Merge commit '720b16875295d57e0e6a4e0ec32db4d47412f896'
[unleashed.git] / kernel / fs / zfs / dmu_tx.c
blobe97a61eb90dec40226f2da573f3de12569b1cb00
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
28 #include <sys/dmu.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/dbuf.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dsl_dataset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_pool.h>
36 #include <sys/zap_impl.h>
37 #include <sys/spa.h>
38 #include <sys/sa.h>
39 #include <sys/sa_impl.h>
40 #include <sys/zfs_context.h>
41 #include <sys/varargs.h>
43 typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
44 uint64_t arg1, uint64_t arg2);
47 dmu_tx_t *
48 dmu_tx_create_dd(dsl_dir_t *dd)
50 dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
51 tx->tx_dir = dd;
52 if (dd != NULL)
53 tx->tx_pool = dd->dd_pool;
54 list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
55 offsetof(dmu_tx_hold_t, txh_node));
56 list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
57 offsetof(dmu_tx_callback_t, dcb_node));
58 tx->tx_start = gethrtime();
59 return (tx);
62 dmu_tx_t *
63 dmu_tx_create(objset_t *os)
65 dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir);
66 tx->tx_objset = os;
67 return (tx);
70 dmu_tx_t *
71 dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
73 dmu_tx_t *tx = dmu_tx_create_dd(NULL);
75 txg_verify(dp->dp_spa, txg);
76 tx->tx_pool = dp;
77 tx->tx_txg = txg;
78 tx->tx_anyobj = TRUE;
80 return (tx);
83 int
84 dmu_tx_is_syncing(dmu_tx_t *tx)
86 return (tx->tx_anyobj);
89 int
90 dmu_tx_private_ok(dmu_tx_t *tx)
92 return (tx->tx_anyobj);
95 static dmu_tx_hold_t *
96 dmu_tx_hold_dnode_impl(dmu_tx_t *tx, dnode_t *dn, enum dmu_tx_hold_type type,
97 uint64_t arg1, uint64_t arg2)
99 dmu_tx_hold_t *txh;
101 if (dn != NULL) {
102 (void) refcount_add(&dn->dn_holds, tx);
103 if (tx->tx_txg != 0) {
104 mutex_enter(&dn->dn_mtx);
106 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
107 * problem, but there's no way for it to happen (for
108 * now, at least).
110 ASSERT(dn->dn_assigned_txg == 0);
111 dn->dn_assigned_txg = tx->tx_txg;
112 (void) refcount_add(&dn->dn_tx_holds, tx);
113 mutex_exit(&dn->dn_mtx);
117 txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
118 txh->txh_tx = tx;
119 txh->txh_dnode = dn;
120 refcount_create(&txh->txh_space_towrite);
121 refcount_create(&txh->txh_memory_tohold);
122 txh->txh_type = type;
123 txh->txh_arg1 = arg1;
124 txh->txh_arg2 = arg2;
125 list_insert_tail(&tx->tx_holds, txh);
127 return (txh);
130 static dmu_tx_hold_t *
131 dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
132 enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
134 dnode_t *dn = NULL;
135 dmu_tx_hold_t *txh;
136 int err;
138 if (object != DMU_NEW_OBJECT) {
139 err = dnode_hold(os, object, FTAG, &dn);
140 if (err != 0) {
141 tx->tx_err = err;
142 return (NULL);
145 txh = dmu_tx_hold_dnode_impl(tx, dn, type, arg1, arg2);
146 if (dn != NULL)
147 dnode_rele(dn, FTAG);
148 return (txh);
151 void
152 dmu_tx_add_new_object(dmu_tx_t *tx, dnode_t *dn)
155 * If we're syncing, they can manipulate any object anyhow, and
156 * the hold on the dnode_t can cause problems.
158 if (!dmu_tx_is_syncing(tx))
159 (void) dmu_tx_hold_dnode_impl(tx, dn, THT_NEWOBJECT, 0, 0);
163 * This function reads specified data from disk. The specified data will
164 * be needed to perform the transaction -- i.e, it will be read after
165 * we do dmu_tx_assign(). There are two reasons that we read the data now
166 * (before dmu_tx_assign()):
168 * 1. Reading it now has potentially better performance. The transaction
169 * has not yet been assigned, so the TXG is not held open, and also the
170 * caller typically has less locks held when calling dmu_tx_hold_*() than
171 * after the transaction has been assigned. This reduces the lock (and txg)
172 * hold times, thus reducing lock contention.
174 * 2. It is easier for callers (primarily the ZPL) to handle i/o errors
175 * that are detected before they start making changes to the DMU state
176 * (i.e. now). Once the transaction has been assigned, and some DMU
177 * state has been changed, it can be difficult to recover from an i/o
178 * error (e.g. to undo the changes already made in memory at the DMU
179 * layer). Typically code to do so does not exist in the caller -- it
180 * assumes that the data has already been cached and thus i/o errors are
181 * not possible.
183 * It has been observed that the i/o initiated here can be a performance
184 * problem, and it appears to be optional, because we don't look at the
185 * data which is read. However, removing this read would only serve to
186 * move the work elsewhere (after the dmu_tx_assign()), where it may
187 * have a greater impact on performance (in addition to the impact on
188 * fault tolerance noted above).
190 static int
191 dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
193 int err;
194 dmu_buf_impl_t *db;
196 rw_enter(&dn->dn_struct_rwlock, RW_READER);
197 db = dbuf_hold_level(dn, level, blkid, FTAG);
198 rw_exit(&dn->dn_struct_rwlock);
199 if (db == NULL)
200 return (SET_ERROR(EIO));
201 err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH);
202 dbuf_rele(db, FTAG);
203 return (err);
206 /* ARGSUSED */
207 static void
208 dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
210 dnode_t *dn = txh->txh_dnode;
211 int err = 0;
213 if (len == 0)
214 return;
216 (void) refcount_add_many(&txh->txh_space_towrite, len, FTAG);
218 if (refcount_count(&txh->txh_space_towrite) > 2 * DMU_MAX_ACCESS)
219 err = SET_ERROR(EFBIG);
221 if (dn == NULL)
222 return;
225 * For i/o error checking, read the blocks that will be needed
226 * to perform the write: the first and last level-0 blocks (if
227 * they are not aligned, i.e. if they are partial-block writes),
228 * and all the level-1 blocks.
230 if (dn->dn_maxblkid == 0) {
231 if (off < dn->dn_datablksz &&
232 (off > 0 || len < dn->dn_datablksz)) {
233 err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
234 if (err != 0) {
235 txh->txh_tx->tx_err = err;
238 } else {
239 zio_t *zio = zio_root(dn->dn_objset->os_spa,
240 NULL, NULL, ZIO_FLAG_CANFAIL);
242 /* first level-0 block */
243 uint64_t start = off >> dn->dn_datablkshift;
244 if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) {
245 err = dmu_tx_check_ioerr(zio, dn, 0, start);
246 if (err != 0) {
247 txh->txh_tx->tx_err = err;
251 /* last level-0 block */
252 uint64_t end = (off + len - 1) >> dn->dn_datablkshift;
253 if (end != start && end <= dn->dn_maxblkid &&
254 P2PHASE(off + len, dn->dn_datablksz)) {
255 err = dmu_tx_check_ioerr(zio, dn, 0, end);
256 if (err != 0) {
257 txh->txh_tx->tx_err = err;
261 /* level-1 blocks */
262 if (dn->dn_nlevels > 1) {
263 int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
264 for (uint64_t i = (start >> shft) + 1;
265 i < end >> shft; i++) {
266 err = dmu_tx_check_ioerr(zio, dn, 1, i);
267 if (err != 0) {
268 txh->txh_tx->tx_err = err;
273 err = zio_wait(zio);
274 if (err != 0) {
275 txh->txh_tx->tx_err = err;
280 static void
281 dmu_tx_count_dnode(dmu_tx_hold_t *txh)
283 (void) refcount_add_many(&txh->txh_space_towrite, DNODE_SIZE, FTAG);
286 void
287 dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
289 dmu_tx_hold_t *txh;
291 ASSERT0(tx->tx_txg);
292 ASSERT3U(len, <=, DMU_MAX_ACCESS);
293 ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
295 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
296 object, THT_WRITE, off, len);
297 if (txh != NULL) {
298 dmu_tx_count_write(txh, off, len);
299 dmu_tx_count_dnode(txh);
303 void
304 dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
306 dmu_tx_hold_t *txh;
308 ASSERT0(tx->tx_txg);
309 ASSERT3U(len, <=, DMU_MAX_ACCESS);
310 ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
312 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_WRITE, off, len);
313 if (txh != NULL) {
314 dmu_tx_count_write(txh, off, len);
315 dmu_tx_count_dnode(txh);
320 * This function marks the transaction as being a "net free". The end
321 * result is that refquotas will be disabled for this transaction, and
322 * this transaction will be able to use half of the pool space overhead
323 * (see dsl_pool_adjustedsize()). Therefore this function should only
324 * be called for transactions that we expect will not cause a net increase
325 * in the amount of space used (but it's OK if that is occasionally not true).
327 void
328 dmu_tx_mark_netfree(dmu_tx_t *tx)
330 tx->tx_netfree = B_TRUE;
333 static void
334 dmu_tx_hold_free_impl(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
336 dmu_tx_t *tx;
337 dnode_t *dn;
338 int err;
340 tx = txh->txh_tx;
341 ASSERT(tx->tx_txg == 0);
343 dn = txh->txh_dnode;
344 dmu_tx_count_dnode(txh);
346 if (off >= (dn->dn_maxblkid + 1) * dn->dn_datablksz)
347 return;
348 if (len == DMU_OBJECT_END)
349 len = (dn->dn_maxblkid + 1) * dn->dn_datablksz - off;
352 * For i/o error checking, we read the first and last level-0
353 * blocks if they are not aligned, and all the level-1 blocks.
355 * Note: dbuf_free_range() assumes that we have not instantiated
356 * any level-0 dbufs that will be completely freed. Therefore we must
357 * exercise care to not read or count the first and last blocks
358 * if they are blocksize-aligned.
360 if (dn->dn_datablkshift == 0) {
361 if (off != 0 || len < dn->dn_datablksz)
362 dmu_tx_count_write(txh, 0, dn->dn_datablksz);
363 } else {
364 /* first block will be modified if it is not aligned */
365 if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift))
366 dmu_tx_count_write(txh, off, 1);
367 /* last block will be modified if it is not aligned */
368 if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift))
369 dmu_tx_count_write(txh, off + len, 1);
373 * Check level-1 blocks.
375 if (dn->dn_nlevels > 1) {
376 int shift = dn->dn_datablkshift + dn->dn_indblkshift -
377 SPA_BLKPTRSHIFT;
378 uint64_t start = off >> shift;
379 uint64_t end = (off + len) >> shift;
381 ASSERT(dn->dn_indblkshift != 0);
384 * dnode_reallocate() can result in an object with indirect
385 * blocks having an odd data block size. In this case,
386 * just check the single block.
388 if (dn->dn_datablkshift == 0)
389 start = end = 0;
391 zio_t *zio = zio_root(tx->tx_pool->dp_spa,
392 NULL, NULL, ZIO_FLAG_CANFAIL);
393 for (uint64_t i = start; i <= end; i++) {
394 uint64_t ibyte = i << shift;
395 err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
396 i = ibyte >> shift;
397 if (err == ESRCH || i > end)
398 break;
399 if (err != 0) {
400 tx->tx_err = err;
401 (void) zio_wait(zio);
402 return;
405 (void) refcount_add_many(&txh->txh_memory_tohold,
406 1 << dn->dn_indblkshift, FTAG);
408 err = dmu_tx_check_ioerr(zio, dn, 1, i);
409 if (err != 0) {
410 tx->tx_err = err;
411 (void) zio_wait(zio);
412 return;
415 err = zio_wait(zio);
416 if (err != 0) {
417 tx->tx_err = err;
418 return;
423 void
424 dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
426 dmu_tx_hold_t *txh;
428 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
429 object, THT_FREE, off, len);
430 if (txh != NULL)
431 (void) dmu_tx_hold_free_impl(txh, off, len);
434 void
435 dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len)
437 dmu_tx_hold_t *txh;
439 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_FREE, off, len);
440 if (txh != NULL)
441 (void) dmu_tx_hold_free_impl(txh, off, len);
444 static void
445 dmu_tx_hold_zap_impl(dmu_tx_hold_t *txh, const char *name)
447 dmu_tx_t *tx = txh->txh_tx;
448 dnode_t *dn;
449 int err;
451 ASSERT(tx->tx_txg == 0);
453 dn = txh->txh_dnode;
455 dmu_tx_count_dnode(txh);
458 * Modifying a almost-full microzap is around the worst case (128KB)
460 * If it is a fat zap, the worst case would be 7*16KB=112KB:
461 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
462 * - 4 new blocks written if adding:
463 * - 2 blocks for possibly split leaves,
464 * - 2 grown ptrtbl blocks
466 (void) refcount_add_many(&txh->txh_space_towrite,
467 MZAP_MAX_BLKSZ, FTAG);
469 if (dn == NULL)
470 return;
472 ASSERT3P(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP);
474 if (dn->dn_maxblkid == 0 || name == NULL) {
476 * This is a microzap (only one block), or we don't know
477 * the name. Check the first block for i/o errors.
479 err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
480 if (err != 0) {
481 tx->tx_err = err;
483 } else {
485 * Access the name so that we'll check for i/o errors to
486 * the leaf blocks, etc. We ignore ENOENT, as this name
487 * may not yet exist.
489 err = zap_lookup_by_dnode(dn, name, 8, 0, NULL);
490 if (err == EIO || err == ECKSUM || err == ENXIO) {
491 tx->tx_err = err;
496 void
497 dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name)
499 dmu_tx_hold_t *txh;
501 ASSERT0(tx->tx_txg);
503 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
504 object, THT_ZAP, add, (uintptr_t)name);
505 if (txh != NULL)
506 dmu_tx_hold_zap_impl(txh, name);
509 void
510 dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, const char *name)
512 dmu_tx_hold_t *txh;
514 ASSERT0(tx->tx_txg);
515 ASSERT(dn != NULL);
517 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_ZAP, add, (uintptr_t)name);
518 if (txh != NULL)
519 dmu_tx_hold_zap_impl(txh, name);
522 void
523 dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
525 dmu_tx_hold_t *txh;
527 ASSERT(tx->tx_txg == 0);
529 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
530 object, THT_BONUS, 0, 0);
531 if (txh)
532 dmu_tx_count_dnode(txh);
535 void
536 dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn)
538 dmu_tx_hold_t *txh;
540 ASSERT0(tx->tx_txg);
542 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_BONUS, 0, 0);
543 if (txh)
544 dmu_tx_count_dnode(txh);
547 void
548 dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
550 dmu_tx_hold_t *txh;
551 ASSERT(tx->tx_txg == 0);
553 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
554 DMU_NEW_OBJECT, THT_SPACE, space, 0);
556 (void) refcount_add_many(&txh->txh_space_towrite, space, FTAG);
559 #ifdef ZFS_DEBUG
560 void
561 dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
563 boolean_t match_object = B_FALSE;
564 boolean_t match_offset = B_FALSE;
566 DB_DNODE_ENTER(db);
567 dnode_t *dn = DB_DNODE(db);
568 ASSERT(tx->tx_txg != 0);
569 ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset);
570 ASSERT3U(dn->dn_object, ==, db->db.db_object);
572 if (tx->tx_anyobj) {
573 DB_DNODE_EXIT(db);
574 return;
577 /* XXX No checking on the meta dnode for now */
578 if (db->db.db_object == DMU_META_DNODE_OBJECT) {
579 DB_DNODE_EXIT(db);
580 return;
583 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
584 txh = list_next(&tx->tx_holds, txh)) {
585 ASSERT(dn == NULL || dn->dn_assigned_txg == tx->tx_txg);
586 if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
587 match_object = TRUE;
588 if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
589 int datablkshift = dn->dn_datablkshift ?
590 dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
591 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
592 int shift = datablkshift + epbs * db->db_level;
593 uint64_t beginblk = shift >= 64 ? 0 :
594 (txh->txh_arg1 >> shift);
595 uint64_t endblk = shift >= 64 ? 0 :
596 ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
597 uint64_t blkid = db->db_blkid;
599 /* XXX txh_arg2 better not be zero... */
601 dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
602 txh->txh_type, beginblk, endblk);
604 switch (txh->txh_type) {
605 case THT_WRITE:
606 if (blkid >= beginblk && blkid <= endblk)
607 match_offset = TRUE;
609 * We will let this hold work for the bonus
610 * or spill buffer so that we don't need to
611 * hold it when creating a new object.
613 if (blkid == DMU_BONUS_BLKID ||
614 blkid == DMU_SPILL_BLKID)
615 match_offset = TRUE;
617 * They might have to increase nlevels,
618 * thus dirtying the new TLIBs. Or the
619 * might have to change the block size,
620 * thus dirying the new lvl=0 blk=0.
622 if (blkid == 0)
623 match_offset = TRUE;
624 break;
625 case THT_FREE:
627 * We will dirty all the level 1 blocks in
628 * the free range and perhaps the first and
629 * last level 0 block.
631 if (blkid >= beginblk && (blkid <= endblk ||
632 txh->txh_arg2 == DMU_OBJECT_END))
633 match_offset = TRUE;
634 break;
635 case THT_SPILL:
636 if (blkid == DMU_SPILL_BLKID)
637 match_offset = TRUE;
638 break;
639 case THT_BONUS:
640 if (blkid == DMU_BONUS_BLKID)
641 match_offset = TRUE;
642 break;
643 case THT_ZAP:
644 match_offset = TRUE;
645 break;
646 case THT_NEWOBJECT:
647 match_object = TRUE;
648 break;
649 default:
650 ASSERT(!"bad txh_type");
653 if (match_object && match_offset) {
654 DB_DNODE_EXIT(db);
655 return;
658 DB_DNODE_EXIT(db);
659 panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
660 (u_longlong_t)db->db.db_object, db->db_level,
661 (u_longlong_t)db->db_blkid);
663 #endif
666 * If we can't do 10 iops, something is wrong. Let us go ahead
667 * and hit zfs_dirty_data_max.
669 hrtime_t zfs_delay_max_ns = MSEC2NSEC(100);
670 int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */
673 * We delay transactions when we've determined that the backend storage
674 * isn't able to accommodate the rate of incoming writes.
676 * If there is already a transaction waiting, we delay relative to when
677 * that transaction finishes waiting. This way the calculated min_time
678 * is independent of the number of threads concurrently executing
679 * transactions.
681 * If we are the only waiter, wait relative to when the transaction
682 * started, rather than the current time. This credits the transaction for
683 * "time already served", e.g. reading indirect blocks.
685 * The minimum time for a transaction to take is calculated as:
686 * min_time = scale * (dirty - min) / (max - dirty)
687 * min_time is then capped at zfs_delay_max_ns.
689 * The delay has two degrees of freedom that can be adjusted via tunables.
690 * The percentage of dirty data at which we start to delay is defined by
691 * zfs_delay_min_dirty_percent. This should typically be at or above
692 * zfs_vdev_async_write_active_max_dirty_percent so that we only start to
693 * delay after writing at full speed has failed to keep up with the incoming
694 * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
695 * speaking, this variable determines the amount of delay at the midpoint of
696 * the curve.
698 * delay
699 * 10ms +-------------------------------------------------------------*+
700 * | *|
701 * 9ms + *+
702 * | *|
703 * 8ms + *+
704 * | * |
705 * 7ms + * +
706 * | * |
707 * 6ms + * +
708 * | * |
709 * 5ms + * +
710 * | * |
711 * 4ms + * +
712 * | * |
713 * 3ms + * +
714 * | * |
715 * 2ms + (midpoint) * +
716 * | | ** |
717 * 1ms + v *** +
718 * | zfs_delay_scale ----------> ******** |
719 * 0 +-------------------------------------*********----------------+
720 * 0% <- zfs_dirty_data_max -> 100%
722 * Note that since the delay is added to the outstanding time remaining on the
723 * most recent transaction, the delay is effectively the inverse of IOPS.
724 * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
725 * was chosen such that small changes in the amount of accumulated dirty data
726 * in the first 3/4 of the curve yield relatively small differences in the
727 * amount of delay.
729 * The effects can be easier to understand when the amount of delay is
730 * represented on a log scale:
732 * delay
733 * 100ms +-------------------------------------------------------------++
734 * + +
735 * | |
736 * + *+
737 * 10ms + *+
738 * + ** +
739 * | (midpoint) ** |
740 * + | ** +
741 * 1ms + v **** +
742 * + zfs_delay_scale ----------> ***** +
743 * | **** |
744 * + **** +
745 * 100us + ** +
746 * + * +
747 * | * |
748 * + * +
749 * 10us + * +
750 * + +
751 * | |
752 * + +
753 * +--------------------------------------------------------------+
754 * 0% <- zfs_dirty_data_max -> 100%
756 * Note here that only as the amount of dirty data approaches its limit does
757 * the delay start to increase rapidly. The goal of a properly tuned system
758 * should be to keep the amount of dirty data out of that range by first
759 * ensuring that the appropriate limits are set for the I/O scheduler to reach
760 * optimal throughput on the backend storage, and then by changing the value
761 * of zfs_delay_scale to increase the steepness of the curve.
763 static void
764 dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
766 dsl_pool_t *dp = tx->tx_pool;
767 uint64_t delay_min_bytes =
768 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
769 hrtime_t wakeup, min_tx_time, now;
771 if (dirty <= delay_min_bytes)
772 return;
775 * The caller has already waited until we are under the max.
776 * We make them pass us the amount of dirty data so we don't
777 * have to handle the case of it being >= the max, which could
778 * cause a divide-by-zero if it's == the max.
780 ASSERT3U(dirty, <, zfs_dirty_data_max);
782 now = gethrtime();
783 min_tx_time = zfs_delay_scale *
784 (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty);
785 if (now > tx->tx_start + min_tx_time)
786 return;
788 min_tx_time = MIN(min_tx_time, zfs_delay_max_ns);
790 DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
791 uint64_t, min_tx_time);
793 mutex_enter(&dp->dp_lock);
794 wakeup = MAX(tx->tx_start + min_tx_time,
795 dp->dp_last_wakeup + min_tx_time);
796 dp->dp_last_wakeup = wakeup;
797 mutex_exit(&dp->dp_lock);
799 #ifdef _KERNEL
800 mutex_enter(&curthread->t_delay_lock);
801 while (cv_timedwait_hires(&curthread->t_delay_cv,
802 &curthread->t_delay_lock, wakeup, zfs_delay_resolution_ns,
803 CALLOUT_FLAG_ABSOLUTE | CALLOUT_FLAG_ROUNDUP) > 0)
804 continue;
805 mutex_exit(&curthread->t_delay_lock);
806 #else
807 hrtime_t delta = wakeup - gethrtime();
808 struct timespec ts;
809 ts.tv_sec = delta / NANOSEC;
810 ts.tv_nsec = delta % NANOSEC;
811 (void) nanosleep(&ts, NULL);
812 #endif
816 * This routine attempts to assign the transaction to a transaction group.
817 * To do so, we must determine if there is sufficient free space on disk.
819 * If this is a "netfree" transaction (i.e. we called dmu_tx_mark_netfree()
820 * on it), then it is assumed that there is sufficient free space,
821 * unless there's insufficient slop space in the pool (see the comment
822 * above spa_slop_shift in spa_misc.c).
824 * If it is not a "netfree" transaction, then if the data already on disk
825 * is over the allowed usage (e.g. quota), this will fail with EDQUOT or
826 * ENOSPC. Otherwise, if the current rough estimate of pending changes,
827 * plus the rough estimate of this transaction's changes, may exceed the
828 * allowed usage, then this will fail with ERESTART, which will cause the
829 * caller to wait for the pending changes to be written to disk (by waiting
830 * for the next TXG to open), and then check the space usage again.
832 * The rough estimate of pending changes is comprised of the sum of:
834 * - this transaction's holds' txh_space_towrite
836 * - dd_tempreserved[], which is the sum of in-flight transactions'
837 * holds' txh_space_towrite (i.e. those transactions that have called
838 * dmu_tx_assign() but not yet called dmu_tx_commit()).
840 * - dd_space_towrite[], which is the amount of dirtied dbufs.
842 * Note that all of these values are inflated by spa_get_worst_case_asize(),
843 * which means that we may get ERESTART well before we are actually in danger
844 * of running out of space, but this also mitigates any small inaccuracies
845 * in the rough estimate (e.g. txh_space_towrite doesn't take into account
846 * indirect blocks, and dd_space_towrite[] doesn't take into account changes
847 * to the MOS).
849 * Note that due to this algorithm, it is possible to exceed the allowed
850 * usage by one transaction. Also, as we approach the allowed usage,
851 * we will allow a very limited amount of changes into each TXG, thus
852 * decreasing performance.
854 static int
855 dmu_tx_try_assign(dmu_tx_t *tx, txg_how_t txg_how)
857 spa_t *spa = tx->tx_pool->dp_spa;
859 ASSERT0(tx->tx_txg);
861 if (tx->tx_err)
862 return (tx->tx_err);
864 if (spa_suspended(spa)) {
866 * If the user has indicated a blocking failure mode
867 * then return ERESTART which will block in dmu_tx_wait().
868 * Otherwise, return EIO so that an error can get
869 * propagated back to the VOP calls.
871 * Note that we always honor the txg_how flag regardless
872 * of the failuremode setting.
874 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
875 txg_how != TXG_WAIT)
876 return (SET_ERROR(EIO));
878 return (SET_ERROR(ERESTART));
881 if (!tx->tx_waited &&
882 dsl_pool_need_dirty_delay(tx->tx_pool)) {
883 tx->tx_wait_dirty = B_TRUE;
884 return (SET_ERROR(ERESTART));
887 tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
888 tx->tx_needassign_txh = NULL;
891 * NB: No error returns are allowed after txg_hold_open, but
892 * before processing the dnode holds, due to the
893 * dmu_tx_unassign() logic.
896 uint64_t towrite = 0;
897 uint64_t tohold = 0;
898 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
899 txh = list_next(&tx->tx_holds, txh)) {
900 dnode_t *dn = txh->txh_dnode;
901 if (dn != NULL) {
902 mutex_enter(&dn->dn_mtx);
903 if (dn->dn_assigned_txg == tx->tx_txg - 1) {
904 mutex_exit(&dn->dn_mtx);
905 tx->tx_needassign_txh = txh;
906 return (SET_ERROR(ERESTART));
908 if (dn->dn_assigned_txg == 0)
909 dn->dn_assigned_txg = tx->tx_txg;
910 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
911 (void) refcount_add(&dn->dn_tx_holds, tx);
912 mutex_exit(&dn->dn_mtx);
914 towrite += refcount_count(&txh->txh_space_towrite);
915 tohold += refcount_count(&txh->txh_memory_tohold);
918 /* needed allocation: worst-case estimate of write space */
919 uint64_t asize = spa_get_worst_case_asize(tx->tx_pool->dp_spa, towrite);
920 /* calculate memory footprint estimate */
921 uint64_t memory = towrite + tohold;
923 if (tx->tx_dir != NULL && asize != 0) {
924 int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
925 asize, tx->tx_netfree, &tx->tx_tempreserve_cookie, tx);
926 if (err != 0)
927 return (err);
930 return (0);
933 static void
934 dmu_tx_unassign(dmu_tx_t *tx)
936 if (tx->tx_txg == 0)
937 return;
939 txg_rele_to_quiesce(&tx->tx_txgh);
942 * Walk the transaction's hold list, removing the hold on the
943 * associated dnode, and notifying waiters if the refcount drops to 0.
945 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds);
946 txh != tx->tx_needassign_txh;
947 txh = list_next(&tx->tx_holds, txh)) {
948 dnode_t *dn = txh->txh_dnode;
950 if (dn == NULL)
951 continue;
952 mutex_enter(&dn->dn_mtx);
953 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
955 if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
956 dn->dn_assigned_txg = 0;
957 cv_broadcast(&dn->dn_notxholds);
959 mutex_exit(&dn->dn_mtx);
962 txg_rele_to_sync(&tx->tx_txgh);
964 tx->tx_lasttried_txg = tx->tx_txg;
965 tx->tx_txg = 0;
969 * Assign tx to a transaction group. txg_how can be one of:
971 * (1) TXG_WAIT. If the current open txg is full, waits until there's
972 * a new one. This should be used when you're not holding locks.
973 * It will only fail if we're truly out of space (or over quota).
975 * (2) TXG_NOWAIT. If we can't assign into the current open txg without
976 * blocking, returns immediately with ERESTART. This should be used
977 * whenever you're holding locks. On an ERESTART error, the caller
978 * should drop locks, do a dmu_tx_wait(tx), and try again.
980 * (3) TXG_WAITED. Like TXG_NOWAIT, but indicates that dmu_tx_wait()
981 * has already been called on behalf of this operation (though
982 * most likely on a different tx).
985 dmu_tx_assign(dmu_tx_t *tx, txg_how_t txg_how)
987 int err;
989 ASSERT(tx->tx_txg == 0);
990 ASSERT(txg_how == TXG_WAIT || txg_how == TXG_NOWAIT ||
991 txg_how == TXG_WAITED);
992 ASSERT(!dsl_pool_sync_context(tx->tx_pool));
994 /* If we might wait, we must not hold the config lock. */
995 ASSERT(txg_how != TXG_WAIT || !dsl_pool_config_held(tx->tx_pool));
997 if (txg_how == TXG_WAITED)
998 tx->tx_waited = B_TRUE;
1000 while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
1001 dmu_tx_unassign(tx);
1003 if (err != ERESTART || txg_how != TXG_WAIT)
1004 return (err);
1006 dmu_tx_wait(tx);
1009 txg_rele_to_quiesce(&tx->tx_txgh);
1011 return (0);
1014 void
1015 dmu_tx_wait(dmu_tx_t *tx)
1017 spa_t *spa = tx->tx_pool->dp_spa;
1018 dsl_pool_t *dp = tx->tx_pool;
1020 ASSERT(tx->tx_txg == 0);
1021 ASSERT(!dsl_pool_config_held(tx->tx_pool));
1023 if (tx->tx_wait_dirty) {
1025 * dmu_tx_try_assign() has determined that we need to wait
1026 * because we've consumed much or all of the dirty buffer
1027 * space.
1029 mutex_enter(&dp->dp_lock);
1030 while (dp->dp_dirty_total >= zfs_dirty_data_max)
1031 cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
1032 uint64_t dirty = dp->dp_dirty_total;
1033 mutex_exit(&dp->dp_lock);
1035 dmu_tx_delay(tx, dirty);
1037 tx->tx_wait_dirty = B_FALSE;
1040 * Note: setting tx_waited only has effect if the caller
1041 * used TX_WAIT. Otherwise they are going to destroy
1042 * this tx and try again. The common case, zfs_write(),
1043 * uses TX_WAIT.
1045 tx->tx_waited = B_TRUE;
1046 } else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
1048 * If the pool is suspended we need to wait until it
1049 * is resumed. Note that it's possible that the pool
1050 * has become active after this thread has tried to
1051 * obtain a tx. If that's the case then tx_lasttried_txg
1052 * would not have been set.
1054 txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1055 } else if (tx->tx_needassign_txh) {
1057 * A dnode is assigned to the quiescing txg. Wait for its
1058 * transaction to complete.
1060 dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
1062 mutex_enter(&dn->dn_mtx);
1063 while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
1064 cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
1065 mutex_exit(&dn->dn_mtx);
1066 tx->tx_needassign_txh = NULL;
1067 } else {
1068 txg_wait_open(tx->tx_pool, tx->tx_lasttried_txg + 1);
1072 static void
1073 dmu_tx_destroy(dmu_tx_t *tx)
1075 dmu_tx_hold_t *txh;
1077 while ((txh = list_head(&tx->tx_holds)) != NULL) {
1078 dnode_t *dn = txh->txh_dnode;
1080 list_remove(&tx->tx_holds, txh);
1081 refcount_destroy_many(&txh->txh_space_towrite,
1082 refcount_count(&txh->txh_space_towrite));
1083 refcount_destroy_many(&txh->txh_memory_tohold,
1084 refcount_count(&txh->txh_memory_tohold));
1085 kmem_free(txh, sizeof (dmu_tx_hold_t));
1086 if (dn != NULL)
1087 dnode_rele(dn, tx);
1090 list_destroy(&tx->tx_callbacks);
1091 list_destroy(&tx->tx_holds);
1092 kmem_free(tx, sizeof (dmu_tx_t));
1095 void
1096 dmu_tx_commit(dmu_tx_t *tx)
1098 ASSERT(tx->tx_txg != 0);
1101 * Go through the transaction's hold list and remove holds on
1102 * associated dnodes, notifying waiters if no holds remain.
1104 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
1105 txh = list_next(&tx->tx_holds, txh)) {
1106 dnode_t *dn = txh->txh_dnode;
1108 if (dn == NULL)
1109 continue;
1111 mutex_enter(&dn->dn_mtx);
1112 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1114 if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1115 dn->dn_assigned_txg = 0;
1116 cv_broadcast(&dn->dn_notxholds);
1118 mutex_exit(&dn->dn_mtx);
1121 if (tx->tx_tempreserve_cookie)
1122 dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
1124 if (!list_is_empty(&tx->tx_callbacks))
1125 txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);
1127 if (tx->tx_anyobj == FALSE)
1128 txg_rele_to_sync(&tx->tx_txgh);
1130 dmu_tx_destroy(tx);
1133 void
1134 dmu_tx_abort(dmu_tx_t *tx)
1136 ASSERT(tx->tx_txg == 0);
1139 * Call any registered callbacks with an error code.
1141 if (!list_is_empty(&tx->tx_callbacks))
1142 dmu_tx_do_callbacks(&tx->tx_callbacks, ECANCELED);
1144 dmu_tx_destroy(tx);
1147 uint64_t
1148 dmu_tx_get_txg(dmu_tx_t *tx)
1150 ASSERT(tx->tx_txg != 0);
1151 return (tx->tx_txg);
1154 dsl_pool_t *
1155 dmu_tx_pool(dmu_tx_t *tx)
1157 ASSERT(tx->tx_pool != NULL);
1158 return (tx->tx_pool);
1161 void
1162 dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
1164 dmu_tx_callback_t *dcb;
1166 dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);
1168 dcb->dcb_func = func;
1169 dcb->dcb_data = data;
1171 list_insert_tail(&tx->tx_callbacks, dcb);
1175 * Call all the commit callbacks on a list, with a given error code.
1177 void
1178 dmu_tx_do_callbacks(list_t *cb_list, int error)
1180 dmu_tx_callback_t *dcb;
1182 while ((dcb = list_head(cb_list)) != NULL) {
1183 list_remove(cb_list, dcb);
1184 dcb->dcb_func(dcb->dcb_data, error);
1185 kmem_free(dcb, sizeof (dmu_tx_callback_t));
1190 * Interface to hold a bunch of attributes.
1191 * used for creating new files.
1192 * attrsize is the total size of all attributes
1193 * to be added during object creation
1195 * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
1199 * hold necessary attribute name for attribute registration.
1200 * should be a very rare case where this is needed. If it does
1201 * happen it would only happen on the first write to the file system.
1203 static void
1204 dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
1206 if (!sa->sa_need_attr_registration)
1207 return;
1209 for (int i = 0; i != sa->sa_num_attrs; i++) {
1210 if (!sa->sa_attr_table[i].sa_registered) {
1211 if (sa->sa_reg_attr_obj)
1212 dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
1213 B_TRUE, sa->sa_attr_table[i].sa_name);
1214 else
1215 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
1216 B_TRUE, sa->sa_attr_table[i].sa_name);
1221 void
1222 dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
1224 dmu_tx_hold_t *txh = dmu_tx_hold_object_impl(tx,
1225 tx->tx_objset, object, THT_SPILL, 0, 0);
1227 (void) refcount_add_many(&txh->txh_space_towrite,
1228 SPA_OLD_MAXBLOCKSIZE, FTAG);
1231 void
1232 dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
1234 sa_os_t *sa = tx->tx_objset->os_sa;
1236 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1238 if (tx->tx_objset->os_sa->sa_master_obj == 0)
1239 return;
1241 if (tx->tx_objset->os_sa->sa_layout_attr_obj) {
1242 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1243 } else {
1244 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1245 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1246 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1247 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1250 dmu_tx_sa_registration_hold(sa, tx);
1252 if (attrsize <= DN_MAX_BONUSLEN && !sa->sa_force_spill)
1253 return;
1255 (void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
1256 THT_SPILL, 0, 0);
1260 * Hold SA attribute
1262 * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
1264 * variable_size is the total size of all variable sized attributes
1265 * passed to this function. It is not the total size of all
1266 * variable size attributes that *may* exist on this object.
1268 void
1269 dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
1271 uint64_t object;
1272 sa_os_t *sa = tx->tx_objset->os_sa;
1274 ASSERT(hdl != NULL);
1276 object = sa_handle_object(hdl);
1278 dmu_tx_hold_bonus(tx, object);
1280 if (tx->tx_objset->os_sa->sa_master_obj == 0)
1281 return;
1283 if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
1284 tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
1285 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1286 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1287 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1288 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1291 dmu_tx_sa_registration_hold(sa, tx);
1293 if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
1294 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1296 if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
1297 ASSERT(tx->tx_txg == 0);
1298 dmu_tx_hold_spill(tx, object);
1299 } else {
1300 dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
1301 dnode_t *dn;
1303 DB_DNODE_ENTER(db);
1304 dn = DB_DNODE(db);
1305 if (dn->dn_have_spill) {
1306 ASSERT(tx->tx_txg == 0);
1307 dmu_tx_hold_spill(tx, object);
1309 DB_DNODE_EXIT(db);