4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright 2016 RackTop Systems.
28 * Copyright (c) 2014 Integros [integros.com]
32 #include <sys/dmu_impl.h>
33 #include <sys/dmu_tx.h>
35 #include <sys/dnode.h>
36 #include <sys/zfs_context.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/dmu_traverse.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/dsl_prop.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/dsl_synctask.h>
44 #include <sys/zfs_ioctl.h>
46 #include <sys/zio_checksum.h>
47 #include <sys/zfs_znode.h>
48 #include <zfs_fletcher.h>
51 #include <sys/zfs_onexit.h>
52 #include <sys/dmu_send.h>
53 #include <sys/dsl_destroy.h>
54 #include <sys/blkptr.h>
55 #include <sys/dsl_bookmark.h>
56 #include <sys/zfeature.h>
57 #include <sys/bqueue.h>
59 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
60 int zfs_send_corrupt_data
= B_FALSE
;
61 int zfs_send_queue_length
= 16 * 1024 * 1024;
62 int zfs_recv_queue_length
= 16 * 1024 * 1024;
63 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */
64 int zfs_send_set_freerecords_bit
= B_TRUE
;
66 static char *dmu_recv_tag
= "dmu_recv_tag";
67 const char *recv_clone_name
= "%recv";
69 #define BP_SPAN(datablkszsec, indblkshift, level) \
70 (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \
71 (level) * (indblkshift - SPA_BLKPTRSHIFT)))
73 static void byteswap_record(dmu_replay_record_t
*drr
);
75 struct send_thread_arg
{
77 dsl_dataset_t
*ds
; /* Dataset to traverse */
78 uint64_t fromtxg
; /* Traverse from this txg */
79 int flags
; /* flags to pass to traverse_dataset */
82 zbookmark_phys_t resume
;
85 struct send_block_record
{
86 boolean_t eos_marker
; /* Marks the end of the stream */
90 uint16_t datablkszsec
;
95 dump_bytes(dmu_sendarg_t
*dsp
, void *buf
, int len
)
97 dsl_dataset_t
*ds
= dmu_objset_ds(dsp
->dsa_os
);
98 ssize_t resid
; /* have to get resid to get detailed errno */
101 * The code does not rely on this (len being a multiple of 8). We keep
102 * this assertion because of the corresponding assertion in
103 * receive_read(). Keeping this assertion ensures that we do not
104 * inadvertently break backwards compatibility (causing the assertion
105 * in receive_read() to trigger on old software).
107 * Removing the assertions could be rolled into a new feature that uses
108 * data that isn't 8-byte aligned; if the assertions were removed, a
109 * feature flag would have to be added.
114 dsp
->dsa_err
= vn_rdwr(UIO_WRITE
, dsp
->dsa_vp
,
116 0, UIO_SYSSPACE
, FAPPEND
, RLIM64_INFINITY
, CRED(), &resid
);
118 mutex_enter(&ds
->ds_sendstream_lock
);
119 *dsp
->dsa_off
+= len
;
120 mutex_exit(&ds
->ds_sendstream_lock
);
122 return (dsp
->dsa_err
);
126 * For all record types except BEGIN, fill in the checksum (overlaid in
127 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything
128 * up to the start of the checksum itself.
131 dump_record(dmu_sendarg_t
*dsp
, void *payload
, int payload_len
)
133 ASSERT3U(offsetof(dmu_replay_record_t
, drr_u
.drr_checksum
.drr_checksum
),
134 ==, sizeof (dmu_replay_record_t
) - sizeof (zio_cksum_t
));
135 (void) fletcher_4_incremental_native(dsp
->dsa_drr
,
136 offsetof(dmu_replay_record_t
, drr_u
.drr_checksum
.drr_checksum
),
138 if (dsp
->dsa_drr
->drr_type
== DRR_BEGIN
) {
139 dsp
->dsa_sent_begin
= B_TRUE
;
141 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp
->dsa_drr
->drr_u
.
142 drr_checksum
.drr_checksum
));
143 dsp
->dsa_drr
->drr_u
.drr_checksum
.drr_checksum
= dsp
->dsa_zc
;
145 if (dsp
->dsa_drr
->drr_type
== DRR_END
) {
146 dsp
->dsa_sent_end
= B_TRUE
;
148 (void) fletcher_4_incremental_native(&dsp
->dsa_drr
->
149 drr_u
.drr_checksum
.drr_checksum
,
150 sizeof (zio_cksum_t
), &dsp
->dsa_zc
);
151 if (dump_bytes(dsp
, dsp
->dsa_drr
, sizeof (dmu_replay_record_t
)) != 0)
152 return (SET_ERROR(EINTR
));
153 if (payload_len
!= 0) {
154 (void) fletcher_4_incremental_native(payload
, payload_len
,
156 if (dump_bytes(dsp
, payload
, payload_len
) != 0)
157 return (SET_ERROR(EINTR
));
163 * Fill in the drr_free struct, or perform aggregation if the previous record is
164 * also a free record, and the two are adjacent.
166 * Note that we send free records even for a full send, because we want to be
167 * able to receive a full send as a clone, which requires a list of all the free
168 * and freeobject records that were generated on the source.
171 dump_free(dmu_sendarg_t
*dsp
, uint64_t object
, uint64_t offset
,
174 struct drr_free
*drrf
= &(dsp
->dsa_drr
->drr_u
.drr_free
);
177 * When we receive a free record, dbuf_free_range() assumes
178 * that the receiving system doesn't have any dbufs in the range
179 * being freed. This is always true because there is a one-record
180 * constraint: we only send one WRITE record for any given
181 * object,offset. We know that the one-record constraint is
182 * true because we always send data in increasing order by
185 * If the increasing-order constraint ever changes, we should find
186 * another way to assert that the one-record constraint is still
189 ASSERT(object
> dsp
->dsa_last_data_object
||
190 (object
== dsp
->dsa_last_data_object
&&
191 offset
> dsp
->dsa_last_data_offset
));
193 if (length
!= -1ULL && offset
+ length
< offset
)
197 * If there is a pending op, but it's not PENDING_FREE, push it out,
198 * since free block aggregation can only be done for blocks of the
199 * same type (i.e., DRR_FREE records can only be aggregated with
200 * other DRR_FREE records. DRR_FREEOBJECTS records can only be
201 * aggregated with other DRR_FREEOBJECTS records.
203 if (dsp
->dsa_pending_op
!= PENDING_NONE
&&
204 dsp
->dsa_pending_op
!= PENDING_FREE
) {
205 if (dump_record(dsp
, NULL
, 0) != 0)
206 return (SET_ERROR(EINTR
));
207 dsp
->dsa_pending_op
= PENDING_NONE
;
210 if (dsp
->dsa_pending_op
== PENDING_FREE
) {
212 * There should never be a PENDING_FREE if length is -1
213 * (because dump_dnode is the only place where this
214 * function is called with a -1, and only after flushing
215 * any pending record).
217 ASSERT(length
!= -1ULL);
219 * Check to see whether this free block can be aggregated
222 if (drrf
->drr_object
== object
&& drrf
->drr_offset
+
223 drrf
->drr_length
== offset
) {
224 drrf
->drr_length
+= length
;
227 /* not a continuation. Push out pending record */
228 if (dump_record(dsp
, NULL
, 0) != 0)
229 return (SET_ERROR(EINTR
));
230 dsp
->dsa_pending_op
= PENDING_NONE
;
233 /* create a FREE record and make it pending */
234 bzero(dsp
->dsa_drr
, sizeof (dmu_replay_record_t
));
235 dsp
->dsa_drr
->drr_type
= DRR_FREE
;
236 drrf
->drr_object
= object
;
237 drrf
->drr_offset
= offset
;
238 drrf
->drr_length
= length
;
239 drrf
->drr_toguid
= dsp
->dsa_toguid
;
240 if (length
== -1ULL) {
241 if (dump_record(dsp
, NULL
, 0) != 0)
242 return (SET_ERROR(EINTR
));
244 dsp
->dsa_pending_op
= PENDING_FREE
;
251 dump_write(dmu_sendarg_t
*dsp
, dmu_object_type_t type
,
252 uint64_t object
, uint64_t offset
, int lsize
, int psize
, const blkptr_t
*bp
,
255 uint64_t payload_size
;
256 struct drr_write
*drrw
= &(dsp
->dsa_drr
->drr_u
.drr_write
);
259 * We send data in increasing object, offset order.
260 * See comment in dump_free() for details.
262 ASSERT(object
> dsp
->dsa_last_data_object
||
263 (object
== dsp
->dsa_last_data_object
&&
264 offset
> dsp
->dsa_last_data_offset
));
265 dsp
->dsa_last_data_object
= object
;
266 dsp
->dsa_last_data_offset
= offset
+ lsize
- 1;
269 * If there is any kind of pending aggregation (currently either
270 * a grouping of free objects or free blocks), push it out to
271 * the stream, since aggregation can't be done across operations
272 * of different types.
274 if (dsp
->dsa_pending_op
!= PENDING_NONE
) {
275 if (dump_record(dsp
, NULL
, 0) != 0)
276 return (SET_ERROR(EINTR
));
277 dsp
->dsa_pending_op
= PENDING_NONE
;
279 /* write a WRITE record */
280 bzero(dsp
->dsa_drr
, sizeof (dmu_replay_record_t
));
281 dsp
->dsa_drr
->drr_type
= DRR_WRITE
;
282 drrw
->drr_object
= object
;
283 drrw
->drr_type
= type
;
284 drrw
->drr_offset
= offset
;
285 drrw
->drr_toguid
= dsp
->dsa_toguid
;
286 drrw
->drr_logical_size
= lsize
;
288 /* only set the compression fields if the buf is compressed */
289 if (lsize
!= psize
) {
290 ASSERT(dsp
->dsa_featureflags
& DMU_BACKUP_FEATURE_COMPRESSED
);
291 ASSERT(!BP_IS_EMBEDDED(bp
));
292 ASSERT(!BP_SHOULD_BYTESWAP(bp
));
293 ASSERT(!DMU_OT_IS_METADATA(BP_GET_TYPE(bp
)));
294 ASSERT3U(BP_GET_COMPRESS(bp
), !=, ZIO_COMPRESS_OFF
);
295 ASSERT3S(psize
, >, 0);
296 ASSERT3S(lsize
, >=, psize
);
298 drrw
->drr_compressiontype
= BP_GET_COMPRESS(bp
);
299 drrw
->drr_compressed_size
= psize
;
300 payload_size
= drrw
->drr_compressed_size
;
302 payload_size
= drrw
->drr_logical_size
;
305 if (bp
== NULL
|| BP_IS_EMBEDDED(bp
)) {
307 * There's no pre-computed checksum for partial-block
308 * writes or embedded BP's, so (like
309 * fletcher4-checkummed blocks) userland will have to
310 * compute a dedup-capable checksum itself.
312 drrw
->drr_checksumtype
= ZIO_CHECKSUM_OFF
;
314 drrw
->drr_checksumtype
= BP_GET_CHECKSUM(bp
);
315 if (zio_checksum_table
[drrw
->drr_checksumtype
].ci_flags
&
316 ZCHECKSUM_FLAG_DEDUP
)
317 drrw
->drr_checksumflags
|= DRR_CHECKSUM_DEDUP
;
318 DDK_SET_LSIZE(&drrw
->drr_key
, BP_GET_LSIZE(bp
));
319 DDK_SET_PSIZE(&drrw
->drr_key
, BP_GET_PSIZE(bp
));
320 DDK_SET_COMPRESS(&drrw
->drr_key
, BP_GET_COMPRESS(bp
));
321 drrw
->drr_key
.ddk_cksum
= bp
->blk_cksum
;
324 if (dump_record(dsp
, data
, payload_size
) != 0)
325 return (SET_ERROR(EINTR
));
330 dump_write_embedded(dmu_sendarg_t
*dsp
, uint64_t object
, uint64_t offset
,
331 int blksz
, const blkptr_t
*bp
)
333 char buf
[BPE_PAYLOAD_SIZE
];
334 struct drr_write_embedded
*drrw
=
335 &(dsp
->dsa_drr
->drr_u
.drr_write_embedded
);
337 if (dsp
->dsa_pending_op
!= PENDING_NONE
) {
338 if (dump_record(dsp
, NULL
, 0) != 0)
340 dsp
->dsa_pending_op
= PENDING_NONE
;
343 ASSERT(BP_IS_EMBEDDED(bp
));
345 bzero(dsp
->dsa_drr
, sizeof (dmu_replay_record_t
));
346 dsp
->dsa_drr
->drr_type
= DRR_WRITE_EMBEDDED
;
347 drrw
->drr_object
= object
;
348 drrw
->drr_offset
= offset
;
349 drrw
->drr_length
= blksz
;
350 drrw
->drr_toguid
= dsp
->dsa_toguid
;
351 drrw
->drr_compression
= BP_GET_COMPRESS(bp
);
352 drrw
->drr_etype
= BPE_GET_ETYPE(bp
);
353 drrw
->drr_lsize
= BPE_GET_LSIZE(bp
);
354 drrw
->drr_psize
= BPE_GET_PSIZE(bp
);
356 decode_embedded_bp_compressed(bp
, buf
);
358 if (dump_record(dsp
, buf
, P2ROUNDUP(drrw
->drr_psize
, 8)) != 0)
364 dump_spill(dmu_sendarg_t
*dsp
, uint64_t object
, int blksz
, void *data
)
366 struct drr_spill
*drrs
= &(dsp
->dsa_drr
->drr_u
.drr_spill
);
368 if (dsp
->dsa_pending_op
!= PENDING_NONE
) {
369 if (dump_record(dsp
, NULL
, 0) != 0)
370 return (SET_ERROR(EINTR
));
371 dsp
->dsa_pending_op
= PENDING_NONE
;
374 /* write a SPILL record */
375 bzero(dsp
->dsa_drr
, sizeof (dmu_replay_record_t
));
376 dsp
->dsa_drr
->drr_type
= DRR_SPILL
;
377 drrs
->drr_object
= object
;
378 drrs
->drr_length
= blksz
;
379 drrs
->drr_toguid
= dsp
->dsa_toguid
;
381 if (dump_record(dsp
, data
, blksz
) != 0)
382 return (SET_ERROR(EINTR
));
387 dump_freeobjects(dmu_sendarg_t
*dsp
, uint64_t firstobj
, uint64_t numobjs
)
389 struct drr_freeobjects
*drrfo
= &(dsp
->dsa_drr
->drr_u
.drr_freeobjects
);
392 * If there is a pending op, but it's not PENDING_FREEOBJECTS,
393 * push it out, since free block aggregation can only be done for
394 * blocks of the same type (i.e., DRR_FREE records can only be
395 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records
396 * can only be aggregated with other DRR_FREEOBJECTS records.
398 if (dsp
->dsa_pending_op
!= PENDING_NONE
&&
399 dsp
->dsa_pending_op
!= PENDING_FREEOBJECTS
) {
400 if (dump_record(dsp
, NULL
, 0) != 0)
401 return (SET_ERROR(EINTR
));
402 dsp
->dsa_pending_op
= PENDING_NONE
;
404 if (dsp
->dsa_pending_op
== PENDING_FREEOBJECTS
) {
406 * See whether this free object array can be aggregated
409 if (drrfo
->drr_firstobj
+ drrfo
->drr_numobjs
== firstobj
) {
410 drrfo
->drr_numobjs
+= numobjs
;
413 /* can't be aggregated. Push out pending record */
414 if (dump_record(dsp
, NULL
, 0) != 0)
415 return (SET_ERROR(EINTR
));
416 dsp
->dsa_pending_op
= PENDING_NONE
;
420 /* write a FREEOBJECTS record */
421 bzero(dsp
->dsa_drr
, sizeof (dmu_replay_record_t
));
422 dsp
->dsa_drr
->drr_type
= DRR_FREEOBJECTS
;
423 drrfo
->drr_firstobj
= firstobj
;
424 drrfo
->drr_numobjs
= numobjs
;
425 drrfo
->drr_toguid
= dsp
->dsa_toguid
;
427 dsp
->dsa_pending_op
= PENDING_FREEOBJECTS
;
433 dump_dnode(dmu_sendarg_t
*dsp
, uint64_t object
, dnode_phys_t
*dnp
)
435 struct drr_object
*drro
= &(dsp
->dsa_drr
->drr_u
.drr_object
);
437 if (object
< dsp
->dsa_resume_object
) {
439 * Note: when resuming, we will visit all the dnodes in
440 * the block of dnodes that we are resuming from. In
441 * this case it's unnecessary to send the dnodes prior to
442 * the one we are resuming from. We should be at most one
443 * block's worth of dnodes behind the resume point.
445 ASSERT3U(dsp
->dsa_resume_object
- object
, <,
446 1 << (DNODE_BLOCK_SHIFT
- DNODE_SHIFT
));
450 if (dnp
== NULL
|| dnp
->dn_type
== DMU_OT_NONE
)
451 return (dump_freeobjects(dsp
, object
, 1));
453 if (dsp
->dsa_pending_op
!= PENDING_NONE
) {
454 if (dump_record(dsp
, NULL
, 0) != 0)
455 return (SET_ERROR(EINTR
));
456 dsp
->dsa_pending_op
= PENDING_NONE
;
459 /* write an OBJECT record */
460 bzero(dsp
->dsa_drr
, sizeof (dmu_replay_record_t
));
461 dsp
->dsa_drr
->drr_type
= DRR_OBJECT
;
462 drro
->drr_object
= object
;
463 drro
->drr_type
= dnp
->dn_type
;
464 drro
->drr_bonustype
= dnp
->dn_bonustype
;
465 drro
->drr_blksz
= dnp
->dn_datablkszsec
<< SPA_MINBLOCKSHIFT
;
466 drro
->drr_bonuslen
= dnp
->dn_bonuslen
;
467 drro
->drr_checksumtype
= dnp
->dn_checksum
;
468 drro
->drr_compress
= dnp
->dn_compress
;
469 drro
->drr_toguid
= dsp
->dsa_toguid
;
471 if (!(dsp
->dsa_featureflags
& DMU_BACKUP_FEATURE_LARGE_BLOCKS
) &&
472 drro
->drr_blksz
> SPA_OLD_MAXBLOCKSIZE
)
473 drro
->drr_blksz
= SPA_OLD_MAXBLOCKSIZE
;
475 if (dump_record(dsp
, DN_BONUS(dnp
),
476 P2ROUNDUP(dnp
->dn_bonuslen
, 8)) != 0) {
477 return (SET_ERROR(EINTR
));
480 /* Free anything past the end of the file. */
481 if (dump_free(dsp
, object
, (dnp
->dn_maxblkid
+ 1) *
482 (dnp
->dn_datablkszsec
<< SPA_MINBLOCKSHIFT
), -1ULL) != 0)
483 return (SET_ERROR(EINTR
));
484 if (dsp
->dsa_err
!= 0)
485 return (SET_ERROR(EINTR
));
490 backup_do_embed(dmu_sendarg_t
*dsp
, const blkptr_t
*bp
)
492 if (!BP_IS_EMBEDDED(bp
))
496 * Compression function must be legacy, or explicitly enabled.
498 if ((BP_GET_COMPRESS(bp
) >= ZIO_COMPRESS_LEGACY_FUNCTIONS
&&
499 !(dsp
->dsa_featureflags
& DMU_BACKUP_FEATURE_LZ4
)))
503 * Embed type must be explicitly enabled.
505 switch (BPE_GET_ETYPE(bp
)) {
506 case BP_EMBEDDED_TYPE_DATA
:
507 if (dsp
->dsa_featureflags
& DMU_BACKUP_FEATURE_EMBED_DATA
)
517 * This is the callback function to traverse_dataset that acts as the worker
518 * thread for dmu_send_impl.
522 send_cb(spa_t
*spa
, zilog_t
*zilog
, const blkptr_t
*bp
,
523 const zbookmark_phys_t
*zb
, const struct dnode_phys
*dnp
, void *arg
)
525 struct send_thread_arg
*sta
= arg
;
526 struct send_block_record
*record
;
527 uint64_t record_size
;
530 ASSERT(zb
->zb_object
== DMU_META_DNODE_OBJECT
||
531 zb
->zb_object
>= sta
->resume
.zb_object
);
534 return (SET_ERROR(EINTR
));
537 ASSERT3U(zb
->zb_level
, ==, ZB_DNODE_LEVEL
);
539 } else if (zb
->zb_level
< 0) {
543 record
= kmem_zalloc(sizeof (struct send_block_record
), KM_SLEEP
);
544 record
->eos_marker
= B_FALSE
;
547 record
->indblkshift
= dnp
->dn_indblkshift
;
548 record
->datablkszsec
= dnp
->dn_datablkszsec
;
549 record_size
= dnp
->dn_datablkszsec
<< SPA_MINBLOCKSHIFT
;
550 bqueue_enqueue(&sta
->q
, record
, record_size
);
556 * This function kicks off the traverse_dataset. It also handles setting the
557 * error code of the thread in case something goes wrong, and pushes the End of
558 * Stream record when the traverse_dataset call has finished. If there is no
559 * dataset to traverse, the thread immediately pushes End of Stream marker.
562 send_traverse_thread(void *arg
)
564 struct send_thread_arg
*st_arg
= arg
;
566 struct send_block_record
*data
;
568 if (st_arg
->ds
!= NULL
) {
569 err
= traverse_dataset_resume(st_arg
->ds
,
570 st_arg
->fromtxg
, &st_arg
->resume
,
571 st_arg
->flags
, send_cb
, st_arg
);
574 st_arg
->error_code
= err
;
576 data
= kmem_zalloc(sizeof (*data
), KM_SLEEP
);
577 data
->eos_marker
= B_TRUE
;
578 bqueue_enqueue(&st_arg
->q
, data
, 1);
583 * This function actually handles figuring out what kind of record needs to be
584 * dumped, reading the data (which has hopefully been prefetched), and calling
585 * the appropriate helper function.
588 do_dump(dmu_sendarg_t
*dsa
, struct send_block_record
*data
)
590 dsl_dataset_t
*ds
= dmu_objset_ds(dsa
->dsa_os
);
591 const blkptr_t
*bp
= &data
->bp
;
592 const zbookmark_phys_t
*zb
= &data
->zb
;
593 uint8_t indblkshift
= data
->indblkshift
;
594 uint16_t dblkszsec
= data
->datablkszsec
;
595 spa_t
*spa
= ds
->ds_dir
->dd_pool
->dp_spa
;
596 dmu_object_type_t type
= bp
? BP_GET_TYPE(bp
) : DMU_OT_NONE
;
599 ASSERT3U(zb
->zb_level
, >=, 0);
601 ASSERT(zb
->zb_object
== DMU_META_DNODE_OBJECT
||
602 zb
->zb_object
>= dsa
->dsa_resume_object
);
604 if (zb
->zb_object
!= DMU_META_DNODE_OBJECT
&&
605 DMU_OBJECT_IS_SPECIAL(zb
->zb_object
)) {
607 } else if (BP_IS_HOLE(bp
) &&
608 zb
->zb_object
== DMU_META_DNODE_OBJECT
) {
609 uint64_t span
= BP_SPAN(dblkszsec
, indblkshift
, zb
->zb_level
);
610 uint64_t dnobj
= (zb
->zb_blkid
* span
) >> DNODE_SHIFT
;
611 err
= dump_freeobjects(dsa
, dnobj
, span
>> DNODE_SHIFT
);
612 } else if (BP_IS_HOLE(bp
)) {
613 uint64_t span
= BP_SPAN(dblkszsec
, indblkshift
, zb
->zb_level
);
614 uint64_t offset
= zb
->zb_blkid
* span
;
615 err
= dump_free(dsa
, zb
->zb_object
, offset
, span
);
616 } else if (zb
->zb_level
> 0 || type
== DMU_OT_OBJSET
) {
618 } else if (type
== DMU_OT_DNODE
) {
619 int blksz
= BP_GET_LSIZE(bp
);
620 arc_flags_t aflags
= ARC_FLAG_WAIT
;
623 ASSERT0(zb
->zb_level
);
625 if (arc_read(NULL
, spa
, bp
, arc_getbuf_func
, &abuf
,
626 ZIO_PRIORITY_ASYNC_READ
, ZIO_FLAG_CANFAIL
,
628 return (SET_ERROR(EIO
));
630 dnode_phys_t
*blk
= abuf
->b_data
;
631 uint64_t dnobj
= zb
->zb_blkid
* (blksz
>> DNODE_SHIFT
);
632 for (int i
= 0; i
< blksz
>> DNODE_SHIFT
; i
++) {
633 err
= dump_dnode(dsa
, dnobj
+ i
, blk
+ i
);
637 arc_buf_destroy(abuf
, &abuf
);
638 } else if (type
== DMU_OT_SA
) {
639 arc_flags_t aflags
= ARC_FLAG_WAIT
;
641 int blksz
= BP_GET_LSIZE(bp
);
643 if (arc_read(NULL
, spa
, bp
, arc_getbuf_func
, &abuf
,
644 ZIO_PRIORITY_ASYNC_READ
, ZIO_FLAG_CANFAIL
,
646 return (SET_ERROR(EIO
));
648 err
= dump_spill(dsa
, zb
->zb_object
, blksz
, abuf
->b_data
);
649 arc_buf_destroy(abuf
, &abuf
);
650 } else if (backup_do_embed(dsa
, bp
)) {
651 /* it's an embedded level-0 block of a regular object */
652 int blksz
= dblkszsec
<< SPA_MINBLOCKSHIFT
;
653 ASSERT0(zb
->zb_level
);
654 err
= dump_write_embedded(dsa
, zb
->zb_object
,
655 zb
->zb_blkid
* blksz
, blksz
, bp
);
657 /* it's a level-0 block of a regular object */
658 arc_flags_t aflags
= ARC_FLAG_WAIT
;
660 int blksz
= dblkszsec
<< SPA_MINBLOCKSHIFT
;
664 * If we have large blocks stored on disk but the send flags
665 * don't allow us to send large blocks, we split the data from
666 * the arc buf into chunks.
668 boolean_t split_large_blocks
= blksz
> SPA_OLD_MAXBLOCKSIZE
&&
669 !(dsa
->dsa_featureflags
& DMU_BACKUP_FEATURE_LARGE_BLOCKS
);
671 * We should only request compressed data from the ARC if all
672 * the following are true:
673 * - stream compression was requested
674 * - we aren't splitting large blocks into smaller chunks
675 * - the data won't need to be byteswapped before sending
676 * - this isn't an embedded block
677 * - this isn't metadata (if receiving on a different endian
678 * system it can be byteswapped more easily)
680 boolean_t request_compressed
=
681 (dsa
->dsa_featureflags
& DMU_BACKUP_FEATURE_COMPRESSED
) &&
682 !split_large_blocks
&& !BP_SHOULD_BYTESWAP(bp
) &&
683 !BP_IS_EMBEDDED(bp
) && !DMU_OT_IS_METADATA(BP_GET_TYPE(bp
));
685 ASSERT0(zb
->zb_level
);
686 ASSERT(zb
->zb_object
> dsa
->dsa_resume_object
||
687 (zb
->zb_object
== dsa
->dsa_resume_object
&&
688 zb
->zb_blkid
* blksz
>= dsa
->dsa_resume_offset
));
690 ASSERT0(zb
->zb_level
);
691 ASSERT(zb
->zb_object
> dsa
->dsa_resume_object
||
692 (zb
->zb_object
== dsa
->dsa_resume_object
&&
693 zb
->zb_blkid
* blksz
>= dsa
->dsa_resume_offset
));
695 ASSERT3U(blksz
, ==, BP_GET_LSIZE(bp
));
697 enum zio_flag zioflags
= ZIO_FLAG_CANFAIL
;
698 if (request_compressed
)
699 zioflags
|= ZIO_FLAG_RAW
;
700 if (arc_read(NULL
, spa
, bp
, arc_getbuf_func
, &abuf
,
701 ZIO_PRIORITY_ASYNC_READ
, zioflags
, &aflags
, zb
) != 0) {
702 if (zfs_send_corrupt_data
) {
703 /* Send a block filled with 0x"zfs badd bloc" */
704 abuf
= arc_alloc_buf(spa
, &abuf
, ARC_BUFC_DATA
,
707 for (ptr
= abuf
->b_data
;
708 (char *)ptr
< (char *)abuf
->b_data
+ blksz
;
710 *ptr
= 0x2f5baddb10cULL
;
712 return (SET_ERROR(EIO
));
716 offset
= zb
->zb_blkid
* blksz
;
718 if (split_large_blocks
) {
719 ASSERT3U(arc_get_compression(abuf
), ==,
721 char *buf
= abuf
->b_data
;
722 while (blksz
> 0 && err
== 0) {
723 int n
= MIN(blksz
, SPA_OLD_MAXBLOCKSIZE
);
724 err
= dump_write(dsa
, type
, zb
->zb_object
,
725 offset
, n
, n
, NULL
, buf
);
731 err
= dump_write(dsa
, type
, zb
->zb_object
, offset
,
732 blksz
, arc_buf_size(abuf
), bp
, abuf
->b_data
);
734 arc_buf_destroy(abuf
, &abuf
);
737 ASSERT(err
== 0 || err
== EINTR
);
742 * Pop the new data off the queue, and free the old data.
744 static struct send_block_record
*
745 get_next_record(bqueue_t
*bq
, struct send_block_record
*data
)
747 struct send_block_record
*tmp
= bqueue_dequeue(bq
);
748 kmem_free(data
, sizeof (*data
));
753 * Actually do the bulk of the work in a zfs send.
755 * Note: Releases dp using the specified tag.
758 dmu_send_impl(void *tag
, dsl_pool_t
*dp
, dsl_dataset_t
*to_ds
,
759 zfs_bookmark_phys_t
*ancestor_zb
, boolean_t is_clone
,
760 boolean_t embedok
, boolean_t large_block_ok
, boolean_t compressok
,
761 int outfd
, uint64_t resumeobj
, uint64_t resumeoff
,
762 vnode_t
*vp
, offset_t
*off
)
765 dmu_replay_record_t
*drr
;
768 uint64_t fromtxg
= 0;
769 uint64_t featureflags
= 0;
770 struct send_thread_arg to_arg
= { 0 };
772 err
= dmu_objset_from_ds(to_ds
, &os
);
774 dsl_pool_rele(dp
, tag
);
778 drr
= kmem_zalloc(sizeof (dmu_replay_record_t
), KM_SLEEP
);
779 drr
->drr_type
= DRR_BEGIN
;
780 drr
->drr_u
.drr_begin
.drr_magic
= DMU_BACKUP_MAGIC
;
781 DMU_SET_STREAM_HDRTYPE(drr
->drr_u
.drr_begin
.drr_versioninfo
,
785 if (dmu_objset_type(os
) == DMU_OST_ZFS
) {
787 if (zfs_get_zplprop(os
, ZFS_PROP_VERSION
, &version
) != 0) {
788 kmem_free(drr
, sizeof (dmu_replay_record_t
));
789 dsl_pool_rele(dp
, tag
);
790 return (SET_ERROR(EINVAL
));
792 if (version
>= ZPL_VERSION_SA
) {
793 featureflags
|= DMU_BACKUP_FEATURE_SA_SPILL
;
798 if (large_block_ok
&& to_ds
->ds_feature_inuse
[SPA_FEATURE_LARGE_BLOCKS
])
799 featureflags
|= DMU_BACKUP_FEATURE_LARGE_BLOCKS
;
801 spa_feature_is_active(dp
->dp_spa
, SPA_FEATURE_EMBEDDED_DATA
)) {
802 featureflags
|= DMU_BACKUP_FEATURE_EMBED_DATA
;
803 if (spa_feature_is_active(dp
->dp_spa
, SPA_FEATURE_LZ4_COMPRESS
))
804 featureflags
|= DMU_BACKUP_FEATURE_LZ4
;
807 featureflags
|= DMU_BACKUP_FEATURE_COMPRESSED
;
810 (DMU_BACKUP_FEATURE_EMBED_DATA
| DMU_BACKUP_FEATURE_COMPRESSED
)) !=
811 0 && spa_feature_is_active(dp
->dp_spa
, SPA_FEATURE_LZ4_COMPRESS
)) {
812 featureflags
|= DMU_BACKUP_FEATURE_LZ4
;
815 if (resumeobj
!= 0 || resumeoff
!= 0) {
816 featureflags
|= DMU_BACKUP_FEATURE_RESUMING
;
819 DMU_SET_FEATUREFLAGS(drr
->drr_u
.drr_begin
.drr_versioninfo
,
822 drr
->drr_u
.drr_begin
.drr_creation_time
=
823 dsl_dataset_phys(to_ds
)->ds_creation_time
;
824 drr
->drr_u
.drr_begin
.drr_type
= dmu_objset_type(os
);
826 drr
->drr_u
.drr_begin
.drr_flags
|= DRR_FLAG_CLONE
;
827 drr
->drr_u
.drr_begin
.drr_toguid
= dsl_dataset_phys(to_ds
)->ds_guid
;
828 if (dsl_dataset_phys(to_ds
)->ds_flags
& DS_FLAG_CI_DATASET
)
829 drr
->drr_u
.drr_begin
.drr_flags
|= DRR_FLAG_CI_DATA
;
830 if (zfs_send_set_freerecords_bit
)
831 drr
->drr_u
.drr_begin
.drr_flags
|= DRR_FLAG_FREERECORDS
;
833 if (ancestor_zb
!= NULL
) {
834 drr
->drr_u
.drr_begin
.drr_fromguid
=
835 ancestor_zb
->zbm_guid
;
836 fromtxg
= ancestor_zb
->zbm_creation_txg
;
838 dsl_dataset_name(to_ds
, drr
->drr_u
.drr_begin
.drr_toname
);
839 if (!to_ds
->ds_is_snapshot
) {
840 (void) strlcat(drr
->drr_u
.drr_begin
.drr_toname
, "@--head--",
841 sizeof (drr
->drr_u
.drr_begin
.drr_toname
));
844 dsp
= kmem_zalloc(sizeof (dmu_sendarg_t
), KM_SLEEP
);
848 dsp
->dsa_outfd
= outfd
;
849 dsp
->dsa_proc
= curproc
;
852 dsp
->dsa_toguid
= dsl_dataset_phys(to_ds
)->ds_guid
;
853 dsp
->dsa_pending_op
= PENDING_NONE
;
854 dsp
->dsa_featureflags
= featureflags
;
855 dsp
->dsa_resume_object
= resumeobj
;
856 dsp
->dsa_resume_offset
= resumeoff
;
858 mutex_enter(&to_ds
->ds_sendstream_lock
);
859 list_insert_head(&to_ds
->ds_sendstreams
, dsp
);
860 mutex_exit(&to_ds
->ds_sendstream_lock
);
862 dsl_dataset_long_hold(to_ds
, FTAG
);
863 dsl_pool_rele(dp
, tag
);
865 void *payload
= NULL
;
866 size_t payload_len
= 0;
867 if (resumeobj
!= 0 || resumeoff
!= 0) {
868 dmu_object_info_t to_doi
;
869 err
= dmu_object_info(os
, resumeobj
, &to_doi
);
872 SET_BOOKMARK(&to_arg
.resume
, to_ds
->ds_object
, resumeobj
, 0,
873 resumeoff
/ to_doi
.doi_data_block_size
);
875 nvlist_t
*nvl
= fnvlist_alloc();
876 fnvlist_add_uint64(nvl
, "resume_object", resumeobj
);
877 fnvlist_add_uint64(nvl
, "resume_offset", resumeoff
);
878 payload
= fnvlist_pack(nvl
, &payload_len
);
879 drr
->drr_payloadlen
= payload_len
;
883 err
= dump_record(dsp
, payload
, payload_len
);
884 fnvlist_pack_free(payload
, payload_len
);
890 err
= bqueue_init(&to_arg
.q
, zfs_send_queue_length
,
891 offsetof(struct send_block_record
, ln
));
892 to_arg
.error_code
= 0;
893 to_arg
.cancel
= B_FALSE
;
895 to_arg
.fromtxg
= fromtxg
;
896 to_arg
.flags
= TRAVERSE_PRE
| TRAVERSE_PREFETCH
;
897 (void) thread_create(NULL
, 0, send_traverse_thread
, &to_arg
, 0, curproc
,
898 TS_RUN
, minclsyspri
);
900 struct send_block_record
*to_data
;
901 to_data
= bqueue_dequeue(&to_arg
.q
);
903 while (!to_data
->eos_marker
&& err
== 0) {
904 err
= do_dump(dsp
, to_data
);
905 to_data
= get_next_record(&to_arg
.q
, to_data
);
906 if (issig(JUSTLOOKING
) && issig(FORREAL
))
911 to_arg
.cancel
= B_TRUE
;
912 while (!to_data
->eos_marker
) {
913 to_data
= get_next_record(&to_arg
.q
, to_data
);
916 kmem_free(to_data
, sizeof (*to_data
));
918 bqueue_destroy(&to_arg
.q
);
920 if (err
== 0 && to_arg
.error_code
!= 0)
921 err
= to_arg
.error_code
;
926 if (dsp
->dsa_pending_op
!= PENDING_NONE
)
927 if (dump_record(dsp
, NULL
, 0) != 0)
928 err
= SET_ERROR(EINTR
);
931 if (err
== EINTR
&& dsp
->dsa_err
!= 0)
936 bzero(drr
, sizeof (dmu_replay_record_t
));
937 drr
->drr_type
= DRR_END
;
938 drr
->drr_u
.drr_end
.drr_checksum
= dsp
->dsa_zc
;
939 drr
->drr_u
.drr_end
.drr_toguid
= dsp
->dsa_toguid
;
941 if (dump_record(dsp
, NULL
, 0) != 0)
945 mutex_enter(&to_ds
->ds_sendstream_lock
);
946 list_remove(&to_ds
->ds_sendstreams
, dsp
);
947 mutex_exit(&to_ds
->ds_sendstream_lock
);
949 VERIFY(err
!= 0 || (dsp
->dsa_sent_begin
&& dsp
->dsa_sent_end
));
951 kmem_free(drr
, sizeof (dmu_replay_record_t
));
952 kmem_free(dsp
, sizeof (dmu_sendarg_t
));
954 dsl_dataset_long_rele(to_ds
, FTAG
);
960 dmu_send_obj(const char *pool
, uint64_t tosnap
, uint64_t fromsnap
,
961 boolean_t embedok
, boolean_t large_block_ok
, boolean_t compressok
,
962 int outfd
, vnode_t
*vp
, offset_t
*off
)
966 dsl_dataset_t
*fromds
= NULL
;
969 err
= dsl_pool_hold(pool
, FTAG
, &dp
);
973 err
= dsl_dataset_hold_obj(dp
, tosnap
, FTAG
, &ds
);
975 dsl_pool_rele(dp
, FTAG
);
980 zfs_bookmark_phys_t zb
;
983 err
= dsl_dataset_hold_obj(dp
, fromsnap
, FTAG
, &fromds
);
985 dsl_dataset_rele(ds
, FTAG
);
986 dsl_pool_rele(dp
, FTAG
);
989 if (!dsl_dataset_is_before(ds
, fromds
, 0))
990 err
= SET_ERROR(EXDEV
);
991 zb
.zbm_creation_time
=
992 dsl_dataset_phys(fromds
)->ds_creation_time
;
993 zb
.zbm_creation_txg
= dsl_dataset_phys(fromds
)->ds_creation_txg
;
994 zb
.zbm_guid
= dsl_dataset_phys(fromds
)->ds_guid
;
995 is_clone
= (fromds
->ds_dir
!= ds
->ds_dir
);
996 dsl_dataset_rele(fromds
, FTAG
);
997 err
= dmu_send_impl(FTAG
, dp
, ds
, &zb
, is_clone
,
998 embedok
, large_block_ok
, compressok
, outfd
, 0, 0, vp
, off
);
1000 err
= dmu_send_impl(FTAG
, dp
, ds
, NULL
, B_FALSE
,
1001 embedok
, large_block_ok
, compressok
, outfd
, 0, 0, vp
, off
);
1003 dsl_dataset_rele(ds
, FTAG
);
1008 dmu_send(const char *tosnap
, const char *fromsnap
, boolean_t embedok
,
1009 boolean_t large_block_ok
, boolean_t compressok
, int outfd
,
1010 uint64_t resumeobj
, uint64_t resumeoff
,
1011 vnode_t
*vp
, offset_t
*off
)
1016 boolean_t owned
= B_FALSE
;
1018 if (fromsnap
!= NULL
&& strpbrk(fromsnap
, "@#") == NULL
)
1019 return (SET_ERROR(EINVAL
));
1021 err
= dsl_pool_hold(tosnap
, FTAG
, &dp
);
1025 if (strchr(tosnap
, '@') == NULL
&& spa_writeable(dp
->dp_spa
)) {
1027 * We are sending a filesystem or volume. Ensure
1028 * that it doesn't change by owning the dataset.
1030 err
= dsl_dataset_own(dp
, tosnap
, FTAG
, &ds
);
1033 err
= dsl_dataset_hold(dp
, tosnap
, FTAG
, &ds
);
1036 dsl_pool_rele(dp
, FTAG
);
1040 if (fromsnap
!= NULL
) {
1041 zfs_bookmark_phys_t zb
;
1042 boolean_t is_clone
= B_FALSE
;
1043 int fsnamelen
= strchr(tosnap
, '@') - tosnap
;
1046 * If the fromsnap is in a different filesystem, then
1047 * mark the send stream as a clone.
1049 if (strncmp(tosnap
, fromsnap
, fsnamelen
) != 0 ||
1050 (fromsnap
[fsnamelen
] != '@' &&
1051 fromsnap
[fsnamelen
] != '#')) {
1055 if (strchr(fromsnap
, '@')) {
1056 dsl_dataset_t
*fromds
;
1057 err
= dsl_dataset_hold(dp
, fromsnap
, FTAG
, &fromds
);
1059 if (!dsl_dataset_is_before(ds
, fromds
, 0))
1060 err
= SET_ERROR(EXDEV
);
1061 zb
.zbm_creation_time
=
1062 dsl_dataset_phys(fromds
)->ds_creation_time
;
1063 zb
.zbm_creation_txg
=
1064 dsl_dataset_phys(fromds
)->ds_creation_txg
;
1065 zb
.zbm_guid
= dsl_dataset_phys(fromds
)->ds_guid
;
1066 is_clone
= (ds
->ds_dir
!= fromds
->ds_dir
);
1067 dsl_dataset_rele(fromds
, FTAG
);
1070 err
= dsl_bookmark_lookup(dp
, fromsnap
, ds
, &zb
);
1073 dsl_dataset_rele(ds
, FTAG
);
1074 dsl_pool_rele(dp
, FTAG
);
1077 err
= dmu_send_impl(FTAG
, dp
, ds
, &zb
, is_clone
,
1078 embedok
, large_block_ok
, compressok
,
1079 outfd
, resumeobj
, resumeoff
, vp
, off
);
1081 err
= dmu_send_impl(FTAG
, dp
, ds
, NULL
, B_FALSE
,
1082 embedok
, large_block_ok
, compressok
,
1083 outfd
, resumeobj
, resumeoff
, vp
, off
);
1086 dsl_dataset_disown(ds
, FTAG
);
1088 dsl_dataset_rele(ds
, FTAG
);
1093 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t
*ds
, uint64_t uncompressed
,
1094 uint64_t compressed
, boolean_t stream_compressed
, uint64_t *sizep
)
1099 * Assume that space (both on-disk and in-stream) is dominated by
1100 * data. We will adjust for indirect blocks and the copies property,
1101 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
1103 uint64_t recordsize
;
1104 uint64_t record_count
;
1106 VERIFY0(dmu_objset_from_ds(ds
, &os
));
1108 /* Assume all (uncompressed) blocks are recordsize. */
1109 if (os
->os_phys
->os_type
== DMU_OST_ZVOL
) {
1110 err
= dsl_prop_get_int_ds(ds
,
1111 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE
), &recordsize
);
1113 err
= dsl_prop_get_int_ds(ds
,
1114 zfs_prop_to_name(ZFS_PROP_RECORDSIZE
), &recordsize
);
1118 record_count
= uncompressed
/ recordsize
;
1121 * If we're estimating a send size for a compressed stream, use the
1122 * compressed data size to estimate the stream size. Otherwise, use the
1123 * uncompressed data size.
1125 size
= stream_compressed
? compressed
: uncompressed
;
1128 * Subtract out approximate space used by indirect blocks.
1129 * Assume most space is used by data blocks (non-indirect, non-dnode).
1130 * Assume no ditto blocks or internal fragmentation.
1132 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per
1135 size
-= record_count
* sizeof (blkptr_t
);
1137 /* Add in the space for the record associated with each block. */
1138 size
+= record_count
* sizeof (dmu_replay_record_t
);
1146 dmu_send_estimate(dsl_dataset_t
*ds
, dsl_dataset_t
*fromds
,
1147 boolean_t stream_compressed
, uint64_t *sizep
)
1149 dsl_pool_t
*dp
= ds
->ds_dir
->dd_pool
;
1151 uint64_t uncomp
, comp
;
1153 ASSERT(dsl_pool_config_held(dp
));
1155 /* tosnap must be a snapshot */
1156 if (!ds
->ds_is_snapshot
)
1157 return (SET_ERROR(EINVAL
));
1159 /* fromsnap, if provided, must be a snapshot */
1160 if (fromds
!= NULL
&& !fromds
->ds_is_snapshot
)
1161 return (SET_ERROR(EINVAL
));
1164 * fromsnap must be an earlier snapshot from the same fs as tosnap,
1165 * or the origin's fs.
1167 if (fromds
!= NULL
&& !dsl_dataset_is_before(ds
, fromds
, 0))
1168 return (SET_ERROR(EXDEV
));
1170 /* Get compressed and uncompressed size estimates of changed data. */
1171 if (fromds
== NULL
) {
1172 uncomp
= dsl_dataset_phys(ds
)->ds_uncompressed_bytes
;
1173 comp
= dsl_dataset_phys(ds
)->ds_compressed_bytes
;
1176 err
= dsl_dataset_space_written(fromds
, ds
,
1177 &used
, &comp
, &uncomp
);
1182 err
= dmu_adjust_send_estimate_for_indirects(ds
, uncomp
, comp
,
1183 stream_compressed
, sizep
);
1185 * Add the size of the BEGIN and END records to the estimate.
1187 *sizep
+= 2 * sizeof (dmu_replay_record_t
);
1191 struct calculate_send_arg
{
1192 uint64_t uncompressed
;
1193 uint64_t compressed
;
1197 * Simple callback used to traverse the blocks of a snapshot and sum their
1198 * uncompressed and compressed sizes.
1202 dmu_calculate_send_traversal(spa_t
*spa
, zilog_t
*zilog
, const blkptr_t
*bp
,
1203 const zbookmark_phys_t
*zb
, const dnode_phys_t
*dnp
, void *arg
)
1205 struct calculate_send_arg
*space
= arg
;
1206 if (bp
!= NULL
&& !BP_IS_HOLE(bp
)) {
1207 space
->uncompressed
+= BP_GET_UCSIZE(bp
);
1208 space
->compressed
+= BP_GET_PSIZE(bp
);
1214 * Given a desination snapshot and a TXG, calculate the approximate size of a
1215 * send stream sent from that TXG. from_txg may be zero, indicating that the
1216 * whole snapshot will be sent.
1219 dmu_send_estimate_from_txg(dsl_dataset_t
*ds
, uint64_t from_txg
,
1220 boolean_t stream_compressed
, uint64_t *sizep
)
1222 dsl_pool_t
*dp
= ds
->ds_dir
->dd_pool
;
1224 struct calculate_send_arg size
= { 0 };
1226 ASSERT(dsl_pool_config_held(dp
));
1228 /* tosnap must be a snapshot */
1229 if (!ds
->ds_is_snapshot
)
1230 return (SET_ERROR(EINVAL
));
1232 /* verify that from_txg is before the provided snapshot was taken */
1233 if (from_txg
>= dsl_dataset_phys(ds
)->ds_creation_txg
) {
1234 return (SET_ERROR(EXDEV
));
1238 * traverse the blocks of the snapshot with birth times after
1239 * from_txg, summing their uncompressed size
1241 err
= traverse_dataset(ds
, from_txg
, TRAVERSE_POST
,
1242 dmu_calculate_send_traversal
, &size
);
1246 err
= dmu_adjust_send_estimate_for_indirects(ds
, size
.uncompressed
,
1247 size
.compressed
, stream_compressed
, sizep
);
1251 typedef struct dmu_recv_begin_arg
{
1252 const char *drba_origin
;
1253 dmu_recv_cookie_t
*drba_cookie
;
1255 uint64_t drba_snapobj
;
1256 } dmu_recv_begin_arg_t
;
1259 recv_begin_check_existing_impl(dmu_recv_begin_arg_t
*drba
, dsl_dataset_t
*ds
,
1264 dsl_pool_t
*dp
= ds
->ds_dir
->dd_pool
;
1266 /* temporary clone name must not exist */
1267 error
= zap_lookup(dp
->dp_meta_objset
,
1268 dsl_dir_phys(ds
->ds_dir
)->dd_child_dir_zapobj
, recv_clone_name
,
1270 if (error
!= ENOENT
)
1271 return (error
== 0 ? EBUSY
: error
);
1273 /* new snapshot name must not exist */
1274 error
= zap_lookup(dp
->dp_meta_objset
,
1275 dsl_dataset_phys(ds
)->ds_snapnames_zapobj
,
1276 drba
->drba_cookie
->drc_tosnap
, 8, 1, &val
);
1277 if (error
!= ENOENT
)
1278 return (error
== 0 ? EEXIST
: error
);
1281 * Check snapshot limit before receiving. We'll recheck again at the
1282 * end, but might as well abort before receiving if we're already over
1285 * Note that we do not check the file system limit with
1286 * dsl_dir_fscount_check because the temporary %clones don't count
1287 * against that limit.
1289 error
= dsl_fs_ss_limit_check(ds
->ds_dir
, 1, ZFS_PROP_SNAPSHOT_LIMIT
,
1290 NULL
, drba
->drba_cred
);
1294 if (fromguid
!= 0) {
1295 dsl_dataset_t
*snap
;
1296 uint64_t obj
= dsl_dataset_phys(ds
)->ds_prev_snap_obj
;
1298 /* Find snapshot in this dir that matches fromguid. */
1300 error
= dsl_dataset_hold_obj(dp
, obj
, FTAG
,
1303 return (SET_ERROR(ENODEV
));
1304 if (snap
->ds_dir
!= ds
->ds_dir
) {
1305 dsl_dataset_rele(snap
, FTAG
);
1306 return (SET_ERROR(ENODEV
));
1308 if (dsl_dataset_phys(snap
)->ds_guid
== fromguid
)
1310 obj
= dsl_dataset_phys(snap
)->ds_prev_snap_obj
;
1311 dsl_dataset_rele(snap
, FTAG
);
1314 return (SET_ERROR(ENODEV
));
1316 if (drba
->drba_cookie
->drc_force
) {
1317 drba
->drba_snapobj
= obj
;
1320 * If we are not forcing, there must be no
1321 * changes since fromsnap.
1323 if (dsl_dataset_modified_since_snap(ds
, snap
)) {
1324 dsl_dataset_rele(snap
, FTAG
);
1325 return (SET_ERROR(ETXTBSY
));
1327 drba
->drba_snapobj
= ds
->ds_prev
->ds_object
;
1330 dsl_dataset_rele(snap
, FTAG
);
1332 /* if full, then must be forced */
1333 if (!drba
->drba_cookie
->drc_force
)
1334 return (SET_ERROR(EEXIST
));
1335 /* start from $ORIGIN@$ORIGIN, if supported */
1336 drba
->drba_snapobj
= dp
->dp_origin_snap
!= NULL
?
1337 dp
->dp_origin_snap
->ds_object
: 0;
1345 dmu_recv_begin_check(void *arg
, dmu_tx_t
*tx
)
1347 dmu_recv_begin_arg_t
*drba
= arg
;
1348 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1349 struct drr_begin
*drrb
= drba
->drba_cookie
->drc_drrb
;
1350 uint64_t fromguid
= drrb
->drr_fromguid
;
1351 int flags
= drrb
->drr_flags
;
1353 uint64_t featureflags
= DMU_GET_FEATUREFLAGS(drrb
->drr_versioninfo
);
1355 const char *tofs
= drba
->drba_cookie
->drc_tofs
;
1357 /* already checked */
1358 ASSERT3U(drrb
->drr_magic
, ==, DMU_BACKUP_MAGIC
);
1359 ASSERT(!(featureflags
& DMU_BACKUP_FEATURE_RESUMING
));
1361 if (DMU_GET_STREAM_HDRTYPE(drrb
->drr_versioninfo
) ==
1362 DMU_COMPOUNDSTREAM
||
1363 drrb
->drr_type
>= DMU_OST_NUMTYPES
||
1364 ((flags
& DRR_FLAG_CLONE
) && drba
->drba_origin
== NULL
))
1365 return (SET_ERROR(EINVAL
));
1367 /* Verify pool version supports SA if SA_SPILL feature set */
1368 if ((featureflags
& DMU_BACKUP_FEATURE_SA_SPILL
) &&
1369 spa_version(dp
->dp_spa
) < SPA_VERSION_SA
)
1370 return (SET_ERROR(ENOTSUP
));
1372 if (drba
->drba_cookie
->drc_resumable
&&
1373 !spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_EXTENSIBLE_DATASET
))
1374 return (SET_ERROR(ENOTSUP
));
1377 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1378 * record to a plain WRITE record, so the pool must have the
1379 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1380 * records. Same with WRITE_EMBEDDED records that use LZ4 compression.
1382 if ((featureflags
& DMU_BACKUP_FEATURE_EMBED_DATA
) &&
1383 !spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_EMBEDDED_DATA
))
1384 return (SET_ERROR(ENOTSUP
));
1385 if ((featureflags
& DMU_BACKUP_FEATURE_LZ4
) &&
1386 !spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_LZ4_COMPRESS
))
1387 return (SET_ERROR(ENOTSUP
));
1390 * The receiving code doesn't know how to translate large blocks
1391 * to smaller ones, so the pool must have the LARGE_BLOCKS
1392 * feature enabled if the stream has LARGE_BLOCKS.
1394 if ((featureflags
& DMU_BACKUP_FEATURE_LARGE_BLOCKS
) &&
1395 !spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_LARGE_BLOCKS
))
1396 return (SET_ERROR(ENOTSUP
));
1398 error
= dsl_dataset_hold(dp
, tofs
, FTAG
, &ds
);
1400 /* target fs already exists; recv into temp clone */
1402 /* Can't recv a clone into an existing fs */
1403 if (flags
& DRR_FLAG_CLONE
|| drba
->drba_origin
) {
1404 dsl_dataset_rele(ds
, FTAG
);
1405 return (SET_ERROR(EINVAL
));
1408 error
= recv_begin_check_existing_impl(drba
, ds
, fromguid
);
1409 dsl_dataset_rele(ds
, FTAG
);
1410 } else if (error
== ENOENT
) {
1411 /* target fs does not exist; must be a full backup or clone */
1412 char buf
[ZFS_MAX_DATASET_NAME_LEN
];
1415 * If it's a non-clone incremental, we are missing the
1416 * target fs, so fail the recv.
1418 if (fromguid
!= 0 && !(flags
& DRR_FLAG_CLONE
||
1420 return (SET_ERROR(ENOENT
));
1423 * If we're receiving a full send as a clone, and it doesn't
1424 * contain all the necessary free records and freeobject
1425 * records, reject it.
1427 if (fromguid
== 0 && drba
->drba_origin
&&
1428 !(flags
& DRR_FLAG_FREERECORDS
))
1429 return (SET_ERROR(EINVAL
));
1431 /* Open the parent of tofs */
1432 ASSERT3U(strlen(tofs
), <, sizeof (buf
));
1433 (void) strlcpy(buf
, tofs
, strrchr(tofs
, '/') - tofs
+ 1);
1434 error
= dsl_dataset_hold(dp
, buf
, FTAG
, &ds
);
1439 * Check filesystem and snapshot limits before receiving. We'll
1440 * recheck snapshot limits again at the end (we create the
1441 * filesystems and increment those counts during begin_sync).
1443 error
= dsl_fs_ss_limit_check(ds
->ds_dir
, 1,
1444 ZFS_PROP_FILESYSTEM_LIMIT
, NULL
, drba
->drba_cred
);
1446 dsl_dataset_rele(ds
, FTAG
);
1450 error
= dsl_fs_ss_limit_check(ds
->ds_dir
, 1,
1451 ZFS_PROP_SNAPSHOT_LIMIT
, NULL
, drba
->drba_cred
);
1453 dsl_dataset_rele(ds
, FTAG
);
1457 if (drba
->drba_origin
!= NULL
) {
1458 dsl_dataset_t
*origin
;
1459 error
= dsl_dataset_hold(dp
, drba
->drba_origin
,
1462 dsl_dataset_rele(ds
, FTAG
);
1465 if (!origin
->ds_is_snapshot
) {
1466 dsl_dataset_rele(origin
, FTAG
);
1467 dsl_dataset_rele(ds
, FTAG
);
1468 return (SET_ERROR(EINVAL
));
1470 if (dsl_dataset_phys(origin
)->ds_guid
!= fromguid
&&
1472 dsl_dataset_rele(origin
, FTAG
);
1473 dsl_dataset_rele(ds
, FTAG
);
1474 return (SET_ERROR(ENODEV
));
1476 dsl_dataset_rele(origin
, FTAG
);
1478 dsl_dataset_rele(ds
, FTAG
);
1485 dmu_recv_begin_sync(void *arg
, dmu_tx_t
*tx
)
1487 dmu_recv_begin_arg_t
*drba
= arg
;
1488 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1489 objset_t
*mos
= dp
->dp_meta_objset
;
1490 struct drr_begin
*drrb
= drba
->drba_cookie
->drc_drrb
;
1491 const char *tofs
= drba
->drba_cookie
->drc_tofs
;
1492 dsl_dataset_t
*ds
, *newds
;
1495 uint64_t crflags
= 0;
1497 if (drrb
->drr_flags
& DRR_FLAG_CI_DATA
)
1498 crflags
|= DS_FLAG_CI_DATASET
;
1500 error
= dsl_dataset_hold(dp
, tofs
, FTAG
, &ds
);
1502 /* create temporary clone */
1503 dsl_dataset_t
*snap
= NULL
;
1504 if (drba
->drba_snapobj
!= 0) {
1505 VERIFY0(dsl_dataset_hold_obj(dp
,
1506 drba
->drba_snapobj
, FTAG
, &snap
));
1508 dsobj
= dsl_dataset_create_sync(ds
->ds_dir
, recv_clone_name
,
1509 snap
, crflags
, drba
->drba_cred
, tx
);
1510 if (drba
->drba_snapobj
!= 0)
1511 dsl_dataset_rele(snap
, FTAG
);
1512 dsl_dataset_rele(ds
, FTAG
);
1516 dsl_dataset_t
*origin
= NULL
;
1518 VERIFY0(dsl_dir_hold(dp
, tofs
, FTAG
, &dd
, &tail
));
1520 if (drba
->drba_origin
!= NULL
) {
1521 VERIFY0(dsl_dataset_hold(dp
, drba
->drba_origin
,
1525 /* Create new dataset. */
1526 dsobj
= dsl_dataset_create_sync(dd
,
1527 strrchr(tofs
, '/') + 1,
1528 origin
, crflags
, drba
->drba_cred
, tx
);
1530 dsl_dataset_rele(origin
, FTAG
);
1531 dsl_dir_rele(dd
, FTAG
);
1532 drba
->drba_cookie
->drc_newfs
= B_TRUE
;
1534 VERIFY0(dsl_dataset_own_obj(dp
, dsobj
, dmu_recv_tag
, &newds
));
1536 if (drba
->drba_cookie
->drc_resumable
) {
1537 dsl_dataset_zapify(newds
, tx
);
1538 if (drrb
->drr_fromguid
!= 0) {
1539 VERIFY0(zap_add(mos
, dsobj
, DS_FIELD_RESUME_FROMGUID
,
1540 8, 1, &drrb
->drr_fromguid
, tx
));
1542 VERIFY0(zap_add(mos
, dsobj
, DS_FIELD_RESUME_TOGUID
,
1543 8, 1, &drrb
->drr_toguid
, tx
));
1544 VERIFY0(zap_add(mos
, dsobj
, DS_FIELD_RESUME_TONAME
,
1545 1, strlen(drrb
->drr_toname
) + 1, drrb
->drr_toname
, tx
));
1548 VERIFY0(zap_add(mos
, dsobj
, DS_FIELD_RESUME_OBJECT
,
1550 VERIFY0(zap_add(mos
, dsobj
, DS_FIELD_RESUME_OFFSET
,
1552 VERIFY0(zap_add(mos
, dsobj
, DS_FIELD_RESUME_BYTES
,
1554 if (DMU_GET_FEATUREFLAGS(drrb
->drr_versioninfo
) &
1555 DMU_BACKUP_FEATURE_LARGE_BLOCKS
) {
1556 VERIFY0(zap_add(mos
, dsobj
, DS_FIELD_RESUME_LARGEBLOCK
,
1559 if (DMU_GET_FEATUREFLAGS(drrb
->drr_versioninfo
) &
1560 DMU_BACKUP_FEATURE_EMBED_DATA
) {
1561 VERIFY0(zap_add(mos
, dsobj
, DS_FIELD_RESUME_EMBEDOK
,
1564 if (DMU_GET_FEATUREFLAGS(drrb
->drr_versioninfo
) &
1565 DMU_BACKUP_FEATURE_COMPRESSED
) {
1566 VERIFY0(zap_add(mos
, dsobj
, DS_FIELD_RESUME_COMPRESSOK
,
1571 dmu_buf_will_dirty(newds
->ds_dbuf
, tx
);
1572 dsl_dataset_phys(newds
)->ds_flags
|= DS_FLAG_INCONSISTENT
;
1575 * If we actually created a non-clone, we need to create the
1576 * objset in our new dataset.
1578 rrw_enter(&newds
->ds_bp_rwlock
, RW_READER
, FTAG
);
1579 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds
))) {
1580 (void) dmu_objset_create_impl(dp
->dp_spa
,
1581 newds
, dsl_dataset_get_blkptr(newds
), drrb
->drr_type
, tx
);
1583 rrw_exit(&newds
->ds_bp_rwlock
, FTAG
);
1585 drba
->drba_cookie
->drc_ds
= newds
;
1587 spa_history_log_internal_ds(newds
, "receive", tx
, "");
1591 dmu_recv_resume_begin_check(void *arg
, dmu_tx_t
*tx
)
1593 dmu_recv_begin_arg_t
*drba
= arg
;
1594 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1595 struct drr_begin
*drrb
= drba
->drba_cookie
->drc_drrb
;
1597 uint64_t featureflags
= DMU_GET_FEATUREFLAGS(drrb
->drr_versioninfo
);
1599 const char *tofs
= drba
->drba_cookie
->drc_tofs
;
1601 /* already checked */
1602 ASSERT3U(drrb
->drr_magic
, ==, DMU_BACKUP_MAGIC
);
1603 ASSERT(featureflags
& DMU_BACKUP_FEATURE_RESUMING
);
1605 if (DMU_GET_STREAM_HDRTYPE(drrb
->drr_versioninfo
) ==
1606 DMU_COMPOUNDSTREAM
||
1607 drrb
->drr_type
>= DMU_OST_NUMTYPES
)
1608 return (SET_ERROR(EINVAL
));
1610 /* Verify pool version supports SA if SA_SPILL feature set */
1611 if ((featureflags
& DMU_BACKUP_FEATURE_SA_SPILL
) &&
1612 spa_version(dp
->dp_spa
) < SPA_VERSION_SA
)
1613 return (SET_ERROR(ENOTSUP
));
1616 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1617 * record to a plain WRITE record, so the pool must have the
1618 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1619 * records. Same with WRITE_EMBEDDED records that use LZ4 compression.
1621 if ((featureflags
& DMU_BACKUP_FEATURE_EMBED_DATA
) &&
1622 !spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_EMBEDDED_DATA
))
1623 return (SET_ERROR(ENOTSUP
));
1624 if ((featureflags
& DMU_BACKUP_FEATURE_LZ4
) &&
1625 !spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_LZ4_COMPRESS
))
1626 return (SET_ERROR(ENOTSUP
));
1628 /* 6 extra bytes for /%recv */
1629 char recvname
[ZFS_MAX_DATASET_NAME_LEN
+ 6];
1631 (void) snprintf(recvname
, sizeof (recvname
), "%s/%s",
1632 tofs
, recv_clone_name
);
1634 if (dsl_dataset_hold(dp
, recvname
, FTAG
, &ds
) != 0) {
1635 /* %recv does not exist; continue in tofs */
1636 error
= dsl_dataset_hold(dp
, tofs
, FTAG
, &ds
);
1641 /* check that ds is marked inconsistent */
1642 if (!DS_IS_INCONSISTENT(ds
)) {
1643 dsl_dataset_rele(ds
, FTAG
);
1644 return (SET_ERROR(EINVAL
));
1647 /* check that there is resuming data, and that the toguid matches */
1648 if (!dsl_dataset_is_zapified(ds
)) {
1649 dsl_dataset_rele(ds
, FTAG
);
1650 return (SET_ERROR(EINVAL
));
1653 error
= zap_lookup(dp
->dp_meta_objset
, ds
->ds_object
,
1654 DS_FIELD_RESUME_TOGUID
, sizeof (val
), 1, &val
);
1655 if (error
!= 0 || drrb
->drr_toguid
!= val
) {
1656 dsl_dataset_rele(ds
, FTAG
);
1657 return (SET_ERROR(EINVAL
));
1661 * Check if the receive is still running. If so, it will be owned.
1662 * Note that nothing else can own the dataset (e.g. after the receive
1663 * fails) because it will be marked inconsistent.
1665 if (dsl_dataset_has_owner(ds
)) {
1666 dsl_dataset_rele(ds
, FTAG
);
1667 return (SET_ERROR(EBUSY
));
1670 /* There should not be any snapshots of this fs yet. */
1671 if (ds
->ds_prev
!= NULL
&& ds
->ds_prev
->ds_dir
== ds
->ds_dir
) {
1672 dsl_dataset_rele(ds
, FTAG
);
1673 return (SET_ERROR(EINVAL
));
1677 * Note: resume point will be checked when we process the first WRITE
1681 /* check that the origin matches */
1683 (void) zap_lookup(dp
->dp_meta_objset
, ds
->ds_object
,
1684 DS_FIELD_RESUME_FROMGUID
, sizeof (val
), 1, &val
);
1685 if (drrb
->drr_fromguid
!= val
) {
1686 dsl_dataset_rele(ds
, FTAG
);
1687 return (SET_ERROR(EINVAL
));
1690 dsl_dataset_rele(ds
, FTAG
);
1695 dmu_recv_resume_begin_sync(void *arg
, dmu_tx_t
*tx
)
1697 dmu_recv_begin_arg_t
*drba
= arg
;
1698 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1699 const char *tofs
= drba
->drba_cookie
->drc_tofs
;
1702 /* 6 extra bytes for /%recv */
1703 char recvname
[ZFS_MAX_DATASET_NAME_LEN
+ 6];
1705 (void) snprintf(recvname
, sizeof (recvname
), "%s/%s",
1706 tofs
, recv_clone_name
);
1708 if (dsl_dataset_hold(dp
, recvname
, FTAG
, &ds
) != 0) {
1709 /* %recv does not exist; continue in tofs */
1710 VERIFY0(dsl_dataset_hold(dp
, tofs
, FTAG
, &ds
));
1711 drba
->drba_cookie
->drc_newfs
= B_TRUE
;
1714 /* clear the inconsistent flag so that we can own it */
1715 ASSERT(DS_IS_INCONSISTENT(ds
));
1716 dmu_buf_will_dirty(ds
->ds_dbuf
, tx
);
1717 dsl_dataset_phys(ds
)->ds_flags
&= ~DS_FLAG_INCONSISTENT
;
1718 dsobj
= ds
->ds_object
;
1719 dsl_dataset_rele(ds
, FTAG
);
1721 VERIFY0(dsl_dataset_own_obj(dp
, dsobj
, dmu_recv_tag
, &ds
));
1723 dmu_buf_will_dirty(ds
->ds_dbuf
, tx
);
1724 dsl_dataset_phys(ds
)->ds_flags
|= DS_FLAG_INCONSISTENT
;
1726 rrw_enter(&ds
->ds_bp_rwlock
, RW_READER
, FTAG
);
1727 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds
)));
1728 rrw_exit(&ds
->ds_bp_rwlock
, FTAG
);
1730 drba
->drba_cookie
->drc_ds
= ds
;
1732 spa_history_log_internal_ds(ds
, "resume receive", tx
, "");
1736 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1737 * succeeds; otherwise we will leak the holds on the datasets.
1740 dmu_recv_begin(char *tofs
, char *tosnap
, dmu_replay_record_t
*drr_begin
,
1741 boolean_t force
, boolean_t resumable
, char *origin
, dmu_recv_cookie_t
*drc
)
1743 dmu_recv_begin_arg_t drba
= { 0 };
1745 bzero(drc
, sizeof (dmu_recv_cookie_t
));
1746 drc
->drc_drr_begin
= drr_begin
;
1747 drc
->drc_drrb
= &drr_begin
->drr_u
.drr_begin
;
1748 drc
->drc_tosnap
= tosnap
;
1749 drc
->drc_tofs
= tofs
;
1750 drc
->drc_force
= force
;
1751 drc
->drc_resumable
= resumable
;
1752 drc
->drc_cred
= CRED();
1754 if (drc
->drc_drrb
->drr_magic
== BSWAP_64(DMU_BACKUP_MAGIC
)) {
1755 drc
->drc_byteswap
= B_TRUE
;
1756 (void) fletcher_4_incremental_byteswap(drr_begin
,
1757 sizeof (dmu_replay_record_t
), &drc
->drc_cksum
);
1758 byteswap_record(drr_begin
);
1759 } else if (drc
->drc_drrb
->drr_magic
== DMU_BACKUP_MAGIC
) {
1760 (void) fletcher_4_incremental_native(drr_begin
,
1761 sizeof (dmu_replay_record_t
), &drc
->drc_cksum
);
1763 return (SET_ERROR(EINVAL
));
1766 drba
.drba_origin
= origin
;
1767 drba
.drba_cookie
= drc
;
1768 drba
.drba_cred
= CRED();
1770 if (DMU_GET_FEATUREFLAGS(drc
->drc_drrb
->drr_versioninfo
) &
1771 DMU_BACKUP_FEATURE_RESUMING
) {
1772 return (dsl_sync_task(tofs
,
1773 dmu_recv_resume_begin_check
, dmu_recv_resume_begin_sync
,
1774 &drba
, 5, ZFS_SPACE_CHECK_NORMAL
));
1776 return (dsl_sync_task(tofs
,
1777 dmu_recv_begin_check
, dmu_recv_begin_sync
,
1778 &drba
, 5, ZFS_SPACE_CHECK_NORMAL
));
1782 struct receive_record_arg
{
1783 dmu_replay_record_t header
;
1784 void *payload
; /* Pointer to a buffer containing the payload */
1786 * If the record is a write, pointer to the arc_buf_t containing the
1789 arc_buf_t
*write_buf
;
1791 uint64_t bytes_read
; /* bytes read from stream when record created */
1792 boolean_t eos_marker
; /* Marks the end of the stream */
1796 struct receive_writer_arg
{
1802 * These three args are used to signal to the main thread that we're
1810 /* A map from guid to dataset to help handle dedup'd streams. */
1811 avl_tree_t
*guid_to_ds_map
;
1812 boolean_t resumable
;
1813 uint64_t last_object
, last_offset
;
1814 uint64_t bytes_read
; /* bytes read when current record created */
1818 list_t list
; /* List of struct receive_objnode. */
1820 * Last object looked up. Used to assert that objects are being looked
1821 * up in ascending order.
1823 uint64_t last_lookup
;
1826 struct receive_objnode
{
1831 struct receive_arg
{
1833 vnode_t
*vp
; /* The vnode to read the stream from */
1834 uint64_t voff
; /* The current offset in the stream */
1835 uint64_t bytes_read
;
1837 * A record that has had its payload read in, but hasn't yet been handed
1838 * off to the worker thread.
1840 struct receive_record_arg
*rrd
;
1841 /* A record that has had its header read in, but not its payload. */
1842 struct receive_record_arg
*next_rrd
;
1844 zio_cksum_t prev_cksum
;
1847 /* Sorted list of objects not to issue prefetches for. */
1848 struct objlist ignore_objlist
;
1851 typedef struct guid_map_entry
{
1853 dsl_dataset_t
*gme_ds
;
1858 guid_compare(const void *arg1
, const void *arg2
)
1860 const guid_map_entry_t
*gmep1
= arg1
;
1861 const guid_map_entry_t
*gmep2
= arg2
;
1863 if (gmep1
->guid
< gmep2
->guid
)
1865 else if (gmep1
->guid
> gmep2
->guid
)
1871 free_guid_map_onexit(void *arg
)
1873 avl_tree_t
*ca
= arg
;
1874 void *cookie
= NULL
;
1875 guid_map_entry_t
*gmep
;
1877 while ((gmep
= avl_destroy_nodes(ca
, &cookie
)) != NULL
) {
1878 dsl_dataset_long_rele(gmep
->gme_ds
, gmep
);
1879 dsl_dataset_rele(gmep
->gme_ds
, gmep
);
1880 kmem_free(gmep
, sizeof (guid_map_entry_t
));
1883 kmem_free(ca
, sizeof (avl_tree_t
));
1887 receive_read(struct receive_arg
*ra
, int len
, void *buf
)
1892 * The code doesn't rely on this (lengths being multiples of 8). See
1893 * comment in dump_bytes.
1897 while (done
< len
) {
1900 ra
->err
= vn_rdwr(UIO_READ
, ra
->vp
,
1901 (char *)buf
+ done
, len
- done
,
1902 ra
->voff
, UIO_SYSSPACE
, FAPPEND
,
1903 RLIM64_INFINITY
, CRED(), &resid
);
1905 if (resid
== len
- done
) {
1907 * Note: ECKSUM indicates that the receive
1908 * was interrupted and can potentially be resumed.
1910 ra
->err
= SET_ERROR(ECKSUM
);
1912 ra
->voff
+= len
- done
- resid
;
1918 ra
->bytes_read
+= len
;
1920 ASSERT3U(done
, ==, len
);
1925 byteswap_record(dmu_replay_record_t
*drr
)
1927 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
1928 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
1929 drr
->drr_type
= BSWAP_32(drr
->drr_type
);
1930 drr
->drr_payloadlen
= BSWAP_32(drr
->drr_payloadlen
);
1932 switch (drr
->drr_type
) {
1934 DO64(drr_begin
.drr_magic
);
1935 DO64(drr_begin
.drr_versioninfo
);
1936 DO64(drr_begin
.drr_creation_time
);
1937 DO32(drr_begin
.drr_type
);
1938 DO32(drr_begin
.drr_flags
);
1939 DO64(drr_begin
.drr_toguid
);
1940 DO64(drr_begin
.drr_fromguid
);
1943 DO64(drr_object
.drr_object
);
1944 DO32(drr_object
.drr_type
);
1945 DO32(drr_object
.drr_bonustype
);
1946 DO32(drr_object
.drr_blksz
);
1947 DO32(drr_object
.drr_bonuslen
);
1948 DO64(drr_object
.drr_toguid
);
1950 case DRR_FREEOBJECTS
:
1951 DO64(drr_freeobjects
.drr_firstobj
);
1952 DO64(drr_freeobjects
.drr_numobjs
);
1953 DO64(drr_freeobjects
.drr_toguid
);
1956 DO64(drr_write
.drr_object
);
1957 DO32(drr_write
.drr_type
);
1958 DO64(drr_write
.drr_offset
);
1959 DO64(drr_write
.drr_logical_size
);
1960 DO64(drr_write
.drr_toguid
);
1961 ZIO_CHECKSUM_BSWAP(&drr
->drr_u
.drr_write
.drr_key
.ddk_cksum
);
1962 DO64(drr_write
.drr_key
.ddk_prop
);
1963 DO64(drr_write
.drr_compressed_size
);
1965 case DRR_WRITE_BYREF
:
1966 DO64(drr_write_byref
.drr_object
);
1967 DO64(drr_write_byref
.drr_offset
);
1968 DO64(drr_write_byref
.drr_length
);
1969 DO64(drr_write_byref
.drr_toguid
);
1970 DO64(drr_write_byref
.drr_refguid
);
1971 DO64(drr_write_byref
.drr_refobject
);
1972 DO64(drr_write_byref
.drr_refoffset
);
1973 ZIO_CHECKSUM_BSWAP(&drr
->drr_u
.drr_write_byref
.
1975 DO64(drr_write_byref
.drr_key
.ddk_prop
);
1977 case DRR_WRITE_EMBEDDED
:
1978 DO64(drr_write_embedded
.drr_object
);
1979 DO64(drr_write_embedded
.drr_offset
);
1980 DO64(drr_write_embedded
.drr_length
);
1981 DO64(drr_write_embedded
.drr_toguid
);
1982 DO32(drr_write_embedded
.drr_lsize
);
1983 DO32(drr_write_embedded
.drr_psize
);
1986 DO64(drr_free
.drr_object
);
1987 DO64(drr_free
.drr_offset
);
1988 DO64(drr_free
.drr_length
);
1989 DO64(drr_free
.drr_toguid
);
1992 DO64(drr_spill
.drr_object
);
1993 DO64(drr_spill
.drr_length
);
1994 DO64(drr_spill
.drr_toguid
);
1997 DO64(drr_end
.drr_toguid
);
1998 ZIO_CHECKSUM_BSWAP(&drr
->drr_u
.drr_end
.drr_checksum
);
2002 if (drr
->drr_type
!= DRR_BEGIN
) {
2003 ZIO_CHECKSUM_BSWAP(&drr
->drr_u
.drr_checksum
.drr_checksum
);
2010 static inline uint8_t
2011 deduce_nblkptr(dmu_object_type_t bonus_type
, uint64_t bonus_size
)
2013 if (bonus_type
== DMU_OT_SA
) {
2017 ((DN_MAX_BONUSLEN
- bonus_size
) >> SPA_BLKPTRSHIFT
));
2022 save_resume_state(struct receive_writer_arg
*rwa
,
2023 uint64_t object
, uint64_t offset
, dmu_tx_t
*tx
)
2025 int txgoff
= dmu_tx_get_txg(tx
) & TXG_MASK
;
2027 if (!rwa
->resumable
)
2031 * We use ds_resume_bytes[] != 0 to indicate that we need to
2032 * update this on disk, so it must not be 0.
2034 ASSERT(rwa
->bytes_read
!= 0);
2037 * We only resume from write records, which have a valid
2038 * (non-meta-dnode) object number.
2040 ASSERT(object
!= 0);
2043 * For resuming to work correctly, we must receive records in order,
2044 * sorted by object,offset. This is checked by the callers, but
2045 * assert it here for good measure.
2047 ASSERT3U(object
, >=, rwa
->os
->os_dsl_dataset
->ds_resume_object
[txgoff
]);
2048 ASSERT(object
!= rwa
->os
->os_dsl_dataset
->ds_resume_object
[txgoff
] ||
2049 offset
>= rwa
->os
->os_dsl_dataset
->ds_resume_offset
[txgoff
]);
2050 ASSERT3U(rwa
->bytes_read
, >=,
2051 rwa
->os
->os_dsl_dataset
->ds_resume_bytes
[txgoff
]);
2053 rwa
->os
->os_dsl_dataset
->ds_resume_object
[txgoff
] = object
;
2054 rwa
->os
->os_dsl_dataset
->ds_resume_offset
[txgoff
] = offset
;
2055 rwa
->os
->os_dsl_dataset
->ds_resume_bytes
[txgoff
] = rwa
->bytes_read
;
2059 receive_object(struct receive_writer_arg
*rwa
, struct drr_object
*drro
,
2062 dmu_object_info_t doi
;
2067 if (drro
->drr_type
== DMU_OT_NONE
||
2068 !DMU_OT_IS_VALID(drro
->drr_type
) ||
2069 !DMU_OT_IS_VALID(drro
->drr_bonustype
) ||
2070 drro
->drr_checksumtype
>= ZIO_CHECKSUM_FUNCTIONS
||
2071 drro
->drr_compress
>= ZIO_COMPRESS_FUNCTIONS
||
2072 P2PHASE(drro
->drr_blksz
, SPA_MINBLOCKSIZE
) ||
2073 drro
->drr_blksz
< SPA_MINBLOCKSIZE
||
2074 drro
->drr_blksz
> spa_maxblocksize(dmu_objset_spa(rwa
->os
)) ||
2075 drro
->drr_bonuslen
> DN_MAX_BONUSLEN
) {
2076 return (SET_ERROR(EINVAL
));
2079 err
= dmu_object_info(rwa
->os
, drro
->drr_object
, &doi
);
2081 if (err
!= 0 && err
!= ENOENT
)
2082 return (SET_ERROR(EINVAL
));
2083 object
= err
== 0 ? drro
->drr_object
: DMU_NEW_OBJECT
;
2086 * If we are losing blkptrs or changing the block size this must
2087 * be a new file instance. We must clear out the previous file
2088 * contents before we can change this type of metadata in the dnode.
2093 nblkptr
= deduce_nblkptr(drro
->drr_bonustype
,
2094 drro
->drr_bonuslen
);
2096 if (drro
->drr_blksz
!= doi
.doi_data_block_size
||
2097 nblkptr
< doi
.doi_nblkptr
) {
2098 err
= dmu_free_long_range(rwa
->os
, drro
->drr_object
,
2101 return (SET_ERROR(EINVAL
));
2105 tx
= dmu_tx_create(rwa
->os
);
2106 dmu_tx_hold_bonus(tx
, object
);
2107 err
= dmu_tx_assign(tx
, TXG_WAIT
);
2113 if (object
== DMU_NEW_OBJECT
) {
2114 /* currently free, want to be allocated */
2115 err
= dmu_object_claim(rwa
->os
, drro
->drr_object
,
2116 drro
->drr_type
, drro
->drr_blksz
,
2117 drro
->drr_bonustype
, drro
->drr_bonuslen
, tx
);
2118 } else if (drro
->drr_type
!= doi
.doi_type
||
2119 drro
->drr_blksz
!= doi
.doi_data_block_size
||
2120 drro
->drr_bonustype
!= doi
.doi_bonus_type
||
2121 drro
->drr_bonuslen
!= doi
.doi_bonus_size
) {
2122 /* currently allocated, but with different properties */
2123 err
= dmu_object_reclaim(rwa
->os
, drro
->drr_object
,
2124 drro
->drr_type
, drro
->drr_blksz
,
2125 drro
->drr_bonustype
, drro
->drr_bonuslen
, tx
);
2129 return (SET_ERROR(EINVAL
));
2132 dmu_object_set_checksum(rwa
->os
, drro
->drr_object
,
2133 drro
->drr_checksumtype
, tx
);
2134 dmu_object_set_compress(rwa
->os
, drro
->drr_object
,
2135 drro
->drr_compress
, tx
);
2140 VERIFY0(dmu_bonus_hold(rwa
->os
, drro
->drr_object
, FTAG
, &db
));
2141 dmu_buf_will_dirty(db
, tx
);
2143 ASSERT3U(db
->db_size
, >=, drro
->drr_bonuslen
);
2144 bcopy(data
, db
->db_data
, drro
->drr_bonuslen
);
2145 if (rwa
->byteswap
) {
2146 dmu_object_byteswap_t byteswap
=
2147 DMU_OT_BYTESWAP(drro
->drr_bonustype
);
2148 dmu_ot_byteswap
[byteswap
].ob_func(db
->db_data
,
2149 drro
->drr_bonuslen
);
2151 dmu_buf_rele(db
, FTAG
);
2160 receive_freeobjects(struct receive_writer_arg
*rwa
,
2161 struct drr_freeobjects
*drrfo
)
2166 if (drrfo
->drr_firstobj
+ drrfo
->drr_numobjs
< drrfo
->drr_firstobj
)
2167 return (SET_ERROR(EINVAL
));
2169 for (obj
= drrfo
->drr_firstobj
;
2170 obj
< drrfo
->drr_firstobj
+ drrfo
->drr_numobjs
&& next_err
== 0;
2171 next_err
= dmu_object_next(rwa
->os
, &obj
, FALSE
, 0)) {
2174 if (dmu_object_info(rwa
->os
, obj
, NULL
) != 0)
2177 err
= dmu_free_long_object(rwa
->os
, obj
);
2181 if (next_err
!= ESRCH
)
2187 receive_write(struct receive_writer_arg
*rwa
, struct drr_write
*drrw
,
2193 if (drrw
->drr_offset
+ drrw
->drr_logical_size
< drrw
->drr_offset
||
2194 !DMU_OT_IS_VALID(drrw
->drr_type
))
2195 return (SET_ERROR(EINVAL
));
2198 * For resuming to work, records must be in increasing order
2199 * by (object, offset).
2201 if (drrw
->drr_object
< rwa
->last_object
||
2202 (drrw
->drr_object
== rwa
->last_object
&&
2203 drrw
->drr_offset
< rwa
->last_offset
)) {
2204 return (SET_ERROR(EINVAL
));
2206 rwa
->last_object
= drrw
->drr_object
;
2207 rwa
->last_offset
= drrw
->drr_offset
;
2209 if (dmu_object_info(rwa
->os
, drrw
->drr_object
, NULL
) != 0)
2210 return (SET_ERROR(EINVAL
));
2212 tx
= dmu_tx_create(rwa
->os
);
2214 dmu_tx_hold_write(tx
, drrw
->drr_object
,
2215 drrw
->drr_offset
, drrw
->drr_logical_size
);
2216 err
= dmu_tx_assign(tx
, TXG_WAIT
);
2221 if (rwa
->byteswap
) {
2222 dmu_object_byteswap_t byteswap
=
2223 DMU_OT_BYTESWAP(drrw
->drr_type
);
2224 dmu_ot_byteswap
[byteswap
].ob_func(abuf
->b_data
,
2225 DRR_WRITE_PAYLOAD_SIZE(drrw
));
2228 /* use the bonus buf to look up the dnode in dmu_assign_arcbuf */
2230 if (dmu_bonus_hold(rwa
->os
, drrw
->drr_object
, FTAG
, &bonus
) != 0)
2231 return (SET_ERROR(EINVAL
));
2232 dmu_assign_arcbuf(bonus
, drrw
->drr_offset
, abuf
, tx
);
2235 * Note: If the receive fails, we want the resume stream to start
2236 * with the same record that we last successfully received (as opposed
2237 * to the next record), so that we can verify that we are
2238 * resuming from the correct location.
2240 save_resume_state(rwa
, drrw
->drr_object
, drrw
->drr_offset
, tx
);
2242 dmu_buf_rele(bonus
, FTAG
);
2248 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed
2249 * streams to refer to a copy of the data that is already on the
2250 * system because it came in earlier in the stream. This function
2251 * finds the earlier copy of the data, and uses that copy instead of
2252 * data from the stream to fulfill this write.
2255 receive_write_byref(struct receive_writer_arg
*rwa
,
2256 struct drr_write_byref
*drrwbr
)
2260 guid_map_entry_t gmesrch
;
2261 guid_map_entry_t
*gmep
;
2263 objset_t
*ref_os
= NULL
;
2266 if (drrwbr
->drr_offset
+ drrwbr
->drr_length
< drrwbr
->drr_offset
)
2267 return (SET_ERROR(EINVAL
));
2270 * If the GUID of the referenced dataset is different from the
2271 * GUID of the target dataset, find the referenced dataset.
2273 if (drrwbr
->drr_toguid
!= drrwbr
->drr_refguid
) {
2274 gmesrch
.guid
= drrwbr
->drr_refguid
;
2275 if ((gmep
= avl_find(rwa
->guid_to_ds_map
, &gmesrch
,
2277 return (SET_ERROR(EINVAL
));
2279 if (dmu_objset_from_ds(gmep
->gme_ds
, &ref_os
))
2280 return (SET_ERROR(EINVAL
));
2285 err
= dmu_buf_hold(ref_os
, drrwbr
->drr_refobject
,
2286 drrwbr
->drr_refoffset
, FTAG
, &dbp
, DMU_READ_PREFETCH
);
2290 tx
= dmu_tx_create(rwa
->os
);
2292 dmu_tx_hold_write(tx
, drrwbr
->drr_object
,
2293 drrwbr
->drr_offset
, drrwbr
->drr_length
);
2294 err
= dmu_tx_assign(tx
, TXG_WAIT
);
2299 dmu_write(rwa
->os
, drrwbr
->drr_object
,
2300 drrwbr
->drr_offset
, drrwbr
->drr_length
, dbp
->db_data
, tx
);
2301 dmu_buf_rele(dbp
, FTAG
);
2303 /* See comment in restore_write. */
2304 save_resume_state(rwa
, drrwbr
->drr_object
, drrwbr
->drr_offset
, tx
);
2310 receive_write_embedded(struct receive_writer_arg
*rwa
,
2311 struct drr_write_embedded
*drrwe
, void *data
)
2316 if (drrwe
->drr_offset
+ drrwe
->drr_length
< drrwe
->drr_offset
)
2319 if (drrwe
->drr_psize
> BPE_PAYLOAD_SIZE
)
2322 if (drrwe
->drr_etype
>= NUM_BP_EMBEDDED_TYPES
)
2324 if (drrwe
->drr_compression
>= ZIO_COMPRESS_FUNCTIONS
)
2327 tx
= dmu_tx_create(rwa
->os
);
2329 dmu_tx_hold_write(tx
, drrwe
->drr_object
,
2330 drrwe
->drr_offset
, drrwe
->drr_length
);
2331 err
= dmu_tx_assign(tx
, TXG_WAIT
);
2337 dmu_write_embedded(rwa
->os
, drrwe
->drr_object
,
2338 drrwe
->drr_offset
, data
, drrwe
->drr_etype
,
2339 drrwe
->drr_compression
, drrwe
->drr_lsize
, drrwe
->drr_psize
,
2340 rwa
->byteswap
^ ZFS_HOST_BYTEORDER
, tx
);
2342 /* See comment in restore_write. */
2343 save_resume_state(rwa
, drrwe
->drr_object
, drrwe
->drr_offset
, tx
);
2349 receive_spill(struct receive_writer_arg
*rwa
, struct drr_spill
*drrs
,
2353 dmu_buf_t
*db
, *db_spill
;
2356 if (drrs
->drr_length
< SPA_MINBLOCKSIZE
||
2357 drrs
->drr_length
> spa_maxblocksize(dmu_objset_spa(rwa
->os
)))
2358 return (SET_ERROR(EINVAL
));
2360 if (dmu_object_info(rwa
->os
, drrs
->drr_object
, NULL
) != 0)
2361 return (SET_ERROR(EINVAL
));
2363 VERIFY0(dmu_bonus_hold(rwa
->os
, drrs
->drr_object
, FTAG
, &db
));
2364 if ((err
= dmu_spill_hold_by_bonus(db
, FTAG
, &db_spill
)) != 0) {
2365 dmu_buf_rele(db
, FTAG
);
2369 tx
= dmu_tx_create(rwa
->os
);
2371 dmu_tx_hold_spill(tx
, db
->db_object
);
2373 err
= dmu_tx_assign(tx
, TXG_WAIT
);
2375 dmu_buf_rele(db
, FTAG
);
2376 dmu_buf_rele(db_spill
, FTAG
);
2380 dmu_buf_will_dirty(db_spill
, tx
);
2382 if (db_spill
->db_size
< drrs
->drr_length
)
2383 VERIFY(0 == dbuf_spill_set_blksz(db_spill
,
2384 drrs
->drr_length
, tx
));
2385 bcopy(data
, db_spill
->db_data
, drrs
->drr_length
);
2387 dmu_buf_rele(db
, FTAG
);
2388 dmu_buf_rele(db_spill
, FTAG
);
2396 receive_free(struct receive_writer_arg
*rwa
, struct drr_free
*drrf
)
2400 if (drrf
->drr_length
!= -1ULL &&
2401 drrf
->drr_offset
+ drrf
->drr_length
< drrf
->drr_offset
)
2402 return (SET_ERROR(EINVAL
));
2404 if (dmu_object_info(rwa
->os
, drrf
->drr_object
, NULL
) != 0)
2405 return (SET_ERROR(EINVAL
));
2407 err
= dmu_free_long_range(rwa
->os
, drrf
->drr_object
,
2408 drrf
->drr_offset
, drrf
->drr_length
);
2413 /* used to destroy the drc_ds on error */
2415 dmu_recv_cleanup_ds(dmu_recv_cookie_t
*drc
)
2417 if (drc
->drc_resumable
) {
2418 /* wait for our resume state to be written to disk */
2419 txg_wait_synced(drc
->drc_ds
->ds_dir
->dd_pool
, 0);
2420 dsl_dataset_disown(drc
->drc_ds
, dmu_recv_tag
);
2422 char name
[ZFS_MAX_DATASET_NAME_LEN
];
2423 dsl_dataset_name(drc
->drc_ds
, name
);
2424 dsl_dataset_disown(drc
->drc_ds
, dmu_recv_tag
);
2425 (void) dsl_destroy_head(name
);
2430 receive_cksum(struct receive_arg
*ra
, int len
, void *buf
)
2433 (void) fletcher_4_incremental_byteswap(buf
, len
, &ra
->cksum
);
2435 (void) fletcher_4_incremental_native(buf
, len
, &ra
->cksum
);
2440 * Read the payload into a buffer of size len, and update the current record's
2442 * Allocate ra->next_rrd and read the next record's header into
2443 * ra->next_rrd->header.
2444 * Verify checksum of payload and next record.
2447 receive_read_payload_and_next_header(struct receive_arg
*ra
, int len
, void *buf
)
2452 ASSERT3U(len
, <=, SPA_MAXBLOCKSIZE
);
2453 err
= receive_read(ra
, len
, buf
);
2456 receive_cksum(ra
, len
, buf
);
2458 /* note: rrd is NULL when reading the begin record's payload */
2459 if (ra
->rrd
!= NULL
) {
2460 ra
->rrd
->payload
= buf
;
2461 ra
->rrd
->payload_size
= len
;
2462 ra
->rrd
->bytes_read
= ra
->bytes_read
;
2466 ra
->prev_cksum
= ra
->cksum
;
2468 ra
->next_rrd
= kmem_zalloc(sizeof (*ra
->next_rrd
), KM_SLEEP
);
2469 err
= receive_read(ra
, sizeof (ra
->next_rrd
->header
),
2470 &ra
->next_rrd
->header
);
2471 ra
->next_rrd
->bytes_read
= ra
->bytes_read
;
2473 kmem_free(ra
->next_rrd
, sizeof (*ra
->next_rrd
));
2474 ra
->next_rrd
= NULL
;
2477 if (ra
->next_rrd
->header
.drr_type
== DRR_BEGIN
) {
2478 kmem_free(ra
->next_rrd
, sizeof (*ra
->next_rrd
));
2479 ra
->next_rrd
= NULL
;
2480 return (SET_ERROR(EINVAL
));
2484 * Note: checksum is of everything up to but not including the
2487 ASSERT3U(offsetof(dmu_replay_record_t
, drr_u
.drr_checksum
.drr_checksum
),
2488 ==, sizeof (dmu_replay_record_t
) - sizeof (zio_cksum_t
));
2490 offsetof(dmu_replay_record_t
, drr_u
.drr_checksum
.drr_checksum
),
2491 &ra
->next_rrd
->header
);
2493 zio_cksum_t cksum_orig
=
2494 ra
->next_rrd
->header
.drr_u
.drr_checksum
.drr_checksum
;
2495 zio_cksum_t
*cksump
=
2496 &ra
->next_rrd
->header
.drr_u
.drr_checksum
.drr_checksum
;
2499 byteswap_record(&ra
->next_rrd
->header
);
2501 if ((!ZIO_CHECKSUM_IS_ZERO(cksump
)) &&
2502 !ZIO_CHECKSUM_EQUAL(ra
->cksum
, *cksump
)) {
2503 kmem_free(ra
->next_rrd
, sizeof (*ra
->next_rrd
));
2504 ra
->next_rrd
= NULL
;
2505 return (SET_ERROR(ECKSUM
));
2508 receive_cksum(ra
, sizeof (cksum_orig
), &cksum_orig
);
2514 objlist_create(struct objlist
*list
)
2516 list_create(&list
->list
, sizeof (struct receive_objnode
),
2517 offsetof(struct receive_objnode
, node
));
2518 list
->last_lookup
= 0;
2522 objlist_destroy(struct objlist
*list
)
2524 for (struct receive_objnode
*n
= list_remove_head(&list
->list
);
2525 n
!= NULL
; n
= list_remove_head(&list
->list
)) {
2526 kmem_free(n
, sizeof (*n
));
2528 list_destroy(&list
->list
);
2532 * This function looks through the objlist to see if the specified object number
2533 * is contained in the objlist. In the process, it will remove all object
2534 * numbers in the list that are smaller than the specified object number. Thus,
2535 * any lookup of an object number smaller than a previously looked up object
2536 * number will always return false; therefore, all lookups should be done in
2540 objlist_exists(struct objlist
*list
, uint64_t object
)
2542 struct receive_objnode
*node
= list_head(&list
->list
);
2543 ASSERT3U(object
, >=, list
->last_lookup
);
2544 list
->last_lookup
= object
;
2545 while (node
!= NULL
&& node
->object
< object
) {
2546 VERIFY3P(node
, ==, list_remove_head(&list
->list
));
2547 kmem_free(node
, sizeof (*node
));
2548 node
= list_head(&list
->list
);
2550 return (node
!= NULL
&& node
->object
== object
);
2554 * The objlist is a list of object numbers stored in ascending order. However,
2555 * the insertion of new object numbers does not seek out the correct location to
2556 * store a new object number; instead, it appends it to the list for simplicity.
2557 * Thus, any users must take care to only insert new object numbers in ascending
2561 objlist_insert(struct objlist
*list
, uint64_t object
)
2563 struct receive_objnode
*node
= kmem_zalloc(sizeof (*node
), KM_SLEEP
);
2564 node
->object
= object
;
2566 struct receive_objnode
*last_object
= list_tail(&list
->list
);
2567 uint64_t last_objnum
= (last_object
!= NULL
? last_object
->object
: 0);
2568 ASSERT3U(node
->object
, >, last_objnum
);
2570 list_insert_tail(&list
->list
, node
);
2574 * Issue the prefetch reads for any necessary indirect blocks.
2576 * We use the object ignore list to tell us whether or not to issue prefetches
2577 * for a given object. We do this for both correctness (in case the blocksize
2578 * of an object has changed) and performance (if the object doesn't exist, don't
2579 * needlessly try to issue prefetches). We also trim the list as we go through
2580 * the stream to prevent it from growing to an unbounded size.
2582 * The object numbers within will always be in sorted order, and any write
2583 * records we see will also be in sorted order, but they're not sorted with
2584 * respect to each other (i.e. we can get several object records before
2585 * receiving each object's write records). As a result, once we've reached a
2586 * given object number, we can safely remove any reference to lower object
2587 * numbers in the ignore list. In practice, we receive up to 32 object records
2588 * before receiving write records, so the list can have up to 32 nodes in it.
2592 receive_read_prefetch(struct receive_arg
*ra
,
2593 uint64_t object
, uint64_t offset
, uint64_t length
)
2595 if (!objlist_exists(&ra
->ignore_objlist
, object
)) {
2596 dmu_prefetch(ra
->os
, object
, 1, offset
, length
,
2597 ZIO_PRIORITY_SYNC_READ
);
2602 * Read records off the stream, issuing any necessary prefetches.
2605 receive_read_record(struct receive_arg
*ra
)
2609 switch (ra
->rrd
->header
.drr_type
) {
2612 struct drr_object
*drro
= &ra
->rrd
->header
.drr_u
.drr_object
;
2613 uint32_t size
= P2ROUNDUP(drro
->drr_bonuslen
, 8);
2614 void *buf
= kmem_zalloc(size
, KM_SLEEP
);
2615 dmu_object_info_t doi
;
2616 err
= receive_read_payload_and_next_header(ra
, size
, buf
);
2618 kmem_free(buf
, size
);
2621 err
= dmu_object_info(ra
->os
, drro
->drr_object
, &doi
);
2623 * See receive_read_prefetch for an explanation why we're
2624 * storing this object in the ignore_obj_list.
2626 if (err
== ENOENT
||
2627 (err
== 0 && doi
.doi_data_block_size
!= drro
->drr_blksz
)) {
2628 objlist_insert(&ra
->ignore_objlist
, drro
->drr_object
);
2633 case DRR_FREEOBJECTS
:
2635 err
= receive_read_payload_and_next_header(ra
, 0, NULL
);
2640 struct drr_write
*drrw
= &ra
->rrd
->header
.drr_u
.drr_write
;
2642 boolean_t is_meta
= DMU_OT_IS_METADATA(drrw
->drr_type
);
2643 if (DRR_WRITE_COMPRESSED(drrw
)) {
2644 ASSERT3U(drrw
->drr_compressed_size
, >, 0);
2645 ASSERT3U(drrw
->drr_logical_size
, >=,
2646 drrw
->drr_compressed_size
);
2648 abuf
= arc_loan_compressed_buf(
2649 dmu_objset_spa(ra
->os
),
2650 drrw
->drr_compressed_size
, drrw
->drr_logical_size
,
2651 drrw
->drr_compressiontype
);
2653 abuf
= arc_loan_buf(dmu_objset_spa(ra
->os
),
2654 is_meta
, drrw
->drr_logical_size
);
2657 err
= receive_read_payload_and_next_header(ra
,
2658 DRR_WRITE_PAYLOAD_SIZE(drrw
), abuf
->b_data
);
2660 dmu_return_arcbuf(abuf
);
2663 ra
->rrd
->write_buf
= abuf
;
2664 receive_read_prefetch(ra
, drrw
->drr_object
, drrw
->drr_offset
,
2665 drrw
->drr_logical_size
);
2668 case DRR_WRITE_BYREF
:
2670 struct drr_write_byref
*drrwb
=
2671 &ra
->rrd
->header
.drr_u
.drr_write_byref
;
2672 err
= receive_read_payload_and_next_header(ra
, 0, NULL
);
2673 receive_read_prefetch(ra
, drrwb
->drr_object
, drrwb
->drr_offset
,
2677 case DRR_WRITE_EMBEDDED
:
2679 struct drr_write_embedded
*drrwe
=
2680 &ra
->rrd
->header
.drr_u
.drr_write_embedded
;
2681 uint32_t size
= P2ROUNDUP(drrwe
->drr_psize
, 8);
2682 void *buf
= kmem_zalloc(size
, KM_SLEEP
);
2684 err
= receive_read_payload_and_next_header(ra
, size
, buf
);
2686 kmem_free(buf
, size
);
2690 receive_read_prefetch(ra
, drrwe
->drr_object
, drrwe
->drr_offset
,
2697 * It might be beneficial to prefetch indirect blocks here, but
2698 * we don't really have the data to decide for sure.
2700 err
= receive_read_payload_and_next_header(ra
, 0, NULL
);
2705 struct drr_end
*drre
= &ra
->rrd
->header
.drr_u
.drr_end
;
2706 if (!ZIO_CHECKSUM_EQUAL(ra
->prev_cksum
, drre
->drr_checksum
))
2707 return (SET_ERROR(ECKSUM
));
2712 struct drr_spill
*drrs
= &ra
->rrd
->header
.drr_u
.drr_spill
;
2713 void *buf
= kmem_zalloc(drrs
->drr_length
, KM_SLEEP
);
2714 err
= receive_read_payload_and_next_header(ra
, drrs
->drr_length
,
2717 kmem_free(buf
, drrs
->drr_length
);
2721 return (SET_ERROR(EINVAL
));
2726 * Commit the records to the pool.
2729 receive_process_record(struct receive_writer_arg
*rwa
,
2730 struct receive_record_arg
*rrd
)
2734 /* Processing in order, therefore bytes_read should be increasing. */
2735 ASSERT3U(rrd
->bytes_read
, >=, rwa
->bytes_read
);
2736 rwa
->bytes_read
= rrd
->bytes_read
;
2738 switch (rrd
->header
.drr_type
) {
2741 struct drr_object
*drro
= &rrd
->header
.drr_u
.drr_object
;
2742 err
= receive_object(rwa
, drro
, rrd
->payload
);
2743 kmem_free(rrd
->payload
, rrd
->payload_size
);
2744 rrd
->payload
= NULL
;
2747 case DRR_FREEOBJECTS
:
2749 struct drr_freeobjects
*drrfo
=
2750 &rrd
->header
.drr_u
.drr_freeobjects
;
2751 return (receive_freeobjects(rwa
, drrfo
));
2755 struct drr_write
*drrw
= &rrd
->header
.drr_u
.drr_write
;
2756 err
= receive_write(rwa
, drrw
, rrd
->write_buf
);
2757 /* if receive_write() is successful, it consumes the arc_buf */
2759 dmu_return_arcbuf(rrd
->write_buf
);
2760 rrd
->write_buf
= NULL
;
2761 rrd
->payload
= NULL
;
2764 case DRR_WRITE_BYREF
:
2766 struct drr_write_byref
*drrwbr
=
2767 &rrd
->header
.drr_u
.drr_write_byref
;
2768 return (receive_write_byref(rwa
, drrwbr
));
2770 case DRR_WRITE_EMBEDDED
:
2772 struct drr_write_embedded
*drrwe
=
2773 &rrd
->header
.drr_u
.drr_write_embedded
;
2774 err
= receive_write_embedded(rwa
, drrwe
, rrd
->payload
);
2775 kmem_free(rrd
->payload
, rrd
->payload_size
);
2776 rrd
->payload
= NULL
;
2781 struct drr_free
*drrf
= &rrd
->header
.drr_u
.drr_free
;
2782 return (receive_free(rwa
, drrf
));
2786 struct drr_spill
*drrs
= &rrd
->header
.drr_u
.drr_spill
;
2787 err
= receive_spill(rwa
, drrs
, rrd
->payload
);
2788 kmem_free(rrd
->payload
, rrd
->payload_size
);
2789 rrd
->payload
= NULL
;
2793 return (SET_ERROR(EINVAL
));
2798 * dmu_recv_stream's worker thread; pull records off the queue, and then call
2799 * receive_process_record When we're done, signal the main thread and exit.
2802 receive_writer_thread(void *arg
)
2804 struct receive_writer_arg
*rwa
= arg
;
2805 struct receive_record_arg
*rrd
;
2806 for (rrd
= bqueue_dequeue(&rwa
->q
); !rrd
->eos_marker
;
2807 rrd
= bqueue_dequeue(&rwa
->q
)) {
2809 * If there's an error, the main thread will stop putting things
2810 * on the queue, but we need to clear everything in it before we
2813 if (rwa
->err
== 0) {
2814 rwa
->err
= receive_process_record(rwa
, rrd
);
2815 } else if (rrd
->write_buf
!= NULL
) {
2816 dmu_return_arcbuf(rrd
->write_buf
);
2817 rrd
->write_buf
= NULL
;
2818 rrd
->payload
= NULL
;
2819 } else if (rrd
->payload
!= NULL
) {
2820 kmem_free(rrd
->payload
, rrd
->payload_size
);
2821 rrd
->payload
= NULL
;
2823 kmem_free(rrd
, sizeof (*rrd
));
2825 kmem_free(rrd
, sizeof (*rrd
));
2826 mutex_enter(&rwa
->mutex
);
2828 cv_signal(&rwa
->cv
);
2829 mutex_exit(&rwa
->mutex
);
2834 resume_check(struct receive_arg
*ra
, nvlist_t
*begin_nvl
)
2837 objset_t
*mos
= dmu_objset_pool(ra
->os
)->dp_meta_objset
;
2838 uint64_t dsobj
= dmu_objset_id(ra
->os
);
2839 uint64_t resume_obj
, resume_off
;
2841 if (nvlist_lookup_uint64(begin_nvl
,
2842 "resume_object", &resume_obj
) != 0 ||
2843 nvlist_lookup_uint64(begin_nvl
,
2844 "resume_offset", &resume_off
) != 0) {
2845 return (SET_ERROR(EINVAL
));
2847 VERIFY0(zap_lookup(mos
, dsobj
,
2848 DS_FIELD_RESUME_OBJECT
, sizeof (val
), 1, &val
));
2849 if (resume_obj
!= val
)
2850 return (SET_ERROR(EINVAL
));
2851 VERIFY0(zap_lookup(mos
, dsobj
,
2852 DS_FIELD_RESUME_OFFSET
, sizeof (val
), 1, &val
));
2853 if (resume_off
!= val
)
2854 return (SET_ERROR(EINVAL
));
2860 * Read in the stream's records, one by one, and apply them to the pool. There
2861 * are two threads involved; the thread that calls this function will spin up a
2862 * worker thread, read the records off the stream one by one, and issue
2863 * prefetches for any necessary indirect blocks. It will then push the records
2864 * onto an internal blocking queue. The worker thread will pull the records off
2865 * the queue, and actually write the data into the DMU. This way, the worker
2866 * thread doesn't have to wait for reads to complete, since everything it needs
2867 * (the indirect blocks) will be prefetched.
2869 * NB: callers *must* call dmu_recv_end() if this succeeds.
2872 dmu_recv_stream(dmu_recv_cookie_t
*drc
, vnode_t
*vp
, offset_t
*voffp
,
2873 int cleanup_fd
, uint64_t *action_handlep
)
2876 struct receive_arg ra
= { 0 };
2877 struct receive_writer_arg rwa
= { 0 };
2879 nvlist_t
*begin_nvl
= NULL
;
2881 ra
.byteswap
= drc
->drc_byteswap
;
2882 ra
.cksum
= drc
->drc_cksum
;
2886 if (dsl_dataset_is_zapified(drc
->drc_ds
)) {
2887 (void) zap_lookup(drc
->drc_ds
->ds_dir
->dd_pool
->dp_meta_objset
,
2888 drc
->drc_ds
->ds_object
, DS_FIELD_RESUME_BYTES
,
2889 sizeof (ra
.bytes_read
), 1, &ra
.bytes_read
);
2892 objlist_create(&ra
.ignore_objlist
);
2894 /* these were verified in dmu_recv_begin */
2895 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc
->drc_drrb
->drr_versioninfo
), ==,
2897 ASSERT3U(drc
->drc_drrb
->drr_type
, <, DMU_OST_NUMTYPES
);
2900 * Open the objset we are modifying.
2902 VERIFY0(dmu_objset_from_ds(drc
->drc_ds
, &ra
.os
));
2904 ASSERT(dsl_dataset_phys(drc
->drc_ds
)->ds_flags
& DS_FLAG_INCONSISTENT
);
2906 featureflags
= DMU_GET_FEATUREFLAGS(drc
->drc_drrb
->drr_versioninfo
);
2908 /* if this stream is dedup'ed, set up the avl tree for guid mapping */
2909 if (featureflags
& DMU_BACKUP_FEATURE_DEDUP
) {
2912 if (cleanup_fd
== -1) {
2913 ra
.err
= SET_ERROR(EBADF
);
2916 ra
.err
= zfs_onexit_fd_hold(cleanup_fd
, &minor
);
2922 if (*action_handlep
== 0) {
2923 rwa
.guid_to_ds_map
=
2924 kmem_alloc(sizeof (avl_tree_t
), KM_SLEEP
);
2925 avl_create(rwa
.guid_to_ds_map
, guid_compare
,
2926 sizeof (guid_map_entry_t
),
2927 offsetof(guid_map_entry_t
, avlnode
));
2928 err
= zfs_onexit_add_cb(minor
,
2929 free_guid_map_onexit
, rwa
.guid_to_ds_map
,
2934 err
= zfs_onexit_cb_data(minor
, *action_handlep
,
2935 (void **)&rwa
.guid_to_ds_map
);
2940 drc
->drc_guid_to_ds_map
= rwa
.guid_to_ds_map
;
2943 uint32_t payloadlen
= drc
->drc_drr_begin
->drr_payloadlen
;
2944 void *payload
= NULL
;
2945 if (payloadlen
!= 0)
2946 payload
= kmem_alloc(payloadlen
, KM_SLEEP
);
2948 err
= receive_read_payload_and_next_header(&ra
, payloadlen
, payload
);
2950 if (payloadlen
!= 0)
2951 kmem_free(payload
, payloadlen
);
2954 if (payloadlen
!= 0) {
2955 err
= nvlist_unpack(payload
, payloadlen
, &begin_nvl
, KM_SLEEP
);
2956 kmem_free(payload
, payloadlen
);
2961 if (featureflags
& DMU_BACKUP_FEATURE_RESUMING
) {
2962 err
= resume_check(&ra
, begin_nvl
);
2967 (void) bqueue_init(&rwa
.q
, zfs_recv_queue_length
,
2968 offsetof(struct receive_record_arg
, node
));
2969 cv_init(&rwa
.cv
, NULL
, CV_DEFAULT
, NULL
);
2970 mutex_init(&rwa
.mutex
, NULL
, MUTEX_DEFAULT
, NULL
);
2972 rwa
.byteswap
= drc
->drc_byteswap
;
2973 rwa
.resumable
= drc
->drc_resumable
;
2975 (void) thread_create(NULL
, 0, receive_writer_thread
, &rwa
, 0, curproc
,
2976 TS_RUN
, minclsyspri
);
2978 * We're reading rwa.err without locks, which is safe since we are the
2979 * only reader, and the worker thread is the only writer. It's ok if we
2980 * miss a write for an iteration or two of the loop, since the writer
2981 * thread will keep freeing records we send it until we send it an eos
2984 * We can leave this loop in 3 ways: First, if rwa.err is
2985 * non-zero. In that case, the writer thread will free the rrd we just
2986 * pushed. Second, if we're interrupted; in that case, either it's the
2987 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd
2988 * has been handed off to the writer thread who will free it. Finally,
2989 * if receive_read_record fails or we're at the end of the stream, then
2990 * we free ra.rrd and exit.
2992 while (rwa
.err
== 0) {
2993 if (issig(JUSTLOOKING
) && issig(FORREAL
)) {
2994 err
= SET_ERROR(EINTR
);
2998 ASSERT3P(ra
.rrd
, ==, NULL
);
2999 ra
.rrd
= ra
.next_rrd
;
3001 /* Allocates and loads header into ra.next_rrd */
3002 err
= receive_read_record(&ra
);
3004 if (ra
.rrd
->header
.drr_type
== DRR_END
|| err
!= 0) {
3005 kmem_free(ra
.rrd
, sizeof (*ra
.rrd
));
3010 bqueue_enqueue(&rwa
.q
, ra
.rrd
,
3011 sizeof (struct receive_record_arg
) + ra
.rrd
->payload_size
);
3014 if (ra
.next_rrd
== NULL
)
3015 ra
.next_rrd
= kmem_zalloc(sizeof (*ra
.next_rrd
), KM_SLEEP
);
3016 ra
.next_rrd
->eos_marker
= B_TRUE
;
3017 bqueue_enqueue(&rwa
.q
, ra
.next_rrd
, 1);
3019 mutex_enter(&rwa
.mutex
);
3021 cv_wait(&rwa
.cv
, &rwa
.mutex
);
3023 mutex_exit(&rwa
.mutex
);
3025 cv_destroy(&rwa
.cv
);
3026 mutex_destroy(&rwa
.mutex
);
3027 bqueue_destroy(&rwa
.q
);
3032 nvlist_free(begin_nvl
);
3033 if ((featureflags
& DMU_BACKUP_FEATURE_DEDUP
) && (cleanup_fd
!= -1))
3034 zfs_onexit_fd_rele(cleanup_fd
);
3038 * Clean up references. If receive is not resumable,
3039 * destroy what we created, so we don't leave it in
3040 * the inconsistent state.
3042 dmu_recv_cleanup_ds(drc
);
3046 objlist_destroy(&ra
.ignore_objlist
);
3051 dmu_recv_end_check(void *arg
, dmu_tx_t
*tx
)
3053 dmu_recv_cookie_t
*drc
= arg
;
3054 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
3057 ASSERT3P(drc
->drc_ds
->ds_owner
, ==, dmu_recv_tag
);
3059 if (!drc
->drc_newfs
) {
3060 dsl_dataset_t
*origin_head
;
3062 error
= dsl_dataset_hold(dp
, drc
->drc_tofs
, FTAG
, &origin_head
);
3065 if (drc
->drc_force
) {
3067 * We will destroy any snapshots in tofs (i.e. before
3068 * origin_head) that are after the origin (which is
3069 * the snap before drc_ds, because drc_ds can not
3070 * have any snaps of its own).
3074 obj
= dsl_dataset_phys(origin_head
)->ds_prev_snap_obj
;
3076 dsl_dataset_phys(drc
->drc_ds
)->ds_prev_snap_obj
) {
3077 dsl_dataset_t
*snap
;
3078 error
= dsl_dataset_hold_obj(dp
, obj
, FTAG
,
3082 if (snap
->ds_dir
!= origin_head
->ds_dir
)
3083 error
= SET_ERROR(EINVAL
);
3085 error
= dsl_destroy_snapshot_check_impl(
3088 obj
= dsl_dataset_phys(snap
)->ds_prev_snap_obj
;
3089 dsl_dataset_rele(snap
, FTAG
);
3094 dsl_dataset_rele(origin_head
, FTAG
);
3098 error
= dsl_dataset_clone_swap_check_impl(drc
->drc_ds
,
3099 origin_head
, drc
->drc_force
, drc
->drc_owner
, tx
);
3101 dsl_dataset_rele(origin_head
, FTAG
);
3104 error
= dsl_dataset_snapshot_check_impl(origin_head
,
3105 drc
->drc_tosnap
, tx
, B_TRUE
, 1, drc
->drc_cred
);
3106 dsl_dataset_rele(origin_head
, FTAG
);
3110 error
= dsl_destroy_head_check_impl(drc
->drc_ds
, 1);
3112 error
= dsl_dataset_snapshot_check_impl(drc
->drc_ds
,
3113 drc
->drc_tosnap
, tx
, B_TRUE
, 1, drc
->drc_cred
);
3119 dmu_recv_end_sync(void *arg
, dmu_tx_t
*tx
)
3121 dmu_recv_cookie_t
*drc
= arg
;
3122 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
3124 spa_history_log_internal_ds(drc
->drc_ds
, "finish receiving",
3125 tx
, "snap=%s", drc
->drc_tosnap
);
3127 if (!drc
->drc_newfs
) {
3128 dsl_dataset_t
*origin_head
;
3130 VERIFY0(dsl_dataset_hold(dp
, drc
->drc_tofs
, FTAG
,
3133 if (drc
->drc_force
) {
3135 * Destroy any snapshots of drc_tofs (origin_head)
3136 * after the origin (the snap before drc_ds).
3140 obj
= dsl_dataset_phys(origin_head
)->ds_prev_snap_obj
;
3142 dsl_dataset_phys(drc
->drc_ds
)->ds_prev_snap_obj
) {
3143 dsl_dataset_t
*snap
;
3144 VERIFY0(dsl_dataset_hold_obj(dp
, obj
, FTAG
,
3146 ASSERT3P(snap
->ds_dir
, ==, origin_head
->ds_dir
);
3147 obj
= dsl_dataset_phys(snap
)->ds_prev_snap_obj
;
3148 dsl_destroy_snapshot_sync_impl(snap
,
3150 dsl_dataset_rele(snap
, FTAG
);
3153 VERIFY3P(drc
->drc_ds
->ds_prev
, ==,
3154 origin_head
->ds_prev
);
3156 dsl_dataset_clone_swap_sync_impl(drc
->drc_ds
,
3158 dsl_dataset_snapshot_sync_impl(origin_head
,
3159 drc
->drc_tosnap
, tx
);
3161 /* set snapshot's creation time and guid */
3162 dmu_buf_will_dirty(origin_head
->ds_prev
->ds_dbuf
, tx
);
3163 dsl_dataset_phys(origin_head
->ds_prev
)->ds_creation_time
=
3164 drc
->drc_drrb
->drr_creation_time
;
3165 dsl_dataset_phys(origin_head
->ds_prev
)->ds_guid
=
3166 drc
->drc_drrb
->drr_toguid
;
3167 dsl_dataset_phys(origin_head
->ds_prev
)->ds_flags
&=
3168 ~DS_FLAG_INCONSISTENT
;
3170 dmu_buf_will_dirty(origin_head
->ds_dbuf
, tx
);
3171 dsl_dataset_phys(origin_head
)->ds_flags
&=
3172 ~DS_FLAG_INCONSISTENT
;
3174 drc
->drc_newsnapobj
=
3175 dsl_dataset_phys(origin_head
)->ds_prev_snap_obj
;
3177 dsl_dataset_rele(origin_head
, FTAG
);
3178 dsl_destroy_head_sync_impl(drc
->drc_ds
, tx
);
3180 if (drc
->drc_owner
!= NULL
)
3181 VERIFY3P(origin_head
->ds_owner
, ==, drc
->drc_owner
);
3183 dsl_dataset_t
*ds
= drc
->drc_ds
;
3185 dsl_dataset_snapshot_sync_impl(ds
, drc
->drc_tosnap
, tx
);
3187 /* set snapshot's creation time and guid */
3188 dmu_buf_will_dirty(ds
->ds_prev
->ds_dbuf
, tx
);
3189 dsl_dataset_phys(ds
->ds_prev
)->ds_creation_time
=
3190 drc
->drc_drrb
->drr_creation_time
;
3191 dsl_dataset_phys(ds
->ds_prev
)->ds_guid
=
3192 drc
->drc_drrb
->drr_toguid
;
3193 dsl_dataset_phys(ds
->ds_prev
)->ds_flags
&=
3194 ~DS_FLAG_INCONSISTENT
;
3196 dmu_buf_will_dirty(ds
->ds_dbuf
, tx
);
3197 dsl_dataset_phys(ds
)->ds_flags
&= ~DS_FLAG_INCONSISTENT
;
3198 if (dsl_dataset_has_resume_receive_state(ds
)) {
3199 (void) zap_remove(dp
->dp_meta_objset
, ds
->ds_object
,
3200 DS_FIELD_RESUME_FROMGUID
, tx
);
3201 (void) zap_remove(dp
->dp_meta_objset
, ds
->ds_object
,
3202 DS_FIELD_RESUME_OBJECT
, tx
);
3203 (void) zap_remove(dp
->dp_meta_objset
, ds
->ds_object
,
3204 DS_FIELD_RESUME_OFFSET
, tx
);
3205 (void) zap_remove(dp
->dp_meta_objset
, ds
->ds_object
,
3206 DS_FIELD_RESUME_BYTES
, tx
);
3207 (void) zap_remove(dp
->dp_meta_objset
, ds
->ds_object
,
3208 DS_FIELD_RESUME_TOGUID
, tx
);
3209 (void) zap_remove(dp
->dp_meta_objset
, ds
->ds_object
,
3210 DS_FIELD_RESUME_TONAME
, tx
);
3212 drc
->drc_newsnapobj
=
3213 dsl_dataset_phys(drc
->drc_ds
)->ds_prev_snap_obj
;
3216 * Release the hold from dmu_recv_begin. This must be done before
3217 * we return to open context, so that when we free the dataset's dnode,
3218 * we can evict its bonus buffer.
3220 dsl_dataset_disown(drc
->drc_ds
, dmu_recv_tag
);
3225 add_ds_to_guidmap(const char *name
, avl_tree_t
*guid_map
, uint64_t snapobj
)
3228 dsl_dataset_t
*snapds
;
3229 guid_map_entry_t
*gmep
;
3232 ASSERT(guid_map
!= NULL
);
3234 err
= dsl_pool_hold(name
, FTAG
, &dp
);
3237 gmep
= kmem_alloc(sizeof (*gmep
), KM_SLEEP
);
3238 err
= dsl_dataset_hold_obj(dp
, snapobj
, gmep
, &snapds
);
3240 gmep
->guid
= dsl_dataset_phys(snapds
)->ds_guid
;
3241 gmep
->gme_ds
= snapds
;
3242 avl_add(guid_map
, gmep
);
3243 dsl_dataset_long_hold(snapds
, gmep
);
3245 kmem_free(gmep
, sizeof (*gmep
));
3248 dsl_pool_rele(dp
, FTAG
);
3252 static int dmu_recv_end_modified_blocks
= 3;
3255 dmu_recv_existing_end(dmu_recv_cookie_t
*drc
)
3259 * We will be destroying the ds; make sure its origin is unmounted if
3262 char name
[ZFS_MAX_DATASET_NAME_LEN
];
3263 dsl_dataset_name(drc
->drc_ds
, name
);
3264 zfs_destroy_unmount_origin(name
);
3267 return (dsl_sync_task(drc
->drc_tofs
,
3268 dmu_recv_end_check
, dmu_recv_end_sync
, drc
,
3269 dmu_recv_end_modified_blocks
, ZFS_SPACE_CHECK_NORMAL
));
3273 dmu_recv_new_end(dmu_recv_cookie_t
*drc
)
3275 return (dsl_sync_task(drc
->drc_tofs
,
3276 dmu_recv_end_check
, dmu_recv_end_sync
, drc
,
3277 dmu_recv_end_modified_blocks
, ZFS_SPACE_CHECK_NORMAL
));
3281 dmu_recv_end(dmu_recv_cookie_t
*drc
, void *owner
)
3285 drc
->drc_owner
= owner
;
3288 error
= dmu_recv_new_end(drc
);
3290 error
= dmu_recv_existing_end(drc
);
3293 dmu_recv_cleanup_ds(drc
);
3294 } else if (drc
->drc_guid_to_ds_map
!= NULL
) {
3295 (void) add_ds_to_guidmap(drc
->drc_tofs
,
3296 drc
->drc_guid_to_ds_map
,
3297 drc
->drc_newsnapobj
);
3303 * Return TRUE if this objset is currently being received into.
3306 dmu_objset_is_receiving(objset_t
*os
)
3308 return (os
->os_dsl_dataset
!= NULL
&&
3309 os
->os_dsl_dataset
->ds_owner
== dmu_recv_tag
);