we post a
1609 * sysevent to notify the autoreplace code that the device has been removed.
1611 static void
1612 spa_check_removed(vdev_t *vd)
1614 for (int c = 0; c < vd->vdev_children; c++)
1615 spa_check_removed(vd->vdev_child[c]);
1617 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1618 !vd->vdev_ishole) {
1619 zfs_post_autoreplace(vd->vdev_spa, vd);
1620 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1624 static void
1625 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd)
1627 ASSERT3U(vd->vdev_children, ==, mvd->vdev_children);
1629 vd->vdev_top_zap = mvd->vdev_top_zap;
1630 vd->vdev_leaf_zap = mvd->vdev_leaf_zap;
1632 for (uint64_t i = 0; i < vd->vdev_children; i++) {
1633 spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]);
1638 * Validate the current config against the MOS config
1640 static boolean_t
1641 spa_config_valid(spa_t *spa, nvlist_t *config)
1643 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1644 nvlist_t *nv;
1646 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1648 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1649 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1651 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1654 * If we're doing a normal import, then build up any additional
1655 * diagnostic information about missing devices in this config.
1656 * We'll pass this up to the user for further processing.
1658 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1659 nvlist_t **child, *nv;
1660 uint64_t idx = 0;
1662 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1663 KM_SLEEP);
1664 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1666 for (int c = 0; c < rvd->vdev_children; c++) {
1667 vdev_t *tvd = rvd->vdev_child[c];
1668 vdev_t *mtvd = mrvd->vdev_child[c];
1670 if (tvd->vdev_ops == &vdev_missing_ops &&
1671 mtvd->vdev_ops != &vdev_missing_ops &&
1672 mtvd->vdev_islog)
1673 child[idx++] = vdev_config_generate(spa, mtvd,
1674 B_FALSE, 0);
1677 if (idx) {
1678 VERIFY(nvlist_add_nvlist_array(nv,
1679 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1680 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1681 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1683 for (int i = 0; i < idx; i++)
1684 nvlist_free(child[i]);
1686 nvlist_free(nv);
1687 kmem_free(child, rvd->vdev_children * sizeof (char **));
1691 * Compare the root vdev tree with the information we have
1692 * from the MOS config (mrvd). Check each top-level vdev
1693 * with the corresponding MOS config top-level (mtvd).
1695 for (int c = 0; c < rvd->vdev_children; c++) {
1696 vdev_t *tvd = rvd->vdev_child[c];
1697 vdev_t *mtvd = mrvd->vdev_child[c];
1700 * Resolve any "missing" vdevs in the current configuration.
1701 * If we find that the MOS config has more accurate information
1702 * about the top-level vdev then use that vdev instead.
1704 if (tvd->vdev_ops == &vdev_missing_ops &&
1705 mtvd->vdev_ops != &vdev_missing_ops) {
1707 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1708 continue;
1711 * Device specific actions.
1713 if (mtvd->vdev_islog) {
1714 spa_set_log_state(spa, SPA_LOG_CLEAR);
1715 } else {
1717 * XXX - once we have 'readonly' pool
1718 * support we should be able to handle
1719 * missing data devices by transitioning
1720 * the pool to readonly.
1722 continue;
1726 * Swap the missing vdev with the data we were
1727 * able to obtain from the MOS config.
1729 vdev_remove_child(rvd, tvd);
1730 vdev_remove_child(mrvd, mtvd);
1732 vdev_add_child(rvd, mtvd);
1733 vdev_add_child(mrvd, tvd);
1735 spa_config_exit(spa, SCL_ALL, FTAG);
1736 vdev_load(mtvd);
1737 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1739 vdev_reopen(rvd);
1740 } else {
1741 if (mtvd->vdev_islog) {
1743 * Load the slog device's state from the MOS
1744 * config since it's possible that the label
1745 * does not contain the most up-to-date
1746 * information.
1748 vdev_load_log_state(tvd, mtvd);
1749 vdev_reopen(tvd);
1753 * Per-vdev ZAP info is stored exclusively in the MOS.
1755 spa_config_valid_zaps(tvd, mtvd);
1759 vdev_free(mrvd);
1760 spa_config_exit(spa, SCL_ALL, FTAG);
1763 * Ensure we were able to validate the config.
1765 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1769 * Check for missing log devices
1771 static boolean_t
1772 spa_check_logs(spa_t *spa)
1774 boolean_t rv = B_FALSE;
1775 dsl_pool_t *dp = spa_get_dsl(spa);
1777 switch (spa->spa_log_state) {
1778 case SPA_LOG_MISSING:
1779 /* need to recheck in case slog has been restored */
1780 case SPA_LOG_UNKNOWN:
1781 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1782 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1783 if (rv)
1784 spa_set_log_state(spa, SPA_LOG_MISSING);
1785 break;
1787 return (rv);
1790 static boolean_t
1791 spa_passivate_log(spa_t *spa)
1793 vdev_t *rvd = spa->spa_root_vdev;
1794 boolean_t slog_found = B_FALSE;
1796 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1798 if (!spa_has_slogs(spa))
1799 return (B_FALSE);
1801 for (int c = 0; c < rvd->vdev_children; c++) {
1802 vdev_t *tvd = rvd->vdev_child[c];
1803 metaslab_group_t *mg = tvd->vdev_mg;
1805 if (tvd->vdev_islog) {
1806 metaslab_group_passivate(mg);
1807 slog_found = B_TRUE;
1811 return (slog_found);
1814 static void
1815 spa_activate_log(spa_t *spa)
1817 vdev_t *rvd = spa->spa_root_vdev;
1819 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1821 for (int c = 0; c < rvd->vdev_children; c++) {
1822 vdev_t *tvd = rvd->vdev_child[c];
1823 metaslab_group_t *mg = tvd->vdev_mg;
1825 if (tvd->vdev_islog)
1826 metaslab_group_activate(mg);
1831 spa_offline_log(spa_t *spa)
1833 int error;
1835 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1836 NULL, DS_FIND_CHILDREN);
1837 if (error == 0) {
1839 * We successfully offlined the log device, sync out the
1840 * current txg so that the "stubby" block can be removed
1841 * by zil_sync().
1843 txg_wait_synced(spa->spa_dsl_pool, 0);
1845 return (error);
1848 static void
1849 spa_aux_check_removed(spa_aux_vdev_t *sav)
1851 for (int i = 0; i < sav->sav_count; i++)
1852 spa_check_removed(sav->sav_vdevs[i]);
1855 void
1856 spa_claim_notify(zio_t *zio)
1858 spa_t *spa = zio->io_spa;
1860 if (zio->io_error)
1861 return;
1863 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1864 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1865 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1866 mutex_exit(&spa->spa_props_lock);
1869 typedef struct spa_load_error {
1870 uint64_t sle_meta_count;
1871 uint64_t sle_data_count;
1872 } spa_load_error_t;
1874 static void
1875 spa_load_verify_done(zio_t *zio)
1877 blkptr_t *bp = zio->io_bp;
1878 spa_load_error_t *sle = zio->io_private;
1879 dmu_object_type_t type = BP_GET_TYPE(bp);
1880 int error = zio->io_error;
1881 spa_t *spa = zio->io_spa;
1883 abd_free(zio->io_abd);
1884 if (error) {
1885 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1886 type != DMU_OT_INTENT_LOG)
1887 atomic_inc_64(&sle->sle_meta_count);
1888 else
1889 atomic_inc_64(&sle->sle_data_count);
1892 mutex_enter(&spa->spa_scrub_lock);
1893 spa->spa_scrub_inflight--;
1894 cv_broadcast(&spa->spa_scrub_io_cv);
1895 mutex_exit(&spa->spa_scrub_lock);
1899 * Maximum number of concurrent scrub i/os to create while verifying
1900 * a pool while importing it.
1902 int spa_load_verify_maxinflight = 10000;
1903 boolean_t spa_load_verify_metadata = B_TRUE;
1904 boolean_t spa_load_verify_data = B_TRUE;
1906 /*ARGSUSED*/
1907 static int
1908 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1909 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1911 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1912 return (0);
1914 * Note: normally this routine will not be called if
1915 * spa_load_verify_metadata is not set. However, it may be useful
1916 * to manually set the flag after the traversal has begun.
1918 if (!spa_load_verify_metadata)
1919 return (0);
1920 if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
1921 return (0);
1923 zio_t *rio = arg;
1924 size_t size = BP_GET_PSIZE(bp);
1926 mutex_enter(&spa->spa_scrub_lock);
1927 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1928 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1929 spa->spa_scrub_inflight++;
1930 mutex_exit(&spa->spa_scrub_lock);
1932 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
1933 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1934 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1935 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1936 return (0);
1939 /* ARGSUSED */
1941 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1943 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
1944 return (SET_ERROR(ENAMETOOLONG));
1946 return (0);
1949 static int
1950 spa_load_verify(spa_t *spa)
1952 zio_t *rio;
1953 spa_load_error_t sle = { 0 };
1954 zpool_rewind_policy_t policy;
1955 boolean_t verify_ok = B_FALSE;
1956 int error = 0;
1958 zpool_get_rewind_policy(spa->spa_config, &policy);
1960 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1961 return (0);
1963 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
1964 error = dmu_objset_find_dp(spa->spa_dsl_pool,
1965 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
1966 DS_FIND_CHILDREN);
1967 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
1968 if (error != 0)
1969 return (error);
1971 rio = zio_root(spa, NULL, &sle,
1972 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1974 if (spa_load_verify_metadata) {
1975 error = traverse_pool(spa, spa->spa_verify_min_txg,
1976 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1977 spa_load_verify_cb, rio);
1980 (void) zio_wait(rio);
1982 spa->spa_load_meta_errors = sle.sle_meta_count;
1983 spa->spa_load_data_errors = sle.sle_data_count;
1985 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1986 sle.sle_data_count <= policy.zrp_maxdata) {
1987 int64_t loss = 0;
1989 verify_ok = B_TRUE;
1990 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1991 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1993 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1994 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1995 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1996 VERIFY(nvlist_add_int64(spa->spa_load_info,
1997 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1998 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1999 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2000 } else {
2001 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2004 if (error) {
2005 if (error != ENXIO && error != EIO)
2006 error = SET_ERROR(EIO);
2007 return (error);
2010 return (verify_ok ? 0 : EIO);
2014 * Find a value in the pool props object.
2016 static void
2017 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2019 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2020 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2024 * Find a value in the pool directory object.
2026 static int
2027 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2029 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2030 name, sizeof (uint64_t), 1, val));
2033 static int
2034 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2036 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2037 return (err);
2041 * Fix up config after a partly-completed split. This is done with the
2042 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2043 * pool have that entry in their config, but only the splitting one contains
2044 * a list of all the guids of the vdevs that are being split off.
2046 * This function determines what to do with that list: either rejoin
2047 * all the disks to the pool, or complete the splitting process. To attempt
2048 * the rejoin, each disk that is offlined is marked online again, and
2049 * we do a reopen() call. If the vdev label for every disk that was
2050 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2051 * then we call vdev_split() on each disk, and complete the split.
2053 * Otherwise we leave the config alone, with all the vdevs in place in
2054 * the original pool.
2056 static void
2057 spa_try_repair(spa_t *spa, nvlist_t *config)
2059 uint_t extracted;
2060 uint64_t *glist;
2061 uint_t i, gcount;
2062 nvlist_t *nvl;
2063 vdev_t **vd;
2064 boolean_t attempt_reopen;
2066 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2067 return;
2069 /* check that the config is complete */
2070 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2071 &glist, &gcount) != 0)
2072 return;
2074 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2076 /* attempt to online all the vdevs & validate */
2077 attempt_reopen = B_TRUE;
2078 for (i = 0; i < gcount; i++) {
2079 if (glist[i] == 0) /* vdev is hole */
2080 continue;
2082 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2083 if (vd[i] == NULL) {
2085 * Don't bother attempting to reopen the disks;
2086 * just do the split.
2088 attempt_reopen = B_FALSE;
2089 } else {
2090 /* attempt to re-online it */
2091 vd[i]->vdev_offline = B_FALSE;
2095 if (attempt_reopen) {
2096 vdev_reopen(spa->spa_root_vdev);
2098 /* check each device to see what state it's in */
2099 for (extracted = 0, i = 0; i < gcount; i++) {
2100 if (vd[i] != NULL &&
2101 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2102 break;
2103 ++extracted;
2108 * If every disk has been moved to the new pool, or if we never
2109 * even attempted to look at them, then we split them off for
2110 * good.
2112 if (!attempt_reopen || gcount == extracted) {
2113 for (i = 0; i < gcount; i++)
2114 if (vd[i] != NULL)
2115 vdev_split(vd[i]);
2116 vdev_reopen(spa->spa_root_vdev);
2119 kmem_free(vd, gcount * sizeof (vdev_t *));
2122 static int
2123 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2124 boolean_t mosconfig)
2126 nvlist_t *config = spa->spa_config;
2127 char *ereport = FM_EREPORT_ZFS_POOL;
2128 char *comment;
2129 int error;
2130 uint64_t pool_guid;
2131 nvlist_t *nvl;
2133 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2134 return (SET_ERROR(EINVAL));
2136 ASSERT(spa->spa_comment == NULL);
2137 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2138 spa->spa_comment = spa_strdup(comment);
2141 * Versioning wasn't explicitly added to the label until later, so if
2142 * it's not present treat it as the initial version.
2144 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2145 &spa->spa_ubsync.ub_version) != 0)
2146 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2148 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2149 &spa->spa_config_txg);
2151 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2152 spa_guid_exists(pool_guid, 0)) {
2153 error = SET_ERROR(EEXIST);
2154 } else {
2155 spa->spa_config_guid = pool_guid;
2157 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2158 &nvl) == 0) {
2159 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2160 KM_SLEEP) == 0);
2163 nvlist_free(spa->spa_load_info);
2164 spa->spa_load_info = fnvlist_alloc();
2166 gethrestime(&spa->spa_loaded_ts);
2167 error = spa_load_impl(spa, pool_guid, config, state, type,
2168 mosconfig, &ereport);
2172 * Don't count references from objsets that are already closed
2173 * and are making their way through the eviction process.
2175 spa_evicting_os_wait(spa);
2176 spa->spa_minref = refcount_count(&spa->spa_refcount);
2177 if (error) {
2178 if (error != EEXIST) {
2179 spa->spa_loaded_ts.tv_sec = 0;
2180 spa->spa_loaded_ts.tv_nsec = 0;
2182 if (error != EBADF) {
2183 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2186 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2187 spa->spa_ena = 0;
2189 return (error);
2193 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2194 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2195 * spa's per-vdev ZAP list.
2197 static uint64_t
2198 vdev_count_verify_zaps(vdev_t *vd)
2200 spa_t *spa = vd->vdev_spa;
2201 uint64_t total = 0;
2202 if (vd->vdev_top_zap != 0) {
2203 total++;
2204 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2205 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2207 if (vd->vdev_leaf_zap != 0) {
2208 total++;
2209 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2210 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2213 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2214 total += vdev_count_verify_zaps(vd->vdev_child[i]);
2217 return (total);
2221 * Load an existing storage pool, using the pool's builtin spa_config as a
2222 * source of configuration information.
2224 static int
2225 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2226 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2227 char **ereport)
2229 int error = 0;
2230 nvlist_t *nvroot = NULL;
2231 nvlist_t *label;
2232 vdev_t *rvd;
2233 uberblock_t *ub = &spa->spa_uberblock;
2234 uint64_t children, config_cache_txg = spa->spa_config_txg;
2235 int orig_mode = spa->spa_mode;
2236 int parse;
2237 uint64_t obj;
2238 boolean_t missing_feat_write = B_FALSE;
2241 * If this is an untrusted config, access the pool in read-only mode.
2242 * This prevents things like resilvering recently removed devices.
2244 if (!mosconfig)
2245 spa->spa_mode = FREAD;
2247 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2249 spa->spa_load_state = state;
2251 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2252 return (SET_ERROR(EINVAL));
2254 parse = (type == SPA_IMPORT_EXISTING ?
2255 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2258 * Create "The Godfather" zio to hold all async IOs
2260 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2261 KM_SLEEP);
2262 for (int i = 0; i < max_ncpus; i++) {
2263 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2264 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2265 ZIO_FLAG_GODFATHER);
2269 * Parse the configuration into a vdev tree. We explicitly set the
2270 * value that will be returned by spa_version() since parsing the
2271 * configuration requires knowing the version number.
2273 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2274 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2275 spa_config_exit(spa, SCL_ALL, FTAG);
2277 if (error != 0)
2278 return (error);
2280 ASSERT(spa->spa_root_vdev == rvd);
2281 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2282 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2284 if (type != SPA_IMPORT_ASSEMBLE) {
2285 ASSERT(spa_guid(spa) == pool_guid);
2289 * Try to open all vdevs, loading each label in the process.
2291 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2292 error = vdev_open(rvd);
2293 spa_config_exit(spa, SCL_ALL, FTAG);
2294 if (error != 0)
2295 return (error);
2298 * We need to validate the vdev labels against the configuration that
2299 * we have in hand, which is dependent on the setting of mosconfig. If
2300 * mosconfig is true then we're validating the vdev labels based on
2301 * that config. Otherwise, we're validating against the cached config
2302 * (zpool.cache) that was read when we loaded the zfs module, and then
2303 * later we will recursively call spa_load() and validate against
2304 * the vdev config.
2306 * If we're assembling a new pool that's been split off from an
2307 * existing pool, the labels haven't yet been updated so we skip
2308 * validation for now.
2310 if (type != SPA_IMPORT_ASSEMBLE) {
2311 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2312 error = vdev_validate(rvd, mosconfig);
2313 spa_config_exit(spa, SCL_ALL, FTAG);
2315 if (error != 0)
2316 return (error);
2318 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2319 return (SET_ERROR(ENXIO));
2323 * Find the best uberblock.
2325 vdev_uberblock_load(rvd, ub, &label);
2328 * If we weren't able to find a single valid uberblock, return failure.
2330 if (ub->ub_txg == 0) {
2331 nvlist_free(label);
2332 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2336 * If the pool has an unsupported version we can't open it.
2338 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2339 nvlist_free(label);
2340 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2343 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2344 nvlist_t *features;
2347 * If we weren't able to find what's necessary for reading the
2348 * MOS in the label, return failure.
2350 if (label == NULL || nvlist_lookup_nvlist(label,
2351 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2352 nvlist_free(label);
2353 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2354 ENXIO));
2358 * Update our in-core representation with the definitive values
2359 * from the label.
2361 nvlist_free(spa->spa_label_features);
2362 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2365 nvlist_free(label);
2368 * Look through entries in the label nvlist's features_for_read. If
2369 * there is a feature listed there which we don't understand then we
2370 * cannot open a pool.
2372 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2373 nvlist_t *unsup_feat;
2375 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2378 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2379 NULL); nvp != NULL;
2380 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2381 if (!zfeature_is_supported(nvpair_name(nvp))) {
2382 VERIFY(nvlist_add_string(unsup_feat,
2383 nvpair_name(nvp), "") == 0);
2387 if (!nvlist_empty(unsup_feat)) {
2388 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2389 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2390 nvlist_free(unsup_feat);
2391 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2392 ENOTSUP));
2395 nvlist_free(unsup_feat);
2399 * If the vdev guid sum doesn't match the uberblock, we have an
2400 * incomplete configuration. We first check to see if the pool
2401 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2402 * If it is, defer the vdev_guid_sum check till later so we
2403 * can handle missing vdevs.
2405 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2406 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2407 rvd->vdev_guid_sum != ub->ub_guid_sum)
2408 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2410 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2411 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2412 spa_try_repair(spa, config);
2413 spa_config_exit(spa, SCL_ALL, FTAG);
2414 nvlist_free(spa->spa_config_splitting);
2415 spa->spa_config_splitting = NULL;
2419 * Initialize internal SPA structures.
2421 spa->spa_state = POOL_STATE_ACTIVE;
2422 spa->spa_ubsync = spa->spa_uberblock;
2423 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2424 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2425 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2426 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2427 spa->spa_claim_max_txg = spa->spa_first_txg;
2428 spa->spa_prev_software_version = ub->ub_software_version;
2430 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2431 if (error)
2432 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2433 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2435 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2436 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2438 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2439 boolean_t missing_feat_read = B_FALSE;
2440 nvlist_t *unsup_feat, *enabled_feat;
2442 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2443 &spa->spa_feat_for_read_obj) != 0) {
2444 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2447 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2448 &spa->spa_feat_for_write_obj) != 0) {
2449 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2452 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2453 &spa->spa_feat_desc_obj) != 0) {
2454 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2457 enabled_feat = fnvlist_alloc();
2458 unsup_feat = fnvlist_alloc();
2460 if (!spa_features_check(spa, B_FALSE,
2461 unsup_feat, enabled_feat))
2462 missing_feat_read = B_TRUE;
2464 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2465 if (!spa_features_check(spa, B_TRUE,
2466 unsup_feat, enabled_feat)) {
2467 missing_feat_write = B_TRUE;
2471 fnvlist_add_nvlist(spa->spa_load_info,
2472 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2474 if (!nvlist_empty(unsup_feat)) {
2475 fnvlist_add_nvlist(spa->spa_load_info,
2476 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2479 fnvlist_free(enabled_feat);
2480 fnvlist_free(unsup_feat);
2482 if (!missing_feat_read) {
2483 fnvlist_add_boolean(spa->spa_load_info,
2484 ZPOOL_CONFIG_CAN_RDONLY);
2488 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2489 * twofold: to determine whether the pool is available for
2490 * import in read-write mode and (if it is not) whether the
2491 * pool is available for import in read-only mode. If the pool
2492 * is available for import in read-write mode, it is displayed
2493 * as available in userland; if it is not available for import
2494 * in read-only mode, it is displayed as unavailable in
2495 * userland. If the pool is available for import in read-only
2496 * mode but not read-write mode, it is displayed as unavailable
2497 * in userland with a special note that the pool is actually
2498 * available for open in read-only mode.
2500 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2501 * missing a feature for write, we must first determine whether
2502 * the pool can be opened read-only before returning to
2503 * userland in order to know whether to display the
2504 * abovementioned note.
2506 if (missing_feat_read || (missing_feat_write &&
2507 spa_writeable(spa))) {
2508 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2509 ENOTSUP));
2513 * Load refcounts for ZFS features from disk into an in-memory
2514 * cache during SPA initialization.
2516 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2517 uint64_t refcount;
2519 error = feature_get_refcount_from_disk(spa,
2520 &spa_feature_table[i], &refcount);
2521 if (error == 0) {
2522 spa->spa_feat_refcount_cache[i] = refcount;
2523 } else if (error == ENOTSUP) {
2524 spa->spa_feat_refcount_cache[i] =
2525 SPA_FEATURE_DISABLED;
2526 } else {
2527 return (spa_vdev_err(rvd,
2528 VDEV_AUX_CORRUPT_DATA, EIO));
2533 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2534 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2535 &spa->spa_feat_enabled_txg_obj) != 0)
2536 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2539 spa->spa_is_initializing = B_TRUE;
2540 error = dsl_pool_open(spa->spa_dsl_pool);
2541 spa->spa_is_initializing = B_FALSE;
2542 if (error != 0)
2543 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2545 if (!mosconfig) {
2546 uint64_t hostid;
2547 nvlist_t *policy = NULL, *nvconfig;
2549 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2550 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2552 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2553 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2554 char *hostname;
2555 unsigned long myhostid = 0;
2557 VERIFY(nvlist_lookup_string(nvconfig,
2558 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2560 #ifdef _KERNEL
2561 myhostid = zone_get_hostid(NULL);
2562 #else /* _KERNEL */
2564 * We're emulating the system's hostid in userland, so
2565 * we can't use zone_get_hostid().
2567 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2568 #endif /* _KERNEL */
2569 if (hostid != 0 && myhostid != 0 &&
2570 hostid != myhostid) {
2571 nvlist_free(nvconfig);
2572 cmn_err(CE_WARN, "pool '%s' could not be "
2573 "loaded as it was last accessed by "
2574 "another system (host: %s hostid: 0x%lx). "
2575 "See: http://illumos.org/msg/ZFS-8000-EY",
2576 spa_name(spa), hostname,
2577 (unsigned long)hostid);
2578 return (SET_ERROR(EBADF));
2581 if (nvlist_lookup_nvlist(spa->spa_config,
2582 ZPOOL_REWIND_POLICY, &policy) == 0)
2583 VERIFY(nvlist_add_nvlist(nvconfig,
2584 ZPOOL_REWIND_POLICY, policy) == 0);
2586 spa_config_set(spa, nvconfig);
2587 spa_unload(spa);
2588 spa_deactivate(spa);
2589 spa_activate(spa, orig_mode);
2591 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2594 /* Grab the secret checksum salt from the MOS. */
2595 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2596 DMU_POOL_CHECKSUM_SALT, 1,
2597 sizeof (spa->spa_cksum_salt.zcs_bytes),
2598 spa->spa_cksum_salt.zcs_bytes);
2599 if (error == ENOENT) {
2600 /* Generate a new salt for subsequent use */
2601 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2602 sizeof (spa->spa_cksum_salt.zcs_bytes));
2603 } else if (error != 0) {
2604 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2607 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2608 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2609 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2610 if (error != 0)
2611 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2614 * Load the bit that tells us to use the new accounting function
2615 * (raid-z deflation). If we have an older pool, this will not
2616 * be present.
2618 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2619 if (error != 0 && error != ENOENT)
2620 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2622 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2623 &spa->spa_creation_version);
2624 if (error != 0 && error != ENOENT)
2625 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2628 * Load the persistent error log. If we have an older pool, this will
2629 * not be present.
2631 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2632 if (error != 0 && error != ENOENT)
2633 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2635 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2636 &spa->spa_errlog_scrub);
2637 if (error != 0 && error != ENOENT)
2638 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2641 * Load the history object. If we have an older pool, this
2642 * will not be present.
2644 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2645 if (error != 0 && error != ENOENT)
2646 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2649 * Load the per-vdev ZAP map. If we have an older pool, this will not
2650 * be present; in this case, defer its creation to a later time to
2651 * avoid dirtying the MOS this early / out of sync context. See
2652 * spa_sync_config_object.
2655 /* The sentinel is only available in the MOS config. */
2656 nvlist_t *mos_config;
2657 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
2658 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2660 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
2661 &spa->spa_all_vdev_zaps);
2663 if (error == ENOENT) {
2664 VERIFY(!nvlist_exists(mos_config,
2665 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
2666 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
2667 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2668 } else if (error != 0) {
2669 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2670 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
2672 * An older version of ZFS overwrote the sentinel value, so
2673 * we have orphaned per-vdev ZAPs in the MOS. Defer their
2674 * destruction to later; see spa_sync_config_object.
2676 spa->spa_avz_action = AVZ_ACTION_DESTROY;
2678 * We're assuming that no vdevs have had their ZAPs created
2679 * before this. Better be sure of it.
2681 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2683 nvlist_free(mos_config);
2686 * If we're assembling the pool from the split-off vdevs of
2687 * an existing pool, we don't want to attach the spares & cache
2688 * devices.
2692 * Load any hot spares for this pool.
2694 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2695 if (error != 0 && error != ENOENT)
2696 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2697 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2698 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2699 if (load_nvlist(spa, spa->spa_spares.sav_object,
2700 &spa->spa_spares.sav_config) != 0)
2701 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2703 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2704 spa_load_spares(spa);
2705 spa_config_exit(spa, SCL_ALL, FTAG);
2706 } else if (error == 0) {
2707 spa->spa_spares.sav_sync = B_TRUE;
2711 * Load any level 2 ARC devices for this pool.
2713 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2714 &spa->spa_l2cache.sav_object);
2715 if (error != 0 && error != ENOENT)
2716 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2717 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2718 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2719 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2720 &spa->spa_l2cache.sav_config) != 0)
2721 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2723 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2724 spa_load_l2cache(spa);
2725 spa_config_exit(spa, SCL_ALL, FTAG);
2726 } else if (error == 0) {
2727 spa->spa_l2cache.sav_sync = B_TRUE;
2730 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2732 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2733 if (error && error != ENOENT)
2734 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2736 if (error == 0) {
2737 uint64_t autoreplace;
2739 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2740 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2741 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2742 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2743 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2744 spa_prop_find(spa, ZPOOL_PROP_BOOTSIZE, &spa->spa_bootsize);
2745 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2746 &spa->spa_dedup_ditto);
2748 spa->spa_autoreplace = (autoreplace != 0);
2752 * If the 'autoreplace' property is set, then post a resource notifying
2753 * the ZFS DE that it should not issue any faults for unopenable
2754 * devices. We also iterate over the vdevs, and post a sysevent for any
2755 * unopenable vdevs so that the normal autoreplace handler can take
2756 * over.
2758 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2759 spa_check_removed(spa->spa_root_vdev);
2761 * For the import case, this is done in spa_import(), because
2762 * at this point we're using the spare definitions from
2763 * the MOS config, not necessarily from the userland config.
2765 if (state != SPA_LOAD_IMPORT) {
2766 spa_aux_check_removed(&spa->spa_spares);
2767 spa_aux_check_removed(&spa->spa_l2cache);
2772 * Load the vdev state for all toplevel vdevs.
2774 vdev_load(rvd);
2777 * Propagate the leaf DTLs we just loaded all the way up the tree.
2779 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2780 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2781 spa_config_exit(spa, SCL_ALL, FTAG);
2784 * Load the DDTs (dedup tables).
2786 error = ddt_load(spa);
2787 if (error != 0)
2788 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2790 spa_update_dspace(spa);
2793 * Validate the config, using the MOS config to fill in any
2794 * information which might be missing. If we fail to validate
2795 * the config then declare the pool unfit for use. If we're
2796 * assembling a pool from a split, the log is not transferred
2797 * over.
2799 if (type != SPA_IMPORT_ASSEMBLE) {
2800 nvlist_t *nvconfig;
2802 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2803 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2805 if (!spa_config_valid(spa, nvconfig)) {
2806 nvlist_free(nvconfig);
2807 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2808 ENXIO));
2810 nvlist_free(nvconfig);
2813 * Now that we've validated the config, check the state of the
2814 * root vdev. If it can't be opened, it indicates one or
2815 * more toplevel vdevs are faulted.
2817 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2818 return (SET_ERROR(ENXIO));
2820 if (spa_writeable(spa) && spa_check_logs(spa)) {
2821 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2822 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2826 if (missing_feat_write) {
2827 ASSERT(state == SPA_LOAD_TRYIMPORT);
2830 * At this point, we know that we can open the pool in
2831 * read-only mode but not read-write mode. We now have enough
2832 * information and can return to userland.
2834 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2838 * We've successfully opened the pool, verify that we're ready
2839 * to start pushing transactions.
2841 if (state != SPA_LOAD_TRYIMPORT) {
2842 if (error = spa_load_verify(spa))
2843 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2844 error));
2847 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2848 spa->spa_load_max_txg == UINT64_MAX)) {
2849 dmu_tx_t *tx;
2850 int need_update = B_FALSE;
2851 dsl_pool_t *dp = spa_get_dsl(spa);
2853 ASSERT(state != SPA_LOAD_TRYIMPORT);
2856 * Claim log blocks that haven't been committed yet.
2857 * This must all happen in a single txg.
2858 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2859 * invoked from zil_claim_log_block()'s i/o done callback.
2860 * Price of rollback is that we abandon the log.
2862 spa->spa_claiming = B_TRUE;
2864 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2865 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2866 zil_claim, tx, DS_FIND_CHILDREN);
2867 dmu_tx_commit(tx);
2869 spa->spa_claiming = B_FALSE;
2871 spa_set_log_state(spa, SPA_LOG_GOOD);
2872 spa->spa_sync_on = B_TRUE;
2873 txg_sync_start(spa->spa_dsl_pool);
2876 * Wait for all claims to sync. We sync up to the highest
2877 * claimed log block birth time so that claimed log blocks
2878 * don't appear to be from the future. spa_claim_max_txg
2879 * will have been set for us by either zil_check_log_chain()
2880 * (invoked from spa_check_logs()) or zil_claim() above.
2882 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2885 * If the config cache is stale, or we have uninitialized
2886 * metaslabs (see spa_vdev_add()), then update the config.
2888 * If this is a verbatim import, trust the current
2889 * in-core spa_config and update the disk labels.
2891 if (config_cache_txg != spa->spa_config_txg ||
2892 state == SPA_LOAD_IMPORT ||
2893 state == SPA_LOAD_RECOVER ||
2894 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2895 need_update = B_TRUE;
2897 for (int c = 0; c < rvd->vdev_children; c++)
2898 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2899 need_update = B_TRUE;
2902 * Update the config cache asychronously in case we're the
2903 * root pool, in which case the config cache isn't writable yet.
2905 if (need_update)
2906 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2909 * Check all DTLs to see if anything needs resilvering.
2911 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2912 vdev_resilver_needed(rvd, NULL, NULL))
2913 spa_async_request(spa, SPA_ASYNC_RESILVER);
2916 * Log the fact that we booted up (so that we can detect if
2917 * we rebooted in the middle of an operation).
2919 spa_history_log_version(spa, "open");
2922 * Delete any inconsistent datasets.
2924 (void) dmu_objset_find(spa_name(spa),
2925 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2928 * Clean up any stale temporary dataset userrefs.
2930 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2933 return (0);
2936 static int
2937 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2939 int mode = spa->spa_mode;
2941 spa_unload(spa);
2942 spa_deactivate(spa);
2944 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2946 spa_activate(spa, mode);
2947 spa_async_suspend(spa);
2949 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2953 * If spa_load() fails this function will try loading prior txg's. If
2954 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2955 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2956 * function will not rewind the pool and will return the same error as
2957 * spa_load().
2959 static int
2960 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2961 uint64_t max_request, int rewind_flags)
2963 nvlist_t *loadinfo = NULL;
2964 nvlist_t *config = NULL;
2965 int load_error, rewind_error;
2966 uint64_t safe_rewind_txg;
2967 uint64_t min_txg;
2969 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2970 spa->spa_load_max_txg = spa->spa_load_txg;
2971 spa_set_log_state(spa, SPA_LOG_CLEAR);
2972 } else {
2973 spa->spa_load_max_txg = max_request;
2974 if (max_request != UINT64_MAX)
2975 spa->spa_extreme_rewind = B_TRUE;
2978 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2979 mosconfig);
2980 if (load_error == 0)
2981 return (0);
2983 if (spa->spa_root_vdev != NULL)
2984 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2986 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2987 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2989 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2990 nvlist_free(config);
2991 return (load_error);
2994 if (state == SPA_LOAD_RECOVER) {
2995 /* Price of rolling back is discarding txgs, including log */
2996 spa_set_log_state(spa, SPA_LOG_CLEAR);
2997 } else {
2999 * If we aren't rolling back save the load info from our first
3000 * import attempt so that we can restore it after attempting
3001 * to rewind.
3003 loadinfo = spa->spa_load_info;
3004 spa->spa_load_info = fnvlist_alloc();
3007 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
3008 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
3009 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
3010 TXG_INITIAL : safe_rewind_txg;
3013 * Continue as long as we're finding errors, we're still within
3014 * the acceptable rewind range, and we're still finding uberblocks
3016 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3017 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3018 if (spa->spa_load_max_txg < safe_rewind_txg)
3019 spa->spa_extreme_rewind = B_TRUE;
3020 rewind_error = spa_load_retry(spa, state, mosconfig);
3023 spa->spa_extreme_rewind = B_FALSE;
3024 spa->spa_load_max_txg = UINT64_MAX;
3026 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3027 spa_config_set(spa, config);
3028 else
3029 nvlist_free(config);
3031 if (state == SPA_LOAD_RECOVER) {
3032 ASSERT3P(loadinfo, ==, NULL);
3033 return (rewind_error);
3034 } else {
3035 /* Store the rewind info as part of the initial load info */
3036 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3037 spa->spa_load_info);
3039 /* Restore the initial load info */
3040 fnvlist_free(spa->spa_load_info);
3041 spa->spa_load_info = loadinfo;
3043 return (load_error);
3048 * Pool Open/Import
3050 * The import case is identical to an open except that the configuration is sent
3051 * down from userland, instead of grabbed from the configuration cache. For the
3052 * case of an open, the pool configuration will exist in the
3053 * POOL_STATE_UNINITIALIZED state.
3055 * The stats information (gen/count/ustats) is used to gather vdev statistics at
3056 * the same time open the pool, without having to keep around the spa_t in some
3057 * ambiguous state.
3059 static int
3060 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3061 nvlist_t **config)
3063 spa_t *spa;
3064 spa_load_state_t state = SPA_LOAD_OPEN;
3065 int error;
3066 int locked = B_FALSE;
3068 *spapp = NULL;
3071 * As disgusting as this is, we need to support recursive calls to this
3072 * function because dsl_dir_open() is called during spa_load(), and ends
3073 * up calling spa_open() again. The real fix is to figure out how to
3074 * avoid dsl_dir_open() calling this in the first place.
3076 if (mutex_owner(&spa_namespace_lock) != curthread) {
3077 mutex_enter(&spa_namespace_lock);
3078 locked = B_TRUE;
3081 if ((spa = spa_lookup(pool)) == NULL) {
3082 if (locked)
3083 mutex_exit(&spa_namespace_lock);
3084 return (SET_ERROR(ENOENT));
3087 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3088 zpool_rewind_policy_t policy;
3090 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3091 &policy);
3092 if (policy.zrp_request & ZPOOL_DO_REWIND)
3093 state = SPA_LOAD_RECOVER;
3095 spa_activate(spa, spa_mode_global);
3097 if (state != SPA_LOAD_RECOVER)
3098 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3100 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3101 policy.zrp_request);
3103 if (error == EBADF) {
3105 * If vdev_validate() returns failure (indicated by
3106 * EBADF), it indicates that one of the vdevs indicates
3107 * that the pool has been exported or destroyed. If
3108 * this is the case, the config cache is out of sync and
3109 * we should remove the pool from the namespace.
3111 spa_unload(spa);
3112 spa_deactivate(spa);
3113 spa_config_sync(spa, B_TRUE, B_TRUE);
3114 spa_remove(spa);
3115 if (locked)
3116 mutex_exit(&spa_namespace_lock);
3117 return (SET_ERROR(ENOENT));
3120 if (error) {
3122 * We can't open the pool, but we still have useful
3123 * information: the state of each vdev after the
3124 * attempted vdev_open(). Return this to the user.
3126 if (config != NULL && spa->spa_config) {
3127 VERIFY(nvlist_dup(spa->spa_config, config,
3128 KM_SLEEP) == 0);
3129 VERIFY(nvlist_add_nvlist(*config,
3130 ZPOOL_CONFIG_LOAD_INFO,
3131 spa->spa_load_info) == 0);
3133 spa_unload(spa);
3134 spa_deactivate(spa);
3135 spa->spa_last_open_failed = error;
3136 if (locked)
3137 mutex_exit(&spa_namespace_lock);
3138 *spapp = NULL;
3139 return (error);
3143 spa_open_ref(spa, tag);
3145 if (config != NULL)
3146 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3149 * If we've recovered the pool, pass back any information we
3150 * gathered while doing the load.
3152 if (state == SPA_LOAD_RECOVER) {
3153 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3154 spa->spa_load_info) == 0);
3157 if (locked) {
3158 spa->spa_last_open_failed = 0;
3159 spa->spa_last_ubsync_txg = 0;
3160 spa->spa_load_txg = 0;
3161 mutex_exit(&spa_namespace_lock);
3164 *spapp = spa;
3166 return (0);
3170 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3171 nvlist_t **config)
3173 return (spa_open_common(name, spapp, tag, policy, config));
3177 spa_open(const char *name, spa_t **spapp, void *tag)
3179 return (spa_open_common(name, spapp, tag, NULL, NULL));
3183 * Lookup the given spa_t, incrementing the inject count in the process,
3184 * preventing it from being exported or destroyed.
3186 spa_t *
3187 spa_inject_addref(char *name)
3189 spa_t *spa;
3191 mutex_enter(&spa_namespace_lock);
3192 if ((spa = spa_lookup(name)) == NULL) {
3193 mutex_exit(&spa_namespace_lock);
3194 return (NULL);
3196 spa->spa_inject_ref++;
3197 mutex_exit(&spa_namespace_lock);
3199 return (spa);
3202 void
3203 spa_inject_delref(spa_t *spa)
3205 mutex_enter(&spa_namespace_lock);
3206 spa->spa_inject_ref--;
3207 mutex_exit(&spa_namespace_lock);
3211 * Add spares device information to the nvlist.
3213 static void
3214 spa_add_spares(spa_t *spa, nvlist_t *config)
3216 nvlist_t **spares;
3217 uint_t i, nspares;
3218 nvlist_t *nvroot;
3219 uint64_t guid;
3220 vdev_stat_t *vs;
3221 uint_t vsc;
3222 uint64_t pool;
3224 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3226 if (spa->spa_spares.sav_count == 0)
3227 return;
3229 VERIFY(nvlist_lookup_nvlist(config,
3230 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3231 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3232 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3233 if (nspares != 0) {
3234 VERIFY(nvlist_add_nvlist_array(nvroot,
3235 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3236 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3237 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3240 * Go through and find any spares which have since been
3241 * repurposed as an active spare. If this is the case, update
3242 * their status appropriately.
3244 for (i = 0; i < nspares; i++) {
3245 VERIFY(nvlist_lookup_uint64(spares[i],
3246 ZPOOL_CONFIG_GUID, &guid) == 0);
3247 if (spa_spare_exists(guid, &pool, NULL) &&
3248 pool != 0ULL) {
3249 VERIFY(nvlist_lookup_uint64_array(
3250 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3251 (uint64_t **)&vs, &vsc) == 0);
3252 vs->vs_state = VDEV_STATE_CANT_OPEN;
3253 vs->vs_aux = VDEV_AUX_SPARED;
3260 * Add l2cache device information to the nvlist, including vdev stats.
3262 static void
3263 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3265 nvlist_t **l2cache;
3266 uint_t i, j, nl2cache;
3267 nvlist_t *nvroot;
3268 uint64_t guid;
3269 vdev_t *vd;
3270 vdev_stat_t *vs;
3271 uint_t vsc;
3273 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3275 if (spa->spa_l2cache.sav_count == 0)
3276 return;
3278 VERIFY(nvlist_lookup_nvlist(config,
3279 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3280 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3281 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3282 if (nl2cache != 0) {
3283 VERIFY(nvlist_add_nvlist_array(nvroot,
3284 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3285 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3286 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3289 * Update level 2 cache device stats.
3292 for (i = 0; i < nl2cache; i++) {
3293 VERIFY(nvlist_lookup_uint64(l2cache[i],
3294 ZPOOL_CONFIG_GUID, &guid) == 0);
3296 vd = NULL;
3297 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3298 if (guid ==
3299 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3300 vd = spa->spa_l2cache.sav_vdevs[j];
3301 break;
3304 ASSERT(vd != NULL);
3306 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3307 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3308 == 0);
3309 vdev_get_stats(vd, vs);
3314 static void
3315 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3317 nvlist_t *features;
3318 zap_cursor_t zc;
3319 zap_attribute_t za;
3321 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3322 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3324 if (spa->spa_feat_for_read_obj != 0) {
3325 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3326 spa->spa_feat_for_read_obj);
3327 zap_cursor_retrieve(&zc, &za) == 0;
3328 zap_cursor_advance(&zc)) {
3329 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3330 za.za_num_integers == 1);
3331 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3332 za.za_first_integer));
3334 zap_cursor_fini(&zc);
3337 if (spa->spa_feat_for_write_obj != 0) {
3338 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3339 spa->spa_feat_for_write_obj);
3340 zap_cursor_retrieve(&zc, &za) == 0;
3341 zap_cursor_advance(&zc)) {
3342 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3343 za.za_num_integers == 1);
3344 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3345 za.za_first_integer));
3347 zap_cursor_fini(&zc);
3350 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3351 features) == 0);
3352 nvlist_free(features);
3356 spa_get_stats(const char *name, nvlist_t **config,
3357 char *altroot, size_t buflen)
3359 int error;
3360 spa_t *spa;
3362 *config = NULL;
3363 error = spa_open_common(name, &spa, FTAG, NULL, config);
3365 if (spa != NULL) {
3367 * This still leaves a window of inconsistency where the spares
3368 * or l2cache devices could change and the config would be
3369 * self-inconsistent.
3371 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3373 if (*config != NULL) {
3374 uint64_t loadtimes[2];
3376 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3377 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3378 VERIFY(nvlist_add_uint64_array(*config,
3379 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3381 VERIFY(nvlist_add_uint64(*config,
3382 ZPOOL_CONFIG_ERRCOUNT,
3383 spa_get_errlog_size(spa)) == 0);
3385 if (spa_suspended(spa))
3386 VERIFY(nvlist_add_uint64(*config,
3387 ZPOOL_CONFIG_SUSPENDED,
3388 spa->spa_failmode) == 0);
3390 spa_add_spares(spa, *config);
3391 spa_add_l2cache(spa, *config);
3392 spa_add_feature_stats(spa, *config);
3397 * We want to get the alternate root even for faulted pools, so we cheat
3398 * and call spa_lookup() directly.
3400 if (altroot) {
3401 if (spa == NULL) {
3402 mutex_enter(&spa_namespace_lock);
3403 spa = spa_lookup(name);
3404 if (spa)
3405 spa_altroot(spa, altroot, buflen);
3406 else
3407 altroot[0] = '\0';
3408 spa = NULL;
3409 mutex_exit(&spa_namespace_lock);
3410 } else {
3411 spa_altroot(spa, altroot, buflen);
3415 if (spa != NULL) {
3416 spa_config_exit(spa, SCL_CONFIG, FTAG);
3417 spa_close(spa, FTAG);
3420 return (error);
3424 * Validate that the auxiliary device array is well formed. We must have an
3425 * array of nvlists, each which describes a valid leaf vdev. If this is an
3426 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3427 * specified, as long as they are well-formed.
3429 static int
3430 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3431 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3432 vdev_labeltype_t label)
3434 nvlist_t **dev;
3435 uint_t i, ndev;
3436 vdev_t *vd;
3437 int error;
3439 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3442 * It's acceptable to have no devs specified.
3444 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3445 return (0);
3447 if (ndev == 0)
3448 return (SET_ERROR(EINVAL));
3451 * Make sure the pool is formatted with a version that supports this
3452 * device type.
3454 if (spa_version(spa) < version)
3455 return (SET_ERROR(ENOTSUP));
3458 * Set the pending device list so we correctly handle device in-use
3459 * checking.
3461 sav->sav_pending = dev;
3462 sav->sav_npending = ndev;
3464 for (i = 0; i < ndev; i++) {
3465 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3466 mode)) != 0)
3467 goto out;
3469 if (!vd->vdev_ops->vdev_op_leaf) {
3470 vdev_free(vd);
3471 error = SET_ERROR(EINVAL);
3472 goto out;
3476 * The L2ARC currently only supports disk devices in
3477 * kernel context. For user-level testing, we allow it.
3479 #ifdef _KERNEL
3480 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3481 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3482 error = SET_ERROR(ENOTBLK);
3483 vdev_free(vd);
3484 goto out;
3486 #endif
3487 vd->vdev_top = vd;
3489 if ((error = vdev_open(vd)) == 0 &&
3490 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3491 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3492 vd->vdev_guid) == 0);
3495 vdev_free(vd);
3497 if (error &&
3498 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3499 goto out;
3500 else
3501 error = 0;
3504 out:
3505 sav->sav_pending = NULL;
3506 sav->sav_npending = 0;
3507 return (error);
3510 static int
3511 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3513 int error;
3515 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3517 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3518 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3519 VDEV_LABEL_SPARE)) != 0) {
3520 return (error);
3523 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3524 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3525 VDEV_LABEL_L2CACHE));
3528 static void
3529 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3530 const char *config)
3532 int i;
3534 if (sav->sav_config != NULL) {
3535 nvlist_t **olddevs;
3536 uint_t oldndevs;
3537 nvlist_t **newdevs;
3540 * Generate new dev list by concatentating with the
3541 * current dev list.
3543 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3544 &olddevs, &oldndevs) == 0);
3546 newdevs = kmem_alloc(sizeof (void *) *
3547 (ndevs + oldndevs), KM_SLEEP);
3548 for (i = 0; i < oldndevs; i++)
3549 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3550 KM_SLEEP) == 0);
3551 for (i = 0; i < ndevs; i++)
3552 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3553 KM_SLEEP) == 0);
3555 VERIFY(nvlist_remove(sav->sav_config, config,
3556 DATA_TYPE_NVLIST_ARRAY) == 0);
3558 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3559 config, newdevs, ndevs + oldndevs) == 0);
3560 for (i = 0; i < oldndevs + ndevs; i++)
3561 nvlist_free(newdevs[i]);
3562 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3563 } else {
3565 * Generate a new dev list.
3567 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3568 KM_SLEEP) == 0);
3569 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3570 devs, ndevs) == 0);
3575 * Stop and drop level 2 ARC devices
3577 void
3578 spa_l2cache_drop(spa_t *spa)
3580 vdev_t *vd;
3581 int i;
3582 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3584 for (i = 0; i < sav->sav_count; i++) {
3585 uint64_t pool;
3587 vd = sav->sav_vdevs[i];
3588 ASSERT(vd != NULL);
3590 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3591 pool != 0ULL && l2arc_vdev_present(vd))
3592 l2arc_remove_vdev(vd);
3597 * Pool Creation
3600 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3601 nvlist_t *zplprops)
3603 spa_t *spa;
3604 char *altroot = NULL;
3605 vdev_t *rvd;
3606 dsl_pool_t *dp;
3607 dmu_tx_t *tx;
3608 int error = 0;
3609 uint64_t txg = TXG_INITIAL;
3610 nvlist_t **spares, **l2cache;
3611 uint_t nspares, nl2cache;
3612 uint64_t version, obj;
3613 boolean_t has_features;
3616 * If this pool already exists, return failure.
3618 mutex_enter(&spa_namespace_lock);
3619 if (spa_lookup(pool) != NULL) {
3620 mutex_exit(&spa_namespace_lock);
3621 return (SET_ERROR(EEXIST));
3625 * Allocate a new spa_t structure.
3627 (void) nvlist_lookup_string(props,
3628 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3629 spa = spa_add(pool, NULL, altroot);
3630 spa_activate(spa, spa_mode_global);
3632 if (props && (error = spa_prop_validate(spa, props))) {
3633 spa_deactivate(spa);
3634 spa_remove(spa);
3635 mutex_exit(&spa_namespace_lock);
3636 return (error);
3639 has_features = B_FALSE;
3640 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3641 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3642 if (zpool_prop_feature(nvpair_name(elem)))
3643 has_features = B_TRUE;
3646 if (has_features || nvlist_lookup_uint64(props,
3647 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3648 version = SPA_VERSION;
3650 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3652 spa->spa_first_txg = txg;
3653 spa->spa_uberblock.ub_txg = txg - 1;
3654 spa->spa_uberblock.ub_version = version;
3655 spa->spa_ubsync = spa->spa_uberblock;
3656 spa->spa_load_state = SPA_LOAD_CREATE;
3659 * Create "The Godfather" zio to hold all async IOs
3661 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3662 KM_SLEEP);
3663 for (int i = 0; i < max_ncpus; i++) {
3664 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3665 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3666 ZIO_FLAG_GODFATHER);
3670 * Create the root vdev.
3672 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3674 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3676 ASSERT(error != 0 || rvd != NULL);
3677 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3679 if (error == 0 && !zfs_allocatable_devs(nvroot))
3680 error = SET_ERROR(EINVAL);
3682 if (error == 0 &&
3683 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3684 (error = spa_validate_aux(spa, nvroot, txg,
3685 VDEV_ALLOC_ADD)) == 0) {
3686 for (int c = 0; c < rvd->vdev_children; c++) {
3687 vdev_metaslab_set_size(rvd->vdev_child[c]);
3688 vdev_expand(rvd->vdev_child[c], txg);
3692 spa_config_exit(spa, SCL_ALL, FTAG);
3694 if (error != 0) {
3695 spa_unload(spa);
3696 spa_deactivate(spa);
3697 spa_remove(spa);
3698 mutex_exit(&spa_namespace_lock);
3699 return (error);
3703 * Get the list of spares, if specified.
3705 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3706 &spares, &nspares) == 0) {
3707 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3708 KM_SLEEP) == 0);
3709 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3710 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3711 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3712 spa_load_spares(spa);
3713 spa_config_exit(spa, SCL_ALL, FTAG);
3714 spa->spa_spares.sav_sync = B_TRUE;
3718 * Get the list of level 2 cache devices, if specified.
3720 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3721 &l2cache, &nl2cache) == 0) {
3722 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3723 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3724 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3725 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3726 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3727 spa_load_l2cache(spa);
3728 spa_config_exit(spa, SCL_ALL, FTAG);
3729 spa->spa_l2cache.sav_sync = B_TRUE;
3732 spa->spa_is_initializing = B_TRUE;
3733 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3734 spa->spa_meta_objset = dp->dp_meta_objset;
3735 spa->spa_is_initializing = B_FALSE;
3738 * Create DDTs (dedup tables).
3740 ddt_create(spa);
3742 spa_update_dspace(spa);
3744 tx = dmu_tx_create_assigned(dp, txg);
3747 * Create the pool config object.
3749 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3750 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3751 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3753 if (zap_add(spa->spa_meta_objset,
3754 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3755 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3756 cmn_err(CE_PANIC, "failed to add pool config");
3759 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3760 spa_feature_create_zap_objects(spa, tx);
3762 if (zap_add(spa->spa_meta_objset,
3763 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3764 sizeof (uint64_t), 1, &version, tx) != 0) {
3765 cmn_err(CE_PANIC, "failed to add pool version");
3768 /* Newly created pools with the right version are always deflated. */
3769 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3770 spa->spa_deflate = TRUE;
3771 if (zap_add(spa->spa_meta_objset,
3772 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3773 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3774 cmn_err(CE_PANIC, "failed to add deflate");
3779 * Create the deferred-free bpobj. Turn off compression
3780 * because sync-to-convergence takes longer if the blocksize
3781 * keeps changing.
3783 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3784 dmu_object_set_compress(spa->spa_meta_objset, obj,
3785 ZIO_COMPRESS_OFF, tx);
3786 if (zap_add(spa->spa_meta_objset,
3787 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3788 sizeof (uint64_t), 1, &obj, tx) != 0) {
3789 cmn_err(CE_PANIC, "failed to add bpobj");
3791 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3792 spa->spa_meta_objset, obj));
3795 * Create the pool's history object.
3797 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3798 spa_history_create_obj(spa, tx);
3801 * Generate some random noise for salted checksums to operate on.
3803 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3804 sizeof (spa->spa_cksum_salt.zcs_bytes));
3807 * Set pool properties.
3809 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3810 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3811 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3812 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3814 if (props != NULL) {
3815 spa_configfile_set(spa, props, B_FALSE);
3816 spa_sync_props(props, tx);
3819 dmu_tx_commit(tx);
3821 spa->spa_sync_on = B_TRUE;
3822 txg_sync_start(spa->spa_dsl_pool);
3825 * We explicitly wait for the first transaction to complete so that our
3826 * bean counters are appropriately updated.
3828 txg_wait_synced(spa->spa_dsl_pool, txg);
3830 spa_config_sync(spa, B_FALSE, B_TRUE);
3831 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
3833 spa_history_log_version(spa, "create");
3836 * Don't count references from objsets that are already closed
3837 * and are making their way through the eviction process.
3839 spa_evicting_os_wait(spa);
3840 spa->spa_minref = refcount_count(&spa->spa_refcount);
3841 spa->spa_load_state = SPA_LOAD_NONE;
3843 mutex_exit(&spa_namespace_lock);
3845 return (0);
3848 #ifdef _KERNEL
3850 * Get the root pool information from the root disk, then import the root pool
3851 * during the system boot up time.
3853 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3855 static nvlist_t *
3856 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3858 nvlist_t *config;
3859 nvlist_t *nvtop, *nvroot;
3860 uint64_t pgid;
3862 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3863 return (NULL);
3866 * Add this top-level vdev to the child array.
3868 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3869 &nvtop) == 0);
3870 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3871 &pgid) == 0);
3872 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3875 * Put this pool's top-level vdevs into a root vdev.
3877 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3878 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3879 VDEV_TYPE_ROOT) == 0);
3880 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3881 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3882 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3883 &nvtop, 1) == 0);
3886 * Replace the existing vdev_tree with the new root vdev in
3887 * this pool's configuration (remove the old, add the new).
3889 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3890 nvlist_free(nvroot);
3891 return (config);
3895 * Walk the vdev tree and see if we can find a device with "better"
3896 * configuration. A configuration is "better" if the label on that
3897 * device has a more recent txg.
3899 static void
3900 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3902 for (int c = 0; c < vd->vdev_children; c++)
3903 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3905 if (vd->vdev_ops->vdev_op_leaf) {
3906 nvlist_t *label;
3907 uint64_t label_txg;
3909 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3910 &label) != 0)
3911 return;
3913 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3914 &label_txg) == 0);
3917 * Do we have a better boot device?
3919 if (label_txg > *txg) {
3920 *txg = label_txg;
3921 *avd = vd;
3923 nvlist_free(label);
3928 * Import a root pool.
3930 * For x86. devpath_list will consist of devid and/or physpath name of
3931 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3932 * The GRUB "findroot" command will return the vdev we should boot.
3934 * For Sparc, devpath_list consists the physpath name of the booting device
3935 * no matter the rootpool is a single device pool or a mirrored pool.
3936 * e.g.
3937 * "/pci@1f,0/ide@d/disk@0,0:a"
3940 spa_import_rootpool(char *devpath, char *devid)
3942 spa_t *spa;
3943 vdev_t *rvd, *bvd, *avd = NULL;
3944 nvlist_t *config, *nvtop;
3945 uint64_t guid, txg;
3946 char *pname;
3947 int error;
3950 * Read the label from the boot device and generate a configuration.
3952 config = spa_generate_rootconf(devpath, devid, &guid);
3953 #if defined(_OBP) && defined(_KERNEL)
3954 if (config == NULL) {
3955 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3956 /* iscsi boot */
3957 get_iscsi_bootpath_phy(devpath);
3958 config = spa_generate_rootconf(devpath, devid, &guid);
3961 #endif
3962 if (config == NULL) {
3963 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3964 devpath);
3965 return (SET_ERROR(EIO));
3968 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3969 &pname) == 0);
3970 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3972 mutex_enter(&spa_namespace_lock);
3973 if ((spa = spa_lookup(pname)) != NULL) {
3975 * Remove the existing root pool from the namespace so that we
3976 * can replace it with the correct config we just read in.
3978 spa_remove(spa);
3981 spa = spa_add(pname, config, NULL);
3982 spa->spa_is_root = B_TRUE;
3983 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3986 * Build up a vdev tree based on the boot device's label config.
3988 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3989 &nvtop) == 0);
3990 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3991 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3992 VDEV_ALLOC_ROOTPOOL);
3993 spa_config_exit(spa, SCL_ALL, FTAG);
3994 if (error) {
3995 mutex_exit(&spa_namespace_lock);
3996 nvlist_free(config);
3997 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3998 pname);
3999 return (error);
4003 * Get the boot vdev.
4005 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
4006 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
4007 (u_longlong_t)guid);
4008 error = SET_ERROR(ENOENT);
4009 goto out;
4013 * Determine if there is a better boot device.
4015 avd = bvd;
4016 spa_alt_rootvdev(rvd, &avd, &txg);
4017 if (avd != bvd) {
4018 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4019 "try booting from '%s'", avd->vdev_path);
4020 error = SET_ERROR(EINVAL);
4021 goto out;
4025 * If the boot device is part of a spare vdev then ensure that
4026 * we're booting off the active spare.
4028 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4029 !bvd->vdev_isspare) {
4030 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4031 "try booting from '%s'",
4032 bvd->vdev_parent->
4033 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4034 error = SET_ERROR(EINVAL);
4035 goto out;
4038 error = 0;
4039 out:
4040 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4041 vdev_free(rvd);
4042 spa_config_exit(spa, SCL_ALL, FTAG);
4043 mutex_exit(&spa_namespace_lock);
4045 nvlist_free(config);
4046 return (error);
4049 #endif
4052 * Import a non-root pool into the system.
4055 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4057 spa_t *spa;
4058 char *altroot = NULL;
4059 spa_load_state_t state = SPA_LOAD_IMPORT;
4060 zpool_rewind_policy_t policy;
4061 uint64_t mode = spa_mode_global;
4062 uint64_t readonly = B_FALSE;
4063 int error;
4064 nvlist_t *nvroot;
4065 nvlist_t **spares, **l2cache;
4066 uint_t nspares, nl2cache;
4069 * If a pool with this name exists, return failure.
4071 mutex_enter(&spa_namespace_lock);
4072 if (spa_lookup(pool) != NULL) {
4073 mutex_exit(&spa_namespace_lock);
4074 return (SET_ERROR(EEXIST));
4078 * Create and initialize the spa structure.
4080 (void) nvlist_lookup_string(props,
4081 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4082 (void) nvlist_lookup_uint64(props,
4083 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4084 if (readonly)
4085 mode = FREAD;
4086 spa = spa_add(pool, config, altroot);
4087 spa->spa_import_flags = flags;
4090 * Verbatim import - Take a pool and insert it into the namespace
4091 * as if it had been loaded at boot.
4093 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4094 if (props != NULL)
4095 spa_configfile_set(spa, props, B_FALSE);
4097 spa_config_sync(spa, B_FALSE, B_TRUE);
4098 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
4100 mutex_exit(&spa_namespace_lock);
4101 return (0);
4104 spa_activate(spa, mode);
4107 * Don't start async tasks until we know everything is healthy.
4109 spa_async_suspend(spa);
4111 zpool_get_rewind_policy(config, &policy);
4112 if (policy.zrp_request & ZPOOL_DO_REWIND)
4113 state = SPA_LOAD_RECOVER;
4116 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
4117 * because the user-supplied config is actually the one to trust when
4118 * doing an import.
4120 if (state != SPA_LOAD_RECOVER)
4121 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4123 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4124 policy.zrp_request);
4127 * Propagate anything learned while loading the pool and pass it
4128 * back to caller (i.e. rewind info, missing devices, etc).
4130 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4131 spa->spa_load_info) == 0);
4133 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4135 * Toss any existing sparelist, as it doesn't have any validity
4136 * anymore, and conflicts with spa_has_spare().
4138 if (spa->spa_spares.sav_config) {
4139 nvlist_free(spa->spa_spares.sav_config);
4140 spa->spa_spares.sav_config = NULL;
4141 spa_load_spares(spa);
4143 if (spa->spa_l2cache.sav_config) {
4144 nvlist_free(spa->spa_l2cache.sav_config);
4145 spa->spa_l2cache.sav_config = NULL;
4146 spa_load_l2cache(spa);
4149 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4150 &nvroot) == 0);
4151 if (error == 0)
4152 error = spa_validate_aux(spa, nvroot, -1ULL,
4153 VDEV_ALLOC_SPARE);
4154 if (error == 0)
4155 error = spa_validate_aux(spa, nvroot, -1ULL,
4156 VDEV_ALLOC_L2CACHE);
4157 spa_config_exit(spa, SCL_ALL, FTAG);
4159 if (props != NULL)
4160 spa_configfile_set(spa, props, B_FALSE);
4162 if (error != 0 || (props && spa_writeable(spa) &&
4163 (error = spa_prop_set(spa, props)))) {
4164 spa_unload(spa);
4165 spa_deactivate(spa);
4166 spa_remove(spa);
4167 mutex_exit(&spa_namespace_lock);
4168 return (error);
4171 spa_async_resume(spa);
4174 * Override any spares and level 2 cache devices as specified by
4175 * the user, as these may have correct device names/devids, etc.
4177 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4178 &spares, &nspares) == 0) {
4179 if (spa->spa_spares.sav_config)
4180 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4181 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4182 else
4183 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4184 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4185 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4186 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4187 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4188 spa_load_spares(spa);
4189 spa_config_exit(spa, SCL_ALL, FTAG);
4190 spa->spa_spares.sav_sync = B_TRUE;
4192 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4193 &l2cache, &nl2cache) == 0) {
4194 if (spa->spa_l2cache.sav_config)
4195 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4196 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4197 else
4198 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4199 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4200 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4201 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4202 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4203 spa_load_l2cache(spa);
4204 spa_config_exit(spa, SCL_ALL, FTAG);
4205 spa->spa_l2cache.sav_sync = B_TRUE;
4209 * Check for any removed devices.
4211 if (spa->spa_autoreplace) {
4212 spa_aux_check_removed(&spa->spa_spares);
4213 spa_aux_check_removed(&spa->spa_l2cache);
4216 if (spa_writeable(spa)) {
4218 * Update the config cache to include the newly-imported pool.
4220 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4224 * It's possible that the pool was expanded while it was exported.
4225 * We kick off an async task to handle this for us.
4227 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4229 spa_history_log_version(spa, "import");
4231 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
4233 mutex_exit(&spa_namespace_lock);
4235 return (0);
4238 nvlist_t *
4239 spa_tryimport(nvlist_t *tryconfig)
4241 nvlist_t *config = NULL;
4242 char *poolname;
4243 spa_t *spa;
4244 uint64_t state;
4245 int error;
4247 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4248 return (NULL);
4250 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4251 return (NULL);
4254 * Create and initialize the spa structure.
4256 mutex_enter(&spa_namespace_lock);
4257 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4258 spa_activate(spa, FREAD);
4261 * Pass off the heavy lifting to spa_load().
4262 * Pass TRUE for mosconfig because the user-supplied config
4263 * is actually the one to trust when doing an import.
4265 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4268 * If 'tryconfig' was at least parsable, return the current config.
4270 if (spa->spa_root_vdev != NULL) {
4271 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4272 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4273 poolname) == 0);
4274 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4275 state) == 0);
4276 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4277 spa->spa_uberblock.ub_timestamp) == 0);
4278 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4279 spa->spa_load_info) == 0);
4282 * If the bootfs property exists on this pool then we
4283 * copy it out so that external consumers can tell which
4284 * pools are bootable.
4286 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4287 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4290 * We have to play games with the name since the
4291 * pool was opened as TRYIMPORT_NAME.
4293 if (dsl_dsobj_to_dsname(spa_name(spa),
4294 spa->spa_bootfs, tmpname) == 0) {
4295 char *cp;
4296 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4298 cp = strchr(tmpname, '/');
4299 if (cp == NULL) {
4300 (void) strlcpy(dsname, tmpname,
4301 MAXPATHLEN);
4302 } else {
4303 (void) snprintf(dsname, MAXPATHLEN,
4304 "%s/%s", poolname, ++cp);
4306 VERIFY(nvlist_add_string(config,
4307 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4308 kmem_free(dsname, MAXPATHLEN);
4310 kmem_free(tmpname, MAXPATHLEN);
4314 * Add the list of hot spares and level 2 cache devices.
4316 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4317 spa_add_spares(spa, config);
4318 spa_add_l2cache(spa, config);
4319 spa_config_exit(spa, SCL_CONFIG, FTAG);
4322 spa_unload(spa);
4323 spa_deactivate(spa);
4324 spa_remove(spa);
4325 mutex_exit(&spa_namespace_lock);
4327 return (config);
4331 * Pool export/destroy
4333 * The act of destroying or exporting a pool is very simple. We make sure there
4334 * is no more pending I/O and any references to the pool are gone. Then, we
4335 * update the pool state and sync all the labels to disk, removing the
4336 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4337 * we don't sync the labels or remove the configuration cache.
4339 static int
4340 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4341 boolean_t force, boolean_t hardforce)
4343 spa_t *spa;
4345 if (oldconfig)
4346 *oldconfig = NULL;
4348 if (!(spa_mode_global & FWRITE))
4349 return (SET_ERROR(EROFS));
4351 mutex_enter(&spa_namespace_lock);
4352 if ((spa = spa_lookup(pool)) == NULL) {
4353 mutex_exit(&spa_namespace_lock);
4354 return (SET_ERROR(ENOENT));
4358 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4359 * reacquire the namespace lock, and see if we can export.
4361 spa_open_ref(spa, FTAG);
4362 mutex_exit(&spa_namespace_lock);
4363 spa_async_suspend(spa);
4364 mutex_enter(&spa_namespace_lock);
4365 spa_close(spa, FTAG);
4368 * The pool will be in core if it's openable,
4369 * in which case we can modify its state.
4371 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4373 * Objsets may be open only because they're dirty, so we
4374 * have to force it to sync before checking spa_refcnt.
4376 txg_wait_synced(spa->spa_dsl_pool, 0);
4377 spa_evicting_os_wait(spa);
4380 * A pool cannot be exported or destroyed if there are active
4381 * references. If we are resetting a pool, allow references by
4382 * fault injection handlers.
4384 if (!spa_refcount_zero(spa) ||
4385 (spa->spa_inject_ref != 0 &&
4386 new_state != POOL_STATE_UNINITIALIZED)) {
4387 spa_async_resume(spa);
4388 mutex_exit(&spa_namespace_lock);
4389 return (SET_ERROR(EBUSY));
4393 * A pool cannot be exported if it has an active shared spare.
4394 * This is to prevent other pools stealing the active spare
4395 * from an exported pool. At user's own will, such pool can
4396 * be forcedly exported.
4398 if (!force && new_state == POOL_STATE_EXPORTED &&
4399 spa_has_active_shared_spare(spa)) {
4400 spa_async_resume(spa);
4401 mutex_exit(&spa_namespace_lock);
4402 return (SET_ERROR(EXDEV));
4406 * We want this to be reflected on every label,
4407 * so mark them all dirty. spa_unload() will do the
4408 * final sync that pushes these changes out.
4410 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4411 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4412 spa->spa_state = new_state;
4413 spa->spa_final_txg = spa_last_synced_txg(spa) +
4414 TXG_DEFER_SIZE + 1;
4415 vdev_config_dirty(spa->spa_root_vdev);
4416 spa_config_exit(spa, SCL_ALL, FTAG);
4420 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
4422 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4423 spa_unload(spa);
4424 spa_deactivate(spa);
4427 if (oldconfig && spa->spa_config)
4428 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4430 if (new_state != POOL_STATE_UNINITIALIZED) {
4431 if (!hardforce)
4432 spa_config_sync(spa, B_TRUE, B_TRUE);
4433 spa_remove(spa);
4435 mutex_exit(&spa_namespace_lock);
4437 return (0);
4441 * Destroy a storage pool.
4444 spa_destroy(char *pool)
4446 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4447 B_FALSE, B_FALSE));
4451 * Export a storage pool.
4454 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4455 boolean_t hardforce)
4457 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4458 force, hardforce));
4462 * Similar to spa_export(), this unloads the spa_t without actually removing it
4463 * from the namespace in any way.
4466 spa_reset(char *pool)
4468 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4469 B_FALSE, B_FALSE));
4473 * ==========================================================================
4474 * Device manipulation
4475 * ==========================================================================
4479 * Add a device to a storage pool.
4482 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4484 uint64_t txg, id;
4485 int error;
4486 vdev_t *rvd = spa->spa_root_vdev;
4487 vdev_t *vd, *tvd;
4488 nvlist_t **spares, **l2cache;
4489 uint_t nspares, nl2cache;
4491 ASSERT(spa_writeable(spa));
4493 txg = spa_vdev_enter(spa);
4495 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4496 VDEV_ALLOC_ADD)) != 0)
4497 return (spa_vdev_exit(spa, NULL, txg, error));
4499 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4501 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4502 &nspares) != 0)
4503 nspares = 0;
4505 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4506 &nl2cache) != 0)
4507 nl2cache = 0;
4509 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4510 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4512 if (vd->vdev_children != 0 &&
4513 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4514 return (spa_vdev_exit(spa, vd, txg, error));
4517 * We must validate the spares and l2cache devices after checking the
4518 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4520 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4521 return (spa_vdev_exit(spa, vd, txg, error));
4524 * Transfer each new top-level vdev from vd to rvd.
4526 for (int c = 0; c < vd->vdev_children; c++) {
4529 * Set the vdev id to the first hole, if one exists.
4531 for (id = 0; id < rvd->vdev_children; id++) {
4532 if (rvd->vdev_child[id]->vdev_ishole) {
4533 vdev_free(rvd->vdev_child[id]);
4534 break;
4537 tvd = vd->vdev_child[c];
4538 vdev_remove_child(vd, tvd);
4539 tvd->vdev_id = id;
4540 vdev_add_child(rvd, tvd);
4541 vdev_config_dirty(tvd);
4544 if (nspares != 0) {
4545 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4546 ZPOOL_CONFIG_SPARES);
4547 spa_load_spares(spa);
4548 spa->spa_spares.sav_sync = B_TRUE;
4551 if (nl2cache != 0) {
4552 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4553 ZPOOL_CONFIG_L2CACHE);
4554 spa_load_l2cache(spa);
4555 spa->spa_l2cache.sav_sync = B_TRUE;
4559 * We have to be careful when adding new vdevs to an existing pool.
4560 * If other threads start allocating from these vdevs before we
4561 * sync the config cache, and we lose power, then upon reboot we may
4562 * fail to open the pool because there are DVAs that the config cache
4563 * can't translate. Therefore, we first add the vdevs without
4564 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4565 * and then let spa_config_update() initialize the new metaslabs.
4567 * spa_load() checks for added-but-not-initialized vdevs, so that
4568 * if we lose power at any point in this sequence, the remaining
4569 * steps will be completed the next time we load the pool.
4571 (void) spa_vdev_exit(spa, vd, txg, 0);
4573 mutex_enter(&spa_namespace_lock);
4574 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4575 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
4576 mutex_exit(&spa_namespace_lock);
4578 return (0);
4582 * Attach a device to a mirror. The arguments are the path to any device
4583 * in the mirror, and the nvroot for the new device. If the path specifies
4584 * a device that is not mirrored, we automatically insert the mirror vdev.
4586 * If 'replacing' is specified, the new device is intended to replace the
4587 * existing device; in this case the two devices are made into their own
4588 * mirror using the 'replacing' vdev, which is functionally identical to
4589 * the mirror vdev (it actually reuses all the same ops) but has a few
4590 * extra rules: you can't attach to it after it's been created, and upon
4591 * completion of resilvering, the first disk (the one being replaced)
4592 * is automatically detached.
4595 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4597 uint64_t txg, dtl_max_txg;
4598 vdev_t *rvd = spa->spa_root_vdev;
4599 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4600 vdev_ops_t *pvops;
4601 char *oldvdpath, *newvdpath;
4602 int newvd_isspare;
4603 int error;
4605 ASSERT(spa_writeable(spa));
4607 txg = spa_vdev_enter(spa);
4609 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4611 if (oldvd == NULL)
4612 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4614 if (!oldvd->vdev_ops->vdev_op_leaf)
4615 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4617 pvd = oldvd->vdev_parent;
4619 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4620 VDEV_ALLOC_ATTACH)) != 0)
4621 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4623 if (newrootvd->vdev_children != 1)
4624 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4626 newvd = newrootvd->vdev_child[0];
4628 if (!newvd->vdev_ops->vdev_op_leaf)
4629 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4631 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4632 return (spa_vdev_exit(spa, newrootvd, txg, error));
4635 * Spares can't replace logs
4637 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4638 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4640 if (!replacing) {
4642 * For attach, the only allowable parent is a mirror or the root
4643 * vdev.
4645 if (pvd->vdev_ops != &vdev_mirror_ops &&
4646 pvd->vdev_ops != &vdev_root_ops)
4647 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4649 pvops = &vdev_mirror_ops;
4650 } else {
4652 * Active hot spares can only be replaced by inactive hot
4653 * spares.
4655 if (pvd->vdev_ops == &vdev_spare_ops &&
4656 oldvd->vdev_isspare &&
4657 !spa_has_spare(spa, newvd->vdev_guid))
4658 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4661 * If the source is a hot spare, and the parent isn't already a
4662 * spare, then we want to create a new hot spare. Otherwise, we
4663 * want to create a replacing vdev. The user is not allowed to
4664 * attach to a spared vdev child unless the 'isspare' state is
4665 * the same (spare replaces spare, non-spare replaces
4666 * non-spare).
4668 if (pvd->vdev_ops == &vdev_replacing_ops &&
4669 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4670 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4671 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4672 newvd->vdev_isspare != oldvd->vdev_isspare) {
4673 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4676 if (newvd->vdev_isspare)
4677 pvops = &vdev_spare_ops;
4678 else
4679 pvops = &vdev_replacing_ops;
4683 * Make sure the new device is big enough.
4685 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4686 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4689 * The new device cannot have a higher alignment requirement
4690 * than the top-level vdev.
4692 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4693 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4696 * If this is an in-place replacement, update oldvd's path and devid
4697 * to make it distinguishable from newvd, and unopenable from now on.
4699 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4700 spa_strfree(oldvd->vdev_path);
4701 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4702 KM_SLEEP);
4703 (void) sprintf(oldvd->vdev_path, "%s/%s",
4704 newvd->vdev_path, "old");
4705 if (oldvd->vdev_devid != NULL) {
4706 spa_strfree(oldvd->vdev_devid);
4707 oldvd->vdev_devid = NULL;
4711 /* mark the device being resilvered */
4712 newvd->vdev_resilver_txg = txg;
4715 * If the parent is not a mirror, or if we're replacing, insert the new
4716 * mirror/replacing/spare vdev above oldvd.
4718 if (pvd->vdev_ops != pvops)
4719 pvd = vdev_add_parent(oldvd, pvops);
4721 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4722 ASSERT(pvd->vdev_ops == pvops);
4723 ASSERT(oldvd->vdev_parent == pvd);
4726 * Extract the new device from its root and add it to pvd.
4728 vdev_remove_child(newrootvd, newvd);
4729 newvd->vdev_id = pvd->vdev_children;
4730 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4731 vdev_add_child(pvd, newvd);
4733 tvd = newvd->vdev_top;
4734 ASSERT(pvd->vdev_top == tvd);
4735 ASSERT(tvd->vdev_parent == rvd);
4737 vdev_config_dirty(tvd);
4740 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4741 * for any dmu_sync-ed blocks. It will propagate upward when
4742 * spa_vdev_exit() calls vdev_dtl_reassess().
4744 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4746 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4747 dtl_max_txg - TXG_INITIAL);
4749 if (newvd->vdev_isspare) {
4750 spa_spare_activate(newvd);
4751 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
4754 oldvdpath = spa_strdup(oldvd->vdev_path);
4755 newvdpath = spa_strdup(newvd->vdev_path);
4756 newvd_isspare = newvd->vdev_isspare;
4759 * Mark newvd's DTL dirty in this txg.
4761 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4764 * Schedule the resilver to restart in the future. We do this to
4765 * ensure that dmu_sync-ed blocks have been stitched into the
4766 * respective datasets.
4768 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4770 if (spa->spa_bootfs)
4771 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4773 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
4776 * Commit the config
4778 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4780 spa_history_log_internal(spa, "vdev attach", NULL,
4781 "%s vdev=%s %s vdev=%s",
4782 replacing && newvd_isspare ? "spare in" :
4783 replacing ? "replace" : "attach", newvdpath,
4784 replacing ? "for" : "to", oldvdpath);
4786 spa_strfree(oldvdpath);
4787 spa_strfree(newvdpath);
4789 return (0);
4793 * Detach a device from a mirror or replacing vdev.
4795 * If 'replace_done' is specified, only detach if the parent
4796 * is a replacing vdev.
4799 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4801 uint64_t txg;
4802 int error;
4803 vdev_t *rvd = spa->spa_root_vdev;
4804 vdev_t *vd, *pvd, *cvd, *tvd;
4805 boolean_t unspare = B_FALSE;
4806 uint64_t unspare_guid = 0;
4807 char *vdpath;
4809 ASSERT(spa_writeable(spa));
4811 txg = spa_vdev_enter(spa);
4813 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4815 if (vd == NULL)
4816 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4818 if (!vd->vdev_ops->vdev_op_leaf)
4819 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4821 pvd = vd->vdev_parent;
4824 * If the parent/child relationship is not as expected, don't do it.
4825 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4826 * vdev that's replacing B with C. The user's intent in replacing
4827 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4828 * the replace by detaching C, the expected behavior is to end up
4829 * M(A,B). But suppose that right after deciding to detach C,
4830 * the replacement of B completes. We would have M(A,C), and then
4831 * ask to detach C, which would leave us with just A -- not what
4832 * the user wanted. To prevent this, we make sure that the
4833 * parent/child relationship hasn't changed -- in this example,
4834 * that C's parent is still the replacing vdev R.
4836 if (pvd->vdev_guid != pguid && pguid != 0)
4837 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4840 * Only 'replacing' or 'spare' vdevs can be replaced.
4842 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4843 pvd->vdev_ops != &vdev_spare_ops)
4844 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4846 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4847 spa_version(spa) >= SPA_VERSION_SPARES);
4850 * Only mirror, replacing, and spare vdevs support detach.
4852 if (pvd->vdev_ops != &vdev_replacing_ops &&
4853 pvd->vdev_ops != &vdev_mirror_ops &&
4854 pvd->vdev_ops != &vdev_spare_ops)
4855 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4858 * If this device has the only valid copy of some data,
4859 * we cannot safely detach it.
4861 if (vdev_dtl_required(vd))
4862 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4864 ASSERT(pvd->vdev_children >= 2);
4867 * If we are detaching the second disk from a replacing vdev, then
4868 * check to see if we changed the original vdev's path to have "/old"
4869 * at the end in spa_vdev_attach(). If so, undo that change now.
4871 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4872 vd->vdev_path != NULL) {
4873 size_t len = strlen(vd->vdev_path);
4875 for (int c = 0; c < pvd->vdev_children; c++) {
4876 cvd = pvd->vdev_child[c];
4878 if (cvd == vd || cvd->vdev_path == NULL)
4879 continue;
4881 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4882 strcmp(cvd->vdev_path + len, "/old") == 0) {
4883 spa_strfree(cvd->vdev_path);
4884 cvd->vdev_path = spa_strdup(vd->vdev_path);
4885 break;
4891 * If we are detaching the original disk from a spare, then it implies
4892 * that the spare should become a real disk, and be removed from the
4893 * active spare list for the pool.
4895 if (pvd->vdev_ops == &vdev_spare_ops &&
4896 vd->vdev_id == 0 &&
4897 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4898 unspare = B_TRUE;
4901 * Erase the disk labels so the disk can be used for other things.
4902 * This must be done after all other error cases are handled,
4903 * but before we disembowel vd (so we can still do I/O to it).
4904 * But if we can't do it, don't treat the error as fatal --
4905 * it may be that the unwritability of the disk is the reason
4906 * it's being detached!
4908 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4911 * Remove vd from its parent and compact the parent's children.
4913 vdev_remove_child(pvd, vd);
4914 vdev_compact_children(pvd);
4917 * Remember one of the remaining children so we can get tvd below.
4919 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4922 * If we need to remove the remaining child from the list of hot spares,
4923 * do it now, marking the vdev as no longer a spare in the process.
4924 * We must do this before vdev_remove_parent(), because that can
4925 * change the GUID if it creates a new toplevel GUID. For a similar
4926 * reason, we must remove the spare now, in the same txg as the detach;
4927 * otherwise someone could attach a new sibling, change the GUID, and
4928 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4930 if (unspare) {
4931 ASSERT(cvd->vdev_isspare);
4932 spa_spare_remove(cvd);
4933 unspare_guid = cvd->vdev_guid;
4934 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4935 cvd->vdev_unspare = B_TRUE;
4939 * If the parent mirror/replacing vdev only has one child,
4940 * the parent is no longer needed. Remove it from the tree.
4942 if (pvd->vdev_children == 1) {
4943 if (pvd->vdev_ops == &vdev_spare_ops)
4944 cvd->vdev_unspare = B_FALSE;
4945 vdev_remove_parent(cvd);
4950 * We don't set tvd until now because the parent we just removed
4951 * may have been the previous top-level vdev.
4953 tvd = cvd->vdev_top;
4954 ASSERT(tvd->vdev_parent == rvd);
4957 * Reevaluate the parent vdev state.
4959 vdev_propagate_state(cvd);
4962 * If the 'autoexpand' property is set on the pool then automatically
4963 * try to expand the size of the pool. For example if the device we
4964 * just detached was smaller than the others, it may be possible to
4965 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4966 * first so that we can obtain the updated sizes of the leaf vdevs.
4968 if (spa->spa_autoexpand) {
4969 vdev_reopen(tvd);
4970 vdev_expand(tvd, txg);
4973 vdev_config_dirty(tvd);
4976 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4977 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4978 * But first make sure we're not on any *other* txg's DTL list, to
4979 * prevent vd from being accessed after it's freed.
4981 vdpath = spa_strdup(vd->vdev_path);
4982 for (int t = 0; t < TXG_SIZE; t++)
4983 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4984 vd->vdev_detached = B_TRUE;
4985 vdev_dirty(tvd, VDD_DTL, vd, txg);
4987 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
4989 /* hang on to the spa before we release the lock */
4990 spa_open_ref(spa, FTAG);
4992 error = spa_vdev_exit(spa, vd, txg, 0);
4994 spa_history_log_internal(spa, "detach", NULL,
4995 "vdev=%s", vdpath);
4996 spa_strfree(vdpath);
4999 * If this was the removal of the original device in a hot spare vdev,
5000 * then we want to go through and remove the device from the hot spare
5001 * list of every other pool.
5003 if (unspare) {
5004 spa_t *altspa = NULL;
5006 mutex_enter(&spa_namespace_lock);
5007 while ((altspa = spa_next(altspa)) != NULL) {
5008 if (altspa->spa_state != POOL_STATE_ACTIVE ||
5009 altspa == spa)
5010 continue;
5012 spa_open_ref(altspa, FTAG);
5013 mutex_exit(&spa_namespace_lock);
5014 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5015 mutex_enter(&spa_namespace_lock);
5016 spa_close(altspa, FTAG);
5018 mutex_exit(&spa_namespace_lock);
5020 /* search the rest of the vdevs for spares to remove */
5021 spa_vdev_resilver_done(spa);
5024 /* all done with the spa; OK to release */
5025 mutex_enter(&spa_namespace_lock);
5026 spa_close(spa, FTAG);
5027 mutex_exit(&spa_namespace_lock);
5029 return (error);
5033 * Split a set of devices from their mirrors, and create a new pool from them.
5036 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5037 nvlist_t *props, boolean_t exp)
5039 int error = 0;
5040 uint64_t txg, *glist;
5041 spa_t *newspa;
5042 uint_t c, children, lastlog;
5043 nvlist_t **child, *nvl, *tmp;
5044 dmu_tx_t *tx;
5045 char *altroot = NULL;
5046 vdev_t *rvd, **vml = NULL; /* vdev modify list */
5047 boolean_t activate_slog;
5049 ASSERT(spa_writeable(spa));
5051 txg = spa_vdev_enter(spa);
5053 /* clear the log and flush everything up to now */
5054 activate_slog = spa_passivate_log(spa);
5055 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5056 error = spa_offline_log(spa);
5057 txg = spa_vdev_config_enter(spa);
5059 if (activate_slog)
5060 spa_activate_log(spa);
5062 if (error != 0)
5063 return (spa_vdev_exit(spa, NULL, txg, error));
5065 /* check new spa name before going any further */
5066 if (spa_lookup(newname) != NULL)
5067 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5070 * scan through all the children to ensure they're all mirrors
5072 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5073 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5074 &children) != 0)
5075 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5077 /* first, check to ensure we've got the right child count */
5078 rvd = spa->spa_root_vdev;
5079 lastlog = 0;
5080 for (c = 0; c < rvd->vdev_children; c++) {
5081 vdev_t *vd = rvd->vdev_child[c];
5083 /* don't count the holes & logs as children */
5084 if (vd->vdev_islog || vd->vdev_ishole) {
5085 if (lastlog == 0)
5086 lastlog = c;
5087 continue;
5090 lastlog = 0;
5092 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5093 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5095 /* next, ensure no spare or cache devices are part of the split */
5096 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5097 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5098 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5100 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5101 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5103 /* then, loop over each vdev and validate it */
5104 for (c = 0; c < children; c++) {
5105 uint64_t is_hole = 0;
5107 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5108 &is_hole);
5110 if (is_hole != 0) {
5111 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5112 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5113 continue;
5114 } else {
5115 error = SET_ERROR(EINVAL);
5116 break;
5120 /* which disk is going to be split? */
5121 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5122 &glist[c]) != 0) {
5123 error = SET_ERROR(EINVAL);
5124 break;
5127 /* look it up in the spa */
5128 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5129 if (vml[c] == NULL) {
5130 error = SET_ERROR(ENODEV);
5131 break;
5134 /* make sure there's nothing stopping the split */
5135 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5136 vml[c]->vdev_islog ||
5137 vml[c]->vdev_ishole ||
5138 vml[c]->vdev_isspare ||
5139 vml[c]->vdev_isl2cache ||
5140 !vdev_writeable(vml[c]) ||
5141 vml[c]->vdev_children != 0 ||
5142 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5143 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5144 error = SET_ERROR(EINVAL);
5145 break;
5148 if (vdev_dtl_required(vml[c])) {
5149 error = SET_ERROR(EBUSY);
5150 break;
5153 /* we need certain info from the top level */
5154 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5155 vml[c]->vdev_top->vdev_ms_array) == 0);
5156 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5157 vml[c]->vdev_top->vdev_ms_shift) == 0);
5158 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5159 vml[c]->vdev_top->vdev_asize) == 0);
5160 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5161 vml[c]->vdev_top->vdev_ashift) == 0);
5163 /* transfer per-vdev ZAPs */
5164 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
5165 VERIFY0(nvlist_add_uint64(child[c],
5166 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
5168 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
5169 VERIFY0(nvlist_add_uint64(child[c],
5170 ZPOOL_CONFIG_VDEV_TOP_ZAP,
5171 vml[c]->vdev_parent->vdev_top_zap));
5174 if (error != 0) {
5175 kmem_free(vml, children * sizeof (vdev_t *));
5176 kmem_free(glist, children * sizeof (uint64_t));
5177 return (spa_vdev_exit(spa, NULL, txg, error));
5180 /* stop writers from using the disks */
5181 for (c = 0; c < children; c++) {
5182 if (vml[c] != NULL)
5183 vml[c]->vdev_offline = B_TRUE;
5185 vdev_reopen(spa->spa_root_vdev);
5188 * Temporarily record the splitting vdevs in the spa config. This
5189 * will disappear once the config is regenerated.
5191 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5192 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5193 glist, children) == 0);
5194 kmem_free(glist, children * sizeof (uint64_t));
5196 mutex_enter(&spa->spa_props_lock);
5197 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5198 nvl) == 0);
5199 mutex_exit(&spa->spa_props_lock);
5200 spa->spa_config_splitting = nvl;
5201 vdev_config_dirty(spa->spa_root_vdev);
5203 /* configure and create the new pool */
5204 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5205 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5206 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5207 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5208 spa_version(spa)) == 0);
5209 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5210 spa->spa_config_txg) == 0);
5211 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5212 spa_generate_guid(NULL)) == 0);
5213 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
5214 (void) nvlist_lookup_string(props,
5215 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5217 /* add the new pool to the namespace */
5218 newspa = spa_add(newname, config, altroot);
5219 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
5220 newspa->spa_config_txg = spa->spa_config_txg;
5221 spa_set_log_state(newspa, SPA_LOG_CLEAR);
5223 /* release the spa config lock, retaining the namespace lock */
5224 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5226 if (zio_injection_enabled)
5227 zio_handle_panic_injection(spa, FTAG, 1);
5229 spa_activate(newspa, spa_mode_global);
5230 spa_async_suspend(newspa);
5232 /* create the new pool from the disks of the original pool */
5233 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5234 if (error)
5235 goto out;
5237 /* if that worked, generate a real config for the new pool */
5238 if (newspa->spa_root_vdev != NULL) {
5239 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5240 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5241 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5242 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5243 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5244 B_TRUE));
5247 /* set the props */
5248 if (props != NULL) {
5249 spa_configfile_set(newspa, props, B_FALSE);
5250 error = spa_prop_set(newspa, props);
5251 if (error)
5252 goto out;
5255 /* flush everything */
5256 txg = spa_vdev_config_enter(newspa);
5257 vdev_config_dirty(newspa->spa_root_vdev);
5258 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5260 if (zio_injection_enabled)
5261 zio_handle_panic_injection(spa, FTAG, 2);
5263 spa_async_resume(newspa);
5265 /* finally, update the original pool's config */
5266 txg = spa_vdev_config_enter(spa);
5267 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5268 error = dmu_tx_assign(tx, TXG_WAIT);
5269 if (error != 0)
5270 dmu_tx_abort(tx);
5271 for (c = 0; c < children; c++) {
5272 if (vml[c] != NULL) {
5273 vdev_split(vml[c]);
5274 if (error == 0)
5275 spa_history_log_internal(spa, "detach", tx,
5276 "vdev=%s", vml[c]->vdev_path);
5278 vdev_free(vml[c]);
5281 spa->spa_avz_action = AVZ_ACTION_REBUILD;
5282 vdev_config_dirty(spa->spa_root_vdev);
5283 spa->spa_config_splitting = NULL;
5284 nvlist_free(nvl);
5285 if (error == 0)
5286 dmu_tx_commit(tx);
5287 (void) spa_vdev_exit(spa, NULL, txg, 0);
5289 if (zio_injection_enabled)
5290 zio_handle_panic_injection(spa, FTAG, 3);
5292 /* split is complete; log a history record */
5293 spa_history_log_internal(newspa, "split", NULL,
5294 "from pool %s", spa_name(spa));
5296 kmem_free(vml, children * sizeof (vdev_t *));
5298 /* if we're not going to mount the filesystems in userland, export */
5299 if (exp)
5300 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5301 B_FALSE, B_FALSE);
5303 return (error);
5305 out:
5306 spa_unload(newspa);
5307 spa_deactivate(newspa);
5308 spa_remove(newspa);
5310 txg = spa_vdev_config_enter(spa);
5312 /* re-online all offlined disks */
5313 for (c = 0; c < children; c++) {
5314 if (vml[c] != NULL)
5315 vml[c]->vdev_offline = B_FALSE;
5317 vdev_reopen(spa->spa_root_vdev);
5319 nvlist_free(spa->spa_config_splitting);
5320 spa->spa_config_splitting = NULL;
5321 (void) spa_vdev_exit(spa, NULL, txg, error);
5323 kmem_free(vml, children * sizeof (vdev_t *));
5324 return (error);
5327 static nvlist_t *
5328 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5330 for (int i = 0; i < count; i++) {
5331 uint64_t guid;
5333 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5334 &guid) == 0);
5336 if (guid == target_guid)
5337 return (nvpp[i]);
5340 return (NULL);
5343 static void
5344 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5345 nvlist_t *dev_to_remove)
5347 nvlist_t **newdev = NULL;
5349 if (count > 1)
5350 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5352 for (int i = 0, j = 0; i < count; i++) {
5353 if (dev[i] == dev_to_remove)
5354 continue;
5355 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5358 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5359 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5361 for (int i = 0; i < count - 1; i++)
5362 nvlist_free(newdev[i]);
5364 if (count > 1)
5365 kmem_free(newdev, (count - 1) * sizeof (void *));
5369 * Evacuate the device.
5371 static int
5372 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5374 uint64_t txg;
5375 int error = 0;
5377 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5378 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5379 ASSERT(vd == vd->vdev_top);
5382 * Evacuate the device. We don't hold the config lock as writer
5383 * since we need to do I/O but we do keep the
5384 * spa_namespace_lock held. Once this completes the device
5385 * should no longer have any blocks allocated on it.
5387 if (vd->vdev_islog) {
5388 if (vd->vdev_stat.vs_alloc != 0)
5389 error = spa_offline_log(spa);
5390 } else {
5391 error = SET_ERROR(ENOTSUP);
5394 if (error)
5395 return (error);
5398 * The evacuation succeeded. Remove any remaining MOS metadata
5399 * associated with this vdev, and wait for these changes to sync.
5401 ASSERT0(vd->vdev_stat.vs_alloc);
5402 txg = spa_vdev_config_enter(spa);
5403 vd->vdev_removing = B_TRUE;
5404 vdev_dirty_leaves(vd, VDD_DTL, txg);
5405 vdev_config_dirty(vd);
5406 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5408 return (0);
5412 * Complete the removal by cleaning up the namespace.
5414 static void
5415 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5417 vdev_t *rvd = spa->spa_root_vdev;
5418 uint64_t id = vd->vdev_id;
5419 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5421 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5422 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5423 ASSERT(vd == vd->vdev_top);
5426 * Only remove any devices which are empty.
5428 if (vd->vdev_stat.vs_alloc != 0)
5429 return;
5431 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5433 if (list_link_active(&vd->vdev_state_dirty_node))
5434 vdev_state_clean(vd);
5435 if (list_link_active(&vd->vdev_config_dirty_node))
5436 vdev_config_clean(vd);
5438 vdev_free(vd);
5440 if (last_vdev) {
5441 vdev_compact_children(rvd);
5442 } else {
5443 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5444 vdev_add_child(rvd, vd);
5446 vdev_config_dirty(rvd);
5449 * Reassess the health of our root vdev.
5451 vdev_reopen(rvd);
5455 * Remove a device from the pool -
5457 * Removing a device from the vdev namespace requires several steps
5458 * and can take a significant amount of time. As a result we use
5459 * the spa_vdev_config_[enter/exit] functions which allow us to
5460 * grab and release the spa_config_lock while still holding the namespace
5461 * lock. During each step the configuration is synced out.
5463 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5464 * devices.
5467 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5469 vdev_t *vd;
5470 sysevent_t *ev = NULL;
5471 metaslab_group_t *mg;
5472 nvlist_t **spares, **l2cache, *nv;
5473 uint64_t txg = 0;
5474 uint_t nspares, nl2cache;
5475 int error = 0;
5476 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5478 ASSERT(spa_writeable(spa));
5480 if (!locked)
5481 txg = spa_vdev_enter(spa);
5483 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5485 if (spa->spa_spares.sav_vdevs != NULL &&
5486 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5487 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5488 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5490 * Only remove the hot spare if it's not currently in use
5491 * in this pool.
5493 if (vd == NULL || unspare) {
5494 if (vd == NULL)
5495 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5496 ev = spa_event_create(spa, vd, NULL,
5497 ESC_ZFS_VDEV_REMOVE_AUX);
5498 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5499 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5500 spa_load_spares(spa);
5501 spa->spa_spares.sav_sync = B_TRUE;
5502 } else {
5503 error = SET_ERROR(EBUSY);
5505 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5506 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5507 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5508 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5510 * Cache devices can always be removed.
5512 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5513 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
5514 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5515 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5516 spa_load_l2cache(spa);
5517 spa->spa_l2cache.sav_sync = B_TRUE;
5518 } else if (vd != NULL && vd->vdev_islog) {
5519 ASSERT(!locked);
5520 ASSERT(vd == vd->vdev_top);
5522 mg = vd->vdev_mg;
5525 * Stop allocating from this vdev.
5527 metaslab_group_passivate(mg);
5530 * Wait for the youngest allocations and frees to sync,
5531 * and then wait for the deferral of those frees to finish.
5533 spa_vdev_config_exit(spa, NULL,
5534 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5537 * Attempt to evacuate the vdev.
5539 error = spa_vdev_remove_evacuate(spa, vd);
5541 txg = spa_vdev_config_enter(spa);
5544 * If we couldn't evacuate the vdev, unwind.
5546 if (error) {
5547 metaslab_group_activate(mg);
5548 return (spa_vdev_exit(spa, NULL, txg, error));
5552 * Clean up the vdev namespace.
5554 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_DEV);
5555 spa_vdev_remove_from_namespace(spa, vd);
5557 } else if (vd != NULL) {
5559 * Normal vdevs cannot be removed (yet).
5561 error = SET_ERROR(ENOTSUP);
5562 } else {
5564 * There is no vdev of any kind with the specified guid.
5566 error = SET_ERROR(ENOENT);
5569 if (!locked)
5570 error = spa_vdev_exit(spa, NULL, txg, error);
5572 if (ev)
5573 spa_event_post(ev);
5575 return (error);
5579 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5580 * currently spared, so we can detach it.
5582 static vdev_t *
5583 spa_vdev_resilver_done_hunt(vdev_t *vd)
5585 vdev_t *newvd, *oldvd;
5587 for (int c = 0; c < vd->vdev_children; c++) {
5588 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5589 if (oldvd != NULL)
5590 return (oldvd);
5594 * Check for a completed replacement. We always consider the first
5595 * vdev in the list to be the oldest vdev, and the last one to be
5596 * the newest (see spa_vdev_attach() for how that works). In
5597 * the case where the newest vdev is faulted, we will not automatically
5598 * remove it after a resilver completes. This is OK as it will require
5599 * user intervention to determine which disk the admin wishes to keep.
5601 if (vd->vdev_ops == &vdev_replacing_ops) {
5602 ASSERT(vd->vdev_children > 1);
5604 newvd = vd->vdev_child[vd->vdev_children - 1];
5605 oldvd = vd->vdev_child[0];
5607 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5608 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5609 !vdev_dtl_required(oldvd))
5610 return (oldvd);
5614 * Check for a completed resilver with the 'unspare' flag set.
5616 if (vd->vdev_ops == &vdev_spare_ops) {
5617 vdev_t *first = vd->vdev_child[0];
5618 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5620 if (last->vdev_unspare) {
5621 oldvd = first;
5622 newvd = last;
5623 } else if (first->vdev_unspare) {
5624 oldvd = last;
5625 newvd = first;
5626 } else {
5627 oldvd = NULL;
5630 if (oldvd != NULL &&
5631 vdev_dtl_empty(newvd, DTL_MISSING) &&
5632 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5633 !vdev_dtl_required(oldvd))
5634 return (oldvd);
5637 * If there are more than two spares attached to a disk,
5638 * and those spares are not required, then we want to
5639 * attempt to free them up now so that they can be used
5640 * by other pools. Once we're back down to a single
5641 * disk+spare, we stop removing them.
5643 if (vd->vdev_children > 2) {
5644 newvd = vd->vdev_child[1];
5646 if (newvd->vdev_isspare && last->vdev_isspare &&
5647 vdev_dtl_empty(last, DTL_MISSING) &&
5648 vdev_dtl_empty(last, DTL_OUTAGE) &&
5649 !vdev_dtl_required(newvd))
5650 return (newvd);
5654 return (NULL);
5657 static void
5658 spa_vdev_resilver_done(spa_t *spa)
5660 vdev_t *vd, *pvd, *ppvd;
5661 uint64_t guid, sguid, pguid, ppguid;
5663 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5665 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5666 pvd = vd->vdev_parent;
5667 ppvd = pvd->vdev_parent;
5668 guid = vd->vdev_guid;
5669 pguid = pvd->vdev_guid;
5670 ppguid = ppvd->vdev_guid;
5671 sguid = 0;
5673 * If we have just finished replacing a hot spared device, then
5674 * we need to detach the parent's first child (the original hot
5675 * spare) as well.
5677 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5678 ppvd->vdev_children == 2) {
5679 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5680 sguid = ppvd->vdev_child[1]->vdev_guid;
5682 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5684 spa_config_exit(spa, SCL_ALL, FTAG);
5685 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5686 return;
5687 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5688 return;
5689 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5692 spa_config_exit(spa, SCL_ALL, FTAG);
5696 * Update the stored path or FRU for this vdev.
5699 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5700 boolean_t ispath)
5702 vdev_t *vd;
5703 boolean_t sync = B_FALSE;
5705 ASSERT(spa_writeable(spa));
5707 spa_vdev_state_enter(spa, SCL_ALL);
5709 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5710 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5712 if (!vd->vdev_ops->vdev_op_leaf)
5713 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5715 if (ispath) {
5716 if (strcmp(value, vd->vdev_path) != 0) {
5717 spa_strfree(vd->vdev_path);
5718 vd->vdev_path = spa_strdup(value);
5719 sync = B_TRUE;
5721 } else {
5722 if (vd->vdev_fru == NULL) {
5723 vd->vdev_fru = spa_strdup(value);
5724 sync = B_TRUE;
5725 } else if (strcmp(value, vd->vdev_fru) != 0) {
5726 spa_strfree(vd->vdev_fru);
5727 vd->vdev_fru = spa_strdup(value);
5728 sync = B_TRUE;
5732 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5736 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5738 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5742 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5744 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5748 * ==========================================================================
5749 * SPA Scanning
5750 * ==========================================================================
5753 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
5755 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5757 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5758 return (SET_ERROR(EBUSY));
5760 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
5764 spa_scan_stop(spa_t *spa)
5766 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5767 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5768 return (SET_ERROR(EBUSY));
5769 return (dsl_scan_cancel(spa->spa_dsl_pool));
5773 spa_scan(spa_t *spa, pool_scan_func_t func)
5775 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5777 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5778 return (SET_ERROR(ENOTSUP));
5781 * If a resilver was requested, but there is no DTL on a
5782 * writeable leaf device, we have nothing to do.
5784 if (func == POOL_SCAN_RESILVER &&
5785 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5786 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5787 return (0);
5790 return (dsl_scan(spa->spa_dsl_pool, func));
5794 * ==========================================================================
5795 * SPA async task processing
5796 * ==========================================================================
5799 static void
5800 spa_async_remove(spa_t *spa, vdev_t *vd)
5802 if (vd->vdev_remove_wanted) {
5803 vd->vdev_remove_wanted = B_FALSE;
5804 vd->vdev_delayed_close = B_FALSE;
5805 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5808 * We want to clear the stats, but we don't want to do a full
5809 * vdev_clear() as that will cause us to throw away
5810 * degraded/faulted state as well as attempt to reopen the
5811 * device, all of which is a waste.
5813 vd->vdev_stat.vs_read_errors = 0;
5814 vd->vdev_stat.vs_write_errors = 0;
5815 vd->vdev_stat.vs_checksum_errors = 0;
5817 vdev_state_dirty(vd->vdev_top);
5820 for (int c = 0; c < vd->vdev_children; c++)
5821 spa_async_remove(spa, vd->vdev_child[c]);
5824 static void
5825 spa_async_probe(spa_t *spa, vdev_t *vd)
5827 if (vd->vdev_probe_wanted) {
5828 vd->vdev_probe_wanted = B_FALSE;
5829 vdev_reopen(vd); /* vdev_open() does the actual probe */
5832 for (int c = 0; c < vd->vdev_children; c++)
5833 spa_async_probe(spa, vd->vdev_child[c]);
5836 static void
5837 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5839 sysevent_id_t eid;
5840 nvlist_t *attr;
5841 char *physpath;
5843 if (!spa->spa_autoexpand)
5844 return;
5846 for (int c = 0; c < vd->vdev_children; c++) {
5847 vdev_t *cvd = vd->vdev_child[c];
5848 spa_async_autoexpand(spa, cvd);
5851 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5852 return;
5854 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5855 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5857 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5858 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5860 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5861 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5863 nvlist_free(attr);
5864 kmem_free(physpath, MAXPATHLEN);
5867 static void
5868 spa_async_thread(void *arg)
5870 spa_t *spa = (spa_t *)arg;
5871 int tasks;
5873 ASSERT(spa->spa_sync_on);
5875 mutex_enter(&spa->spa_async_lock);
5876 tasks = spa->spa_async_tasks;
5877 spa->spa_async_tasks = 0;
5878 mutex_exit(&spa->spa_async_lock);
5881 * See if the config needs to be updated.
5883 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5884 uint64_t old_space, new_space;
5886 mutex_enter(&spa_namespace_lock);
5887 old_space = metaslab_class_get_space(spa_normal_class(spa));
5888 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5889 new_space = metaslab_class_get_space(spa_normal_class(spa));
5890 mutex_exit(&spa_namespace_lock);
5893 * If the pool grew as a result of the config update,
5894 * then log an internal history event.
5896 if (new_space != old_space) {
5897 spa_history_log_internal(spa, "vdev online", NULL,
5898 "pool '%s' size: %llu(+%llu)",
5899 spa_name(spa), new_space, new_space - old_space);
5904 * See if any devices need to be marked REMOVED.
5906 if (tasks & SPA_ASYNC_REMOVE) {
5907 spa_vdev_state_enter(spa, SCL_NONE);
5908 spa_async_remove(spa, spa->spa_root_vdev);
5909 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5910 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5911 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5912 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5913 (void) spa_vdev_state_exit(spa, NULL, 0);
5916 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5917 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5918 spa_async_autoexpand(spa, spa->spa_root_vdev);
5919 spa_config_exit(spa, SCL_CONFIG, FTAG);
5923 * See if any devices need to be probed.
5925 if (tasks & SPA_ASYNC_PROBE) {
5926 spa_vdev_state_enter(spa, SCL_NONE);
5927 spa_async_probe(spa, spa->spa_root_vdev);
5928 (void) spa_vdev_state_exit(spa, NULL, 0);
5932 * If any devices are done replacing, detach them.
5934 if (tasks & SPA_ASYNC_RESILVER_DONE)
5935 spa_vdev_resilver_done(spa);
5938 * Kick off a resilver.
5940 if (tasks & SPA_ASYNC_RESILVER)
5941 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5944 * Let the world know that we're done.
5946 mutex_enter(&spa->spa_async_lock);
5947 spa->spa_async_thread = NULL;
5948 cv_broadcast(&spa->spa_async_cv);
5949 mutex_exit(&spa->spa_async_lock);
5950 thread_exit();
5953 void
5954 spa_async_suspend(spa_t *spa)
5956 mutex_enter(&spa->spa_async_lock);
5957 spa->spa_async_suspended++;
5958 while (spa->spa_async_thread != NULL)
5959 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5960 mutex_exit(&spa->spa_async_lock);
5963 void
5964 spa_async_resume(spa_t *spa)
5966 mutex_enter(&spa->spa_async_lock);
5967 ASSERT(spa->spa_async_suspended != 0);
5968 spa->spa_async_suspended--;
5969 mutex_exit(&spa->spa_async_lock);
5972 static boolean_t
5973 spa_async_tasks_pending(spa_t *spa)
5975 uint_t non_config_tasks;
5976 uint_t config_task;
5977 boolean_t config_task_suspended;
5979 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5980 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5981 if (spa->spa_ccw_fail_time == 0) {
5982 config_task_suspended = B_FALSE;
5983 } else {
5984 config_task_suspended =
5985 (gethrtime() - spa->spa_ccw_fail_time) <
5986 (zfs_ccw_retry_interval * NANOSEC);
5989 return (non_config_tasks || (config_task && !config_task_suspended));
5992 static void
5993 spa_async_dispatch(spa_t *spa)
5995 mutex_enter(&spa->spa_async_lock);
5996 if (spa_async_tasks_pending(spa) &&
5997 !spa->spa_async_suspended &&
5998 spa->spa_async_thread == NULL &&
5999 rootdir != NULL)
6000 spa->spa_async_thread = thread_create(NULL, 0,
6001 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6002 mutex_exit(&spa->spa_async_lock);
6005 void
6006 spa_async_request(spa_t *spa, int task)
6008 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6009 mutex_enter(&spa->spa_async_lock);
6010 spa->spa_async_tasks |= task;
6011 mutex_exit(&spa->spa_async_lock);
6015 * ==========================================================================
6016 * SPA syncing routines
6017 * ==========================================================================
6020 static int
6021 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6023 bpobj_t *bpo = arg;
6024 bpobj_enqueue(bpo, bp, tx);
6025 return (0);
6028 static int
6029 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6031 zio_t *zio = arg;
6033 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6034 zio->io_flags));
6035 return (0);
6039 * Note: this simple function is not inlined to make it easier to dtrace the
6040 * amount of time spent syncing frees.
6042 static void
6043 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6045 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6046 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6047 VERIFY(zio_wait(zio) == 0);
6051 * Note: this simple function is not inlined to make it easier to dtrace the
6052 * amount of time spent syncing deferred frees.
6054 static void
6055 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6057 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6058 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6059 spa_free_sync_cb, zio, tx), ==, 0);
6060 VERIFY0(zio_wait(zio));
6064 static void
6065 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6067 char *packed = NULL;
6068 size_t bufsize;
6069 size_t nvsize = 0;
6070 dmu_buf_t *db;
6072 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6075 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6076 * information. This avoids the dmu_buf_will_dirty() path and
6077 * saves us a pre-read to get data we don't actually care about.
6079 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6080 packed = kmem_alloc(bufsize, KM_SLEEP);
6082 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6083 KM_SLEEP) == 0);
6084 bzero(packed + nvsize, bufsize - nvsize);
6086 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6088 kmem_free(packed, bufsize);
6090 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6091 dmu_buf_will_dirty(db, tx);
6092 *(uint64_t *)db->db_data = nvsize;
6093 dmu_buf_rele(db, FTAG);
6096 static void
6097 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6098 const char *config, const char *entry)
6100 nvlist_t *nvroot;
6101 nvlist_t **list;
6102 int i;
6104 if (!sav->sav_sync)
6105 return;
6108 * Update the MOS nvlist describing the list of available devices.
6109 * spa_validate_aux() will have already made sure this nvlist is
6110 * valid and the vdevs are labeled appropriately.
6112 if (sav->sav_object == 0) {
6113 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6114 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6115 sizeof (uint64_t), tx);
6116 VERIFY(zap_update(spa->spa_meta_objset,
6117 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6118 &sav->sav_object, tx) == 0);
6121 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6122 if (sav->sav_count == 0) {
6123 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6124 } else {
6125 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6126 for (i = 0; i < sav->sav_count; i++)
6127 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6128 B_FALSE, VDEV_CONFIG_L2CACHE);
6129 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6130 sav->sav_count) == 0);
6131 for (i = 0; i < sav->sav_count; i++)
6132 nvlist_free(list[i]);
6133 kmem_free(list, sav->sav_count * sizeof (void *));
6136 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6137 nvlist_free(nvroot);
6139 sav->sav_sync = B_FALSE;
6143 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6144 * The all-vdev ZAP must be empty.
6146 static void
6147 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6149 spa_t *spa = vd->vdev_spa;
6150 if (vd->vdev_top_zap != 0) {
6151 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6152 vd->vdev_top_zap, tx));
6154 if (vd->vdev_leaf_zap != 0) {
6155 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6156 vd->vdev_leaf_zap, tx));
6158 for (uint64_t i = 0; i < vd->vdev_children; i++) {
6159 spa_avz_build(vd->vdev_child[i], avz, tx);
6163 static void
6164 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6166 nvlist_t *config;
6169 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6170 * its config may not be dirty but we still need to build per-vdev ZAPs.
6171 * Similarly, if the pool is being assembled (e.g. after a split), we
6172 * need to rebuild the AVZ although the config may not be dirty.
6174 if (list_is_empty(&spa->spa_config_dirty_list) &&
6175 spa->spa_avz_action == AVZ_ACTION_NONE)
6176 return;
6178 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6180 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6181 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
6182 spa->spa_all_vdev_zaps != 0);
6184 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6185 /* Make and build the new AVZ */
6186 uint64_t new_avz = zap_create(spa->spa_meta_objset,
6187 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6188 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6190 /* Diff old AVZ with new one */
6191 zap_cursor_t zc;
6192 zap_attribute_t za;
6194 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6195 spa->spa_all_vdev_zaps);
6196 zap_cursor_retrieve(&zc, &za) == 0;
6197 zap_cursor_advance(&zc)) {
6198 uint64_t vdzap = za.za_first_integer;
6199 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6200 vdzap) == ENOENT) {
6202 * ZAP is listed in old AVZ but not in new one;
6203 * destroy it
6205 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6206 tx));
6210 zap_cursor_fini(&zc);
6212 /* Destroy the old AVZ */
6213 VERIFY0(zap_destroy(spa->spa_meta_objset,
6214 spa->spa_all_vdev_zaps, tx));
6216 /* Replace the old AVZ in the dir obj with the new one */
6217 VERIFY0(zap_update(spa->spa_meta_objset,
6218 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6219 sizeof (new_avz), 1, &new_avz, tx));
6221 spa->spa_all_vdev_zaps = new_avz;
6222 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6223 zap_cursor_t zc;
6224 zap_attribute_t za;
6226 /* Walk through the AVZ and destroy all listed ZAPs */
6227 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6228 spa->spa_all_vdev_zaps);
6229 zap_cursor_retrieve(&zc, &za) == 0;
6230 zap_cursor_advance(&zc)) {
6231 uint64_t zap = za.za_first_integer;
6232 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6235 zap_cursor_fini(&zc);
6237 /* Destroy and unlink the AVZ itself */
6238 VERIFY0(zap_destroy(spa->spa_meta_objset,
6239 spa->spa_all_vdev_zaps, tx));
6240 VERIFY0(zap_remove(spa->spa_meta_objset,
6241 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6242 spa->spa_all_vdev_zaps = 0;
6245 if (spa->spa_all_vdev_zaps == 0) {
6246 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6247 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6248 DMU_POOL_VDEV_ZAP_MAP, tx);
6250 spa->spa_avz_action = AVZ_ACTION_NONE;
6252 /* Create ZAPs for vdevs that don't have them. */
6253 vdev_construct_zaps(spa->spa_root_vdev, tx);
6255 config = spa_config_generate(spa, spa->spa_root_vdev,
6256 dmu_tx_get_txg(tx), B_FALSE);
6259 * If we're upgrading the spa version then make sure that
6260 * the config object gets updated with the correct version.
6262 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6263 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6264 spa->spa_uberblock.ub_version);
6266 spa_config_exit(spa, SCL_STATE, FTAG);
6268 nvlist_free(spa->spa_config_syncing);
6269 spa->spa_config_syncing = config;
6271 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6274 static void
6275 spa_sync_version(void *arg, dmu_tx_t *tx)
6277 uint64_t *versionp = arg;
6278 uint64_t version = *versionp;
6279 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6282 * Setting the version is special cased when first creating the pool.
6284 ASSERT(tx->tx_txg != TXG_INITIAL);
6286 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6287 ASSERT(version >= spa_version(spa));
6289 spa->spa_uberblock.ub_version = version;
6290 vdev_config_dirty(spa->spa_root_vdev);
6291 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6295 * Set zpool properties.
6297 static void
6298 spa_sync_props(void *arg, dmu_tx_t *tx)
6300 nvlist_t *nvp = arg;
6301 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6302 objset_t *mos = spa->spa_meta_objset;
6303 nvpair_t *elem = NULL;
6305 mutex_enter(&spa->spa_props_lock);
6307 while ((elem = nvlist_next_nvpair(nvp, elem))) {
6308 uint64_t intval;
6309 char *strval, *fname;
6310 zpool_prop_t prop;
6311 const char *propname;
6312 zprop_type_t proptype;
6313 spa_feature_t fid;
6315 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6316 case ZPROP_INVAL:
6318 * We checked this earlier in spa_prop_validate().
6320 ASSERT(zpool_prop_feature(nvpair_name(elem)));
6322 fname = strchr(nvpair_name(elem), '@') + 1;
6323 VERIFY0(zfeature_lookup_name(fname, &fid));
6325 spa_feature_enable(spa, fid, tx);
6326 spa_history_log_internal(spa, "set", tx,
6327 "%s=enabled", nvpair_name(elem));
6328 break;
6330 case ZPOOL_PROP_VERSION:
6331 intval = fnvpair_value_uint64(elem);
6333 * The version is synced seperatly before other
6334 * properties and should be correct by now.
6336 ASSERT3U(spa_version(spa), >=, intval);
6337 break;
6339 case ZPOOL_PROP_ALTROOT:
6341 * 'altroot' is a non-persistent property. It should
6342 * have been set temporarily at creation or import time.
6344 ASSERT(spa->spa_root != NULL);
6345 break;
6347 case ZPOOL_PROP_READONLY:
6348 case ZPOOL_PROP_CACHEFILE:
6350 * 'readonly' and 'cachefile' are also non-persisitent
6351 * properties.
6353 break;
6354 case ZPOOL_PROP_COMMENT:
6355 strval = fnvpair_value_string(elem);
6356 if (spa->spa_comment != NULL)
6357 spa_strfree(spa->spa_comment);
6358 spa->spa_comment = spa_strdup(strval);
6360 * We need to dirty the configuration on all the vdevs
6361 * so that their labels get updated. It's unnecessary
6362 * to do this for pool creation since the vdev's
6363 * configuratoin has already been dirtied.
6365 if (tx->tx_txg != TXG_INITIAL)
6366 vdev_config_dirty(spa->spa_root_vdev);
6367 spa_history_log_internal(spa, "set", tx,
6368 "%s=%s", nvpair_name(elem), strval);
6369 break;
6370 default:
6372 * Set pool property values in the poolprops mos object.
6374 if (spa->spa_pool_props_object == 0) {
6375 spa->spa_pool_props_object =
6376 zap_create_link(mos, DMU_OT_POOL_PROPS,
6377 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6378 tx);
6381 /* normalize the property name */
6382 propname = zpool_prop_to_name(prop);
6383 proptype = zpool_prop_get_type(prop);
6385 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6386 ASSERT(proptype == PROP_TYPE_STRING);
6387 strval = fnvpair_value_string(elem);
6388 VERIFY0(zap_update(mos,
6389 spa->spa_pool_props_object, propname,
6390 1, strlen(strval) + 1, strval, tx));
6391 spa_history_log_internal(spa, "set", tx,
6392 "%s=%s", nvpair_name(elem), strval);
6393 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6394 intval = fnvpair_value_uint64(elem);
6396 if (proptype == PROP_TYPE_INDEX) {
6397 const char *unused;
6398 VERIFY0(zpool_prop_index_to_string(
6399 prop, intval, &unused));
6401 VERIFY0(zap_update(mos,
6402 spa->spa_pool_props_object, propname,
6403 8, 1, &intval, tx));
6404 spa_history_log_internal(spa, "set", tx,
6405 "%s=%lld", nvpair_name(elem), intval);
6406 } else {
6407 ASSERT(0); /* not allowed */
6410 switch (prop) {
6411 case ZPOOL_PROP_DELEGATION:
6412 spa->spa_delegation = intval;
6413 break;
6414 case ZPOOL_PROP_BOOTFS:
6415 spa->spa_bootfs = intval;
6416 break;
6417 case ZPOOL_PROP_FAILUREMODE:
6418 spa->spa_failmode = intval;
6419 break;
6420 case ZPOOL_PROP_AUTOEXPAND:
6421 spa->spa_autoexpand = intval;
6422 if (tx->tx_txg != TXG_INITIAL)
6423 spa_async_request(spa,
6424 SPA_ASYNC_AUTOEXPAND);
6425 break;
6426 case ZPOOL_PROP_DEDUPDITTO:
6427 spa->spa_dedup_ditto = intval;
6428 break;
6429 default:
6430 break;
6436 mutex_exit(&spa->spa_props_lock);
6440 * Perform one-time upgrade on-disk changes. spa_version() does not
6441 * reflect the new version this txg, so there must be no changes this
6442 * txg to anything that the upgrade code depends on after it executes.
6443 * Therefore this must be called after dsl_pool_sync() does the sync
6444 * tasks.
6446 static void
6447 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6449 dsl_pool_t *dp = spa->spa_dsl_pool;
6451 ASSERT(spa->spa_sync_pass == 1);
6453 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6455 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6456 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6457 dsl_pool_create_origin(dp, tx);
6459 /* Keeping the origin open increases spa_minref */
6460 spa->spa_minref += 3;
6463 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6464 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6465 dsl_pool_upgrade_clones(dp, tx);
6468 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6469 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6470 dsl_pool_upgrade_dir_clones(dp, tx);
6472 /* Keeping the freedir open increases spa_minref */
6473 spa->spa_minref += 3;
6476 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6477 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6478 spa_feature_create_zap_objects(spa, tx);
6482 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6483 * when possibility to use lz4 compression for metadata was added
6484 * Old pools that have this feature enabled must be upgraded to have
6485 * this feature active
6487 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6488 boolean_t lz4_en = spa_feature_is_enabled(spa,
6489 SPA_FEATURE_LZ4_COMPRESS);
6490 boolean_t lz4_ac = spa_feature_is_active(spa,
6491 SPA_FEATURE_LZ4_COMPRESS);
6493 if (lz4_en && !lz4_ac)
6494 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6498 * If we haven't written the salt, do so now. Note that the
6499 * feature may not be activated yet, but that's fine since
6500 * the presence of this ZAP entry is backwards compatible.
6502 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6503 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6504 VERIFY0(zap_add(spa->spa_meta_objset,
6505 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6506 sizeof (spa->spa_cksum_salt.zcs_bytes),
6507 spa->spa_cksum_salt.zcs_bytes, tx));
6510 rrw_exit(&dp->dp_config_rwlock, FTAG);
6514 * Sync the specified transaction group. New blocks may be dirtied as
6515 * part of the process, so we iterate until it converges.
6517 void
6518 spa_sync(spa_t *spa, uint64_t txg)
6520 dsl_pool_t *dp = spa->spa_dsl_pool;
6521 objset_t *mos = spa->spa_meta_objset;
6522 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6523 vdev_t *rvd = spa->spa_root_vdev;
6524 vdev_t *vd;
6525 dmu_tx_t *tx;
6526 int error;
6527 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
6528 zfs_vdev_queue_depth_pct / 100;
6530 VERIFY(spa_writeable(spa));
6533 * Lock out configuration changes.
6535 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6537 spa->spa_syncing_txg = txg;
6538 spa->spa_sync_pass = 0;
6540 mutex_enter(&spa->spa_alloc_lock);
6541 VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6542 mutex_exit(&spa->spa_alloc_lock);
6545 * If there are any pending vdev state changes, convert them
6546 * into config changes that go out with this transaction group.
6548 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6549 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6551 * We need the write lock here because, for aux vdevs,
6552 * calling vdev_config_dirty() modifies sav_config.
6553 * This is ugly and will become unnecessary when we
6554 * eliminate the aux vdev wart by integrating all vdevs
6555 * into the root vdev tree.
6557 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6558 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6559 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6560 vdev_state_clean(vd);
6561 vdev_config_dirty(vd);
6563 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6564 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6566 spa_config_exit(spa, SCL_STATE, FTAG);
6568 tx = dmu_tx_create_assigned(dp, txg);
6570 spa->spa_sync_starttime = gethrtime();
6571 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6572 spa->spa_sync_starttime + spa->spa_deadman_synctime));
6575 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6576 * set spa_deflate if we have no raid-z vdevs.
6578 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6579 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6580 int i;
6582 for (i = 0; i < rvd->vdev_children; i++) {
6583 vd = rvd->vdev_child[i];
6584 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6585 break;
6587 if (i == rvd->vdev_children) {
6588 spa->spa_deflate = TRUE;
6589 VERIFY(0 == zap_add(spa->spa_meta_objset,
6590 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6591 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6596 * Set the top-level vdev's max queue depth. Evaluate each
6597 * top-level's async write queue depth in case it changed.
6598 * The max queue depth will not change in the middle of syncing
6599 * out this txg.
6601 uint64_t queue_depth_total = 0;
6602 for (int c = 0; c < rvd->vdev_children; c++) {
6603 vdev_t *tvd = rvd->vdev_child[c];
6604 metaslab_group_t *mg = tvd->vdev_mg;
6606 if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
6607 !metaslab_group_initialized(mg))
6608 continue;
6611 * It is safe to do a lock-free check here because only async
6612 * allocations look at mg_max_alloc_queue_depth, and async
6613 * allocations all happen from spa_sync().
6615 ASSERT0(refcount_count(&mg->mg_alloc_queue_depth));
6616 mg->mg_max_alloc_queue_depth = max_queue_depth;
6617 queue_depth_total += mg->mg_max_alloc_queue_depth;
6619 metaslab_class_t *mc = spa_normal_class(spa);
6620 ASSERT0(refcount_count(&mc->mc_alloc_slots));
6621 mc->mc_alloc_max_slots = queue_depth_total;
6622 mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
6624 ASSERT3U(mc->mc_alloc_max_slots, <=,
6625 max_queue_depth * rvd->vdev_children);
6628 * Iterate to convergence.
6630 do {
6631 int pass = ++spa->spa_sync_pass;
6633 spa_sync_config_object(spa, tx);
6634 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6635 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6636 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6637 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6638 spa_errlog_sync(spa, txg);
6639 dsl_pool_sync(dp, txg);
6641 if (pass < zfs_sync_pass_deferred_free) {
6642 spa_sync_frees(spa, free_bpl, tx);
6643 } else {
6645 * We can not defer frees in pass 1, because
6646 * we sync the deferred frees later in pass 1.
6648 ASSERT3U(pass, >, 1);
6649 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6650 &spa->spa_deferred_bpobj, tx);
6653 ddt_sync(spa, txg);
6654 dsl_scan_sync(dp, tx);
6656 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6657 vdev_sync(vd, txg);
6659 if (pass == 1) {
6660 spa_sync_upgrades(spa, tx);
6661 ASSERT3U(txg, >=,
6662 spa->spa_uberblock.ub_rootbp.blk_birth);
6664 * Note: We need to check if the MOS is dirty
6665 * because we could have marked the MOS dirty
6666 * without updating the uberblock (e.g. if we
6667 * have sync tasks but no dirty user data). We
6668 * need to check the uberblock's rootbp because
6669 * it is updated if we have synced out dirty
6670 * data (though in this case the MOS will most
6671 * likely also be dirty due to second order
6672 * effects, we don't want to rely on that here).
6674 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6675 !dmu_objset_is_dirty(mos, txg)) {
6677 * Nothing changed on the first pass,
6678 * therefore this TXG is a no-op. Avoid
6679 * syncing deferred frees, so that we
6680 * can keep this TXG as a no-op.
6682 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6683 txg));
6684 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6685 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6686 break;
6688 spa_sync_deferred_frees(spa, tx);
6691 } while (dmu_objset_is_dirty(mos, txg));
6693 if (!list_is_empty(&spa->spa_config_dirty_list)) {
6695 * Make sure that the number of ZAPs for all the vdevs matches
6696 * the number of ZAPs in the per-vdev ZAP list. This only gets
6697 * called if the config is dirty; otherwise there may be
6698 * outstanding AVZ operations that weren't completed in
6699 * spa_sync_config_object.
6701 uint64_t all_vdev_zap_entry_count;
6702 ASSERT0(zap_count(spa->spa_meta_objset,
6703 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
6704 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
6705 all_vdev_zap_entry_count);
6709 * Rewrite the vdev configuration (which includes the uberblock)
6710 * to commit the transaction group.
6712 * If there are no dirty vdevs, we sync the uberblock to a few
6713 * random top-level vdevs that are known to be visible in the
6714 * config cache (see spa_vdev_add() for a complete description).
6715 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6717 for (;;) {
6719 * We hold SCL_STATE to prevent vdev open/close/etc.
6720 * while we're attempting to write the vdev labels.
6722 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6724 if (list_is_empty(&spa->spa_config_dirty_list)) {
6725 vdev_t *svd[SPA_DVAS_PER_BP];
6726 int svdcount = 0;
6727 int children = rvd->vdev_children;
6728 int c0 = spa_get_random(children);
6730 for (int c = 0; c < children; c++) {
6731 vd = rvd->vdev_child[(c0 + c) % children];
6732 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6733 continue;
6734 svd[svdcount++] = vd;
6735 if (svdcount == SPA_DVAS_PER_BP)
6736 break;
6738 error = vdev_config_sync(svd, svdcount, txg);
6739 } else {
6740 error = vdev_config_sync(rvd->vdev_child,
6741 rvd->vdev_children, txg);
6744 if (error == 0)
6745 spa->spa_last_synced_guid = rvd->vdev_guid;
6747 spa_config_exit(spa, SCL_STATE, FTAG);
6749 if (error == 0)
6750 break;
6751 zio_suspend(spa, NULL);
6752 zio_resume_wait(spa);
6754 dmu_tx_commit(tx);
6756 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6759 * Clear the dirty config list.
6761 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6762 vdev_config_clean(vd);
6765 * Now that the new config has synced transactionally,
6766 * let it become visible to the config cache.
6768 if (spa->spa_config_syncing != NULL) {
6769 spa_config_set(spa, spa->spa_config_syncing);
6770 spa->spa_config_txg = txg;
6771 spa->spa_config_syncing = NULL;
6774 dsl_pool_sync_done(dp, txg);
6776 mutex_enter(&spa->spa_alloc_lock);
6777 VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6778 mutex_exit(&spa->spa_alloc_lock);
6781 * Update usable space statistics.
6783 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6784 vdev_sync_done(vd, txg);
6786 spa_update_dspace(spa);
6789 * It had better be the case that we didn't dirty anything
6790 * since vdev_config_sync().
6792 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6793 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6794 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6796 spa->spa_sync_pass = 0;
6799 * Update the last synced uberblock here. We want to do this at
6800 * the end of spa_sync() so that consumers of spa_last_synced_txg()
6801 * will be guaranteed that all the processing associated with
6802 * that txg has been completed.
6804 spa->spa_ubsync = spa->spa_uberblock;
6805 spa_config_exit(spa, SCL_CONFIG, FTAG);
6807 spa_handle_ignored_writes(spa);
6810 * If any async tasks have been requested, kick them off.
6812 spa_async_dispatch(spa);
6816 * Sync all pools. We don't want to hold the namespace lock across these
6817 * operations, so we take a reference on the spa_t and drop the lock during the
6818 * sync.
6820 void
6821 spa_sync_allpools(void)
6823 spa_t *spa = NULL;
6824 mutex_enter(&spa_namespace_lock);
6825 while ((spa = spa_next(spa)) != NULL) {
6826 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6827 !spa_writeable(spa) || spa_suspended(spa))
6828 continue;
6829 spa_open_ref(spa, FTAG);
6830 mutex_exit(&spa_namespace_lock);
6831 txg_wait_synced(spa_get_dsl(spa), 0);
6832 mutex_enter(&spa_namespace_lock);
6833 spa_close(spa, FTAG);
6835 mutex_exit(&spa_namespace_lock);
6839 * ==========================================================================
6840 * Miscellaneous routines
6841 * ==========================================================================
6845 * Remove all pools in the system.
6847 void
6848 spa_evict_all(void)
6850 spa_t *spa;
6853 * Remove all cached state. All pools should be closed now,
6854 * so every spa in the AVL tree should be unreferenced.
6856 mutex_enter(&spa_namespace_lock);
6857 while ((spa = spa_next(NULL)) != NULL) {
6859 * Stop async tasks. The async thread may need to detach
6860 * a device that's been replaced, which requires grabbing
6861 * spa_namespace_lock, so we must drop it here.
6863 spa_open_ref(spa, FTAG);
6864 mutex_exit(&spa_namespace_lock);
6865 spa_async_suspend(spa);
6866 mutex_enter(&spa_namespace_lock);
6867 spa_close(spa, FTAG);
6869 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6870 spa_unload(spa);
6871 spa_deactivate(spa);
6873 spa_remove(spa);
6875 mutex_exit(&spa_namespace_lock);
6878 vdev_t *
6879 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6881 vdev_t *vd;
6882 int i;
6884 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6885 return (vd);
6887 if (aux) {
6888 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6889 vd = spa->spa_l2cache.sav_vdevs[i];
6890 if (vd->vdev_guid == guid)
6891 return (vd);
6894 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6895 vd = spa->spa_spares.sav_vdevs[i];
6896 if (vd->vdev_guid == guid)
6897 return (vd);
6901 return (NULL);
6904 void
6905 spa_upgrade(spa_t *spa, uint64_t version)
6907 ASSERT(spa_writeable(spa));
6909 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6912 * This should only be called for a non-faulted pool, and since a
6913 * future version would result in an unopenable pool, this shouldn't be
6914 * possible.
6916 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6917 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6919 spa->spa_uberblock.ub_version = version;
6920 vdev_config_dirty(spa->spa_root_vdev);
6922 spa_config_exit(spa, SCL_ALL, FTAG);
6924 txg_wait_synced(spa_get_dsl(spa), 0);
6927 boolean_t
6928 spa_has_spare(spa_t *spa, uint64_t guid)
6930 int i;
6931 uint64_t spareguid;
6932 spa_aux_vdev_t *sav = &spa->spa_spares;
6934 for (i = 0; i < sav->sav_count; i++)
6935 if (sav->sav_vdevs[i]->vdev_guid == guid)
6936 return (B_TRUE);
6938 for (i = 0; i < sav->sav_npending; i++) {
6939 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6940 &spareguid) == 0 && spareguid == guid)
6941 return (B_TRUE);
6944 return (B_FALSE);
6948 * Check if a pool has an active shared spare device.
6949 * Note: reference count of an active spare is 2, as a spare and as a replace
6951 static boolean_t
6952 spa_has_active_shared_spare(spa_t *spa)
6954 int i, refcnt;
6955 uint64_t pool;
6956 spa_aux_vdev_t *sav = &spa->spa_spares;
6958 for (i = 0; i < sav->sav_count; i++) {
6959 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6960 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6961 refcnt > 2)
6962 return (B_TRUE);
6965 return (B_FALSE);
6968 static sysevent_t *
6969 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
6971 sysevent_t *ev = NULL;
6972 #ifdef _KERNEL
6973 sysevent_attr_list_t *attr = NULL;
6974 sysevent_value_t value;
6976 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6977 SE_SLEEP);
6978 ASSERT(ev != NULL);
6980 value.value_type = SE_DATA_TYPE_STRING;
6981 value.value.sv_string = spa_name(spa);
6982 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6983 goto done;
6985 value.value_type = SE_DATA_TYPE_UINT64;
6986 value.value.sv_uint64 = spa_guid(spa);
6987 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6988 goto done;
6990 if (vd) {
6991 value.value_type = SE_DATA_TYPE_UINT64;
6992 value.value.sv_uint64 = vd->vdev_guid;
6993 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6994 SE_SLEEP) != 0)
6995 goto done;
6997 if (vd->vdev_path) {
6998 value.value_type = SE_DATA_TYPE_STRING;
6999 value.value.sv_string = vd->vdev_path;
7000 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7001 &value, SE_SLEEP) != 0)
7002 goto done;
7006 if (hist_nvl != NULL) {
7007 fnvlist_merge((nvlist_t *)attr, hist_nvl);
7010 if (sysevent_attach_attributes(ev, attr) != 0)
7011 goto done;
7012 attr = NULL;
7014 done:
7015 if (attr)
7016 sysevent_free_attr(attr);
7018 #endif
7019 return (ev);
7022 static void
7023 spa_event_post(sysevent_t *ev)
7025 #ifdef _KERNEL
7026 sysevent_id_t eid;
7028 (void) log_sysevent(ev, SE_SLEEP, &eid);
7029 sysevent_free(ev);
7030 #endif
7034 * Post a sysevent corresponding to the given event. The 'name' must be one of
7035 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
7036 * filled in from the spa and (optionally) the vdev and history nvl. This
7037 * doesn't do anything in the userland libzpool, as we don't want consumers to
7038 * misinterpret ztest or zdb as real changes.
7040 void
7041 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
7043 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));