cmd: remove locator
[unleashed.git] / kernel / zmod / trees.c
blob6fa5418a0056bcb67dda0749b77cc0c5c484ce43
1 /* trees.c -- output deflated data using Huffman coding
2 * Copyright (C) 1995-2005 Jean-loup Gailly
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
6 /*
7 * ALGORITHM
9 * The "deflation" process uses several Huffman trees. The more
10 * common source values are represented by shorter bit sequences.
12 * Each code tree is stored in a compressed form which is itself
13 * a Huffman encoding of the lengths of all the code strings (in
14 * ascending order by source values). The actual code strings are
15 * reconstructed from the lengths in the inflate process, as described
16 * in the deflate specification.
18 * REFERENCES
20 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
21 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23 * Storer, James A.
24 * Data Compression: Methods and Theory, pp. 49-50.
25 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
27 * Sedgewick, R.
28 * Algorithms, p290.
29 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
32 /* #define GEN_TREES_H */
34 #include "deflate.h"
36 #ifdef DEBUG
37 # include <ctype.h>
38 #endif
40 /* ===========================================================================
41 * Constants
44 #define MAX_BL_BITS 7
45 /* Bit length codes must not exceed MAX_BL_BITS bits */
47 #define END_BLOCK 256
48 /* end of block literal code */
50 #define REP_3_6 16
51 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
53 #define REPZ_3_10 17
54 /* repeat a zero length 3-10 times (3 bits of repeat count) */
56 #define REPZ_11_138 18
57 /* repeat a zero length 11-138 times (7 bits of repeat count) */
59 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
60 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
62 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
63 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
65 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
66 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
68 local const uch bl_order[BL_CODES]
69 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
70 /* The lengths of the bit length codes are sent in order of decreasing
71 * probability, to avoid transmitting the lengths for unused bit length codes.
74 #define Buf_size (8 * 2*sizeof(char))
75 /* Number of bits used within bi_buf. (bi_buf might be implemented on
76 * more than 16 bits on some systems.)
79 /* ===========================================================================
80 * Local data. These are initialized only once.
83 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
85 #if defined(GEN_TREES_H) || !defined(STDC)
86 /* non ANSI compilers may not accept trees.h */
88 local ct_data static_ltree[L_CODES+2];
89 /* The static literal tree. Since the bit lengths are imposed, there is no
90 * need for the L_CODES extra codes used during heap construction. However
91 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
92 * below).
95 local ct_data static_dtree[D_CODES];
96 /* The static distance tree. (Actually a trivial tree since all codes use
97 * 5 bits.)
100 uch _dist_code[DIST_CODE_LEN];
101 /* Distance codes. The first 256 values correspond to the distances
102 * 3 .. 258, the last 256 values correspond to the top 8 bits of
103 * the 15 bit distances.
106 uch _length_code[MAX_MATCH-MIN_MATCH+1];
107 /* length code for each normalized match length (0 == MIN_MATCH) */
109 local int base_length[LENGTH_CODES];
110 /* First normalized length for each code (0 = MIN_MATCH) */
112 local int base_dist[D_CODES];
113 /* First normalized distance for each code (0 = distance of 1) */
115 #else
116 # include "trees.h"
117 #endif /* GEN_TREES_H */
119 struct static_tree_desc_s {
120 const ct_data *static_tree; /* static tree or NULL */
121 const intf *extra_bits; /* extra bits for each code or NULL */
122 int extra_base; /* base index for extra_bits */
123 int elems; /* max number of elements in the tree */
124 int max_length; /* max bit length for the codes */
127 local static_tree_desc static_l_desc =
128 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
130 local static_tree_desc static_d_desc =
131 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
133 local static_tree_desc static_bl_desc =
134 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
136 /* ===========================================================================
137 * Local (static) routines in this file.
140 local void tr_static_init OF((void));
141 local void init_block OF((deflate_state *s));
142 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
143 local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
144 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
145 local void build_tree OF((deflate_state *s, tree_desc *desc));
146 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
147 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
148 local int build_bl_tree OF((deflate_state *s));
149 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
150 int blcodes));
151 local void compress_block OF((deflate_state *s, ct_data *ltree,
152 ct_data *dtree));
153 local void set_data_type OF((deflate_state *s));
154 local unsigned bi_reverse OF((unsigned value, int length));
155 local void bi_windup OF((deflate_state *s));
156 local void bi_flush OF((deflate_state *s));
157 local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
158 int header));
160 #ifdef GEN_TREES_H
161 local void gen_trees_header OF((void));
162 #endif
164 #ifndef DEBUG
165 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
166 /* Send a code of the given tree. c and tree must not have side effects */
168 #else /* DEBUG */
169 # define send_code(s, c, tree) \
170 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
171 send_bits(s, tree[c].Code, tree[c].Len); }
172 #endif
174 /* ===========================================================================
175 * Output a short LSB first on the stream.
176 * IN assertion: there is enough room in pendingBuf.
178 #define put_short(s, w) { \
179 put_byte(s, (uch)((w) & 0xff)); \
180 put_byte(s, (uch)((ush)(w) >> 8)); \
183 /* ===========================================================================
184 * Send a value on a given number of bits.
185 * IN assertion: length <= 16 and value fits in length bits.
187 #ifdef DEBUG
188 local void send_bits OF((deflate_state *s, int value, int length));
190 local void send_bits(s, value, length)
191 deflate_state *s;
192 int value; /* value to send */
193 int length; /* number of bits */
195 Tracevv((stderr," l %2d v %4x ", length, value));
196 Assert(length > 0 && length <= 15, "invalid length");
197 s->bits_sent += (ulg)length;
199 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
200 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
201 * unused bits in value.
203 if (s->bi_valid > (int)Buf_size - length) {
204 s->bi_buf |= (value << s->bi_valid);
205 put_short(s, s->bi_buf);
206 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
207 s->bi_valid += length - Buf_size;
208 } else {
209 s->bi_buf |= value << s->bi_valid;
210 s->bi_valid += length;
213 #else /* !DEBUG */
215 #define send_bits(s, value, length) \
216 { int len = length;\
217 if (s->bi_valid > (int)Buf_size - len) {\
218 int val = value;\
219 s->bi_buf |= (val << s->bi_valid);\
220 put_short(s, s->bi_buf);\
221 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
222 s->bi_valid += len - Buf_size;\
223 } else {\
224 s->bi_buf |= (value) << s->bi_valid;\
225 s->bi_valid += len;\
228 #endif /* DEBUG */
231 /* the arguments must not have side effects */
233 /* ===========================================================================
234 * Initialize the various 'constant' tables.
236 local void tr_static_init()
238 #if defined(GEN_TREES_H) || !defined(STDC)
239 static int static_init_done = 0;
240 int n; /* iterates over tree elements */
241 int bits; /* bit counter */
242 int length; /* length value */
243 int code; /* code value */
244 int dist; /* distance index */
245 ush bl_count[MAX_BITS+1];
246 /* number of codes at each bit length for an optimal tree */
248 if (static_init_done) return;
250 /* For some embedded targets, global variables are not initialized: */
251 static_l_desc.static_tree = static_ltree;
252 static_l_desc.extra_bits = extra_lbits;
253 static_d_desc.static_tree = static_dtree;
254 static_d_desc.extra_bits = extra_dbits;
255 static_bl_desc.extra_bits = extra_blbits;
257 /* Initialize the mapping length (0..255) -> length code (0..28) */
258 length = 0;
259 for (code = 0; code < LENGTH_CODES-1; code++) {
260 base_length[code] = length;
261 for (n = 0; n < (1<<extra_lbits[code]); n++) {
262 _length_code[length++] = (uch)code;
265 Assert (length == 256, "tr_static_init: length != 256");
266 /* Note that the length 255 (match length 258) can be represented
267 * in two different ways: code 284 + 5 bits or code 285, so we
268 * overwrite length_code[255] to use the best encoding:
270 _length_code[length-1] = (uch)code;
272 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
273 dist = 0;
274 for (code = 0 ; code < 16; code++) {
275 base_dist[code] = dist;
276 for (n = 0; n < (1<<extra_dbits[code]); n++) {
277 _dist_code[dist++] = (uch)code;
280 Assert (dist == 256, "tr_static_init: dist != 256");
281 dist >>= 7; /* from now on, all distances are divided by 128 */
282 for ( ; code < D_CODES; code++) {
283 base_dist[code] = dist << 7;
284 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
285 _dist_code[256 + dist++] = (uch)code;
288 Assert (dist == 256, "tr_static_init: 256+dist != 512");
290 /* Construct the codes of the static literal tree */
291 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
292 n = 0;
293 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
294 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
295 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
296 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
297 /* Codes 286 and 287 do not exist, but we must include them in the
298 * tree construction to get a canonical Huffman tree (longest code
299 * all ones)
301 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
303 /* The static distance tree is trivial: */
304 for (n = 0; n < D_CODES; n++) {
305 static_dtree[n].Len = 5;
306 static_dtree[n].Code = bi_reverse((unsigned)n, 5);
308 static_init_done = 1;
310 # ifdef GEN_TREES_H
311 gen_trees_header();
312 # endif
313 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
316 /* ===========================================================================
317 * Genererate the file trees.h describing the static trees.
319 #ifdef GEN_TREES_H
320 # ifndef DEBUG
321 # include <stdio.h>
322 # endif
324 # define SEPARATOR(i, last, width) \
325 ((i) == (last)? "\n};\n\n" : \
326 ((i) % (width) == (width)-1 ? ",\n" : ", "))
328 void gen_trees_header()
330 FILE *header = fopen("trees.h", "w");
331 int i;
333 Assert (header != NULL, "Can't open trees.h");
334 fprintf(header,
335 "/* header created automatically with -DGEN_TREES_H */\n\n");
337 fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
338 for (i = 0; i < L_CODES+2; i++) {
339 fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
340 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
343 fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
344 for (i = 0; i < D_CODES; i++) {
345 fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
346 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
349 fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
350 for (i = 0; i < DIST_CODE_LEN; i++) {
351 fprintf(header, "%2u%s", _dist_code[i],
352 SEPARATOR(i, DIST_CODE_LEN-1, 20));
355 fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
356 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
357 fprintf(header, "%2u%s", _length_code[i],
358 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
361 fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
362 for (i = 0; i < LENGTH_CODES; i++) {
363 fprintf(header, "%1u%s", base_length[i],
364 SEPARATOR(i, LENGTH_CODES-1, 20));
367 fprintf(header, "local const int base_dist[D_CODES] = {\n");
368 for (i = 0; i < D_CODES; i++) {
369 fprintf(header, "%5u%s", base_dist[i],
370 SEPARATOR(i, D_CODES-1, 10));
373 fclose(header);
375 #endif /* GEN_TREES_H */
377 /* ===========================================================================
378 * Initialize the tree data structures for a new zlib stream.
380 void _tr_init(s)
381 deflate_state *s;
383 tr_static_init();
385 s->l_desc.dyn_tree = s->dyn_ltree;
386 s->l_desc.stat_desc = &static_l_desc;
388 s->d_desc.dyn_tree = s->dyn_dtree;
389 s->d_desc.stat_desc = &static_d_desc;
391 s->bl_desc.dyn_tree = s->bl_tree;
392 s->bl_desc.stat_desc = &static_bl_desc;
394 s->bi_buf = 0;
395 s->bi_valid = 0;
396 s->last_eob_len = 8; /* enough lookahead for inflate */
397 #ifdef DEBUG
398 s->compressed_len = 0L;
399 s->bits_sent = 0L;
400 #endif
402 /* Initialize the first block of the first file: */
403 init_block(s);
406 /* ===========================================================================
407 * Initialize a new block.
409 local void init_block(s)
410 deflate_state *s;
412 int n; /* iterates over tree elements */
414 /* Initialize the trees. */
415 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
416 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
417 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
419 s->dyn_ltree[END_BLOCK].Freq = 1;
420 s->opt_len = s->static_len = 0L;
421 s->last_lit = s->matches = 0;
424 #define SMALLEST 1
425 /* Index within the heap array of least frequent node in the Huffman tree */
428 /* ===========================================================================
429 * Remove the smallest element from the heap and recreate the heap with
430 * one less element. Updates heap and heap_len.
432 #define pqremove(s, tree, top) \
434 top = s->heap[SMALLEST]; \
435 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
436 pqdownheap(s, tree, SMALLEST); \
439 /* ===========================================================================
440 * Compares to subtrees, using the tree depth as tie breaker when
441 * the subtrees have equal frequency. This minimizes the worst case length.
443 #define smaller(tree, n, m, depth) \
444 (tree[n].Freq < tree[m].Freq || \
445 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
447 /* ===========================================================================
448 * Restore the heap property by moving down the tree starting at node k,
449 * exchanging a node with the smallest of its two sons if necessary, stopping
450 * when the heap property is re-established (each father smaller than its
451 * two sons).
453 local void pqdownheap(s, tree, k)
454 deflate_state *s;
455 ct_data *tree; /* the tree to restore */
456 int k; /* node to move down */
458 int v = s->heap[k];
459 int j = k << 1; /* left son of k */
460 while (j <= s->heap_len) {
461 /* Set j to the smallest of the two sons: */
462 if (j < s->heap_len &&
463 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
464 j++;
466 /* Exit if v is smaller than both sons */
467 if (smaller(tree, v, s->heap[j], s->depth)) break;
469 /* Exchange v with the smallest son */
470 s->heap[k] = s->heap[j]; k = j;
472 /* And continue down the tree, setting j to the left son of k */
473 j <<= 1;
475 s->heap[k] = v;
478 /* ===========================================================================
479 * Compute the optimal bit lengths for a tree and update the total bit length
480 * for the current block.
481 * IN assertion: the fields freq and dad are set, heap[heap_max] and
482 * above are the tree nodes sorted by increasing frequency.
483 * OUT assertions: the field len is set to the optimal bit length, the
484 * array bl_count contains the frequencies for each bit length.
485 * The length opt_len is updated; static_len is also updated if stree is
486 * not null.
488 local void gen_bitlen(s, desc)
489 deflate_state *s;
490 tree_desc *desc; /* the tree descriptor */
492 ct_data *tree = desc->dyn_tree;
493 int max_code = desc->max_code;
494 const ct_data *stree = desc->stat_desc->static_tree;
495 const intf *extra = desc->stat_desc->extra_bits;
496 int base = desc->stat_desc->extra_base;
497 int max_length = desc->stat_desc->max_length;
498 int h; /* heap index */
499 int n, m; /* iterate over the tree elements */
500 int bits; /* bit length */
501 int xbits; /* extra bits */
502 ush f; /* frequency */
503 int overflow = 0; /* number of elements with bit length too large */
505 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
507 /* In a first pass, compute the optimal bit lengths (which may
508 * overflow in the case of the bit length tree).
510 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
512 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
513 n = s->heap[h];
514 bits = tree[tree[n].Dad].Len + 1;
515 if (bits > max_length) bits = max_length, overflow++;
516 tree[n].Len = (ush)bits;
517 /* We overwrite tree[n].Dad which is no longer needed */
519 if (n > max_code) continue; /* not a leaf node */
521 s->bl_count[bits]++;
522 xbits = 0;
523 if (n >= base) xbits = extra[n-base];
524 f = tree[n].Freq;
525 s->opt_len += (ulg)f * (bits + xbits);
526 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
528 if (overflow == 0) return;
530 Trace((stderr,"\nbit length overflow\n"));
531 /* This happens for example on obj2 and pic of the Calgary corpus */
533 /* Find the first bit length which could increase: */
534 do {
535 bits = max_length-1;
536 while (s->bl_count[bits] == 0) bits--;
537 s->bl_count[bits]--; /* move one leaf down the tree */
538 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
539 s->bl_count[max_length]--;
540 /* The brother of the overflow item also moves one step up,
541 * but this does not affect bl_count[max_length]
543 overflow -= 2;
544 } while (overflow > 0);
546 /* Now recompute all bit lengths, scanning in increasing frequency.
547 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
548 * lengths instead of fixing only the wrong ones. This idea is taken
549 * from 'ar' written by Haruhiko Okumura.)
551 for (bits = max_length; bits != 0; bits--) {
552 n = s->bl_count[bits];
553 while (n != 0) {
554 m = s->heap[--h];
555 if (m > max_code) continue;
556 if ((unsigned) tree[m].Len != (unsigned) bits) {
557 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
558 s->opt_len += ((long)bits - (long)tree[m].Len)
559 *(long)tree[m].Freq;
560 tree[m].Len = (ush)bits;
562 n--;
567 /* ===========================================================================
568 * Generate the codes for a given tree and bit counts (which need not be
569 * optimal).
570 * IN assertion: the array bl_count contains the bit length statistics for
571 * the given tree and the field len is set for all tree elements.
572 * OUT assertion: the field code is set for all tree elements of non
573 * zero code length.
575 local void gen_codes (tree, max_code, bl_count)
576 ct_data *tree; /* the tree to decorate */
577 int max_code; /* largest code with non zero frequency */
578 ushf *bl_count; /* number of codes at each bit length */
580 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
581 ush code = 0; /* running code value */
582 int bits; /* bit index */
583 int n; /* code index */
585 /* The distribution counts are first used to generate the code values
586 * without bit reversal.
588 for (bits = 1; bits <= MAX_BITS; bits++) {
589 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
591 /* Check that the bit counts in bl_count are consistent. The last code
592 * must be all ones.
594 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
595 "inconsistent bit counts");
596 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
598 for (n = 0; n <= max_code; n++) {
599 int len = tree[n].Len;
600 if (len == 0) continue;
601 /* Now reverse the bits */
602 tree[n].Code = bi_reverse(next_code[len]++, len);
604 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
605 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
609 /* ===========================================================================
610 * Construct one Huffman tree and assigns the code bit strings and lengths.
611 * Update the total bit length for the current block.
612 * IN assertion: the field freq is set for all tree elements.
613 * OUT assertions: the fields len and code are set to the optimal bit length
614 * and corresponding code. The length opt_len is updated; static_len is
615 * also updated if stree is not null. The field max_code is set.
617 local void build_tree(s, desc)
618 deflate_state *s;
619 tree_desc *desc; /* the tree descriptor */
621 ct_data *tree = desc->dyn_tree;
622 const ct_data *stree = desc->stat_desc->static_tree;
623 int elems = desc->stat_desc->elems;
624 int n, m; /* iterate over heap elements */
625 int max_code = -1; /* largest code with non zero frequency */
626 int node; /* new node being created */
628 /* Construct the initial heap, with least frequent element in
629 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
630 * heap[0] is not used.
632 s->heap_len = 0, s->heap_max = HEAP_SIZE;
634 for (n = 0; n < elems; n++) {
635 if (tree[n].Freq != 0) {
636 s->heap[++(s->heap_len)] = max_code = n;
637 s->depth[n] = 0;
638 } else {
639 tree[n].Len = 0;
643 /* The pkzip format requires that at least one distance code exists,
644 * and that at least one bit should be sent even if there is only one
645 * possible code. So to avoid special checks later on we force at least
646 * two codes of non zero frequency.
648 while (s->heap_len < 2) {
649 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
650 tree[node].Freq = 1;
651 s->depth[node] = 0;
652 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
653 /* node is 0 or 1 so it does not have extra bits */
655 desc->max_code = max_code;
657 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
658 * establish sub-heaps of increasing lengths:
660 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
662 /* Construct the Huffman tree by repeatedly combining the least two
663 * frequent nodes.
665 node = elems; /* next internal node of the tree */
666 do {
667 pqremove(s, tree, n); /* n = node of least frequency */
668 m = s->heap[SMALLEST]; /* m = node of next least frequency */
670 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
671 s->heap[--(s->heap_max)] = m;
673 /* Create a new node father of n and m */
674 tree[node].Freq = tree[n].Freq + tree[m].Freq;
675 s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
676 s->depth[n] : s->depth[m]) + 1);
677 tree[n].Dad = tree[m].Dad = (ush)node;
678 #ifdef DUMP_BL_TREE
679 if (tree == s->bl_tree) {
680 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
681 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
683 #endif
684 /* and insert the new node in the heap */
685 s->heap[SMALLEST] = node++;
686 pqdownheap(s, tree, SMALLEST);
688 } while (s->heap_len >= 2);
690 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
692 /* At this point, the fields freq and dad are set. We can now
693 * generate the bit lengths.
695 gen_bitlen(s, (tree_desc *)desc);
697 /* The field len is now set, we can generate the bit codes */
698 gen_codes ((ct_data *)tree, max_code, s->bl_count);
701 /* ===========================================================================
702 * Scan a literal or distance tree to determine the frequencies of the codes
703 * in the bit length tree.
705 local void scan_tree (s, tree, max_code)
706 deflate_state *s;
707 ct_data *tree; /* the tree to be scanned */
708 int max_code; /* and its largest code of non zero frequency */
710 int n; /* iterates over all tree elements */
711 int prevlen = -1; /* last emitted length */
712 int curlen; /* length of current code */
713 int nextlen = tree[0].Len; /* length of next code */
714 int count = 0; /* repeat count of the current code */
715 int max_count = 7; /* max repeat count */
716 int min_count = 4; /* min repeat count */
718 if (nextlen == 0) max_count = 138, min_count = 3;
719 tree[max_code+1].Len = (ush)0xffff; /* guard */
721 for (n = 0; n <= max_code; n++) {
722 curlen = nextlen; nextlen = tree[n+1].Len;
723 if (++count < max_count && curlen == nextlen) {
724 continue;
725 } else if (count < min_count) {
726 s->bl_tree[curlen].Freq += count;
727 } else if (curlen != 0) {
728 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
729 s->bl_tree[REP_3_6].Freq++;
730 } else if (count <= 10) {
731 s->bl_tree[REPZ_3_10].Freq++;
732 } else {
733 s->bl_tree[REPZ_11_138].Freq++;
735 count = 0; prevlen = curlen;
736 if (nextlen == 0) {
737 max_count = 138, min_count = 3;
738 } else if (curlen == nextlen) {
739 max_count = 6, min_count = 3;
740 } else {
741 max_count = 7, min_count = 4;
746 /* ===========================================================================
747 * Send a literal or distance tree in compressed form, using the codes in
748 * bl_tree.
750 local void send_tree (s, tree, max_code)
751 deflate_state *s;
752 ct_data *tree; /* the tree to be scanned */
753 int max_code; /* and its largest code of non zero frequency */
755 int n; /* iterates over all tree elements */
756 int prevlen = -1; /* last emitted length */
757 int curlen; /* length of current code */
758 int nextlen = tree[0].Len; /* length of next code */
759 int count = 0; /* repeat count of the current code */
760 int max_count = 7; /* max repeat count */
761 int min_count = 4; /* min repeat count */
763 /* tree[max_code+1].Len = -1; */ /* guard already set */
764 if (nextlen == 0) max_count = 138, min_count = 3;
766 for (n = 0; n <= max_code; n++) {
767 curlen = nextlen; nextlen = tree[n+1].Len;
768 if (++count < max_count && curlen == nextlen) {
769 continue;
770 } else if (count < min_count) {
771 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
773 } else if (curlen != 0) {
774 if (curlen != prevlen) {
775 send_code(s, curlen, s->bl_tree); count--;
777 Assert(count >= 3 && count <= 6, " 3_6?");
778 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
780 } else if (count <= 10) {
781 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
783 } else {
784 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
786 count = 0; prevlen = curlen;
787 if (nextlen == 0) {
788 max_count = 138, min_count = 3;
789 } else if (curlen == nextlen) {
790 max_count = 6, min_count = 3;
791 } else {
792 max_count = 7, min_count = 4;
797 /* ===========================================================================
798 * Construct the Huffman tree for the bit lengths and return the index in
799 * bl_order of the last bit length code to send.
801 local int build_bl_tree(s)
802 deflate_state *s;
804 int max_blindex; /* index of last bit length code of non zero freq */
806 /* Determine the bit length frequencies for literal and distance trees */
807 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
808 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
810 /* Build the bit length tree: */
811 build_tree(s, (tree_desc *)(&(s->bl_desc)));
812 /* opt_len now includes the length of the tree representations, except
813 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
816 /* Determine the number of bit length codes to send. The pkzip format
817 * requires that at least 4 bit length codes be sent. (appnote.txt says
818 * 3 but the actual value used is 4.)
820 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
821 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
823 /* Update opt_len to include the bit length tree and counts */
824 s->opt_len += 3*(max_blindex+1) + 5+5+4;
825 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
826 s->opt_len, s->static_len));
828 return max_blindex;
831 /* ===========================================================================
832 * Send the header for a block using dynamic Huffman trees: the counts, the
833 * lengths of the bit length codes, the literal tree and the distance tree.
834 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
836 local void send_all_trees(s, lcodes, dcodes, blcodes)
837 deflate_state *s;
838 int lcodes, dcodes, blcodes; /* number of codes for each tree */
840 int rank; /* index in bl_order */
842 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
843 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
844 "too many codes");
845 Tracev((stderr, "\nbl counts: "));
846 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
847 send_bits(s, dcodes-1, 5);
848 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
849 for (rank = 0; rank < blcodes; rank++) {
850 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
851 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
853 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
855 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
856 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
858 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
859 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
862 /* ===========================================================================
863 * Send a stored block
865 void _tr_stored_block(s, buf, stored_len, eof)
866 deflate_state *s;
867 charf *buf; /* input block */
868 ulg stored_len; /* length of input block */
869 int eof; /* true if this is the last block for a file */
871 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
872 #ifdef DEBUG
873 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
874 s->compressed_len += (stored_len + 4) << 3;
875 #endif
876 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
879 /* ===========================================================================
880 * Send one empty static block to give enough lookahead for inflate.
881 * This takes 10 bits, of which 7 may remain in the bit buffer.
882 * The current inflate code requires 9 bits of lookahead. If the
883 * last two codes for the previous block (real code plus EOB) were coded
884 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
885 * the last real code. In this case we send two empty static blocks instead
886 * of one. (There are no problems if the previous block is stored or fixed.)
887 * To simplify the code, we assume the worst case of last real code encoded
888 * on one bit only.
890 void _tr_align(s)
891 deflate_state *s;
893 send_bits(s, STATIC_TREES<<1, 3);
894 send_code(s, END_BLOCK, static_ltree);
895 #ifdef DEBUG
896 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
897 #endif
898 bi_flush(s);
899 /* Of the 10 bits for the empty block, we have already sent
900 * (10 - bi_valid) bits. The lookahead for the last real code (before
901 * the EOB of the previous block) was thus at least one plus the length
902 * of the EOB plus what we have just sent of the empty static block.
904 if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
905 send_bits(s, STATIC_TREES<<1, 3);
906 send_code(s, END_BLOCK, static_ltree);
907 #ifdef DEBUG
908 s->compressed_len += 10L;
909 #endif
910 bi_flush(s);
912 s->last_eob_len = 7;
915 /* ===========================================================================
916 * Determine the best encoding for the current block: dynamic trees, static
917 * trees or store, and output the encoded block to the zip file.
919 void _tr_flush_block(s, buf, stored_len, eof)
920 deflate_state *s;
921 charf *buf; /* input block, or NULL if too old */
922 ulg stored_len; /* length of input block */
923 int eof; /* true if this is the last block for a file */
925 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
926 int max_blindex = 0; /* index of last bit length code of non zero freq */
928 /* Build the Huffman trees unless a stored block is forced */
929 if (s->level > 0) {
931 /* Check if the file is binary or text */
932 if (stored_len > 0 && s->strm->data_type == Z_UNKNOWN)
933 set_data_type(s);
935 /* Construct the literal and distance trees */
936 build_tree(s, (tree_desc *)(&(s->l_desc)));
937 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
938 s->static_len));
940 build_tree(s, (tree_desc *)(&(s->d_desc)));
941 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
942 s->static_len));
943 /* At this point, opt_len and static_len are the total bit lengths of
944 * the compressed block data, excluding the tree representations.
947 /* Build the bit length tree for the above two trees, and get the index
948 * in bl_order of the last bit length code to send.
950 max_blindex = build_bl_tree(s);
952 /* Determine the best encoding. Compute the block lengths in bytes. */
953 opt_lenb = (s->opt_len+3+7)>>3;
954 static_lenb = (s->static_len+3+7)>>3;
956 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
957 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
958 s->last_lit));
960 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
962 } else {
963 Assert(buf != NULL, "lost buf");
964 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
967 #ifdef FORCE_STORED
968 if (buf != NULL) { /* force stored block */
969 #else
970 if (stored_len+4 <= opt_lenb && buf != (char*)0) {
971 /* 4: two words for the lengths */
972 #endif
973 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
974 * Otherwise we can't have processed more than WSIZE input bytes since
975 * the last block flush, because compression would have been
976 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
977 * transform a block into a stored block.
979 _tr_stored_block(s, buf, stored_len, eof);
981 #ifdef FORCE_STATIC
982 } else if (static_lenb >= 0) { /* force static trees */
983 #else
984 } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
985 #endif
986 send_bits(s, (STATIC_TREES<<1)+eof, 3);
987 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
988 #ifdef DEBUG
989 s->compressed_len += 3 + s->static_len;
990 #endif
991 } else {
992 send_bits(s, (DYN_TREES<<1)+eof, 3);
993 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
994 max_blindex+1);
995 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
996 #ifdef DEBUG
997 s->compressed_len += 3 + s->opt_len;
998 #endif
1000 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1001 /* The above check is made mod 2^32, for files larger than 512 MB
1002 * and uLong implemented on 32 bits.
1004 init_block(s);
1006 if (eof) {
1007 bi_windup(s);
1008 #ifdef DEBUG
1009 s->compressed_len += 7; /* align on byte boundary */
1010 #endif
1012 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1013 s->compressed_len-7*eof));
1016 /* ===========================================================================
1017 * Save the match info and tally the frequency counts. Return true if
1018 * the current block must be flushed.
1020 int _tr_tally (s, dist, lc)
1021 deflate_state *s;
1022 unsigned dist; /* distance of matched string */
1023 unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
1025 s->d_buf[s->last_lit] = (ush)dist;
1026 s->l_buf[s->last_lit++] = (uch)lc;
1027 if (dist == 0) {
1028 /* lc is the unmatched char */
1029 s->dyn_ltree[lc].Freq++;
1030 } else {
1031 s->matches++;
1032 /* Here, lc is the match length - MIN_MATCH */
1033 dist--; /* dist = match distance - 1 */
1034 Assert((ush)dist < (ush)MAX_DIST(s) &&
1035 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1036 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1038 s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1039 s->dyn_dtree[d_code(dist)].Freq++;
1042 #ifdef TRUNCATE_BLOCK
1043 /* Try to guess if it is profitable to stop the current block here */
1044 if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1045 /* Compute an upper bound for the compressed length */
1046 ulg out_length = (ulg)s->last_lit*8L;
1047 ulg in_length = (ulg)((long)s->strstart - s->block_start);
1048 int dcode;
1049 for (dcode = 0; dcode < D_CODES; dcode++) {
1050 out_length += (ulg)s->dyn_dtree[dcode].Freq *
1051 (5L+extra_dbits[dcode]);
1053 out_length >>= 3;
1054 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1055 s->last_lit, in_length, out_length,
1056 100L - out_length*100L/in_length));
1057 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1059 #endif
1060 return (s->last_lit == s->lit_bufsize-1);
1061 /* We avoid equality with lit_bufsize because of wraparound at 64K
1062 * on 16 bit machines and because stored blocks are restricted to
1063 * 64K-1 bytes.
1067 /* ===========================================================================
1068 * Send the block data compressed using the given Huffman trees
1070 local void compress_block(s, ltree, dtree)
1071 deflate_state *s;
1072 ct_data *ltree; /* literal tree */
1073 ct_data *dtree; /* distance tree */
1075 unsigned dist; /* distance of matched string */
1076 int lc; /* match length or unmatched char (if dist == 0) */
1077 unsigned lx = 0; /* running index in l_buf */
1078 unsigned code; /* the code to send */
1079 int extra; /* number of extra bits to send */
1081 if (s->last_lit != 0) do {
1082 dist = s->d_buf[lx];
1083 lc = s->l_buf[lx++];
1084 if (dist == 0) {
1085 send_code(s, lc, ltree); /* send a literal byte */
1086 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1087 } else {
1088 /* Here, lc is the match length - MIN_MATCH */
1089 code = _length_code[lc];
1090 send_code(s, code+LITERALS+1, ltree); /* send the length code */
1091 extra = extra_lbits[code];
1092 if (extra != 0) {
1093 lc -= base_length[code];
1094 send_bits(s, lc, extra); /* send the extra length bits */
1096 dist--; /* dist is now the match distance - 1 */
1097 code = d_code(dist);
1098 Assert (code < D_CODES, "bad d_code");
1100 send_code(s, code, dtree); /* send the distance code */
1101 extra = extra_dbits[code];
1102 if (extra != 0) {
1103 dist -= base_dist[code];
1104 send_bits(s, dist, extra); /* send the extra distance bits */
1106 } /* literal or match pair ? */
1108 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1109 Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1110 "pendingBuf overflow");
1112 } while (lx < s->last_lit);
1114 send_code(s, END_BLOCK, ltree);
1115 s->last_eob_len = ltree[END_BLOCK].Len;
1118 /* ===========================================================================
1119 * Set the data type to BINARY or TEXT, using a crude approximation:
1120 * set it to Z_TEXT if all symbols are either printable characters (33 to 255)
1121 * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise.
1122 * IN assertion: the fields Freq of dyn_ltree are set.
1124 local void set_data_type(s)
1125 deflate_state *s;
1127 int n;
1129 for (n = 0; n < 9; n++)
1130 if (s->dyn_ltree[n].Freq != 0)
1131 break;
1132 if (n == 9)
1133 for (n = 14; n < 32; n++)
1134 if (s->dyn_ltree[n].Freq != 0)
1135 break;
1136 s->strm->data_type = (n == 32) ? Z_TEXT : Z_BINARY;
1139 /* ===========================================================================
1140 * Reverse the first len bits of a code, using straightforward code (a faster
1141 * method would use a table)
1142 * IN assertion: 1 <= len <= 15
1144 local unsigned bi_reverse(code, len)
1145 unsigned code; /* the value to invert */
1146 int len; /* its bit length */
1148 unsigned res = 0;
1149 do {
1150 res |= code & 1;
1151 code >>= 1, res <<= 1;
1152 } while (--len > 0);
1153 return res >> 1;
1156 /* ===========================================================================
1157 * Flush the bit buffer, keeping at most 7 bits in it.
1159 local void bi_flush(s)
1160 deflate_state *s;
1162 if (s->bi_valid == 16) {
1163 put_short(s, s->bi_buf);
1164 s->bi_buf = 0;
1165 s->bi_valid = 0;
1166 } else if (s->bi_valid >= 8) {
1167 put_byte(s, (Byte)s->bi_buf);
1168 s->bi_buf >>= 8;
1169 s->bi_valid -= 8;
1173 /* ===========================================================================
1174 * Flush the bit buffer and align the output on a byte boundary
1176 local void bi_windup(s)
1177 deflate_state *s;
1179 if (s->bi_valid > 8) {
1180 put_short(s, s->bi_buf);
1181 } else if (s->bi_valid > 0) {
1182 put_byte(s, (Byte)s->bi_buf);
1184 s->bi_buf = 0;
1185 s->bi_valid = 0;
1186 #ifdef DEBUG
1187 s->bits_sent = (s->bits_sent+7) & ~7;
1188 #endif
1191 /* ===========================================================================
1192 * Copy a stored block, storing first the length and its
1193 * one's complement if requested.
1195 local void copy_block(s, buf, len, header)
1196 deflate_state *s;
1197 charf *buf; /* the input data */
1198 unsigned len; /* its length */
1199 int header; /* true if block header must be written */
1201 bi_windup(s); /* align on byte boundary */
1202 s->last_eob_len = 8; /* enough lookahead for inflate */
1204 if (header) {
1205 put_short(s, (ush)len);
1206 put_short(s, (ush)~len);
1207 #ifdef DEBUG
1208 s->bits_sent += 2*16;
1209 #endif
1211 #ifdef DEBUG
1212 s->bits_sent += (ulg)len<<3;
1213 #endif
1214 while (len--) {
1215 put_byte(s, *buf++);